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Abstract

On a manifold, consider an elliptic diffusion X admitting an invariant measure p. The goal
of this paper is to introduce and investigate the first properties of stochastic domain evolutions
(Dt)te[o,T] which are intertwining dual processes for X (where T is an appropriate positive stopping
time before the potential emergence of singularities). They provide an extension of Pitman’s
theorem, as it turns out that (M(Dt))te[o,*r] is a Bessel-3 process, up to a natural time-change.
When X is a Brownian motion on a Riemannian manifold, the dual domain-valued process is a
stochastic modification of the mean curvature flow to which is added an isoperimetric ratio drift
to prevent it from collapsing into singletons.

Résumé

Sur une variété, considérons une diffusion elliptique X de mesure invariante pu. Le but de
ce papier est d’introduire et d’étudier les premieres propriétés d’évolutions stochastiques de do-
maines (D¢)se[o,7] qui sont des processus duaux par entrelacement de X (ot T est un temps d’arrét
strictement positif précédant I'apparition éventuelle de singularités). Il s’agit d’une extension du
théoréme de Pitman, puisqu’il ressort que (u(D¢))se[o,7] st un processus de Bessel-3, & un change-
ment naturel de temps pres. Quand X est un mouvement brownien sur une variété compacte, ce
processus dual a valeurs domaines est une modification stochastique du flot par courbure moyenne
auquel est ajouté une dérive fournie par un quotient isopérimétrique qui ’empéche de s’effondrer
en des singletons.
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1 Introduction

In the finite state space framework, Diaconis and Fill [5] have shown that ergodic Markov chains can be
intertwined with Markov chains living on the set of non-empty subsets of the state space and ending up
being absorbed at the full state space. This result enabled them to construct strong stationary times
for ergodic Markov chains, leading to quantitative bounds on their convergence to equilibrium, in the
separation discrepancy and in the total variation distance. In [19], this point of view was extended to
real ergodic diffusion processes, but the one-dimensionality seemed crucial in the method. As noted
in this previous paper, it is quite unfortunate, since otherwise it could lead to a new probabilistic
approach to the hypoellipticity theorem of Hérmander [11]. Here we make an important step further
in this program, by showing that elliptic diffusions on differential manifolds admitting an invariant
measure can indeed be intertwined with domain-valued Markov processes. Although the hypoellipticity
is not yet entering in the game (but see [18] for a first illustration in dimension 1), the introduced
domain-valued processes are already very intriguing and promising for themselves. When dealing with
the Brownian motion on a Riemannian manifold, they are natural stochastic modifications of the mean
curvature flow. In the more general case, when a gradient drift is added to the Brownian motion, one
has to consider some weighted extensions.

Let L be an elliptic diffusion generator on a differentiable manifold V. Here we will not be interested
in regularity problems, so V' and the coefficients of L are supposed to be smooth. Assume there exists
a o-finite measure p on V' which is invariant for L in the sense that

vfeco(V),  wlLlf]] = 0

where C (V') stands for the space of smooth functions on V' with compact support. By ellipticity, the
measure 4 admits a positive density with respect to the Riemannian measure. Note that in general p
is not unique, even up to a positive factor, e.g. for the generator ¢ 4+ ¢ on R, all the measures with a
density of the form R 3 z — a + bexp(x), with a,b > 0, are invariant. But there is at most one finite
invariant measure and in this case it is usual to normalize p into a probability measure.

Let D be the set of non-empty, compact and connected domains D in V', which coincide with the
closure of their interior and whose boundary C' = dD is smooth. Denote also D =D u {{z} : x € V},
obtained by adjunction of all the singletons to D, and D the set of all measurable subsets D of V which
either satisfy u(V) € (0, +0) or are singletons (so that D = D < D). Consider the Markov kernel A
from D to V given by

pAnD)
VDeD,V AeB(V), A(D,A) = u(D) it (D) =0 (1)
9:(A) ,if D = {z}, withz e V

where B(V) is the set of measurable subsets of V' and ¢, the Dirac mass at x. As usual, such an integral
kernel can be seen as an operator transforming bounded (respectively positive) measurable functions
on V into finite-valued (resp. (0, +co]-valued) functions on D.

The main goal of this paper is to find a Markov generator £ with state space D satisfying, in an
appropriate sense, the intertwining relation

€A = AL 2)

and for which the singletons are entrance boundaries.

Remark 1 This was done in [19] when V' = R and when —co and +0o were entrance boundaries for
L. The latter assumption was needed to insure that the resulting Markov processes on the set of the



closed segments (which were not assumed to be compact in [19]) end up being absorbed at the whole
state space R, because we were primarily interested in constructing strong stationary times. This is no
longer our objective here (even if we should come back to this question in a future work), that is why
no assumption is made on the behavior of L at infinity.

Note also that in general there is not a unique Markov generator satisfying the above requirements,
since in [19] we constructed a whole family of such operators when V' = R. Nevertheless, among them,
one was the fastest to be absorbed at R, it is a generalization of this Markov generator that will be
considered below.

As a consequence of the previous remark, from now on, we assume that the dimension of V' is larger
or equal to 2. To describe our candidate £, we need to introduce some notations.

By using the inverse of the matrix diffusion of L to induce a Riemannian structure on V' (see e.g.
the book [13] of Ikeda and Watanabe for the details), L can be decomposed as L = A + b, where A is
the Laplacian operator associated to the Riemannian structure and b is a vector field (seen as a first
order differential operator). We assume that V' is complete, endowed with the Riemannian distance
d. Let A be the Riemannian measure on V. It is well-known that p is absolutely continuous with
respect to A and that its density is smooth. Let us write U := In(du/d\) € C*(V) (a priori defined
up to an additive constant, except when g is normalized into a probability measure). The vector field
b can written as VU + 3, with the vector field § satisfying div(exp(U)S) = 0; it corresponds to the
p-weighted Hodge decomposition of b. In the previous sentence, V and div(-) are the gradient and
divergence operators associated to the Riemannian structure. Other Riemannian notions that will be
useful for our purpose are the scalar product (-, -), as well as the exterior normal vector v¢, the
“mean” curvature pc and the (dim(V') — 1)-Hausdorff measure o¢, all the last three objects being
defined on the boundary C' of an element D € D. The mean curvature is signed with respect to our
choice of the orientation of v and it is not really a mean, since it is the trace (without renormalization)
of the second fundamental form. A priori the orientation of v and the sign of po require to know on
which side of C' is the interior of D (except when V' is not compact, then the mapping D 3 D — C'is
one-to-one, otherwise it is two-to-one), but pcve depends only on C.

Let us first describe heuristically the type of stochastic evolution (Dt>t6[0,’t) in D we want to consider.
The positive stopping time T is earlier than the exit time from D, typically due to the apparition of
singularities on the boundary C; := 0D;. We want, as long as t € [0, T), the infinitesimal evolution of
any Y; € C; to be given by

) N CL) P )
avi = (Vaa,+ (27U (- Ve 00 - eV ) @) v ()

where B = (By):> is a standard real Brownian motion. The evolution (3) can be seen as a deterministic
and stochastic modification of the mean curvature flow, which corresponds to

dyt = _pCt (yt)VCt (yt) dt

for the points y; on the evolving boundary.

The global term o¢, (exp(U))/u(D;) (it does not depend on the position of Y; on Cy) in (3) can be
seen as an isoperimetric ratio with respect to p. Indeed, it can be rewritten as u(Cy)/u(Dy), where p is
the (dim(V') — 1)-dimensional measure on C; admitting exp(U) as density with respect to o¢,. So this
term explodes as D; becomes closer and closer to a point. In some sense, it will compensate the trend
of the mean curvature flow on compact boundaries to make them smaller and smaller (and rounder and



rounder). Though too qualitative to be convincing, this observation is a first hint of why the singletons
will be entrance boundaries for the Markov processes determined by (3).

The term (B, ve,) (Yy)ve, (V) in (3) could be replaced by 5(Y;), since the tangential components in
the description of the evolution of the points on boundary can be removed, up to a diffeomorphism
of Cy (see e.g. Section 1.3 of Mantegazza [17]). Only the radial component (i.e. the projection on the
normal vectors v, ) is important, thus an equation such as (3) will be said to be radial.

In fact, the radial stochastic differential equation (3) of the points on the boundary is not the most
convenient way to work with the process (Dy)s[o,r)- In Markov theory, the martingale problem approach
is usually more helpful (for a general introduction and an extensive development of this notion, cf. for
instance the book of Ethier and Kurtz [7]). It needs convenient observables on the state space. On D,
the role of elementary observables is played by the mappings

Fy :DsD — Fy(D):= Lfdu (4)

associated to the functions f € C*(V), the space of smooth mappings on V.
To proceed in the direction of the definition of the generator £ on an appropriate algebra ® of
functionals defined on D, we begin by defining the action of £ on the above elementary observables: for

any feC*(V),
_ 1(C)

Using Stokes formula, we will check in Section 3 that the above r.h.s. can be written as an integral over
C only:
¥DeD, g[F = (e
€, [ f](D) - <Vf7VC>+ 2—+<67VC> fdﬁ (6)
c u(D)
Furthermore, we introduce a bilinear form I'e (which will be the carré du champs associated to £)
on such functionals, via

VfgeC®(V),VDeD,  TIe[Fy F](D) = (L fdg> <Lgdu) (7)

Since the D-valued Markov processes we are interested in will have continuous sample paths (namely
they will be diffusions), we are naturally led to the following definitions (see e.g. the book of Bakry, Gen-
til and Ledoux [3]). Consider ® the algebra consisting of the functionals of the form § = §f(FY,, ..., F},),
where n € Z,, fi1,....fn € C*(V) and f : R — R is a C* mapping, with R an open subset of R"
containing the image of D by (FY,, ..., F,). For such a functional §, define

2[3] = Z 6jf(Ff1""7an)£[Ffj] + Z ak,lf(Ffl’"'7an>F2[ka>Ffz] (8)
je[1,n] k,le[1,n]
To two elements of ©, § = f(Fp,, ..., F,) and & = g(Fy,, ..., Fy,.), we also associate
FS[S; QS] = Z &lf(Ffu"'7an)akg<Fglﬂ"'7Fgm)F£[Ffvagk] (9>
le[[n],ke[m]

Remark 2 A priori the above definitions are ambiguous, since they seem to depend on the writing of
§ € © under the form §(Fy,, ..., F,) and similarly for &. To see that they are indeed well-defined, note
that

VE 6ed, [e[§, 6] = = (L[F6] —FL[G] — BL[F])

N —



This property implies that if f is a polynomial in n variables, then for any § = §(fi,..., fn), with
fi, ey fn € C*(V), the object £[F] is uniquely defined. Indeed, it relies on an iteration on the degree of
f, starting from (6) and (7). The general case of smooth functions f is deduced from their approximation
over compact domains by polynomial mappings.

]

Let us come back to the Markov operator A defined in (1). For any f € C*(R?), A[f] is an element

of ®, since it can be written
vDeD, ALfI(D) = (b
Fy

where 1 is the constant function taking the value 1. This relation also leads us to endow D with the
o-algebra generated by the mappings Fy, for f € C*(V), so that A is really a Markov kernel from D
to V: for any fixed A € B(V), the mapping D 5 D — A(D, A) is measurable. For this mapping to be
measurable on D, put on the set {J, : x € V} the o-algebra obtained by identifying it with V' (seeing
d, as x) and consider on D the o-algebra generated by those on D and on {d, : = € V}. Since we
already mentioned continuity of trajectories, we must also endow D with a topology. The simplest way
to do so would be to consider the smallest topology such that all the mappings F}, for f e C*(V), are
continuous (with the natural extension that the F; vanish on the singletons). But for our purpose, we
will need a stronger topology making continuous the following functionals, for any f e C*(V):

D>D — A[Ff|(D) (10)
DsD deﬁ (11)
C

with the convention that if D is a singleton, then C' = & (so that the latter r.h.s. is 0). Condition (10)
enables us to topologically identify {0, : = € V} with V. The topology on D will be such that the
o-algebra put on D is the Borelian one. Condition (11) implies that for any f € C*(V), £[F¥] is
continuous on D. For the precise definition of this topology, see Section 3, where D will furthermore be
endowed with an infinite-dimensional differential structure.

After these structural precisions, let us come back to £, whose main interest is to fulfill our goal (2):

Theorem 3 For any f € C*(V), we have
VvDeD,  LA[fII(D) = A[L[]I(D)

To go further, we want to construct Markov processes whose generator is £ and to establish a link
with (3).

Let be given a filtered probability space (Q, F, (F;)i=0, P), all subsequent notions from stochastic
process theory will be relative to the filtration (F;);>¢. Consider a stopped continuous and adapted
stochastic process (Dy)sefo,r), taking values in D and where T is a positive stopping time. It is said to
be a solution to the martingale problem associated to (9, £), if for all £ € (0,7), D, € D and if for
any § € ©, the process M3 := (Mt&)te[oﬂ) defined by

t

VielR. M = 500300 - [ elEID) ds

0

is a local martingale. More precisely, in this situation we say that (D;)[or) is a solution to the
martingale problem associated to the generator (9, £) and to the initial distribution £(Dy), the law of
Dy, or starting from Dy € D, when L£(Dy) is a Dirac mass.

One key to the following result is the adaptation of the Doss [6] and Sussman [28] method to the
infinite dimensional stochastic differential equation (3).

5



Theorem 4 For any Dy € D, there is a solution to the martingale problem associated to (D, £) starting
from Dy.

In certain homogeneous spaces, it is possible to start from singletons, because these situations can
be brought back to the 1-dimensional setting treated in [19]. Indeed, the processes (D)o end up
being balls centered at the point from the initial singleton and it is sufficient to study the evolution
of the radius. This is the case of the Laplacian operator on Euclidean, hyperbolic and spheric spaces.
The stopping time T is infinite in the two former situations and corresponds to the hitting time of the
whole sphere in the latter one. But in general to consider D as state space is probably too restrictive.
We believe there exists a set G of subdomains of V', with D < G < 5, such that £ can be naturally
extended to G, in particular one should be able to define p and vyp, p-a.e. Heuristically, the set of
singular points of the boundary of a domain from G should be very small. We hope to investigate this
question in a future work via the geometric measure theory, but for the moment being, let us assume
that we are given such a set G with Theorem 4 holding up to a positive stopping time earlier than the
exit time of G. Still denote by (Dy)s[o,r) the corresponding Markov processes. Consider

¢ = ZJT(Q(CS)V ds € (0,+m0] (12)

0

and the time change (6;)[o,) defined by

Ve 0., QLBt(g(CS))st _— (13)

Theorem 5 The process (j1(Dy,, . ))i=0 i a (possibly stopped) Bessel process of dimension 3.

By taking into account that 0 is an entrance boundary for the Bessel process of dimension 3, a
consequence of Theorem 5 is that the set of singletons is an entrance boundary for the Markov processes
associated to (D, £), if we were able to extend Theorem 4 to initial conditions that are singletons.
Theorem 5 can be seen as a multidimensional extension of the intertwining relation between the real
standard Brownian motion and the Bessel process of dimension 3 by Pitman [25]: it corresponds to (2)
when L is the Laplacian on R (see also Remark 37 in [19]).

Up to now, we did not consider the Markov processes associated to L, whereas their study is the
first motivation for the above developments. The martingale problems associated to (C*(V'), L) are
well-posed (see e.g. the book of Tkeda and Watanabe [13]), so to any initial distribution on V', we can
associate a stopped Markov process (Xt)te[oﬁ) where 7 is the explosion time (maybe infinite). The
conjunction of Theorems 3 and 4 should lead to the following result, which is the reason behind our
interest in the relation (2):

Conjecture 6 Assume that the martingale problems associated to (C*(V'), L) are well-posed and
defined for all times (no explosion). Let 25 € V' be given and let X := (X;);>¢ be a solution starting
from 2y € V for the martingale problems associated to (C*(V),L). Up to enlarging the underlying
probability space, it is possible to couple the trajectory (X;)so with a solution (Dy)sefoq starting from
the singleton {zy} to the martingale problem associated to (©, £), such that for any stopping time T
with T" < T, we have for the conditional laws:

L(Dpm|X) = L(DyprlXjor) (14)
L(Xr|Dor) = ADr,-) (15)



The difficulty behind the proof of such a result is technical, since conceptually it is an immediate
extension of the ideas of Diaconis and Fill [5] in the context of finite Markov chains. Two different
approaches to such couplings for diffusions via coalescing stochastic flows have been proposed in Machida
[16] and [21], but they would need to be developed further to deal with the generality of our present
framework. A related point of view is currently under construction in [2]. Note that Conjecture 6
would enable us to come back to our initial motivation, first by recovering the density theorem for
elliptic diffusions:

Corollary 7 Assume that a coupling of (X;)i=o with (D)o can be constructed as in Conjecture 6.
Then for any t > 0, the restriction to V' of the law of X, is absolutely continuous with respect to the
Riemannian measure .

To obtain this result, only the existence of a domain-valued dual process is needed (as well as
its coupling with the process X), its uniqueness is irrelevant. The well-posedness of the martingale
problems associated to (D, £) is not crucial for this kind of consideration, more important for us would
be the possibility for the dual process to start from singletons.

Another interesting stochastic domain evolution is obtained by removing the isoperimetric ratio
from the generator, namely corresponding to the generator (D, £), where (5) is replaced by

~

vDeD, S[F](D) = L} L[f] du (16)

for its action on the elementary observables (but (7), (8) and (9) remain unchanged). The associated
Markov processes are the analogues of the evolving sets considered by Morris and Peres [22] in discrete
settings. One downside of the processes (5t)te[07T) associated to the generator (D, E) is that they have
a strong tendency to collapse in singletons in finite time and they remain singletons when starting from
a singleton. The heuristic reason behind this collapse is that (,u(lw)t))te[oﬂ) is a non-negative martingale,
due to E[F]]_] = 0. Thus, assuming for instance that T = +oo, (u(f)t))te[o,ﬂc) must converge in large
time, as well as its bracket. It follows that liminf; g(ét) = 0 and appropriate geometric assumptions
will enable to conclude that INDt becomes closer and closer to a singleton, at least along a sequence of
diverging times (in the same spirit, an isoperimetric-type inequality between p and g will imply that
limy, 4o ,u(lN)t) = 0). The convergence toward a singleton can be checked rigorously when starting
from a ball in the constant curvature framework of the next section. In fact, taking into account the
general theory of Doob transforms (with respect to the mappings D 5 D — u(D)), the processes
(D¢)tefo,ry correspond to the process (bt)te[o,r) conditioned not to hit the set of singletons, or more

precisely, conditioned so that (,u(lw)t))te[oﬂ) does not hit zero. This property gives an understanding of
the emergence of the Bessel-3 process in Theorem 5, seen as the Brownian motion conditioned not to
hit 0 (see also the observations at the end of Section 7).

The plan of the paper is as follows. In the next section, we will deal with the simple but illustrative
situation of the Euclidean, spheric and hyperbolic Brownian motion starting from a point. In Section
3 we prove Theorem 3 and Theorem 4. Section 4 presents a result on the existence of stochastic
modified mean curvature flows, which was required by the proof of Theorem 4. Section 5 comes back
to the homogeneous situations of Section 2, pursuing further some computations relative to the mean
curvature addressed in Section 3. It will also show some critical differences between two ways of applying
the Doss-Sussman method in these homogeneous geometric frameworks. In Section 6, Theorem 5 is
proved as well as other properties of the solutions to the martingale problems associated to (9, £).
In particular, we will see that if the evolution (D;);>¢ is defined for all times, relatively to the usual

7



Laplacian L = A on the plane, then renormalizing the domains so that their areas is brought back to 1,
we get a convergence in large time toward the disk centered at 0 of radius 1/4/7. An appendix provides
supplementary informations on product situations and alternative dual processes (on domains whose
boundaries are naturally non smooth).

2 Homogeneous situations

There are examples where the radial evolution equation (3) can be globally solved by coming back to
the one-dimensional situation as it is treated in [19] (see also Fill and Lyzinski [9]). They correspond
to spaces V with constant curvature endowed with the Laplacian A and we take p = A and u = o¢
(denoted o, to simplify), for C' = dD and D € D, with the notation of the introduction. For them, we
investigate solutions (D;);=o of the form (B(0, R:))i=0, where 0 is any fixed point of the state space,
B(0,r) is the closed ball centered at 0 of radius > 0 and (R;):>o is a R, -valued diffusion process
starting from 0. We will describe separately the three situations of null, negative and positive constant
curvature spaces.

2.1 Euclidean spaces

We consider here the Euclidean space R™, with n € N\{1}. Without loss of generality, we can assume

that 0 is the point zero from R™. For r > 0, the Lebesgue volume of B(0,r) is A(B(0,r)) = %r”

and the corresponding hypersurface volume of the sphere 0B(0,r) is 0(0B(0,r)) = n%r”_l. The
mean curvature of any element x € dB(0,7) is p(xz) = (n — 1)/r. Thus a solution (B(0, R;)):>o of the

radial evolution equation (3), is given by

dR,

2n n-—1
2dB — — dt
\f t + (Rt R, )

+1
L

= V2dB, +

t

where (B;);>¢ is a standard Brownian motion. Thus (Ry/2)i=0 has for generator the operator A given by

n+1
2z

VieCP(R,),VreR,, Alfl@) = ~f'(x)+

: ()

(in the sequel such a generator will be denoted %6’2 + "2—;10’), namely it is a Bessel process of dimension
n + 2. In particular 0 is an entrance boundary for (R;);>¢ and we can make it start from 0, i.e. we can
let (B(0, R;)):=o start from {0}.

Let us check directly that (A(B(0, R;))):=0 is a Bessel of process of dimension 3, up to a time change,
as announced in Theorem 5. It is sufficient to show that the same is true for (R});=o. We compute

n—+1

1
dR! = nRr <\/§dBt+ dt) +2%Rj}—2dt
t
= V/2nR' Y4B, + 2n* Ry 2dt

So the generator of (R})so is 2n%2z? %"[10% + 10]. Tt follows that (R} );>o is a Bessel process of
dimension 3, where the time change (6;);>o is defined by

0
Vit=0, f R2?"ds = 2n%
0



2.2 Spherical spaces

We consider now the sphere S < R"*!, with n € N. Without loss of generality, we can assume that 0
is the point (1,0,0,..,0) from R™*'. For any r € [0, 7], B(0,) is the closed cap centered at 0 of radius
r. In particular, we have B(0,0) = {0} and B(0,7) = S™. Let A be the uniform distribution on S" and
o be the corresponding hypersurface volume. The projection of A on the first coordinate of R"*! is the
measure Z,*(1 — 22)"2~ 1 _, yj(z) dx, where the renormalising factor is given by the Wallis integral

1
Z, = J (1 — 2> dy
-1

= J sin” ! (u) du
0
r)
= m—
VI ()
The cap B(0,r) is exactly the set of elements of S" whose first coordinate belongs to [cos(r), 1]. So we
get

ANB(,r) = Z'(r) = Z* LTsin"_l(u)du
o(0B(0,7)) = Z tsin"(r)

n

The mean curvature of any element z € 0B(0,r) is p(z) = (n — 1) cot(r). Indeed, the mean curvature
p on 0B(0,r) is the function such that for any C*(S"), we have

érj fdo = f <Vf,y>d0'—|—f fpdo
0B(0,r) 0B(0,r) 0B(0,r)

(for more details, see e.g. Lemma 10 in Section 3 below). Due to the symmetries of 0B(0,r), one sees
that p must be constant on dB(0,r). Thus considering f = 1 in the above equality, we get

0,0(0B(0,r))

_ )
~ o(0B(0,1))
= (n—1)cot(r)

It follows that a solution (B(0, R;))seqor) of the radial evolution equation (3), where T is the hitting
time of 7 by (R¢)seqox), is given by

2 gi n—1
dR, = 2dB,+ (Sm—(Rt) —(n—1) cot(Rt)> dt (17)
I(Ry)
where (By);>0 is a standard Brownian motion.
Asr — 0., we have
2sin" " (r) 2rn—1 n—1
22 V) (= 1) cot _
I(Ry) (n = 1) cot(r) §oun—tdu r

o on+l
B r

and this enables us to see that 0 is an entrance boundary for (Rt)tE[O,T) and we can make it start from
0, namely we can let (B(0, R;))e[o,r) start from {0}.

9



In general we did not find a nice expression for the drift of (17), but in the case n = 2, this evolution
equation can be written

9
iR, — +adB, + 2Tl 4
sin(Ry)

Similarly to the Euclidean situation, let us check directly Theorem 5, i.e. that (A(B(0, Rt)))scfo,r) is
a stopped Bessel of process of dimension 3, up to a time change. It is sufficient to show that the same
is true for (1(R;))sefo,r)- We compute

%Rtg&) —(n—1) Cot(Rt)) dt) + ["(Ry)dt

= V/2sin" " Y(R,)dB; + (%};;Rﬂ

+(n — 1)sin"%(Ry) cos(R,)dt

2sin*""%(R,)
I(Ry)

dI(R) = I'(R,) (mgt ¥ (

— (n—1)sin" Y (Ry) cot(Rt)) dt

= V/2sin" " Y(R,)dB, + dt

So the generator of (I(Ry))iepoq is 2sin®**(I7(x))[50* + 1], where ™" is the inverse mapping of
I :[0,7] — [0,Z,]. This shows that (I(Ry,))[o,r) is a Bessel process of dimension 3 starting from 0
and stopped when it hits Z,, where the time change (6;)sc[or) is defined by

0

’ 1
Vite|0 ds = 2t
E[ aT)a L SinQn—Z([fl(Rs)) §

Consider the case where Ry = 0. Then 6; has the same law as the first hitting time of Z,, by a Bessel
process of dimension 3 starting from 0. It follows that T is a.s. finite. Thus, starting from {0}, the
process (B(0, R;))sefox ends up covering the whole sphere S™ at the (a.s.) finite time T. According
to the theory of strong duality (see e.g. the initial paper of Diaconis and Fill [5] for the principe and
Section 7 for its application to the present context), this property leads to the construction of strong
stationary times for the Brownian motion on S" starting from 0 (and more generally for any initial
distribution on S", by symmetry and conditioning with respect to the initial position of the spheric
Brownian motion).

2.3 Hyperbolic spaces

Consider the Poincaré’s ball model of the hyperbolic space H" of dimension n € N\{1}. For references on
the subject, one can consult the book of Anderson [1] and we find the unpublished report of Parkkonen
[24] very convenient. As above, the choice of the point 0 is irrelevant, let us choose for instance the center
of the Euclidean ball on which is imposed the classical hyperbolic metric. Let A be the Riemannian
distribution on S™ and o be the corresponding hypersurface volume. Denote by B(0,r) the closed ball
in H"” centered at 0 and of radius » > 0. Up to a factor, we have

A(B(0,r)) = forsinhnl(u)du (18)
o(0B(0,r)) = sinh" *(r) (19)

From these formulas (and even only from (19), since (18) is already a consequence of (19)), one can
develop the same arguments as in the spherical situation, replacing the trigonometric functions by their
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hyperbolic counter-parts, to get the following results. A solution (B(0, R;))>o of the radial evolution
equation (3), is given by

2sinh™ ! (R,)

dR, = \/§dBt+< T

—(n—1) COth(Rt)) dt
where J : R, 3r — SS sinh" ! (u) du. In particular, for the hyperbolic plane (n = 2), we get

_ 2 + cosh(Ry)

Again, 0 is an entrance boundary for (R;);~o and we can make it start from 0, namely we can let
(B(0, R))i=0 start from {0}. From this initial point, the process (A(Ry,))i=0 is a Bessel process of
dimension 3 starting from 0, where the time change (6;)o is defined by

6
¢ 1
V=0, ds = 2t
L b2 2(J-1(R))

where J~! is the inverse mapping of J : R, — R, . This is obtained through computations similar to
those of Subsection 2.2 or as a consequence of Theorem 5.

3 Smooth initial conditions

After proving Theorem 3, we will show how to solve (3) for small times, when the initial domain has a
smooth boundary. It will provide a solution of the martingale problem associated to £, thus showing
Theorem 4.

As announced, we begin by the

Proof of Theorem 3
Consider R = {(z,y) € R? : y > 0} and the mapping

R - 2
f:Ra(zy) ;

For any f e C*(V), we have A[f] = f(Fy, F1), so that A[f] € D.
It follows that

1 Fy 2 2F
LALf]] = ES[Ff] - F_I%S[Fﬂ] - F_I%P’Q[Ff’ Fi] + F—E,FS[FIL, Fi]
which can be rewritten under the form
2 2 1
Fy LIAf]] = LlFy] — =TLe[Fy, F1] + Fy —QFE[F]I, Fy| — —=£[Fi]
FIL FIL FIL

We compute, for any D € D, with C := 0D, v = v¢ and o = o¢,

e[R(D) - JDL[IL]d,quQ% Lndﬁ




Furthermore, remark that

Thus, we have

FLL[A[f](D) = z[Ff]w)——rz[Ff,Fn](D)

= JDL[ fldu +2 Jf ffdg
- | pirau

and we conclude to the announced intertwining relation

Frip

Al =

In the above proof, Definition (5) was helpful. Nevertheless to understand the dynamic of the
domains generated by £, it is preferable to resort to (6), so let us show its equivalence with (5). It
amounts to check that for any D € D and any f € C*(V), we have

fDL[f]du - L<Vfwc>+<5,v(;>fda (20)

This equality is based on the integration by parts formula (Stokes’ theorem), stating that for any smooth
vector field v on V', we have

J div(v)dA = f (v,v) do (21)
D c
Indeed, we have
| tinan = | @1+ @U+5.90) ep(yix
= JD div(exp(U)V f) + {exp(U)B, V f) dX
By integration by parts formula, we get
J div(exp(U)V f) dA — J (exp(U)V f,v) do
D c
- | v
c



Recalling that div(exp(U)B) = 0, we have div(exp(U)fB) = {exp(U)B,Vf) + div(exp(U)B)f =
(exp(U)B, Vf), so another integration by parts gives us

| @n@pvpan - | @ ra

ending the proof of (20).
[

Now that we know that £ satisfies the wanted intertwining relation with L, given D, € D, we would
like to construct a Markov process (Dt)te[(),’r) starting from Dy and whose generator is £, where T will
be a positive stopping time, in a first step. To do so, we come back to the radial evolution equation (3)
that we reinterpret under the heuristic D-valued stochastic differential equation

M(Ct)
1(Dy)

where U, and U, are “vector fields” on D. This formulation will enable us to adapt the Doss-Sussman
method [6, 28] to this infinite dimensional setting to construct a solution to the martingale problem
associated to the generator £ and to the initial position Dy, at least for small times.

Before explaining in general what we mean by a vector fields on D, we study the flow generated by
01, which is very simple to describe. For any r € R, denote

dD, = U,(D) (\/idBt +2 dt) +0,(Dy) dt (22)

¢

{reV :d(x,D)<r} yifr>0
¥(D,r) = { D ) (23)
{reD :dz, D) =-r} ,ifr<o0

where we recall that for any subset A< D and z €V,
d(x,A) = inf{d(z,y) : ye A}

with d the Riemannian distance on V.

It is easy to realize that the family (V(D,r)),er does not behave well for some r € R: it does not
stay in D and does not satisfy the flow property (see Remark 9 below). So we are going to restrict the
parameter r to a convenient open segment containing 0.

For any x € V and v € T,V let (exp,(rv)).er stand for the geodesic flow whose position and speed
at time 0 are x and v. By our assumption of completeness on V', these geodesic flows are defined for
all times. For any r € R, define the mapping

Yo, 2 C 3z exp,(rve(x)) (24)

Define
R, (D) = inf{re (0,4o) : ¢, is not a diffeomorphism on its image} (25)
R_(D) = —inf{re (0,+m) : ¥¢_, is not a diffecomorphism on its image} (26)

Due to the existence of a normal tubular neighborhood around the compact set C', we have that
R, (D) >0 and R_(D) < 0. The interest of the segment (R_(D), R, (D)) is summarized as follows:
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Proposition 8 Let D € D be given. For any r € (R_(D), R, (D)), we have

o¥(D,r) = e (C)
{reD°:d(D,x)=r} ,ifr>0
- {c ifr=0 (27)
{reD :dDx)=-r} ,ifr<0

showing that ¥(D,r) € D.
Furthermore, for any r,r’" € (R_(D), R, (D)) such that r + 1" € (R_(D), R, (D)), the “semi-group
property” holds:

U(D,r+r") = ¥(U(D,r),r") = W(¥(D,r"),r)

Proof

The above result is certainly standard, even we were not able to find a corresponding reference.

For the first assertion, we begin by considering the case r € (0, R, (D)). For any x € ¥(D,r)\D,
there exists y € C such that d(z,y) = d(x, D) € (0,7]. Let us check that = ¢ 4@y (y). Denote
(7(5))se[0,d(z,y)] & unitary minimizing geodesic going from y to . There exists v € T,V with [jv| = 1
such that v(s) = exp,(sv) for all s € [0,d(x,y)]. If v is not orthogonal to T,C, then for small s > 0,
we could find ys € C' with d(ys,v(s)) < d(y,v(s)), contradicting the minimizing property of y, since we
would get d(z,y) = d(y,v(s)) +d(y(s),z) > d(ys,v(s)) +d(v(s), ) = d(z,ys). If v was directed toward
the interior of D, we would also end up with a contradiction, by considering the last time s € (0, d(z,y))
such that v(s) € D. It follows that v = vo(y), showing that x = ¢c g, (y). We furthermore get such
a point y € C' is unique, otherwise we would be in contradiction with the fact that ¢c 4, p) is injective.
Conversely, if s € (0,r] and y € C, then z = o (y) € ¥(D,s), with d(z,D) < d(x,y) < s. Thus we
have the description

Vre(OR(D), WD) = D |J vedC)

Let us show that all the sets of the r.h.s. are disjoint. First we prove by contradiction that
vV se (0,r], Dnyes(C) = O (28)

So assume that ¢ s(z) € D, for some x € C. Replacing s by inf{t > 0 : ¥c(x) € D}, which is still
positive, because ¢ (x) does not belong to D for ¢t > 0 small enough, we can assume that ¢ s(z) € C.
Consider the mapping ¢ : [0,s] 3t — d(¢c(z),C). We have seen above that for ¢ > 0 small enough,
we have ¢(t) = t. Since ¢(s) =0, let w = inf{t > 0 : ¢(¢t) + t}, which belongs to (0,s). Note that for
t € [0,w), the directing normal vector £t () is orthogonal to the tangent space of ¢c4(C) at ¥ey(z),
otherwise for v € (t,u), we could find a shortest way from ¢ ,(x) to ¥c:(C) than the one given by
the geodesic (Ve (2))weft,w) and it would follow that d(yc(x),C) < v. The tangent space of 1c;(C)
at Yo4(x) coincides with the image of T,C by T9c(x), by the fact that ¢, is a diffeomorphism on
its image. Letting ¢ go to u, we get the directing normal vector %?ﬂc,t(l“)’ ., 1s still orthogonal to the
tangent space of ¥¢,(C) at ¥ u(x). As above, this property insures us that for € > 0 small enough,

d(Ycure(r), hou(C)) = e (29)

namely either d(¢cy+e(2),C) = u + € or d(Youte(x),C) = u — €. The first alternative is forbidden by
the definition of u. For the second alternative, we get, for € > 0 small enough, V¢ yic(2) + Vo u—e(T)
belongs to ¥¢,—(C), thus we can find y € C\{x} with o yie(z) = Yo u—c(y). If follows from (29) that
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You(x) = Yeu(y), in contradiction with the injectivity of ¢¢,. This ends the proof of (28). The proof
that for s + s € (0, r], we have ¢ s(C) N Yoy (C) = & is similar. Indeed, if this equality was not true,
then one would be able to find again x € C' and ¢ € (0, 7] such that d(¢c(x),C) > t. We end up with
the “foliation”

Vre(0,R (D), ¥(D,r) = D || tcs(C) (30)

From this decomposition and the continuity of C' x (0, R4 (D)) 3 (x,s) — ¢ s(z), we deduce that for
r € (0, Ry (D)),

W(D,r) = vor(C)
= {xeD°:dD,z)=r}

The analogous relations when r € (R_(D),0) are obtained in a similar way, taking into account that

Vre(R-(D),0), WD) = D\| || ¢es(0) (31)

s€[r,0)

The semigroup property is also a consequence of (30) and (31), taking into account that for r, 7’ as
in the above proposition, we have

7vZJC,r-H“’ = wC,TOwC,r’ = wC,r/O'lvbC,r

(remarking that for any « € C and r € (R_(D), R, (D)), we have T, ¢c,[ve(x)] = vecr) (Vo (2))).
|

Remark 9 The semi-group property of Corollary 8 is no longer necessarily true if the conditions on
r,7’" € R are not satisfied. Consider first the following (non connected) example: let D be the union of the
open balls B((0,0),3) and B((0,5),1). Then we have ¥(D,—-2) = B((0,0),1) and ¥(B((0,0),1),2) =
B((0,0),3) + D. This example can be modified into a connected one by joining B((0,0),3) and
B((0,5),1) through the open rectangle [0, 5] x [—1,1]. The boundary of the resulting domain D is not
smooth, nevertheless, the definition (23) makes sense. The boundary 0¥ (D, r) makes an “irreversible
transition” at r = —1.

From now on, for r € (R_(D), R4 (D)), denote by W(C, ) the set described in (27). For given D € D,
the family (W(C,7))re(r_(D),R, (D)) is the solution of the normal flow equation, which can be written
under the radial form

v(C,0 = C
Vre(R_(D),R.(D)),Vxe¥(C,r), o = vy ()

where the points of the boundaries are pushed according to the outward normal.
For our purposes, it is convenient to look at this set-valued evolution through our elementary ob-
servables:

Lemma 10 Let D € D and f € C*(V) be fived. The mapping (R_(D), Ry(D)) 31— F¢(¥(D,r))eR
is C* and for any r € (R_(D), R. (D)), we have

O Fp(¥(D,r)) = L}(C )fdg

f (V fovaien) du+ j
v(C,r)

w(C,

(32)

O Fy(¥(D,1))

)(<VU7 V\I/(C,r)> + pwon)f dy
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To simplify the notation, when the set C' will be clear from the context (e.g. coming from the domain of
integration), we will write o, v and p instead of o¢, Ve and pe, convention which was already adopted
for u. So that the last r.h.s. admits the more readable expression

f (Vv du+ f (VU0 + p) dis
(C,r)

v (C,r)

Proof

The first differentiation is a classical result. It can also be deduced from the disintegration of u with
respect to (30) and (31). For instance for r € [0, Ry (D)), we have

Fy(V(D,r)) = F¢(D)+ LT .[p(c )fdgds

and the r.h.s. is easily differentiated with respect to 7.
For the second differentiation, first write

| tdw = | reww)ds
U(C,r) ¥(Cr)

To differentiate with respect to r the r.h.s., one has to adapt the arguments of Section 1.2 of the book
of Mantegazza [17], to get

6TJ fexp(U)do = f (V(fexp(U)),v) d0+J fexp(U)pdo
v (C,r) (C,r)

v(C,r)

- f (Vf,v) ngrf (VU v) +p) [ dp
v (C,r)

v(C,r)
[ |

We will also need to differentiate ¥ with respect to the first variable D € D. We must first give a
meaning to the underlying notion of differentiation in D.

Consider a family (Gy)sepo,s,) taking values in D, for a real number S, > 0. We say this family
is strongly continuous in a neighborhood of s € [0,S,) if there exist a neighborhood Nj of s
in [0,5,) and a continuous mapping ¢s : Ny x dGs — V such that for any u € N, the function
0Gs 3 x — ps(u, z) is a homeomorphism between 0G and 0G,, and if (s, ) is the identity mapping.
In this statement, the boundaries 0Gj, for s € [0, S,) are endowed with the topology inherited from
that of V. Similarly, these boundaries will be endowed below with the smooth differentiable structure
inherited from V' as smooth submanifolds. The family (G)sepo,s,) is said to be strongly continuous
on [0,S5,), if for any s € [0, S,), it is strongly continuous in a neighborhood of s.

Remark 11 Let 0 be the Hausdorff metric on the compact subsets of V. It endows D with a metric
structure. The strong continuity defined above implies the continuity for the Hausdorff metric, but the
converse is not always true, as it is illustrated by the following picture:
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Figure 1: convergence in the Hausdorff topology, not in the strong sense

Note that the restrictions to D of the mappings defined in (10) and (11) are strongly continuous.

By analogy, we say the family (Gy)sepo,s,) is strongly smooth in a neighborhood of s € [0, 5 )
if there exist a neighborhood Nj of s in [0, S, ) and a smooth mapping ¢ : Ng x 0G5 — V such that
for any u € Ny, the function 0Gg 3 © — @¢(u, x) is a diffeomorphism between 0G4 and 0G,, and (s, )
is the identity mapping. The family (Gs)seo,s,) is then said to be strongly smooth if it is strongly
smooth in the neighborhood of any s € [0,S5). For such a family, consider for any s € [0,S,) and
x € 0G,, the vector

Xz?Gs (:L‘) = au@s<u7 ZE) |u=s

The T'V-valued vector field Xye, on 0Gy enables to describe the infinitesimal evolution of G, via a
formula similar to (32)

V s€[0,5)),V z e dG,, 0st = Xoq,(x)

This description is not unique, because the mappings ¢4(u, ) are not unique: they can be composed
by diffeomorphisms of dG,, depending on s and (smoothly) on w. Indeed, as already mentioned, the
discussion of Section 1.3 of Mantegazza [17] shows that for z € 0Gj, only the radial part asq,(z) =
(Xoa, (), voc,(x)) is unique. Furthermore, it is possible to choose the mappings s in such a way so
that

V se0,5)), V xedGs, Xoa. () = asq,(7)veg, ()

and the function « is continuous in the sense that if the sequences (s, )nen in [0, S5 ) and (2, )nen, taking
values respectively in (0Gj, )nen, are converging toward s € [0,.5,) and z € 0G, then lim,,_,o g, (2,) =

aoq. (T).
The family (Gs)se[o,s .) can thus be described more intrinsically as a solution of the radial equation
equation

V s€[0,54), YV xedGy, 0st = pa,(T)vag, () (33)

This formula enables us to identify the “tangent space” TpD at D € D with the space C*(C)
of real smooth functions on C (of the form a¢ with the above notation). At least it appears that
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TpD < C*(C). Conversely, given a € C*(C'), we will see in Remark 16 how to construct a strongly
smooth family (G)sefo,s,) such that

Gy = D

{ V x € 0G,, Os|s=0 = a(x)Vag, () (34)

This shows that C*(C) < TpD.

Following the traditional definition in differential geometry, we say that a mapping ® : D — D is
strongly smooth if any strongly smooth family (G,)sc[o,s,) is transformed by @ into a strongly smooth
family, i.e. (®(Gs))sefo,s,) is smooth (to simplify the terminology, from now on, smooth means strongly
smooth). Then there exists a vector field & on (®(Gs))sefo,s,) such that

V s€e[0,5)),V zedd(Gy), st = Qoa(c,)(T)Vos(a,) ()

Fix s € [0,5;). It is not difficult to see that the function dse(q,) depends on « satisfying (33) only
through aa¢,. For fixed D € D, consider any smooth and D-valued family (G)sepo,s,) with 0 € [0,55)
and Gy = D. Let a be associated with (Gs)sefo,s,) as in (33). The linear functional transforming oc
into daa(p), as above, is called the tangent mapping Tp® of ® at D.

Remark 12 A natural converse question is: given D, D € D and a linear mapping 7' from C*(C) to
C*(C) (with C := @D), is there a smooth function ® on D with ®(D) = D and such that 7' = Tp®?
The investigation of this kind of general issues is out of the scope of the present paper. Nevertheless,
a first step in this direction is as follows. Let a, & be given in TpD and T3 D respectively. Remark 16
shows how to extend o and & on D in order to be able to solve locally in time (34) to get smooth families
(Gs)sefo,s,) and (é5)56[07§+). Replace S, by Sy A §+. Assuming that « did not vanish identically on 0D,
we can furthermore impose that S, is small enough so that [0,S5,) 3 s — G, is one-to-one. It enables
us to define ® on {G, : s € [0,5,)} via ®(G,) = Gy, for all s € [0,5,). Then we get Tp®[a] = & To
go further would require a better understanding of the neighborhood of D in D.

With all these preliminaries at our disposal, we can now compute the tangent mapping Tp¥(-,r)
for r € (R_(D), R.(D)). Rigorously, for given r € R, the mapping ¥(-,r) is not defined on the whole
set D but only on the subset

D, = {DeD:re (R (D),R.(D)))} (35)

This subset is open for the strong topology alluded before (but not in the Hausdorff topology, see
Remark 11), so that the notion of tangent mapping can be extended to this setting (as soon as D, + ).
The tangent mapping TpW(-,r) is among the simplest possible ones:

Lemma 13 Let D e D and r € (R_(D), R, (D)) be given. For any a € C*(C) and x € C, we have
TpP(,r)lel(z) = alte,())
where 1[)51T : U(C,r) — C is the inverse mapping of the function V¢, defined in (24).

Proof

Let a € C*(C') be given, extend it smoothly on V' and solve (34) for ¢ > 0 small enough. For z € C' and
s € (—e€,¢€), denote ¢(x,s) =z, and A = {p(z,s) : © € C}. According to the previous discussion, to
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get the wanted result, we just need to check that for any x € C, the part of 0514, »(¢(2, s))|s=o which
is (outwardly) normal to W(Ag,r) is equal to a(x), namely that

Vzed, <5S¢As,r(<ﬁ(l’, $))s=o, V‘I’(CvT)(wC,r(x>)>ow(x) = az) (36)

Denote

Vie [O,T’], Jt = aswAs,t(gp(:Ea S))’SZO

so that (J;)w[o is a vector field over the geodesic (7(t))wcfor] = (Ve t())epor). For all s € (—¢,¢),
(Vo (s) )tefon is a geodesic, it follows that (J;)eo, is a Jacobi fields (cf. for instance Proposition 3.45
from the book of Gallot, Hulin and Lafontaine [10], whose Chapter 3 serves as a reference for all the
following considerations). Thus (J;)ew[o, is defined by its initial conditions J(0) and J'(0), where the
prime corresponds to the covariant derivative with respect to ¢, and by the evolution J” = —R(J, )7,
where R is the Riemannian curvature tensor. To prove (36) amounts to show that the mapping [0, ] 3
t— {J(t),7(t)),( is constant. The covariant derivative is constructed so that the scalar product is left
invariant, so that

vitelo,r], %U(t)d(t)%(t) = 0,300 + (0,7 ()0
= {J(0): 7))y

since by definition of a geodesic, we have 4/(¢) = 0. Differentiating once more, we get

%<’]/<t>7;}/(t>>’y(t) = '), 7O + <),V )
= {J"(), (),

= _R(Ja 77’77’}/)
= 0

since the (0,4)-curvature tensor R is anti-symmetric in its last two vector variables (as well as in first
two vector variables). Thus, to get the wanted result, we just need to check that J’(0) is orthogonal to
7(0) = ve(x). From the first equality of Proposition 3.29 of Gallot, Hulin and Lafontaine [10] (applied
with the commutating vector fields X = ds and J = 0, on (—¢,€) x [0,r] parametrized by (s,t)), it
appears that J'(0) coincides with the covariant derivative with respect to s of the tangent vectors of the
geodesic (Vo (%s))iefo, at s = 0 and t = 0. The latter tangent vectors are unitary, so their covariant
derivatives are orthogonal to them. Thus at s = 0 and ¢ = 0 we get (J'(0),¥(0)), = 0, ending the proof
of (36).

[

We deduce the differentiation of our favorite observables.

Corollary 14 In the setting of Lemma 13, let be given f € C*(V) and (Gs)sefo,s,) with Go = D and
oG, = « (in the sense of (33)). We have

d

L F¥(Gyy)

_ f f(@)a (g (x)) u(dz)
v(C,r)

s=0

Proof
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As in the first part of the proof of Lemma 10, we get

d

%F (GS)

_ f f(@)a(x) u(de)
s=0 C

Taking into account Lemma 13, the announced result follows from this formula, with (G5)seo,s, ) replaced

by (V(Gs,7))sef0,5,)-
[ ]

A famous example of radial evolution of the type (33) is the mean curvature flow:
YV se€l0,5:), YV xedGy, 0st = —pog.(T)vag, ()

where Gy € D is given and [0, S, ) is the maximum interval on which this flow remains in D (there are
various ways to define the mean curvature flow beyond the times when it gets out of D, see e.g. Chapter
1 of the book of Mantegazza [17]). When V = R? endowed with its usual Riemannian structure, it is
possible to compute explicitly the image of the mean curvature vector field p by the tangent applications
to the normal flow W, see Subsection 5.1. In general, it is more difficult (see nevertheless Remark 49
for the usual Riemannian structure on V' = R™), since the curvature of V' will enter into the game.

The arguments of Section 1.5 of Mantegazza [17] can be adapted to get existence and uniqueness of
the solutions (Gs)sefo,s,) to the radial evolution equations of the form

Vse[0,5,),VxedGy, st = (—poc,(z) + (b(x), veg, (x)), + a(x))vec, () (37)

where [0, S, ) is a small enough interval containing 0, where G is a given element from D and where a and
b are respectively a smooth function and a smooth vector field on V. The obtained solution (Gs)se[o,s 1)
is a smooth family. The underlying idea is to consider again the parametrization (r_,r,) x Gy 3 (r,x) —
g, (x) of a tubular neighborhood of Gy, where (r_,r,) is a small neighborhood of 0. Then one looks
for a mapping [0,5,) x Gy 3 (s, ) — y(s, ), whose image is included into the tubular neighborhood
Ve, (r—r1)(Go) and which is such that for any s € [0,5,) and any x € G

y(0,2) = @o(x)
<asy(s>x)7VﬁGs(y(Sax)»y(s,x) = _paGs(y(S7x>>+<b(y(5>x))?yﬁGs(y(57$))>y(s,m)+a’(y(57‘r))>

where oo : Go — R” is the inclusion map. Then writing y(s, ) = ¥¢,, f(s,)(2), for all (s,z) € [0,5;) x
Gy, we end up with the quasi-linear parabolic equation with respect to f: for any z € Gj,

f(0,z) = 0

V se[0,5)), dsf(s,x) NeGysf(s, ) (38)
+H(x7 f(57 x)? (awzf(& $))ie[[n—1]]; (awz(axjf<sv x))g)i,je[[n—l}])

where H is a smooth mapping on R, x R"~! x R™D* and where Ag,.s 1s the Laplacian relatively to the
Riemannian structure on Gy obtained by pulling back through the diffeomorphism Go 3 © — ¥, f(s.2) (x)
the Riemannian structure on G, inherited from that of V. Note that H will be independent from the
chart in which we compute 0., f(s,z) and 0,0, f(s, x).

Before going further, let us explain how to get (38) from (37), when V' = R™. In this case we have

y(s:7) = Yapsen(r) = ¢ol@) + fs,2)n(w)

and note that for f small and smooth, y(s,.) will be a diffeomorphism, with f(0,z) = 0 and 0., f(0, x) =
0 and 0,0, f(0,2) = 0. We compute the equation satisfied by f(s, ) such that y(s, r) is a solution of
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(37). Taking into account Corollary 1.3.5 in Mantegazza [17], up to a reparametrization, the evolution
of G5 = y(s,Gy) is characterized by it’s normal evolution, namely {dsy(s, x), Vac, (y(s, x))>y(syx). Let us
compute the pullback metric at € Go, g(s,x) = y(s,.)+goG,, Where g is the canonical metric in V. In
a local chart of G, (%;)ic[n—1] at © € Go, we have:
gi,j(sa .Z‘) = <ax¢y(8’ x)> aa:jy(sa l’)>
<ax¢900 + axif(svx)yo(x) + f(S, m>axiy0(x)a axj@() + axjf(sa'r)VO(x) + f(S, :L‘)axjyo(x)>
= <0332900 + f(S,l’)(}in/o(x), aijOO + f(S,x)(?mjl/o(ZE)> + azif(‘S? SL’)(’)zjf(S, LE)

Using Gauss-Weingarten equation, namely:

Qaivo(x) = hig(0,2)g""(0, 2) 0, p0()

where h;;(0,2) is the second fundamental form of Gy at z, and (¢"*(0,z));x is the inverse of the
metric (g,x£(0, z)).x, and we use the convention that every repeated lower indices and upper indices are
considered as a sum, as in the whole paper. We get,

gij(s,x) = i;(0,2)+2f(s,x)h;;(0,2) + fz(s,x)hi,lgl’mhjym(o,x) + O f(5,2)0z, f (5, )
Using again Gauss-Weingarten equation, and since (v (s, x), 0,,y(s,x)) = 0 we have
hij(s,2) = —w(s, ), 0z,00,y(s, )
= —W(8,1),04,02,00 + 02,00, f10(%) + O, f O, 0() + Ou, fOr, V0 + [0, 00,v0())
= =0y, 0u, f{V(s, ), 1o(2)) + Hyj(x, f(s,2), (8, f (5, %) )icfn_1))

where v(s,z) is the exterior normal vector of G at the point y(s,z), and h; (s, z) is the second

fundamental form of G at y(s, ) in the basis (0z,y(s, T))ic[n—1] of it’s tangent space and H is a smooth
function when the two last argument are small enough. We also have

asy(87 I) = asf(87 {L‘)l/o(.l’)
and pac, (y(s,x)) = g™ (s, x)h; j(s,x), note that this quantity is independent of the chart. If we write :

poc, (u(s. )
= ¢ (s,x)h; (s, x)
= g (5,2)00,00, f (5,0, v0(x)) + ¢ (5, 0) Higw, f(5,2), (0, f (5,2) ieg-1y)
= —g"(5,2) (00, 0u; f = T7(5,2)0n, [ (5, 2)) (s, 2), v0(x))
+ g% (s,2) (Hij(w, f(5,2), (o f (5, 0)icpn11) — TF (5, 2) 0, f(5,2) 0 (5, ), 10(2))))
= Dy fWls ), m(x)) + H(x, f(s,2), (0, (5, 2)icpn-1]: (Or, (Cx, £ (5, 7)) )1kefn—11)
where Fi-f ;(s,z) is the Christoffel for the metric g(s), this quantity depends on the derivative of g and thus

on the second derivative of f, but only via (0, (s, f (S, 2))*)ike[n—1]- Furthermore, as we can see below,
v(s, x) depends on the derivative of f up to order one. Note that since paq, (s, ) and Ag, s f are indepen-

dent on the choice of the chart, the same is true for fvl(x, f(s,2), (00, f (5, 2))iefn—1]> (O, (P f (8, 2))?) 1 kefn—-1]))-
So if y(s, ) is a solution of (37) then after taking bracket with the normal vector we get:
0sf (s, 2)Cv(s, @), vo())
= (0sy(s, %), Vi, (Y(5, 7))y s.0)
= —poc,(y(s,x)) + <bly(s, 1)), voa, (Y(5, ) )y(s ) + aly(s, )
= Dy fW(s, ), v0(2))
+H(x,a,b, f(s,2), (00 f(5,0)iefn11: (O, (O f (5, 7)) ) e-11) (39)
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where H is independent on the choice of the chart.

Furthermore, since (v;(s,2))icpa-1] = (v (8,2)04,y(8,2))icfn1) is an orthonormal basis of the
tangent space of G at y(s,x), the vector vo(z) — X, (Wo(@), vi(s, 2))vi(s, x) is orthogonal to this
tangent space. Let us compute it, taking into account that {vy(x), 0x,0(x)) = 0 and {(vy(z), Oy, vo(x)) =
0:

Z (v(x), vi(s, z))vi(s, x)

i€[n—1]
= v(x) — Z Z V3" (s, 2)0,,y(s, ) Z VG (5, 2)05,y(s, )
i€[n—1] le[[n 1] ke[n—1]
= v(x) — Z Z V3" (s, 2)vo(x), 0uy(s, ) Z VG (8, 2)00y(s, 2)
i€[n—1] le[n—1] ke[n—1]
= V()(Qf)— Z Z ﬁiyl(sax)axlf(svl’) Z \/§i7k(s>$)axky(s7$)
i€[n—1] le[n—1] ke[n—1]

= vy(x) — Z Z Z \/Ei’l(s,x)\/ﬁi’k(s,x)é’xlf(s,:E)&‘mky(s,x)

le[n—1] ke[n—1] ie[[n 1]

= Z Z 3 X amlf(s x)&xky(s :L’)

le[n—1] ke[n—1]
In particular, this vector is different to zero for f and V f small enough and we get then
() = Ou f(5,2)g" (5, 2)0u; (o(@) + f(s,2)10(2))
|0(x) — Ou, f(5,2)g" (5, 2)0a, (po(@) + [ (s, 2)vo(2))]

It follows equally that (v (s, x), vy(x)) is different to zero for f and V f small enough, and thus dividing
(39) by {v(s,z),p(x)), we get (38) for a smooth function H deduced from the previous computations.

v(s,z) =

When s, f(s,z) and Vg, sf(s,z) are small, the implicit function theorem enables us to write (38)
under the form considered in Appendix A of Mantegazza [17], due to the strict ellipticity of the operator
Ag,.s on Gy and to the fact that

(02,(02, f (5,2))igjeln-11 = 2(0a, £(5,%) (00, 0s, £ (5,%)))igefn—11

As shown by Appendix A of Mantegazza [17], such quasi-linear parabolic equations admit a unique
solution on a small time interval containing 0, so this existence and uniqueness result holds for (38).
It would also be possible to put in front of the term ps,(x) of (37) a positive quantity depending
smoothly on .

Remark 15 We have written in a natural way the leading term of pss, in terms of the Laplacian for
the metric g(s). Unfortunately the equation we will need will not be exactly of this form, because we
will have an additional stochastic term, carefully studied in Section 4. For the short time existence,
we will prefer to write this leading term in terms of a fixed manifold with a fixed metric as in (62) in
Subsection 4.1 .

Remark 16 Let us come back to the search of a smooth family (Gs)sefo,s,) satisfying (34), where
a € C*(GYy) is given. First extend pag, + a from 0Gy to V, to obtain a smooth function a € C*(V)
coinciding with psg, + @ on 0Gy. Next define for any D € D,

VaxeC, ac(z) = —pe(x) +a(x)
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The radial evolution equation
Vse0,51), Ve dGs, 05t = pa,()veg, () (40)

is of the form (37) and so admits a unique solution for small enough intervals [0, S ). Restricting the
above equation to s = 0 shows that (Gy)se[o,s,) solves (34).

This construction seems particularly cumbersome, it would be more natural to extend « from 0G,
to V to get a smooth function ¢ € C*(V') and to solve the radial evolution equation

V s€e0,5)),V xe dG,, Osx = (), () (41)

Unfortunately, doing so, we end up with a Hamilton-Jacobi equation (see e.g. Chapter 3 of Evans [8])
instead of the quasi-linear parabolic equation (38). One would then be led to investigate if the usual
conditions for existence and uniqueness of the solutions to the Hamilton-Jacobi equations are satisfied
and thus to describe more precisely the function H appearing in (38), but this is not so nice.

The normal flow equation (32), corresponding to ¢ = 1, was simple to solve (in both direction
of the time, contrary to the above quasi-linear parabolic equations), because the normal vectors are
transported in a parallel way by the geodesic flows directed by these normal vectors.

Equations of the type (37) are adapted to our purposes: only considering the last vector field in
(22), i.e. the heuristic D-valued “ordinary” differential equation dD; = Uy (D;)dt, amounts to solve the
following modification of the mean curvature flow:

Vsel0,5:),VxedGy, Ost = —pla. (@)vec,(x) (42)
where
YDeD Vrel,  phlr) = pole) +(VU() - Bla), volw)), (13)

(despite the b in supscript, remember that b = VU + 8 and not VU — 3, as the above formula could
suggest).

Let Dy € D be given, as well as (B;)>o a standard (one-dimensional) Brownian motion starting
from 0. To solve (22), we are looking for a stochastic D-valued evolution (Dy)[o,r), where T > 0 is a
stopping time (wrt. to the filtration generated by the Brownian motion), such that

Vtel0,71),Vxely, de = (\/idBt + 2553;)) dt — pbct(x)dt> ve, (x) (44)

where Ct = 8Dt

To explain the Doss [6] and Sussman [28] approach to such stochastic differential equations, it is
helpful to first replace v/2 dB; +2u(Cy)/u(Dy) dt by d&; = &, dt, where ¢ : R, — R is a given C' function
with & = 0. Still starting from D, we would like to solve the radial evolution equation

Vtel0,e),Vael, o = (& —pl, () ve,(2) (45)

for some € > 0, without using the derivative (&)sefo,q. To do so, we begin by solving another radial
evolution equation

Gy = Dy

{ Vtel0,¢),V xedGy, 0T = o, g (T)Vog, () (46)
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for some ¢ > 0 small enough, where « is defined by
¥r>0YDeD, Vzel,  ac.(z) = —phycn(te(z)) (47)
where W(C,r) was defined after Remark 9, taking into account (24), (25), (26), (35). Next, consider
e = inf{te[0,€) : Gi¢Dg} > 0
(with the usual convention that € = € if the set in r.h.s. is empty) and define
Vtel0,e), Dy = V(G &)

Let us check that this is indeed a solution of (45). First, we have ¥(Gy,&) = V(D,0) = Dj.
Concerning the evolution, differentiate with respect to the first and second variables of ¥ to find

Vtel0,e),Vzel,  x = (Tg,¥(- &) g, q](r)+ &) ve(x)
= (=pl,(z) + &) ve,(2)

as wanted, where we used Lemma 13. Denote h the mapping defined on D by

VvDeD, WD) = 0

(D)
For given Dy € D and a C! function ¢ : R, — R, we are now looking for a solution, starting from Dy,
to the radial evolution equation

Vtel0,e),Vaedl, r = (¢ +h(Dy) - pl,(2)) ve,(2) (48)

for some € > 0. Following computations similar to those presented above, we get a solution by taking,
for t > 0 small enough,

Dy = V(G ¢+ 0;) (49)

where the R x D-valued family (6;, G¢)se[o,e), for € > 0 small enough, is a solution of the system starting
from (0y, Go) = (0, Dy) and satisfying

{ L0, = h(V(Gy, ¢+ 6r))
VZL’E&Gt, 6t:70 = aaGt,Ct-i-@t(‘r)V@Gt(x)

The formulations (49) and (50) do not require that the function ¢ is differentiable.

These remarks suggest to solve (44) by replacing ()0 by (v2B;)i=0 in (49) and (50), up to the
random time 7 these constructions are allowed: 7 will be a stopping time with respect to the filtration
generated by the Brownian motion (B;);=o. This is the Doss [6] and Sussman [28] method, adapted to
our evolving domain framework.

So given Dy € D, we are led to consider the following stochastic radial evolution equation system
with respect to (6, Gi)iefo,), starting with (6, Go) = (0, Dy):

Vitelo,e), (50)

%Ht - h(@(Gt, \/ﬁBt + (9,5))

vieloo, { VaedG, 0x = Qg yap1e,(T)Voc, ()

(51)

In Section 4, we show the existence of a solution of (46), where (&);50 = (v/2B;)=0 and the existence
of a solution of (51). There, we will only consider the case V' = R™"!, the situation of a general manifold
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V' is similar up to some modifications, which are straightforward from a conceptual point of view, but
induce complicated notations.
Once (51) is solved, define as in (49),

Vie[0,1), D, = V(G V2B, +6,). (52)

up to the stopping time T until which this construction is permitted.
Let us now check that (52) provides a solution to the martingale problem presented in the introduc-
tion:

Theorem 17 The stopped stochastic process (Dy)iefor), defined on the natural filtered probability space
of the standard Brownian motion (By)i=o, is a solution to the stopped martingale problem associated to
the generator (D, £) and to the starting domain D.

Proof
Fix some f € C*(V). On the set I :={(s,7) e Ry xR : G5 € D, }, consider the mapping

(8,7“) — Ff<\IJ(Gs>T>> (53>

According to Lemma 10, this mapping is C? in the second variable. Concerning the first variable, note
that for (s,r) € I, we have

VredG,, 0w = —pyeq,n V.. (7))vec. (@) (54)

From Lemma 13, we deduce that

Ve WG, ), 0w = —Phogr(@Vacaun @) (55)
and from Lemma 14, that for any f € C*(V),
d
SEWG) = = | fa) ) ) (56)
§ W(3Gsr)

In particular, the mapping defined in (53) is C! in the first variable.
These observations enable us to apply [td’s formula to [0,T) 3t — Ff(¥(Gy, V2B, + 6;)) to get its
stochastic evolution:

dF(U(Gy, V2B, + 6,))

OV (G,V2Bi+0:) 0V (Gt,v/2Bi+64)

+ U (Vfv) du+ J flp+<{VU,V)) dg) dt
OV (G,v/2B+6;) 0V (Gy,v/2Bi+6;)

— (J (VI v)+ f(MY(Gy, V2B, + 6,)) + (B, 1)) dg) dt
OV (Gt,\/2Bt+0:)

2 < J fdu> 1B,
U (G, V2B +6;)
= L[Ff|(Dy) dt + dM,

where we used (6) and where (M;);cfo,r) is a local martingale whose bracket is given by

vte[0,7), <M%=2f&@ﬁﬂ&ﬂs
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This description and the continuity of the trajectories [0,7) 3 ¢t — Fy(D;) imply that (Dy)efor) is a
solution to the martingale problem associated to the generator (D, £) (see e.g. the book of Bakry, Gentil

and Ledoux [3]). Since Dy = D, we conclude to the wanted result.
|

Remark 18 There are potentially other ways to use the Doss-Sussman approach. For instance, Equa-
tion (22) can be rewritten under the form

dD; = ~2%,(Dy)dB, + Bo(Dy) dt (57)
where Uy (D) = 2h(D)Vy (D) + Vo(D) for any D € D. Similarly to (43) and (47), define
YDeD Vel  hz) = pele)+ (VU) - B), vela)), — (D)
Vr>0,YDeD,VxeCl, dop(r) = —ﬁ?y(c,r)(i/}c,r(ﬂf))
Next try to construct a family (C:Yt)te[oﬁ) (where € > 0 is a stopping time) such that
Vitel0,e),VaedG, o = Qag, yap,(T)Vea,(T)

Contrary to (51), no auxilliary (6;)so,¢) is needed here, but the above equation is not really of the type
(37), due to the isoperimetric ratio. Nevertheless, it should be possible to adapt to this situation the
fixed point approach presented in Section 4.

Once (GY)tefo,¢) has been constructed, consider

Vielo,1), D, = U(G,V2B)
with
T = inf{te0,¢) : ét¢D\/§Bt}

Then the stopped stochastic process (Dy)e[o,r), defined on the natural filtered probability space of the
standard Brownian motion (B;);=0, is a solution to the martingale problem associated to the generator
(D, £) and to the starting domain Gj.

We preferred to present how to solve (22), because the flows associated to U; and U, are quite
famous (at least when VU = § = 0) and well-investigated. But maybe the flow associated to the radial
equation

Veel, ax = (WMD) = po(r)) ve, (o)

is also a natural object to study. In Subsection 5.2, we will check in the homogeneous setting of Section
2 that this alternative Doss-Sussman approach should be preferred to the one considered in the proof
of Theorem 17.

4 Existence of a stochastic modified mean curvature flow

This section presents the quite technical proofs of the existence of regular solutions to (46) and (51),
respectively the following subsections. As announced before Theorem 17, we only deal with V' = R**!
to avoid complicated notations.
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We begin by recollecting our notations: D is the set of non-empty, compact and connected domains
D in V| which coincide with the closure of their interior and whose boundary C' := 0D is smooth. The
exterior normal vector v¢ and the mean curvature pc are defined on C'. Recall we were given a function
U € C*(V) and a smooth vector field 5 satisfying div(exp(U)S) = 0, to which is associated the smooth
vector field b := VU + 5. Denote i = exp(U)A\, the measure admitting the density exp(U) with respect
to the Riemannian measure A (when p gives a finite weight to V, it is normalized into a probability
measure, which amounts to add a constant to U). The interest of yu is to be reversible for the operator
L = A +b. We associate to the boundary C' the (dim(V') — 1)-Hausdorff measure u. coming from g,
namely admitting the density exp(U) with respect to the usual Riemannian (dim(V') — 1)-Hausdorff
measure. We also distort pc by introducing the modified mean curvature p% defined by

VeeC, (o) = pole)+(VU() - B(a),ve(@)),
Let Dy € D be given, as well as (B;);>0 a standard real Brownian motion starting from 0. We are
looking for a stochastic D-valued evolution (Dt)te[oT where T > 0 is a stopping time, such that

Vie[0,1),YzeC,  dr = (\/iczat + 2h(Dy)dt — pl, (x)dt) ve, () (44)

where
C
vDeD, wD) = 249
(D)
Resorting to the Doss [6] and Sussman [28] method, we are led to solve consecutively:
e The deterministic radial equation in (Gy)we[o2):
Gy = Dy
Vtel0,8),VxedG,, 0T = 0o, g (), (T)
where R, 5t — & € R is assumed to be a-Holder regular with « € (0,1/2), € is small enough and
Vr>0,YDeD,VreC, acy () = =Py (Wor(r))

with for any r € R,

(46)

Yo, O3z — exp,(rve(x)) eV
U(C,r) = {Yor(x): zeC}
D, = {DeD:re(R_(D),R: (D))}
R, (D) = inf{re (0,40) : ¢, is not a diffeomorphism on its image}
R_(D) = —inf{re (0,+o) : ¢, is not a diffeomorphism on its image}

e The radial system in (6, Gy)sefo,e):
%Qt = h(U(G,V2( + 6,))
N (50)
VredG, 0z = qu,. a6 () (T)
where R, 3t — (; € R is assumed to be a-Holder regular with o € (0,1/2), € is small enough and

VreR YDeD, WD) =[] ¥(Cs)

se(—o0,r]

Vte|0,e),

The interest of these manipulations is that a solution of (44) will be given by
Vte[0,T), D, = (G, V2B, +6)
where in (50) we take ((t)i=0 = (Bt)i=0 and where T is the corresponding €, which ends up being a

stopping time with respect to the filtration generated by (By):=o-
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4.1 Local existence of a pushed mean curvature flow

Let Fy : M — R™! be a smooth immersion of an n-dimensional manifold M such that Fy(M) = C.
Let 7 : t € [0,0) — r(t) € R be a real continuous function. Consider the following equation, which is
similar to (46) (i.e. 0G; = F(t, M)), taking into account the remark made before Lemma 13:

VreM, <%F(t’x)v’/F(t’$)> = _p?II(F(t,M),r(t))(¢F(t:M):T(t)(x)) (58)
F(0,z) = Fy(w),

where v'(t, ) is the normal vector of the hypersurface F(t, M) at F(t,z). The goal of this section is
to show existence in small time of solution of (58) with enough regularity in space and time, under the
hypotheses that 7(0) is small enough and that r is «/2-Hélder regular, for some a € (0, 1).

To get a small time existence of equation (58) we will convert the problem in terms of a quasi-
parabolic equation. We will study the linearisation of this equation, it turns to be linear and strictly
parabolic for small time, with C*/2%([0, T] x M) coefficients when M is a C**® manifold. We will resort
to an existing result on the existence and regularity of the solution of such a linear equation. Then we
will use the inverse function theorem to get a solution of the original equation (58).

Let C = Fy(M), we will suppose that M is a C3*® manifold and Fj is a C*™* diffeomorphism (in
general we will denote by reg(M) the manifold regularity of M), so that C is also a C3t® manifold.
Small perturbations in time of C' under (58) live in a small tubular neighborhood of C, and as in
Mantegazza [17], a useful way to obtain a quasi-linear equation from (58) is to represent the solution
as graphs over the fixed hypersurface C'. The underlying idea is to consider again the parametrization
(r_,r4) x C 3 (r,y) — e, (y) of a tubular neighborhood of C, where (r_,r,) is a small neighborhood
of 0. Let x € M, and vy(z) be the unit outward normal of the hypersurface C' = Fy(M) at the point
Fy(z). Then one looks at the function f(¢,.) : M — R, with enough regularity, whose image is included
into (r_,r,) and which satisfies

F(t, ) = Yo e (Fo(2)) = Fo(z) + f(t, 2)r(@),

for all (¢,x) € [0,S,) x M, with S, small enough, i.e. we represent F(t, M) as a graph over C, since
C' = Fy(M) we have f(0,.) = 0 and the existence of S, is due to the regularity of f and the compactness
of M.

Let x; be a local chart of M, g, ;(0,2) = {0;Fv, 0; F0> the Riemannian metric at x in this chart,
g"7(0,2) its inverse, h; ;(0,z) = H((? Fo,0;Fy) = (Vo,my@o(x), 0;Fy(x)) where II in the second fun-
damental form of C' at Fy(x) and define S; ;(0,z) = hz’kg 'hy;(0, x) where the convention that every
repeated lower indices and upper indices is considered as a sum is enforced, as in the whole paper. We
end up with the quasi-linear parabolic equation with respect to f in order that F'(¢,.) satisfies (58), after
taking care that we have some dilation term r(¢) in the equation. We have for all 4, j € [n], t € [0,5)
and z e M,

F(ta) = of(tan(s)
(?uo(x) = Zkg kL0, )0 Fy ()
F(t,z) = 0:Fy(z)+ f(t,2)hixg™ (0, 2)0,Fo(x) + 0 f (L, 2)vo(x)
g”(t,x) = (0;F(t,x),0;F(t,x))
= ¢:;(0,2) + 2f(t,x)h; ;(0,2) + f2(t,2)S;;(0,2) + &, f(t,2)0; f (¢, x)
= Gij(t,z, f,Vf) (59)
0: f (t,x) g (t,x)0; (Fo(x t,x)vo(x
V(o) = LR e

—(w(t,x), 0:0; f(t, x)vo(x) + 0;0;Fo(x) + 0; f(t, x)0v0(x) + 05 f (T, x)0;1(x)

z)—
)—
higlt.a) = —@§,>@@Fux»
(L )dom(a)) = Hyyta, [V, VV])
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where the second equality is the Gauss-Weingarten formula, where v(¢,z) is the unit normal of the
hypersurface F'(t, M) at F(t,z), and where we used the Gram-Schmidt procedure in the computation of
v(t, z) (taking into account that (v; = \/g"'(t,z)a F(t, x))ie[[n]] is an orthonormal basis of T . F'(t, M)).
To simplify the notations, denote G := (G;;(t,x, £,V [))ije and H = (H;j(t,z, f,Vf,VV )i jeln]
which take values in S™*", the space of symmetric matrices. Note that GG does not depend on VV f
and that H has regularity reg(M) — 3 in = (due to the term 0;0;v0(x) in H, ;(t,z, f, Vf, VVf)).

To manage the right hand side of (58), define

M, = W(F(t,M),r(t))
F(t,z) = Upgan.oF(tx) = Ft,z) +rt)v(t,z)

and denote all the quantities that depend on M, = F(t, M) by the same letter as for F(¢, M) with a
tilde. So by the same computation as above we have for all i, j € [n], t € [0, 5, ) and x € M:

OiF(t,z) = 0F(t,x)+rt)ow(t )
OiF(t, ) + r(t)h kg™ (t, 2) O F (t, )

Gij(t,x) = gij(t,x) +2r(t)h;(t, ) + r(t)2S;;(t, z)
(GId +2r(t)G'H +r(t))G'HG™'H)), .
- (Gad+rG H)2>m’ = Gt x, [, V,.VVf) 0)
g(t,m) = v(t,x)
hisltir) = —olt ), H(O(E,2), 80wt 2)

0:0;F(t,x)) = H
= H; +rt)ow(t,x), ot
= Hij+r(t)Si;t,z) = (H+

e
= I?[i,j(t, x, Vf, VVf)

HHGH),; = (H(1d + r(H)G~'H)),,

As usual, denote G = (G”(t 2, fVE VY Digergs H = (Hij(t, 2, f,Vf,VYVf))ijefn) and
(GHi(t,z, £,V ], V'V ijen] = G!, all taking values in S™", so that we have for the mean curva-
ture

—puren @) rean (@) = —GWH; = —tf(N H)
— —tr((1d +r(G- )2 (Id+r( )G—lﬁ))

— —tr ((Id+r()G'H)™
= i)l(t,x,f,Vf,VVf).

for some mapping ®;. Note that in the above formula only H depends on VV f. Furthermore consider
the mapping ®, such that

(VU = B e 0D gy = (TUEE ) = BEG ), 02))
= F(t,z)) — B(F(t t
(VUF()) = BF(0), m(t,0)),
= (1)2(t7 Z, fa Vf)
Remark the above expression does not depend on VV f. Define

d(t,x, f,VF,VVf) = Ot x, f,VF,VV])+ Do(t,x, f,V]) (61)
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so that Equation (58) becomes the following non-linear parabolic equation

atf(t,l’) = m@(t,l’,f, Vf7 VVf)
= ®(t,xz, [,V VV/) (62)
fO,z) =0

Note that at time ¢ = 0 we have f(0,2) =0, Vf(0,z) =0, VVf(0,z) = 0.

The application ® defined above will be considered with the following argument ®(¢, x, z, v, q), where
(t,x) € My = [0,T] x M, z € R, v € T,M and ¢ is a symmetric matrix in T*M O T M. Since r is
continuous and r(0) = 0 (or small enough), for small 7', ® is smooth in three last variables in a
neighborhood (0, 0,0) and have at least the regularity reg(M) — 3 in z, and the same Holder regularity
in time as r (i.e. it is enough to have G invertible and |r(t)G™1H| < 1). More precisely we have the
following proposition.

Proposition 19 There exist T'> 0 and Ry > 0 such that

e the mapping

(I) . [O,T] X M X B(0R70R“705nxn)(R0) g R (63)
(t7 x? Z7 /U7 Q) = (p(t7$7 Z7U7 Q)
18 smooth in the three last components,
e the mapping t — ®(t,x, z,v,q) have the same Hélder reqularity in time as r,
e the mapping v — D(t,x,z,v,q) have at least the reqularity reg(M) — 3.
Proof
Recall that
G(t,z,z,v) = G(0,2) +22H(0,z) + 2%5(0,2) + v ®v,
I/(t . U) _ vo(x)—v;ghd (t,x,z v)((? Fo(@)+2h; 9% (0, x)(?lFo(x)-i-vJVo(x))
[ [vo(z)—vighd (t,x,2 v)(a Fo(z)+zhj kg%t (0, x)(?lFo(x)-i-v]uo(x))H (64)
Hi,j(tvxvzaUaQ) = _<V( y Ly 2, )?V ( )>q1,] <V(t>$azvq)aaéF0( )>
—((t,x, z,q),v0v0(x) + v;0;v9() + 20:0;10(x))

Since G(0,x) is invertible and M is compact, there exist Ry, C1,Cy > 0 such that for |z|, [v], |¢| < Ro,
G(t,x, z,v) is invertible for all x € M,
|Gt 2, 2,0)| < C,
It 2,2,0) — wole)] < 5
|H(t z, 2,0,q)| < Co

Thus, since 7 is continuous and 7(0) = 0 (or small enough), take 7" > 0 such that

1
T = sup {u> 0: sup |r(s)] < 20102} (65)

s€[0,u]

Then |r(t)G'H| < 3, and (Id +r(t)G™'H) is invertible for all (t,z,z,v,9) € [0,T] x Mx
Bl0g 08 04nxn) (F0), and the wanted conclusions easily follow.
|
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Lemma 20 Let T be given by (65). For all (t,z,2,v,q) € [0,T] x M x B(og02n,04nxn)(F0), we have:

Oy, @t 2, 2,0,q) = (G—2r(t)H +r(t)?HG'H);}

qi,j

Furthermore, 0,®(t,z, z,v,q) = (04, ,®(t, 7, 2,v,q))i je[n) 15 uniformly elliptic.

Proof
Let us write H as

H(q) = H(t,x,z,v,q)
= —(w(t,z,z,v),v9(x))q — Hi(t, x, z,v)

and recall that v(t,z) and G do not depend on VV f, ie are constant in ¢. Consider ¢(q) := —G~*H(q),
SO

b(t, 2, 2,0,q) = tr ((Id — r(t)e(a) " ¥(a)) -
Let M € M™™ X € M™" small and u € R such that |u(M + X)|| < 1 then

(Id—uw(M+ X)) (M +X) = X, (wM+X)"(M+X)
- Yo (u”M”“ U o MmXM"—m) + o(X) (66)
= (Id—uM)"'M + Y nS X M 4 o(X)

neZ4, mel0,n] U

so d[(Id — uM) ' M](X) = Yonets mefon) W 22 MM XM ™. Hence

dy((Id = wp(q)) )(X) = > u(q)"dv(q)(X)(g)" ™

neZ4, mef0,n]

Thus using the trace property
dytr((Id — utp(q)) " ())(X)

- tr( > U"%U(Q)md@/)(Q)(XW(Q)nm)

neZy,mel0,n]

=Yt () ) (X))

neZ4, mel0,n]

- D wttr (v(g)"de(q)(X))

neZy,mel0,n]

~ ( N+ 1>uw<q>“dw<q><X>)

= tr ((Id — w(q)) 2d(q)(X)) (67)

Thus we have

A

d,@(t,x,z,v,q)(X) = dqél(t,x,z,v,q)(){)
= (w(t,z,2,0),v0(x)tr((Id — r(t)G H(q)) 2G' X)

so for any i, j € [n],

A

O, @t 2,2,0,q) = (w(t,z,z,0),v(x))((Id —r(t)G " H(q) *G™'X);;
= W(t,z,z,v),v(x)) (G —2r(t)H + 7‘(zf)QI-ICT'_HL])Z._J,1
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where G + 2r(t)H — r(t)?HG~'H € S™". For the last point of the lemma, use Proposition 19, and the
choice of T in its proof, to get

(G+2r()H +r(t)*HG'H) = G(Id + r(t)G ' H)?

is invertible for all ¢ € [0, 7], and is continuous as function of ¢, so its spectrum remains positive as the

spectrum at time 0, when 7(0) = 0.
u

To show the existence result with sufficient regularity in time and space of Equation (58), we will
show the existence result of the equivalent equation (62) up to a parametrization as in Proposition 1.3.4
in [17]. We will intensively use the existence and regularity result of the linearised equation exposed in
Lunardi [15]. Let us recall briefly this result that appears as Theorem 5.1.10 of Lunardi [15] and whose
extension to the compact Riemannian manifold could be find e.g. as Theorem 2.3 of Huang [12] (with
the bundle £ = M x R).

For € (0,1) and 7" > 0 let

C*([0,T] x M) = {f e C([0, T x M) : f(,x) € C([0,T]), Vo e M,
and such that | f|ceo = sujg{”f(, @)l co o)) < oo}

where for any function f : [0,T] — R,

| fleaqory = [fleor + <{fHoaqom (68)
<f>ca([0,T]) = up {W, S + te [O, T]} (69)

Similarly, we define
o ([0,T] x M) = {f e C([0,T] x M) : f(t,.) e C°(M), ¥t e [0,T],

and such that | f|coe = sup {||f(¢,)|ce@n < oo}
te[0,T]

where the norm | - [ce(ar) is defined as in (68) and (69), with [0, 7] replaced by M.
The most important functional spaces for our analysis will be, still for given 0 < a < 1,
C2([0,T) x M) = C**%[0,T] x M) n C**([0,T] x M)
ClHe/22+a([0, T x M) {f e CY3([0,T] x M) : 0uf,0:0;f € C/**([0,T] x M), Vi, j e [n]}

respectively endowed with the norms

[ flcara

|flcarzo + | flcoe

n n
[ £z + D105 loo + 10cf larna + 3 1035 f gz
=1

i,j=1

HfHCl+a/2,2+a

As in Lemma 5.1.1 in Lunardi [15], there exists a uniform constant C, > 0 such that for all
f c Cl+o¢/2,2+a:

10 fllca+ayzara < Col fllor+azzsa (70)
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Consider the following linear equation:

{ atf(ta x) = gi’j(t7$)aiajf(ta ZU) + Zl ﬁl,i(t> x)azf(ta x) + ﬁo(t7$)f(tv :U) + Q(t7$> (71)
f(0,$) = fo(%)

where § = (§"7); je[n]» H, = (ﬁl,z)ie[[n]}, H, and gq (respectively fq) are some given mappings on My =
[0,T] x M (resp. M). As usual we will say that Equation (71) is uniformly elliptic in M7 when there
exists an ellipticity coefficient A > 0 such that for all ¢ € [0,7] and all &, ...., &, € R, we have:

gt a)6g = g (72)
We recall the following theorem:

Theorem 21 (Th 5.1.10 Lunardi [15], Th 2.5 Huong [12]) Let g, H, , Hy, and q belong to
Co2([0,T] x M), with 0 < a < 1 and let f(0,.) € C***.  Assume moreover that (71) is uni-
formly elliptic, i.e. (72) holds. Then there exists a quantity C' > 0, depending on the norms of g,

H,,; and Hy, as well as on the ellipticity coefficient of §, such that Equation (71) has a unique solution
f e C1+/22e([0, T| x M) and we have the Schauder estimate:

[florrarzaia < C(lfollczra + lalcara)

Let us come back to the original equation i.e. (62), we will consider the following space M;, =
[0,20] x M where the constant 0 < ¢ty < T is to be chosen later, and let

X = {ue CURE(M) 1 u(0,.) = 0, max(|uloe g, [Vl , [VVUoam,) < Ro)

We define the map:
S:X — C?%M,)
u —  uu— O(t,x,u, Vu, VVu).

This is clearly a continuously differentiable map.
We have the following theorem.

(73)

Theorem 22 Let M be a C°* manifold, for some fited o € (0,1). If t — r(t) is a/2-Holder and
r(0) = 0 then there exists to > 0 such that equation (62) has a unique solution defined in My, with
regularity C*o/22+ (M, ).

Proof

The above theorem is a consequence of inverse function theorem around a specific function. Let
ug(t,x) = Sé ®(s,2,0,0,0)ds and note that uy € C'+*/22+* by the assumption on the regularity of
M. The Fréchet derivative of S at ug it is given by

d d d
a—ﬁiju + a—(%u + a
0¢ij

dS (uo)u = du — ( 30 Eu),

where the coefficients are all evaluated at wug, for instance, % stands for %(t,:v,uo, Vug, VVuyg).
By definition of ug, there exists 0 < ¢; < T such that for all 0 < ¢t < t1, (uo, Vug, VVu)(t, x) €
B(OR,OW,OSM”)(RO/Q)’ 5o ug € X. Lemma 20 yields %—f(t, x, ug, Vg, VVuyg) is strongly elliptic in M;, and
is in C*/22(M,,). Using Theorem 21, for the linearisation of (62), we get dS(ug) is locally invertible,
and its inverse is continuous. By the inverse function theorem there exist € > 0,; > 0 such that for all
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0 <t <t and for all g satisfying |g — S(uo)|lga/za(as) < €, there exists an unique f € CTF/22e (M)
satisfying || f — uo|c1+ar22+a(pr,) < 61 such that S(f) = g. For f such that | f — uollcra22+agny,) < 01,
since f(0,z) = up(0,x) = 0 and using (70), we get

|f = wolopts + IV = wo)looprs + [VV(F = wo)oor, < (8 + Cat ™2 +142)5, (74)

where C, is the constant appearing in (70). So for ¢ sufficiently small such that (t +Cnt@+D/2 +1%/2)5, <
Ry/2, we deduce f e X for 0 <ty < t.

Let us show that with respect to the C%/>%(M,) norm, S(ug) tends to 0 as ¢ goes to 0. We will first
show that ||S(uo)(t, z) — S(uo)(s, )| < CL(0)|t — 5|2, for all s,t € [0,6] and x € M, and with C}(J)
tending to 0 as § tends to 0.

Let o € [0,1] and
(o (t,x) = o(ug(t, z), Vug(t,x), VVu(t, )),

by definition of ug, there exists a constant C; > 0 such that
|<0(t7 I) - CU(Sa I’)| < C’1|t - S|7

‘Ca(ta x) - Ca(ta y)‘ < 01‘33' - y‘a'
Let ug(t, z) = (uo(t, z), Vuo(t,z), VVuy(t, z)), we have:

S(uo)(t, ) = B(t, 2,0,0,0) — B(t, z, uo(t, z), Vuo(t, ), VVuo(t, 7))
_ L (¢ 1. Co (1, 1)) (£ 7)) o
hence
St S50 = | [ (1,6, (,2)) (18, ) — (5,7, G5,2)) i (5,2) o]
[ (At 62)) — (5,2, G (5,2))) (i 1,2)) dor
+f (5 (5.2.Gols, ) it ) — s ) do]
f |(dsB(t, 7, Co (1, 7)) — ds®(s, 7, Co (5, 7)) (1 (1, 2))| dov

0

—|—f0 |(d3<I>(s, x, (s, x)))(uﬁ(t, x) — ug(s, x))| do.

N

We have, since M is compact and ® is regular in the three last variables:

’d3q)(ta xZ, Ca(t> ZE)) - d3(I)(S7 xz, CU($7 .CE))‘
< |d3q)(t’ Z, Cff(t’ IL')) - d3¢(t7 z, C0'<S7 ZL’))| + |d3q)<ta z, CU(S’ I)) - d3®(87 z, CO’(S’ l‘))|
Ci|Co(t, ) — Co(s, )| + Colt — 5|2 '
(CL8T2 4 Cy)|t — 5|2

/

NN

where C' is a constant whose value can change from one line to the other (also below). Also we have
[up(t, z)] < Ct < C6. On the other hand we have:

|d3®(8, €, QO—(S, $)| < C
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and
[up(t, ) — up(s, z)| < C|t — s|.

Putting all things together we get:
[S(uo)(t,2) = S(uo) (s, x)] < C(O)[t — 5|

with C'(9) tending to 0 as d tends to 0.
Let us show that:
[S(uo)(t, x) = S(uo)(t, y)| < C0)|x —y|*

with C'(9) tending to 0 as J tends to 0. With the same computation as above, we have:
1
[S(uo)(t, 2) = S(uo)(t, y) < J |(ds®(t, 2, G (¢, 2)) — ds@(t,y. G (t,9))) (o (¢, )| do
0

1
+ | 1ty Gt )t 2) — (e, )] do
0
We also have, since M is compact:

|d3®(t, 2z, (o (t, ) — dz®(t, y, (o (1, y))]|
< |ds®(t, @, G (8, @) — ds®(t,y, o (t, @) + [ds®(t,y, G (@) — ds®(, 4, (o (¢, y))]
< Colz —y|* + G| (t, x) — G (t, y)]
< (Cr+ G|z —yl%,

as well as

luo(t, x)| < C6
|d3q)(t7y7Ccr(t7y))| < C

Moreover
t
|U0<t, l‘) - uO(ta y)| < f |q)<87 Z, 07 07 0) - (I)(Sv Y, 07 07 O)| ds < C’5|ZC - y|a
0

and in the same way, using the regularity of ®(s,x,0,0,0) in terms of x, we get:
uo(t, x) —uo(t, y)| < Cdle—yl®
We deduce that:
|S(uo)(t,x) — S(uo)(t,y)| < CO)|z —y[*

Hence [S(uo)|ca/2a(n,) tends to 0 as ¢ tends to 0.

So there exist 0 < ¢, such that ||S(u0)HCa/2,a(Mt2) < e. Let tg = t; A t9, we get by inverse function

theorem that Sf = 0 has a solution f e C'**/22+¥2(), ), this is actually a solution of equation (62).

For the uniqueness, let f be the solution of (62) constructed above on M. Consider another solution
g of (62) on M, in particular g starts with the same initial condition gy = fo = 0. Since g € C1+/2%+
let t3 € (0,9] be the maximum value of ¢ such that

|90, 322> [V Gllooaz0 [VV 0,01 < Ro
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By construction of f, we have

[ floontes IV Flloo,ates [VV flloo,nr, < Ro

for any t € [0,¢y] and in particular for ¢ € [0, t3].
Let u = f — g, then u satisfies the following linear equation:

atu = (I)<t7x7 f7 va vvf) o (I)(t,,f?g, v.g7vv.g)

1 a N
:J Lot x,0f + (1 - 0)§) do
0

oo
1

g ~ p )
- | Sl = @ouls ~ ) do+ [ S taof (- paf - g)do
0 qU

0 OU;

1
0 .
+ | SttaoF+ 1=~ g do

= A;i(t, 2)wi; + Bi(t, v)u; + C(t, z)u,

where )

0P >
Ayln) = | (w0 +(1- o)) do,
0 qU

Lo - .
Bita) = | S (taof + (1)) do

Loo -
C(t,z) = L E(t,x,af + (1 —0)g) do.

According to Lemma 20, Aj; is uniformly elliptic. Let A < —|C|a,,, and W := e*u then we have:

The proof of uniqueness will be done by contradiction, suppose f # g then there exists for example
B > 0 (the negative possibility will be done in a similar way) and (¢,z) € [0,t3] x M such that
W (t,x) = . Consider the first time ¢y such that there exist zo € M such that W(ty,zo) = 5, clearly
to > 0. By definition W (ty, z) = max{W (¢, x), (t,z) € [0,%y] x M}, and

atv‘/(th xO)
Hess(W)(to, xo)
VW(to, CL’(])

/AN
o o o

We have at (o, x¢)

0 < 8tW = Aij(to,xo)é’i&jW—k(C—k)\)B < Aij(to,x)ﬁiﬁjW < 0

where the last inequality come from A;;(to, z0)0;0;W = tr(AHessW) < 0, and this is a contradiction,
so W < 0. We do the same thing to get W > 0 and so f = g for all t € [0,t3]. It follows in fact that
ts = tp.

|
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Remark 23 From the above proof, we see there exist two quantities ;1,72 > 0, only depending on
some bounds on the geometry of C', such that t; can be expressed as

to = m Aint{s =0 : [r(s)] = 0.}

Remark 24 Using the «/2-Holder regularity of the Brownian motion, for all 0 < a < 1, we get the
existence and the regularity of the equation, similar to (44), corresponding to the stochastic modified
mean curvature flow:

Dy = D
{ Vitel0,71),Vxely, dz = (V2dB; — pb, (z)dt) ve, ()

where C; := dD;. The solution of this equation is obtained as above, first we solve equation (58) and

we obtain G; and then D, = U(Gy, v2B5,).

(75)

Remark 25 Note that in the above proof we only need that r(0) is small enough, such that
|r(0)G1H(0,-)| < 1, so starting the same procedure at time t;, we have a notion of maximal so-
lution of equation (62). A slight modification of the proof of Theorem 22 also yields existence and
uniqueness of solution of (62) for f; small enough, as well as all its derivatives up to order 2.

]

Using the strong maximum principle instead of the maximum principle in the proof of Theorem 22,
we have the following corollary:

Corollary 26 Let U,U € D with C5** boundaries, a € (0,1), and C' = 0U, C = oU. Suppose that
UcU C#C

and that C belongs to an open tubular neighborhood of C. Let (0G4 )seto,re) (Tesp. (0@07&6[077@)) be a

solution of (58) with r(t) = /2B; started at C (resp. C’), then there exist a positive stopping time
To e > 0 (a priori smaller than T A Tp because we want 0Gy to remain in an open tubular neighborhood

of 0G,), such that
Vite (O,TC’C’), G, c Gy, and 0G,n0G, = &

The above corollary shows that even if the initial hypersurfaces are equal in a large portion, it is
sufficient they are different somewhere for the flow to detach them instantaneously, at least when one
of them lives in a tubular neighborhood of the other. When the latter condition is not fulfilled, we have
to impose that the initial boundaries are disjoint:

Corollary 27 Let U,U € D with C*™ boundaries, and C = oU,C' = oU. Suppose that

UcU CnC=g
Let (0G4)e[0,7) (resp. (&@t)te[oﬁé)) be a solution of (58) with r(t) = v/2B; started at C' (resp. C), then
Jor a positive stopping time 7 s > 0, we have

Vite [O,TQO), G, c Gy, and 0G,n0G, = &
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Proof

Since C' and C' are compact, and C' n C = & we have § = d(C,C) > 0. Using the continuity of the
solution of (58), we get the existence of 0 < T < 7¢ (resp. 0 < Ty < 74) such that for all ¢t € [0, T¢],
we have d(C,0G,) < 2 (resp. for all ¢t < T, we have d(C,0G,) < %). Take Tee = To A Te.

|

Consider the following stochastic mean curvature evolution starting from Cy = dDg
dx = (\/5dl3t——pkh(x)dt> ve, (z) (76)

According to the Doss and Sussman approach, a solution of (76) is given by (¥(Gy, v/2B;))se[o,r) Where
(0G})ieqo.r) is a solution of (58) with 7(t) = v/2B,. Equation (76) is a particular case of equation (75)
with b = 0.

Corollary 28 Let D, D € D with C3** boundaries, o € (0,1), and C' = 0D, C = 0D. Suppose that
DcD, CnC=yg

Let (0Dy)iefo,re) (Tesp. (é’f)t)te[oﬁé)) be a solution of (76) started at C' (resp. é) then for a positive

stopping time Toe > 0 we have:

Vite [O, TC,é>’ ﬁt c Dt and aDt M a_Dt = @

Proof
Use Corollary 27 we get there exist 7 5 > 0 such that

Vte[0,700), 0GindG, = @

We have 0D, = U(0Gy,v2B,) for t € [0, 7¢) (vesp. 0D, = W(0Gy,v/2B,) for t € [0,7,)). For t € [0, Te.é)s
U(.,v/2B,) is a diffeomorphism between 0G; and its image 0D, (resp. between oG, and its image

A

0Dy). The proof of the corollary will be done by contradiction, suppose that there exists a time
0 < < 754 such that U(0GY, \/§Bt) N U (0G, V2B,) # &. Then there exist z € G; and & € Gy such

that Wog, (v,v2By) = U, (2,4/2B,). We have
doc,(Vo, (2,V2By)) = V2Bl = dag, (Vy6,(2,V2By))
where dag, (+) stands for the distance to 0Gy. If By > 0, then Vs, (z, \ﬁBt) € Gy so the geodesic curve
7+ Wsa (2,7) has to cross 0G, at time 7 € (0, V2B,] (since 0G; n 0G, = & and G, = G,). Hence
V2IBi| = doc,(Woe, (x,V2By)) < d(V,¢,(2,70), Vs, (£,V2B1)) < V2|By| — 1o

so we get a contradiction.
The case B; = 0 is clear. R R
If B, < 0 namely U, (&,v/2B,) € Int(G,), the interior of G, and the geodesic Wag, (z, —r) have to

cross 0G, at time g € (0,+/2|By|], so
\/§|Bt‘ = daét(\p(i‘7 ﬁBt)) < d<\Il6Gt(x7_r(])?\IjaGt(x?\/iBt)) < \/§’Bt| — T

and we get a contradiction.

We want to control the distance between to different hypersurface evolving by the stochastic mean
curvature by quantities that only depend on the ambient curvature.
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Lemma 29 Let D, D € D with C? boundaries in a d-dimensional manifold V, C = oD, C' = oD,
DcDandCnC = . Suppose that there exists k € R such that Ric > (d — 1)kg, then at points
(p,q) € C x C such that d(p,q) = d(C,C) (or local minimizers of the distance function restricted to
C x C) we have:

(1) if k >0, and p is not conjugate to q then

1 — cos(Vkd(p,q)))

B (
2d =1V sin(vkd(p, q))

pe(q) — po(p)

(i) o k <0, and p is not conjugate to q then

ot -1/ ) et

(iii) In particular for all k, if p is not conjugate to q then we have:
(d=1Dkd(p,q) < pela) = pe(p)
(iv) If V =R? then

0 < palg) — pc(p)

Proof

Let (p,q) € C x C such that d(p,q) = d(C, C’) Using the first variation formula, we get there exists an
unit speed geodesic v in V' such that v(0) = ¢, v(d(p, q)) = p, ¥(0) is orthogonal to Tqé and y(d(p, q))
is orthogonal to T,C. Let (e;)iep1,4—1] be a orthonormal basis of TqC’. Let v14(t) be a geodesic in C such
that v1,(0) = g and 4,;(0) = e;. Let 72,(t) be a geodesic in C' such that v,;(0) = p and ¥1,,(0) = //a(p.q)€:>
where // is the parallel transport along the geodesic 7. We have 0 = lei,7(0)) = <//d (r.0)€i> Y(d(P, q)))-
Since (p,q) € C x C' is a local minimizer of the distance function restricted to C' x C, we have that

d2

< — | d(ys(t), (D).
0 < gp| A0l 0)

Let Y; be the Jacobi field along « obtained by the variation of geodesic connecting vy ;(t) to y2,(t),
we have: Y;(0) = e;, Yi(d(p,q)) = /Jap,qei- Using second variation formula, the fact that 4(0) is the
exterior normal vector of C' at g and 4(d(p, q)) is the exterior normal vector of C' at p we get:
a2
@d<71i(t>772i<t))|t:0
= [(Vicoti(t), 7(d(p, 0))) = (Vim0 1,4(t), 7(0))] + 1(V;, Vi)
= [(Vimo¥2i(t). ve(p)) — (VizoFri(t), vela))] + 1(Yi, Vi)

0

N

= [ = 32:(0), Vis,ore) + (G1i(0), Vi oven] + 1(Y:, Vi)
= —He(/awa€i [apape:) + el e) + 1(Y:, V) (77)

where I(Y;,Y;) is the index of the Jacobi field Y; along ~, and Il (resp. I15) is the second fundamental
form of C' (resp. C'). Let X;(s) = f(s)//se;, be a vector field along v such that f(0) = f(d(p,q)) = 1 and
f" = —kf, using the Index Lemma since p and ¢ are not conjugate along -y, we have for all 7 € [1,d — 1]
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Taking the sum in (77) we get:

0 < Z — e (/apa) s /awayei) + Heles e) + 1Y, Y7)

d—1

pela) = polp) + Y 1(Xi, X,)

1=1

q)
= 0@ —pel) + 35 | IV — (RO )X ) s

A

d(p,q)

= p6l@) — polp +2 f P = R e, ) e 3 ds

d(p q)

— pela) — pelp) + f (@~ D)IfP — fRic(3,5) ds
d(p,q)

< pela) — pelp) + (d—1) f (P — f2hds

0

= pela) = pe(p) + (d = 1)(f'(d(p, q)) — f/(0)).

After computations of f, we get the result. For the particular case, we could take X; = //se; in the
above computation and directly get the result.

Proposition 30 Let D, D € D with C* boundaries in a d-dimensional manifold V', and C' = 0D, C =
0D. Suppose that

D c D
Forr e R such that Ua(.,r) (resp. Wa(.,r)) is diffeomorphism onto its image U (C,r) (resp. Wa(C,r))
then
A(W(C,r), 9(C,r) = d(C,C)
Proof
Let (p,q) € C' x C such that
d(p,q) = d(C.C)

If d(C, C’) > 0, using Gauss Lemma, and the fact that Dc D, we get the exterior normal vector of C
at p is the parallel transport, along the geodesic v that connects g to p, of the exterior normal vector
of C' at ¢q. Hence by definition of ¥ we have d(¥¢(p,7), Va(g, 7)) = d(p, q)

We get

d(¥(C,r), ¥(C,r)) < d(Vo(p,r), Yelg, 7)) = dlp,q) = d(C,C)

So d(¥(C,r),¥(C,r)) < d(C,C). A
In a similar way let (p,q) € W(C,r) x ¥(C,r) such that

d(p, Q) = d(\If(C, T)? \I[(C'> T))
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we have since U (., 7) (resp. Wi (., r)) is a diffeomorphism onto their respective image,
d(C7 é) < d(qj‘l/(C,r) (pa _T)a qjv{/(é;p) (Q7 _T)) = d(p7 Q) = d(\I](C7 T)v \Ij(éa T’))
Putting all things together we get
AW(C,r), W(C,r) = d(C,0)

If d(p,q) = d(C,C) = 0, since D < D then vs(g) = vo(p) and the result follows as above.

Remark 31 The above proposition also gives an alternative proof of Corollary 28.

Let

Lty = inf inf{t > 0,,(t) is conjugate to 7,(0) =
v (pw)eV xT,V : |v]|=1 { Yo(t) Jug 7»(0) = p}

where 7, is a geodesic starting at 7,(0) = p and 4,(0) = v.

Lemma 32 Let D, D € D with C5%® boundaries, a € (0,1), and C = 0D, C = 0D. Suppose that there
exists k < 0 such that Ric = (d—1)kg, vy = 0 (for example if V' have non-positive sectional curvature)
and

Dc D, CnC = .
Let (0Dy)iefo,re) (resp. ((ﬂA)t)te[O’Té)) be a solution of (76) started at C (resp. C) then:

(i) The mapping t — d(0Dy,dD;) is locally Lipschitz in [0, 7¢ A Tp)

(ii) For allte [0,7c A Tp)
d(C, )=Vt < d(oD,,0D;)
(iii) We have Dy n Dy = & for all t € [0,7¢ A 74).

(iv) In particular, if V = R? then t — d(0D;, 61515) is non decreasing in [0, Tc A Tg).

Proof
We have

Dt = \I/(Gt, \/§Bt)7 for t < TC
Dt = \P(ét, \/ﬁBt), fOI' t < Té

where 0G, and G, are solutions of (58) with 7(t) = v/2B, and 0Gy = C respectively 0Go = C. Let
T = inf{t > Toér St 0Dy oD, # By AN Te A Ta
Using Proposition 30 and Corollary 28, we have

Vte[0,7),  d(0Dy,0D,)) = d(0G,,dG,)

41



Recall that Gy = {Fo(z) + fo(t, z)yg (z),z € M} with Fy(M) = C, and fc(t, ) the solution of (62).
We have the same construction for G. We recall that fo e C1+*/2% 2Jra(]\/l}c) and fo € CHro/22re (N ).
So by definition, for 0 <t < 7,

d(0Gy,0G,) = inf  d(Fo(t,x), Falt,y))

(z,y)eM x M
where Fo(t, z) = Fo(x) + fo(t, 2)v§ (x) and Fa(t,y) = Fo(y) + fa(t, )l (y). Alsot — Fe(t,z) and ¢ —
F4(t,y) are uniformly Lipschitz on any compact [0, 7] < [0, 7). Hence t — d(0G,, 0G,) = d(0Dy,0D;))

is Lipschitz on [0,T"], hence almost everywhere differentiable on [0, 7] and absolutely continuous. At
differentiability time ¢ € [0, 7] we have

id(é‘Dt, oD,)

dt
d

< inf . d(lft,yt)>
dt (aft yt E(?Gt X(‘:Gt (mt,yt):d(éGt,aGt)

d
= . inf . —d(.ft,yt)
(xt,yt)eaGt X@Gt H d(wt,yt):d(aGt,aGt) dt

. d
= _inf (=2, aGt( 1) — < ?/ta aGt( Yt))
(xt,yt)eaGt X 6Gt H d(xt,yt):d(athaGt dt

= inf — Te)) + A A
(xt,yt)eaGtxaét:d(muyt):d((?Gt,aG't) pm(aGt,ﬁBt)(waGt’ﬁBt( t)) p\y(aGt7\/§Bt)(¢aGt7\/§Bt(yt)>

— _inf — —pap, (%) + pap, (Yr)
(xt,yt)€0Dy x Dy : d(w¢,yt)=d(0Dy,0Dy)

(d — 1)kd(0Dy, 0Dy)

A\

where in the second equality we use the usual Lagrange Theorem, in the third one we use the first
variation formula, and in the last one we use Lemma 29. Since t — d(0D;, 612) is absolutely continuous
we can integrate the above inequality. Hence, using Gronwall’s lemma, we get the conclusions (i), (ii),
(iii) and (iv) of the lemma, at least on [0, 7). Since d(C,C) > 0, we easily deduce that 7 = 7 A T4

|

Remark 33 If the D ¢ D° and C' n C' = & for all reasonable r, we have d(We(p,7), Ualq,r)) =
d(p,q) — 2r and we could get a similar kind of result.

]

Theorem 34 Let D, D € D with C5*® boundaries, o € (0,1), and C' = 0D, C = 0D. Suppose that there
exists k € R such that Ric = (d — 1)kg and vy > 0 (for example if the sectional curvature is bounded
above by a® then vy = T, see e.g. [10] page 159) and

DcD, CnC=yg
Let (0Dy)ie)0,7) (Tesp. (615,5)%[0%)) be a solution of (76) started at C' (resp. C’) then

(i) The mapping t — d(@D,,dD,) is locally Lipschitz on [0, 7c A T¢).

(ii) If k= 0 then for allt € [0,7c A T4),

(d(C,C)eF DY) A vy, < d(0Dy, 0D,)
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(iii) If k <0 then for allt € [0,7c A T4),

9 ; 7a\ [/‘/ € < (: t,( At

Proof

The proof is similar to the proof of Lemma 32. Using (iii) in Lemma 29, we have:

) d ) R
d(@Dt, 6Dt) <ly — Ed(aDt, 8Dt) = (d — 1)kd(aDt, aDt)

We deduce that, if £ > 0 then for all t € [0, 7¢ A 74)
(d(C,C)eF DY) A vy < d(éDy, 0D,)

since after being above vy, d(0D;, 612) cannot go below ¢y, again.
Similarly, if £ < 0 then for all ¢ € [0, 7¢ A 74)

(d(C,C) A y)e" =Vt < d(éD,, 0D,)
|

As a consequence of Theorem 34, we can extend Corollary 26 under an assumption relaxing the
requirement that one of the initial boundaries must be in a tubular neighborhood of the other initial
boundary:

Proposition 35 Let D, D € D with C>* boundaries, o € (0,1), and C' = 0D, C = 0D. Suppose that
DcDandC #C

Let (0Dy)te[o,7) (Tesp. (8Et)te[0,fé)) be a solution of (76) started at C' (resp. C). Suppose that there
exists k € R such that Ric = (d — 1)kg, vy > 0, and

(H): it is possible to interpolate between C' and C by a family of C>*® hypersurfaces (Ci)icfon) Such
that C; = 0D; with D; € D, C; is in a tubular neighborhood of C;, 1, and D c D;y1 < D; < D, for
i€e[0,n—1], Co =C and C,, = C. Then

(1) The mapping t — d(0Dy, 61575) is locally Lipschitz on [0, 7¢ A Tg).

(ii) 0D, n 0D, = &, fort e (0,70 A 7p).

Proof

We can use Corollary 26 with initial conditions C; and Cj11, and extend this corollary without the hy-
pothesis that C' belongs to an open tubular neighborhood of C', up to the time Toe = inficin—1] 7¢i,p01 -
Hence for all t € (0,7, ) and all i € [1,n — 1] we have

(Gir1)e < (Gi)e and A(Gig1)e 0 O(Gy)y = &

so for all t € (0,7, ) we have
Gt C Gt and ﬁét M ﬁGt = @ (78)
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Let
T = inf{t > 1,4, st. Dy N 0D, # T} A 1o A Te

Using the same reasoning as the proof of Theorem 34, since 0D, = ¥(0Gy, v/2B,) and oD, = \If(é’ét, V2By)
for all t € [0, 7), we get
Vte[0,7),  d(0D;,0Dy)) = d(6G,,dG:)
and t — d(0Dy, 8Dt) is locally Lipschitz on [0, T)

Hence using (78) we get
Vite (0, T), ZA)t C Dt and ﬁDt M 5Dt = @

Let tg = TCT’C, since Dy, Dy, and d(0D,,, 0Dy,) > 0 we apply (ii) or (iii) of Theorem 34 to D, < D, .
We get, independently of the sign of the constant k,

Ve lto, o, AT, ), (@D, 0D) > 0

since 7oy, = Tc — to and Téy =76~ to we have 7 = 70 A T4,

Remark 36 In the above proposition, Hypothesis (H) seems to be satisfied for all D, D € D with
D < D, even if 0D n dD # ¢, but for the moment we do not have a complete proof of this fact.

4.2 Local existence of (51)

In this subsection, we will show the existence of a solution to the system of equations (51). As the basic
principle described in the paragraph following (16), a solution of (51) could be obtained as a solution
of (58) conditioned not to collapse. Unfortunately, to develop this approach, we would need a solution
of (58) defined for all times up to this collapsing. Since we have not been able to find such a maximal
solution, we will directly work on (51), inspired by the previous subsection.

We recall the notations:

w(C)
¥DeD C=0D WD) - 242
(D) (D
Vr>0,YDeD,Vaxel, ace(r) = —pyom(ther(2)).

For given Dy € D, we are interested in the system of equations:

%Qt == h(\IJ(Gt, \/§Bt + et))
VaedG, 0x = . a8,10,(T)Voc,(T) (79)
(6o, Go) = (0, Do)

To prove the existence of a solution to the above system of equations, we consider the equation
described below. Let g : [0,+) 3¢+ g(t) € R be a real §-Hélder function, such that g(0) = 0 (or
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small enough), and 0 < a < 1.

The goal of this first step is to show the existence of real numbers ¢y > 0 and § > 0, such that for all
g € Bea2(0,0) and g(0) = 0, there exists a family (G)sejo,4,) solution of

Vtel0,t], V xedGY, OT = Qags 3B+ (T)Vaas (T)

g " ' (80)

We adopt the same strategy as in the previous section, in order to deal with the quasi-parabolic
equation, and we adopt the same notation, let dDg = Fy(M).
We consider the following equation.

2 g
<%Fg(t’ :E), vt (t7 J})> - _pl‘)I’(Fg(tvM)A/iBtJrg(t)) (¢Fg(t,M)A/§Bt+9(t)(x)) (81)
F(O7 x) = Fo(x),

As before we represent the solution as graphs over the fixed hypersurface C' = Fy(M), and we write
the solution as:

Fot,x) = Yo son(Fo(z)) = Folz) + f(1, x)n(z)

for a function f9 with enough regularity and f9(0,.) = 0. With similar computations as in the above
section, FY is a solution of (81) (with r(t) = V2B, + g(t) for any ¢ > 0) if f9 satisfy the following non
linear parabolic equation:

Oofi(t,x) = ®I(t,x, f9,VfI VVfI9)
o 20 (52

where ®9 have the same definition as ® in Proposition 19, but with r(t) = v/2B; + g(t), for all ¢ > 0.
Taking into account that C' is smooth, Theorem 22 leads to:

Proposition 37 Tuke g = go = 0. There exists 0 < tog < T (where T' comes from Proposition 19) such
that (82) admits a solution f9% belonging to

X(to) = {ue "> (M) : u(0,.) = 0,max(|ulwo s, [Vullwonm, |VVU|wnr,) < Ro}
We deduce:

Proposition 38 With the same notation as in the above proposition, there exist two real dy, 61 > 0 and
a continuously differentiable map

©: BC%([o,tO])(90>5o) - BC”%’““(MtO)(nga(Sl)

(83)
g — f
where f9 is a solution of (82). Moreover © is uniformly Lipschitz in Bc%([o to])(go, do)-
Proof
Consider the mapping
S %(to) X C%([O,to]) — C%’Q(Mto) (84)

(u,9) — O — DI(t, z,u, Vu, VVu)
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It is continuously differentiable, at least when ¢ belongs to a small ball. Note that from Proposition 37,
there exists (f%, go) € X(to) x C2([0,%0]) such that S(f%, go) = 0. Also

dSu(f*, g0)(v) = dS(f*)(v)

where S is defined before the proof of Theorem 22 (with r(t) := v/2B;). Since f% is in X, dS(f%) is
invertible with continuous inverse, according to Lemma 20 and Theorem 21. The result follows from
implicit function theorem.

We will show the existence of solution of (79) by using a fixed point theorem. For g € B¢ ([0:40]) (g0, 90),
define

Fi(t,x) = Fo(x)+ fIt, x)vo(x)
and consider the family of hypersurfaces
oG] = FI(t,M)
note that G§ = Dy.
Proposition 39 There exist 0 < t; <ty and a mapping
Lt Beg o (90:00) 0 {g € C%g(0) = 0} — Bpg gy (90:50) N {ge CF : g(0) = 0}

such that
(¥relon) AT = MGV 1) -
L(g)(0) = 0.

Moreover I' is a contraction and there exists an unique fized point for I' in BC%([O tl])(go, do) N {g €
C%([0,t:]) = 9(0) = 0}.

Proof
Take dg such that by Proposition 38, © is uniformly Lipschitz in BC%([O to])<90’ dp). Let g € BC%([O to])<90’ o),
r € R and f9 = O(g), define for all z € M:

Fi(t,z,r) = Fi(tx) + v (t, x)

= F()(JI)
= Fo(x)

,2)vo(z) + rvt (@)

b 2ol
t,x)vo(x) +rv(t,z, f2(t, ), V(L))
then we have

W (0GY, r(t)) = {Fo(z) + fo(t, x)vo(x) + r(t)v(t,z, f2(¢t, ), VfIt,)) : v € M},

and
w((0GY, V2B, + ¢(t)))
n(V(GY, V2B + g(t)))

We have the following formula for the n-volume of the boundary:

h(U(GY, V2B, + g(t))) = 2

u(V(0GY, V2B, + g(t)) = Spi(t,M,\/iBﬁg(t)) ALLps (1,01, /3 B+ (1))

= fu det[v/ (¢, z), do F(t, 2, v/2B; + g(t))] dpas. (86)
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In the above formula, dpuy, is a Riemannian measure for a fixed metric in M and dng(t, x,\/2B; +
g(t)) is evaluated in an orthonormal basis for this metric. Let

d9(t, x) = det[™ (¢, 2), d. F)(t,z, V2B, + g(t)] = V(x, V2B + g(t), f(t, x), VI(t, ), VV f(t,z)),

where V' is a function regular in the four last components. It follows that there exists a constant C' > 0
such that

(t,2) = &(t2))ap < CIV2Bar + glearn + | |crrerzzra)

with the semi-norm

{(t,x) — d*(t,x))a, = sup

{If(t)—f(5)|

i , s #tel0,t], xeM}
We deduce there exists Cj, 4,, depending on &y, &; and on the random quantity |v/2B.|cas2, such that
(> d(t,2))a2 < Csos,
and thus
It = d*(t, D)l conony < Costy” +1)+ K

with K = ||d9(0,.)|ls not depending on g.
Hence t — p(W(0GY, /2B, + g(t))) is in C*? and

[t = w(¥(0GY, V2B, + (1)) | core < (Ci, (15 + 1) + K)p(M), (87)

Using Stoke’s Theorem we have that the volume of p(W(GY, /2B, + g(t))) enclosed by the hypersurface
U(0GY, V2B, + g(t)) is
— 9 —
M(\P(va \/§Bt + g(t))) = n+r1 sz(t7M)<!T7 VFw>d/iFi(t,M)(m)
= 3 0Pt V2B + (1), v (8, 2))d0 (E, @) dpe ().

As before, we get, for some Cf s >0 and K’ > 0 of the same nature as Cj, 5, > 0 and K > 0, that

(88)

[t > u(T(GY, V2B, + g(1)) | < (Cf, 4, (85" + 1) + K (M) (89)

As a quotient, it follows that t — h(W(GY,v/2B;+g(t)) is in C*/2, as long as the domain ¥(GY, v/2B;+
g(t)) keeps a positive mass, which may lead us to replace ty by a smaller value, and we deduce that

[t = h(U(G], V2B, + g))lcer o) < C (90)

for a constant C' that only depends on &y ,01, o and |[v2B.|caz. So I'(g) € C'**/2. We have for
0<s,t<ty <ty
1—a/2 «
T(@)®) = T()(s)] < |t = 5IC < Ot — 5[,

since I'(g)(0) = 0 we have that:

1—a/2
IT(9)|corpon) < Ct + Cty 2,

Take 0 < t; <t sufficiently small such that Ct; + Ctifa/2 < 0y we have I' maps Bc%([()tl])<90’ do) N

{g € C2|g(0) = 0} into himself.
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Let us show that I' is a contraction.
Let g1, 92 € Bc%([o,tl])(%? do), and f9 = O(g1), f9 = O(g2) then

w(P(0GT", V2B + g1(t))) — u(W (0GP, V2B; + ga(1)))
= §u V(@ V2B, + gi(1), [9 (t,2), V [9(t,2), VV [9(t, 2)) (91)
—V (2, V2B + ga(t), f(t,2), Vf2(t,2), VV f%(t, 2)) s (do).

We want to control the norm of the above function in C®/2. Since it vanishes at time 0, we have only
to control its semi-norm {-)q /2.

We write for simplicity f9(¢, ) == (f(t,z), Vf9(t, x), VV f9(t,z)), and let
J(t,x) = V(e V2B + gi(t), for(t,x)) — V(x, V2B, + go(t), [o2(t, z))
Let o € [0,1] and
CGotx) = o(V2By + gi(t), f7(t, ) + (1= 0)(V2Bi + gs(t), fo(t, 7))
we have, for all 0 < s, < f,,

Gt @) — Cols, )| < |t —s|*2(2V2]| B.||carz + 200 + 207)
< Cypolt — S’a/Q

Also using the regularity of V' in the four last variables we have

J(t,x) = LdaV(iﬂ,Ca(t,x))((gl(t),fgl(t,x))—(gz(t)vf”(t,x)))da

Hence,
7(6,2) — (5, )
1 @G0 - 0o, P 0.0) - 0.0
V(@ ol ) (01(5) — 9a(5), O (5,2) — (s, )]
< [ 1V @600 - V@G 010 ~ 00 1,0) = 200,20 do

[ 1 0ol (00 = 0a0), ) F00,)
—(91(s) — g2(s), [ (s, ) — f=(s,2 )| do

Since d3V (z,(,(s,z)) is bounded we have (again the constant C' can change from one line to the other),

sV (2, o (5,2)) ((91(8) — ga(t), F (8, ) — [ (t.2)) — (g1(5) — g2(s), f#' (5, ) — f*(s,2)))
< Ot = s|(|g1 — gallgar + |/ = F|garza)
< Clt—s"*(lg1 = g2llcarz + 0(g1) = O(g2) | cr+arzasa)
< Clt—s"?(1+ [O]Lip)|gr — g2l oo
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where in the last line we use Proposition 38. Using that d3V'(x,.) is Lipschitz in the last variable:

|d3V(SE’, Ca(tv l‘)) - d3V(l‘, CO’(S7 513')) < OKU(t,Z') - CU(‘S? l’)’
< 0050751 |t — $|a/2

Since (g1(0), f9(0,2)) = 0 = (g2(0), f2(0, x)) we have:
(91(1) = g2(8), 2 (8, 2) = f2(, )] < CEP(1+ [O]uip) g1 — gallcers
Putting all things together we get {t — J(t,2))car < C|g1 — g2|cer2 and since J(0,2) = 0,
[t = It 2)|cerr < Clgr = g2lcar

Hence

[t = w(W(OGT V2B, + g1(1)) — u(¥ (OGP V2B, + g2(t))lcerr < Clor = gol e (92)
With the same proof we also have:

[t = w(W(GT, V2B; + g1(1)) — w(¥(GP, V2B, + go(t) s < Clgr — g2l (93)

Let 1u(g)(t) = p(W(GY, V2B, + g(t))) and p(g)(t) = u(V(0G], V2B, + g(t)))

i(r(gl) _ F(gz)) _ 2<M(91) B M(92)>

dt nlgr)  p(g2)
_ 2«Amhdm)—u@ﬁu@0>
1(g1)1(g2)
_ 2(&(91)(#(92) — p(g1)) — plg1) (wlg2) — ﬁ(!h)))
1i(g1)p(g2)
Hence using (87), ( ) and (93),

< Clgr — 92| geare
Co/2([0,t1])

 tr-r

FIGTARRTS)

and so

< Clgr — 92| gore
Co([0,t1])

Since I'(g1)(0) = 0 = I'(g2)(0),
IT(g1) — T(g2)llcerzqory < (1 + t °/ )Clg1 — g2]carz

Reducing ¢, such that (¢, + ¢, CY/Q)C' < 1, we get:

1
IT(g1) — T(g2)llcarzop < 5”91 — g2l corz (o)

%([o,tl])(go,(s()) N {g € C%|g(0) _ 0}.

Hence I' have a unique fixed point in B,
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Theorem 40 Let Dy € D, then there exists 0 < t1 such that the system of equations (79) has a unique
solution.

Proof
Let 6 be the fixed point of I', and f = ©(0) then FU(t,z) = Fy(z) + f°(t, x)vo(x) solves

o 6
aFO(t,x) = ( - p?p(pe(t,M),ﬁBHg(t))(1/}F9(t,M),\/§Bt+9(t)(x)))VF (t, =)
F(0,x) = Fy(z).

and so

Vtel0,t],V xedGY, OT = Qg0 apro() (T)Vecs (2)
Gg = DO

Also

@0t = ZTO))
h(W (G, V2B, +6(t)),
0©)(0) = 0.

Let D € D, C = 0D with C57® boundaries, o € (0,1), in a d-dimensional Riemannian manifold V|
and (0;, G¢)o<i<c be a solution of (79) given by Theorem 40. As in the beginning of this section, the
solution of

Vitel0,1),VaelC:= Dy, dv = <\/§dBt + 25((gt§dt — po, (x)dt) ve, () (94)

is given by (Dy)e[o,r), Where
Vte [O, T), Dt = \IJ(Gt, \@Bt + gt)

(as a special case of (44)).
Proposition 42 below will give a control of the extrinsic diameter of C; defined by

diam(Cy) = sup d(z,y)

(2,y)eC?

where d(-,-) is the Riemannian distance in V. First we need the following proposition bounding the
sum of the mean curvature at points that realize the diameter, in terms of the extrinsic curvature (by
extrinsic we mean in the ambient manifold V/, i.e. not intrinsic in the hypersurface). For all b € R, we
denote by V°(d) the d-dimensional manifold with constant curvature b. Let Lyb(qy defined before Lemma
32. We have:

{LV”(d) = o ,if b<0

_ ™

lyb@y = Vi if b>0

Proposition 41 Let D € D with a C? boundary in a d-dimensional manifold V, and C = 0D. Suppose
that there exists b € R such that the sectional curvature Ky of V' is bounded above by b, i.e. Ky < b.
For all (p,q) € C* such that d(p,q) = diam(C) and d(p, q) < tysa), we have
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. 1—cosh ld(
1. if b < 0 then —pc(p) — pelq) < 2(d — 1)4/]6]( = \(/\L;Z)ZQ) ) <0,

2. if b> 0 then —pc(p) — pelq) < 2(d — DVB(1i).

Proof

As in the proof of Lemme 29, consider (p,q) € C? such that d(p,q) = diam(C). Using the first
variation formula, we get there exists an unit speed geodesic v in V' such that v(0) = ¢, v(d(p, q)) = p,
7(0) = —ve(q) and A(d(p, q)) = ve(p). Let (e;)icp,a—17 be a orthonormal basis of T,C. For i € [1,d — 1],
let v1,(t) be a geodesic in C' such that v;,(0) = ¢ and ¥, ,(0) = e;. Let 72,(¢) be a geodesic in C' such
that 7,,(0) = p and ¥1;(0) = //a(p,q€i, where // is the parallel transport along the geodesic 7. Since
(p,q) € C? is a local maximum of the distance function restricted to C' x C, we have that

d2

a2 d(m,i(t),124(t)) < 0.
=0

Let Y; be the Jacobi field along v obtained by the variation of geodesic connecting vy ;(t) to v2,(t),
we have: Y;(0) = e;, Yi(d(p,q)) = //a(p,q€i- Using second variation formula, we get:

%%dhmAﬂJW¢@Dhﬂ):= [(Viodai(t), 4(d(p, 0))) = (Veodna(t), 7(0))] + 1(Y;, Y5)

[<Vt:072,i(t)aVC(p)>_ Viconi(t), —ve(q)| + 1Y, Y;)
= —Hc(//awa€i /dpaei) — oles, e:) +[(K7Yz)

Put the above two computations together and take the sum to get:

d—1

—pc(q) — pe(p) < 1(Y,,Y)).

i

We have to bound from below the index of the normal Jacobi field Y; for all i. Since Y; is a normal Jacobi
field, there exist real fgnctions 1! fqr j € [1,d—1] such that Y;(t) = Z;.l: f7(t)//re;. By construction of
Y;, we have f/(0) = f(d(p,q)) = 6]. Consider 5(t)ic[0.d(p.q)] @ geodesic in V*(d) with same length as 7,
take (&;)ieq1,4—17 an orthonormal basis of fLy(O)L in TW(O)VI’ (d), and denote by // the parallel transport along
5. Let X;(t) = Z?;i f2(t)//,é;, be a vector field along 4, note that X;(0) = & and X;(d(p,q)) = ;.
Let Y; be the Jacobi field in V?(d) along 4 such that Y;(0) = & and Y;(d(p, q)) = //d (p.g)Gi- We have by
definition:

d(p,q)
1V,Y;) — f VY2 — (R(Y:,A)Ye ) dt
0

\%

d(p,q) ) )
f V.Yl — by dt
0

d(p.q) - .
_ f VX — b KR dt
0

WV

d(p,q) - .
fo AT AL

o1



where in the last inequality we used again the Index Lemma, since d(p, q) < tys(g). So 7(0) and 7(d(p, q))
are not conjugate in V°(d). Since Y;(t) = fo(t)// € with fy = =bfy, and f,(0) = fo(d(p,q)) = 1, we get
d(p.q9)
1(Y,,Y:) = f (fy)* — bty dt
0

= (fold(p.q) — £;(0))

Hence

—pc(q) —pclp) < —(d—1)(f(d(p,q)) — f;(0))
and the result follows by explicit computation of f;, in different cases.

Proposition 42 Let D € D with a C3T boundary C := 0D in a d-dimensional manifold V, for some
fized o € (0,1). Suppose there exists b € R such that the sectional curvature of V' satisfies Ky < b.
Then the evolution of the diameter of the solution (Cy)sejox) of (94) started at C is controlled by:

(1) If b <0, we get for all0 <t < T,

1 — cosh(4/]b] diam(Cy))
sinh(+/|b] diam(Cy))

ddiam(Cy) < 2(vV2dBy + h(Dy)dt) + 2(d — 1)~/]b|( )dt

(i) Ifb > 0, we get, for all0 <t < T A Tx (diam(C')),

ddiam(Cy) < 2(v/2dB, + h(D,)dt) + 2(d — 1)\/5(1 — cos(vbdiam(Cy))

sin(v/b diam(C}))
where T%(diam(C.)) =inf{t >0 : diam(Cy) = Z}.
Proof
Using the construction of (Dy)[o,r), we get, for 0 <t < T,
diam(Cy) =  sup d(Ug,(z, V2B + 6,), Ve, (y, V2B, + 6,))
(z,y)€0G?
= 2(V2B, +6,) + sup d(z,y)

(z,y)eﬁGf

where in the second equality, we used that for 0 < ¢t <, ¥g, (., /2B, + 6,) is a diffeomorphism onto its
image, and a reasoning similar to the proof of Proposition 30. Also since

sup d(z,y) = sup d(F’(t,x), F’(t,y)),
(z,y)€0G? x,yeM?

and the mappings t — F%(t, z) are uniformly Lipschitz on any compact [0,7] < [0, T), we deduce that

t — sup d(z,y)
(;I:,y)eaGf

is Lipschitz on [0, 7], hence almost everywhere differentiable on [0, 7] and absolutely continuous.
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At a differentiability time ¢t € [0, 7], we have, as in the proof of Proposition 30,

d
5, sup d(l’, y)
dt (2,y)€0G?
d
= sup d(ze, ye)
b (20,90)€0G2 : d(we,yr) =diam (0Gy)
d
= sup d—d(l’t, Yt)
(xt,yt)eaGf :d(zt,yt)=diam(0Gt) 14
d d
= sup pTRE v () + <Eyt’ v (y))
(wt,yt)€OG? : d(z¢,y ) =diam(0Gy)
= sup _p\P(aGt,ﬁBt+9t)(¢6Gt,ﬁBt+0t(xt)) - p‘l!(&Gt,ﬁBt-i-Gt)(¢6Gt,\/§Bt+9t (y1))
(wt,yt)€0G? : d(z¢,y ) =diam(0Gy)
= sup —pop, (T¢) — pop, (Ye)

(xt,yt)ean sd(w¢,ys)=diam(0Dy)
Taking into account Proposition 41, we obtain the wanted points (i) and (ii).

When (94) is replaced by (76), the previous proof leads to a similar result:

Proposition 43 Let D € D with a C°™ boundary C := D in a d-dimensional manifold V, for some
fized o € (0,1). Suppose there exists b € R such that the sectional curvature of V' satisfies Ky < b.
Then the evolution of the diameter of the solution (C)iwefoxy of (76) started at C' is controlled by:

(i) Ifb <0, we get, for all0 <t < T,

() < 23208 200 1 (),

(i) Ifb > 0, we get ,for all0 <t < T A T (diam(C")),

ddiam(C,) < 2v2dB, + 2(d — Vb(1— cos(vb diam(C.)) )dt,

sin(v/bdiam(C,))

where T%(diam(C’,)) =1inf{t >0 : diam(Cy) = Z}.

Remark 44 Proposition 43 may seem simpler than Proposition 42, since it does not require to deal
with the tricky term h(D;). For instance when Ky < 0, we have for all 0 < ¢t < T

diam(Cy) < 2v2(B; — By) + diam(C))

It follows that T < 7 aiam(cy (B.) a.s. But the supplementary term h(D;) in Proposition 42 should

2v/2
prevent this collapsing in finite time.
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5 Back to the homogeneous situations

Here we return to the situations encountered in Section 2, where V has a constant curvature and
is endowed with the Laplacian L := A. This section has two main goals developed in the following

subsections:

e When V is an Euclidean space, it is possible to go further in the considerations of Section 3. In
particular when V = R2?, it is possible to compute explicitly the image of the mean curvature
vector field by the tangent mappings to the normal flow.

e When Dy = B(xzg,79) with g € V and r9 > 0 (small enough in the spherical case), the Doss-
Sussman approach can be described explicitly (more generally this is also true when V' is rotation-
ally symmetric and xg is a center of symmetry). It is then possible to compare the Doss-Sussman
methods in the two decompositions (22) and (57), concerning their respective time-domains and
to see that the method suggested in Remark 18 is stable when we let ry go to zero, namely when
we try an approximation of the initial conditions consisting of singletons.

5.1 About the Euclidean and constant curvature spaces

We begin by bringing some precisions about the quantities defined in (25) and (26). They can always
be written

~

R_(D) = R.(D)v R.(D) and R,(D) = R,(D) A R.(D)

where

-]

= inf{r e (0, +0) : ¥¢, is not an immersion}

+

—inf{r € (0, +90) : ¥, is not an immersion}

= inf{r e (0,+o) : 1¢, is not one-to-one}

+

:U>:U>|::Jz::;e
CICICIE
I

]
-

= —inf{r e (0,+w) : ¢c_, is not one-to-one}

(with the usual convention inf ¢§ = +0).
Consider the Euclidean case:

Lemma 45 When V = R", with n > 2 and endowed with its Fuclidean structure, we have

1

R (D) = — 0.0
(D) min(0_, min{—X\,_; c(z) : z € C}) € [==.0)
~ 1
R, (D) = 0
+(D) max (0., max{—A; ¢(z) : € C}) € (0, 4]

where A\ o(z) < -+ < N—10(z) are the eigenvalues of the second fundamental form (defined with
respect to ve) at x € C. The notations 0_ and 0, just indicate that 1/0_ = —oo0 and 1/0, = +o0.
Proof

Recall that the tangent mapping dve associated to the mapping C' 3 2 — ve(x) can be seen as a linear
mapping from 7,C (the tangent space of C' at x) to itself, and that the second fundamental form is
given at x € C by

T.C x T,C 3 (v,w) +— {v,dvclw])
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We deduce that for r € R, the tangent mapping dic, satisfies
YV v,weT,C, o, dpe|w]y = (v,w) +r{v, dve|w])

It follows that if 7 is such that all the quantities 1 + rA¢1(z), ..., 1 + rAc,—1(x) are either all positive
or all negative, then the tangent mapping dic, is not degenerate at x. As a consequence, for r €
(R_(D), R, (D)), dic, is not degenerate on C. More precisely, (R_(D), R, (D)) is the largest interval
I containing 0 on which the tangent mapping dic, is not degenerate on C' for all r € I. Indeed, when
for some x € C' and r € R, the values 1 + rA¢1(2), ..., 1 + 7A¢pn—1(2) are not of the same sign, we can
find 7" € (—|r|, |r]) such that 1 + r"Ac1(z) = 0, so that dic, is degenerate at .

[

Remark 46 Consider the case where V = R? endowed with its usual Riemannian structure (coming
from its Euclidean structure). The following picture (where the boundary of the C' in black stands for
C, while the line in red is a portion of its image by 1¢,, for some positive element r € (R_(D), R.(D))),
shows that in general the mapping ¢, is not an embedding of C' in the plane.

Figure 2: example of a non injective mapping ¥ ¢,

In this picture, if r is reduced a little to be equal to ]3L+(D) and if x + 2’ € C are such that
Yor(r) = Yo (2'), it appears that vo(x) = —ve(2’) and 2’ belongs to the line passing by x and
directed by ve(z).

The last observation of the above remark corresponds to a general phenomenon that we now describe,
coming back to the situation of an abstract Riemannian manifold V.
For any D € D and = € C, consider

R,(z) = %inf {7‘ >0 : exp,(rve(z)) € C and ve(exp,(rve(x))) = _dir expm(ruc(x))}
R.(D) = inf{R,(z): zeC}
Similarly, let
Y 1 d
R_(z) = 5 Sup {7‘ <0 : exp,(rve(z))) € C and ve(exp,(rve(x))) = e expx(ryc(x))}

R_(D) = sup{R_(z) : z€C}

The interest of these quantities is:
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Lemma 47 When §+(D) < R, (D), it means that R, (D) = ]§+(D) = R.(D) > 0. Similarly, we
always have R_(D) = R_(D) v R_(D) < 0.

Proof

We only prove the first assertion, since the second one can be shown in the same way, by reversing the
time (or, when V' is compact, by replacing D by D°).

We begin by remarking that for any x € C, we can find a neighborhood U of z such that the
intersection of U n C and U n exp,([—¢, €]vc(z)) is reduced to x for € > 0 small enough (this is a
consequence of the assumption that C' is a smooth submanifold of V). It follows that the set {r > 0 :
exp,(rve(z)) € C and vo(exp,(rve(z))) = —4 exp,(rvc(x))} does not contain 0 as an accumulation
point. Since it is also closed, for any x € C, the infimum defining R+ (x) is either attained and positive
or infinite. Assume that R, (D) < +coo and let (z,)nen be a sequence of elements of C' such that
R (x,) converges toward R, (D). By compactness, we can assume that (z,)nen converges toward some

x € C. Passing to the limit in I/C(expxn(ﬂir (za)ve(zn))) = — L exp,, (rve(@a))l, =2k, (2,)» We obtain
ve(exp, (2R, (D)ve(z))) = -4 exp, (rve(2))|,—on, (p)- In particular R, (D) > 0, otherwise we would

end up with ve(z) = —ve(x). As a consequence, we get R, () < R(D) and finally R, (D) = R, (z),
namely the infimum defining R, (D) is attained and is positive. Then the mapping Vo i, (py 18 not
injective, since

Yoi, () = exp(Ri(D)ve(x)) = Yoz, ) (exp, (2R (D)ve()))

where z is still a minimizer in the definition of R, (D). Thus we get }A‘L(D) < R, (D).

Next, assuming that ]§+(D) < §+(D), let us show conversely that ]§+(D) > R, (D). Indeed, we can
find distinct z, 2/ € C and r € (0, R, (D)) such that ¢, (2) = Y, (2’). Since r € (0, R, (D)), we can find
a neighborhood A of z (respectively A’ of 2, disjoint from A) in C such that ¢, is a diffeomorphism
of A (resp. A’) on its image. If the tangent space Ty, (2)Vc,(A) of Y¢,(A) at e, (7) is not equal to
the tangent space Ty, ()¥cr(A") of Yo, (A') at e, (2'), then Y¢,(A) and Ye,(A’) are crossing each
other at ¢¢,(x). Then by decreasing a little r into ' < r, o,/ (A) and ¢,/ (A’) are still crossing
each other. One can then find y € A and y' € A’ such that Yo, (y) = Yo (V) € Yeor(A) N Yo (A).
This is in contradiction with the definition of R, (D). Thus we get Ty, (@)Vcr(A) = Tye, @er(A).
Note that by parallel transport along the geodesic, % exp, (rve(x)) is orthogonal to Ty, ()Y, (A) and
similarly for £ exp,, (rve(2’)). It follows that the two unit vectors < exp, (rve(x)) and 2 exp, (rve(z'))
are proportional. They cannot be equal, otherwise by reversing time in the geodesics, we would end
up with 2 = 2/. So Lexp,(rvc(z)) = —exp, (rvc(z’)) and by considering the geodesic starting
from ¢, (z) with speed <L exp,(rve(z)) and its reversed time geodesic, we get exp,(2rvc(z)) = 2’
aAnd d%exp_,f(syc(x))\szgr = —ve(2’), namely r > R, (D) and as a consequence, R, (D) > R, (D), i.e.
Ro(D) = Ry (D).

|
We now come to the specific situation of the Euclidean plane.

Lemma 48 Assume that V = R?, endowed with its usual Euclidean structure. For any D € D and
re (R_(D),R:(D)), we have

pc(x)
Vaxzed, pucr) (Ve (r)) = m
In the context of Lemma 13, if o is given by
Vazed, alx) = _pol@)
1 —rpe(z)
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then we have

Vaxew(Cr), Tp¥(,r)al(z) = puer ()

Proof
One way to compute the curvature pyc,(Yc,(2)), for € C, is to consider a parametrization (y(s))s
of U(C,r) by its length such that y(0) = ¥¢.(z). The quantity pyc (e, (x)) is then obtained by
specializing the following formula at s = 0,

OsTwem (U(s)) = —pwem (Y(s)reen(y(s))

where Ty (¢, (y(s)) is the unit vector d,y(s).
Let (x(s))s be a parametrization of C' by its length, with z(0) = z. A parametrization of ¥(C,r) is
then given by (¢, (z(s)))s, but it is not by its length, due to the relation

Osthor((s)) = (1 +rpo(z(s)))ro(z(s))
To get a parametrization by the length, consider the time change (6;)s given by

05
|4 ractves e e = s

0
and define y(s) = ¥, (x(65)). We compute

asy(s) = T¢C,T[TC(m(QS))]ases

= 7o(x(0s))
which is a unitary vector. We are thus led to differentiate
Osto(2(0s)) = —polw(bs))ve(x(6s))0s0

O pea0))
T pc(bor (@)

vo(x(6s))

This computation proves that

pe(x(6s))
L+ rpe(Yeq(2(s)))

(and that vy, (y(s)) = ve(x(0s)), but that was already clear), which at s = 0 is the first assertion of
the above lemma.

For the second one, note that for any D € D and r € (R_(D), R, (D)), we have

VxeVU(C,r), Vor(®) = Yycr),—r(T)

(note that r € (R_(D), Ry (D)) implies that —r € (R_(¥(D,r)), Ry (¥(D,r)))). It follows that for
x e (),

pu(cn)(Y(s))

pc (e (x))

1 —7rpc(ibg,(x))
pc(Vwcr),—r (1))

1 = rpo(wcr), (1))

Pu(C,r) (x)
1+TP‘1/(C,7») (.Z‘)
1 - Py (C,r) (Z‘)
1+TP\P(C,T) (x)

= pwien(z)

(e, (z) =
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So Lemma 13 leads to the announced result.
[ |

Remark 49 Lemma 48 is only valid in dimension 2. If R? is replaced by R”, with n > 2, recall that the
mean curvature p(z) at a point z from C' := 0D, where D is a non-empty, open, bounded, connected
domain with smooth boundary, is given by A\ o(z) + -+ + Ay—1,¢(x) (with the notation introduced in
Lemma 45). Extending in the natural way the previous notions, it appears that

)\m’c(x)

VeeC, Vmel[n—1], Amw(cr)(Wor(z)) = T+ rame(@)

(as long as r € R is such that mingec 1 + rA; o(z) > 0). Thus to recover the mean curvature vector
through the tangent mapping of W¥(-,r), one must consider the vector o above D given by

)\m T
Veel,  a@) = Y Tcnfc)@:)

me[n—1]

(as long as r € R is such that mingec 1 —rA,—1.c(x) > 0).

]

Lemma 50 Assume that V is a surface of constant curvature K, D € D and r € (R_, R,) then we
have:

o if K>0andzxeC,

(i) — K) 2D 4 g () cos (2v/K)
(cos (\/>r) sin( fr) pc(x))2

IO\II(C,T) (wc,r (l’)) =

e if K <0 and x e C,
(P2 (z) — K)2EED 4 () cosh(2y/—KT)
2
(cosh (V—Kr) + Smh\(/‘/: L po(x ))

By letting K go to zero in both cases, we recover Lemma 48.

Proof

We only give the proof when K > 0, the case K < 0 can be deduced by similar computations. For
x e C, let (7.(s))s be a curve parametrized by its arc length with values in C' and 7,(0) = . Denote
7(s) = Yx(s) its unitary tangent vectors. Consider for any ¢, s,

Pu(Cr) (77Z)C,7‘ (I) ) =

7<S7t) = eXp'ym(s)(tV(’%E(s)))
Js() = 0s(v(s,1))

As a variation of a geodesic (for all the following Riemannian geometry notions, see e.g. the book

of Gallot, Hulin and Lafontaine [10]), (J,(t)), is a Jacobi field. We have J,(0) = 7(s) and J,(0) =
Vo.v(7:(8)) = pc(v.(s))7(s). So there exist a, 8 € R such that Jy(t) = (a cos(v Kt)+Bsin(vVEKt))//sor(siT(8),
where //4,+(s) is the parallel transport above the curve t — (s, t). Adjusting with the initial condition,

we get:

J(t) = (cos<f t) + &%)) sin(vVK t)) Jior(syT(5)
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For fixed and small enough ¢, to get the arc length parametrization of s — ~(s,t), let us consider the
time-change solution of the following equation:

0y = 0
dilS@gt) = (cos(ft) + £cl(6a)) \ﬁ sm(\/it))
Let us denote (s, u) := (6, u), we have

vl m0P) = (Vo 2(s, 1) varen (s )

- Vol : 5,1), ] 3. 0)

- <v63§j< 0. 230D,

Then
0 . 0 .
—Pu(Ct) (wat(ﬂ?)) = <vas|s:0 6_57(57'“)7 a_u’}/(ovu)>|u=t

t 0 . 0 . 0 . .
= f v5u<vﬁs|s:0_7<s? u)a _7(07 u)> du + <V5s|s:0 _7(87 0)7 aU‘U=07(07 U>>
. 25 Ou 2
Recall that

Voo 577(5,0); Culu=07(0, 1)) = <Vas|s_ogs(9§t))7(9§t)),Vc(:v)>

— o) (S0
B pc(z) 2
(cos(\/Et) + pc—\/%) sin(ﬁt))

On the other hand, let J ¢ (u) = a—i’y(s, u) and let R(-,-) be the curvature tensor, since u — (s, u) is a
geodesic, we have

0
‘soa

0 . 0 .
vau<vas‘s=0 5_7(87 u)7 6_/7(07 u>)>

0 . .
= <Vauvas|s:0 6_’7(3’ u)? ’7(0’ u)>

30,0)) + CR(E] (5.0, £3(0.0)) om0 5.0, 23(0. )

s

o &>

0.
= <vas|s:0v6ua_7(8’ u)’

= (Voo Va0, 300> + CR(J g0 (), 23(0,) Ty (1), =
= —(V,, 9<t>( u), V 9<t>( u)) + K{J, <t>( )7‘]9(”(“»

where in the last equality, we took into account that Vo, (Va, Jyo (u), %:y(s, u)y = 0. Since
pc(x)
Sy (v) - = a_5|5 0(08”) (cos(V Ku) + \ﬁ sin(VEW) /w007 ()

V. Jeét) (u) = 6%]5_0(9?))(—\/? sin(VEKu) + po(x) COS(\/EU))//uH'?(OM)T(x)
d ) 1
ds™° cos(VKt) + pC sm(\ﬁt)
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we deduce:

t
X
pucn (Wea(e) = f||vauJ9<z><u>|2—Knng(u)\?dw pelz)
0 0 0

<cos(\/7t) + £cla) sm(ft))

1 t _ 2
(cos(ft) + p\c/(% in(\/kt))z (L (—\/Esm(\/gu) + Pc(x) Cos(ﬁu))

-K (cos(\/i ) + \/%) sin(\/?u)>2 du + pc(:c)>

(Pi(x) — K) 2D 1 oo (2) cos (2v/EH)
(cos(\/>t) Smfftp (x ))2

When the curvature is negative K < 0, except for the sign change in the second order differential
equation for the Jacobi field, all the computations are similar.
[ |

Remark 51 In the context of the above lemma, let V' be a (n + 1)-dimensional manifold with constant
curvature K >0, De D, r e (R_,R;) and A\¢1(z) < ... < Agn(x) be the principal curvatures of C. It
is not so clear how to control the principal curvatures of W(C,r) at the point ¢ ,.(z), but for the mean

curvature we have:
n (A2 () — K SO ) (w) cos (2v/ET)
Py (Cr) ¢Cr Z N 3
=1 (COS (VETr) + sin T)/\Cvl(x)>

A similar formula holds for K < 0.

5.2 Comparison of two Doss-Sussman approaches

Consider the Doss-Sussman method corresponding to the decomposition (57) of Remark 18. Similarly
0 (43) and (47), define in the present Riemannian Brownian setting,

VDeD,Vuxel, pc(r) = pc(z)—h(D)
Vr>0,YDeD,VreC,  ac.(r) = —pucn@o(z))

We are interested in constructing a family (ét)te[O,T) such that

éo = B(SL’,T())
Vitel0,7),V xedG, or = &a@t,x/iBt ()6, (x)

since the process (D;)e[o,r) Obtained by a particular composition of the normal flow ¥ and of the flow
(95), namely

(95)

Viel0,1), D, = (G, V2B (96)

will provide a solution to the martingale problem associated to (D, £), as in Theorem 17.
In the following subsections we reformulate the results of Section 2, using this Doss-Sussman ap-
proach.
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5.2.1 FEuclidean spaces

Let V = R", fix 29 € R™ and r, > 0 and consider the initial condition G, = B(xzg,r9) and Cy = 0Go.
According to Lemma 48 (also by direct computation) we have for all r > —rq,
% n—1

p\Il(Co,r)(wC'o,T‘(xD = (”—1)1+L = r + 70
To

2n
A(¥(Do, 1) = =
SO
YV x e Cy, Qcyr(T) = ntl
T+ 170

~

Since the above quantity does not depend on z, the solution of (95) is radial and G, = B(z, Ry).
According to (95), the radius starts with Ry = ro and its evolution is described by

~ n+1
Vtel0,1), dR;, = ——dt 97
10.7) ' R, + V2B, (97)

this equation being well-defined up to the stopping time
T = 1nf{t >0 : Et = —\/§Bt or ét = O}

The condition R, > 0 comes from the fact that the normal flow U(C,r) is not defined when C'is reduced
to a singleton, and the condition R, > —+/2B, comes from the fact that the normal flow W(0B(z, R,), 1)
is well-defined only for r > —R,.

We get the following equation:

~ 1
Viel0,1), d(B,+v2B) = — " dt+/2dB,
R, + 2B,
SO (ét +V2B)=0 = (Besg?JrQ)(rO))t;O, where Bes™*?) (1) = (Bes£”+2)(r0))t>0 is a Bessel process of

dimension n + 2 > 2 starting from ro > 0. For all t > 0, R, + v2B, > 0, so (dR,)/(dt) > 0 and
R; = ry > 0, hence Equation (97) is well-defined for all times, i.e. T = o0, and

¥t>0, D, = WG, V2B,) = Blwg, R + V2B)

Since 0 is a entrance boundary for the Bessel process of dimension n + 2, it is possible to solve the
martingale problem associated to the generator (D, £) and to the initial singleton condition Dy = {z}
as follow: let Bes™"?(0) be a Bessel process of dimension n + 2 starting at 0, and (B;)=o be the
associated Brownian motion, namely such that

2t

1
V t = 0, BengH) = \/§Bt + f m dS
0 s

t

1
~ V2B, + f s
0 Bes,, 7(0)
Consider for any t > 0,
D, = B(zo,Bes\™)
\Il_l(Db \/iBt)

@
Il

61



where the latter is well-defined since Besgf”) > /2B, for all t > 0. It appears that

t
Vit=0, Besggﬁ) = V2B, + J h(Dy) — pop, ds
0
hence

Ve 5@7 o = (h(Dy) — Pw(aat,\/iBt))VaGt(x)
= &aGt,\/iBt (x)VaGt (I)
According to Lemma 10 and (56), we have for any f e C*(R"),
dF;(D;) = dF;(W(Gy,V2B,))

( FD) = pav) au)at+

f d/i) (v2dB,)

0Dy

+ < (Vf,vop,) dp + fpop, dji) dt
0Dy

0Dy

- ( oD v, VaDt>+fh(Dt))dM) dt

+V2 < fdg) dB,
aDt

(Mi)izo = <\/§Lt ( oD, fdﬁ) st>t>o

is a martingale. We get for all ¢t > s > 0,

where

Fy(D)) — Fy(Dy) = J S[F,](Dy) du + M, — M, (98)

Since a.s.

lim Fy(D,) = 0

s—04
and

. 0 ,ifn >3
il—r}(l)g[Ff](Ds) - {87Tf(xo) yifn =2

we can pass to the limit in (98) to get (D;):>o solves the martingale problem associated to the generator
(D, £) and to the singleton initial condition Dy = {xo}.

Let us now consider the Doss-Sussman method relative to the decomposition (22), for simplicity
only in the illustrative Euclidean plane V' = R?. For z, € R? and ry > 0, we are interested in the
initial condition Dy = B(xzg,rg). Starting with (6y, Go) = (0, D), we solve the evolution equation
system (51) with respect to (6, Gt)te[o,rm)- The solution (Gt)te[o,no) remains radial, so let us write it as

G, = B(x, R,) for all t € [0,71,,). Equation (51) becomes:
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th = —=7=5 L dt o=Tp
Ri+V2Bi+6;
v le [07TT0>7 { det _ 4 00 — 0 (99>

—=—dt
Ri+V2Bi+6;

where
Try = 1nf{t = 0, Rt =0 or \/§Bt + et = —Rt}

It follows that (Rt + V2B, + et)te[();rro) = (Besgﬁt‘)(ro))te[oﬂro) where Bes® (ro) is a Bessel process of
dimension 4 starting from 7, We deduce that T,, = inf{t > 0, R, = 0} and for any t € [0, T,,),

ds

t
. 1
Ry—ry = —J ~
o 0 R, + /2B, + 0,

1 (% 1
2 Jo Besg)(ro)

Using the iterated logarithm law for the Bessel process for large times, we get

+00 1
0 Besk(9 (r0)

It follows that necessarily, a.s. T,, < o0 and more precisely that

2T7-0 1
2rg = ———ds 100
0 Jo Besg4) (ro) (100)

Taking into account that for any ¢t > 0, we have (a.s.)

|
J—ds e (0,+x0)

0 Besf) (0)

we can let 79 go to 04 in (100) to see that

lim t,, = 0
T04>0+
Thus, the Doss-Sussman method relative to the decomposition (22) does not enable to define the
dual process for all times nor permits approximations of singleton initial condition, contrary to the
Doss-Sussman method associated to the decomposition (57).

Remark 52 It may be surprising at first view that several decompositions of a generator lead to
solutions defined on different time domains. This is due to the fact that the flows associated to the
corresponding vector fields may not be defined for all times. To get a simple example on R, consider
the case n = 1 in this subsection.
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5.2.2 Hyperbolic spaces

Let V' = H" be the hyperbolic space of dimension n. Fix some zo € H" and 79 > 0 and consider the
initial condition Gy = Dy = B(xg, 7o), and Cy = dGy. We have for any r > —ry,

pu(Cor)(Ccor(®)) = (n—1)coth(r + 7o)
sinh™ ! (r + ry)

hU(DL) = 2HE

hence
Ve Co, doyr(T) = Sin}}z:irrj)ro) — (n — 1) coth(r + 7o)

where

Vr=0, J(r) = f sinh" ! (u) du
0

The solution of (95) is radial, say G, = B(z, ét), and we have, starting with Ro = ro:

sinh" (R, + v/2B,)
J(R, + V2B,)

Vielo,t), dR, = <2 —(n—1)coth(§t+\/§Bt)> dt (101)

where,
T = 1nf{t >0 : Et = —\/§Bt or ét = O}
We get, for all t € [0, 1),

sinh"il(ét +4/2B,)
J(R, + V2B,)

d(R, + v2B,) = (2 — (n— 1) coth(R, + \/§Bt)> dt +\/2dB,

Note that as r > 0 goes to zero,

sinh"il('r)_n_ coth(r) ~ n+1
S - (= Deoth(r) ~

This behavior is sufficient to insure that 0 is an entrance boundary for the diffusion (ﬁt +v2B,) =0
(see for instance the classical computations of Chapter 15 of Karlin and Taylor [14]). In particular,
since (Et +1/2B,)>0 starts from 7o > 0, it will never reach 0 (a.s.). Furthermore, let us check that the
radius process (ét)t>0 of (ét)t>0 is non-decreasing. Indeed, after an integration by parts, we obtain for
all » = 0:

r . sinh(r) o1
sinh" " (u)du = ———dv
J;) ( ) 0 V1 + v?
sinh" (r) J sinh(r) pntl
= —=+ dv
ncosh(r)  Jo nv1+v3(1 + v?)

dv.

sinhn(r) . 1 Jsinh(T) o1
0 V14 v?

ncosh(r) n
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Hence we have for any r > 0,

J sinh" ' (u) du < sinh”(r)

0 (n — 1) cosh(r)
namely
sinh" ! (r)
0y > (n—1)coth(r)
and
2sinh"*(r) sinh" ! (r)
0 (n —1)coth(r) = VO 0

This non-negativity and (101) show that (R,);so is non-decreasing.
From these observations, we get the solution of (101) is defined for all times, i.e. T = 00, and finally

Vt=0, D, = B(xo, R+ V2B)

provides a solution to the martingale problem associated to the generator (®,£) and starting from
B(x’(], 7"0) .

As in the Euclidean case, by letting ry go to zero, we solve the martingale problem associated to the
generator (D, £) starting from the singleton {zo}.

5.2.3 Spherical spaces

Let V' = S" be the sphere of dimension n € N. Fix x5 € S" and ry € (0,7), and consider the initial
condition Gy = B(xg,79), and Cy = 0Gy. We have for any r € (=19, ™ — r¢) (note that the normal flow
in not well-defined for all positive times):

sin" (7 + 7o)

T+ (n— 1) cot(r + ro)

&Coﬂ“ (I) =

where I(s) = {3 sin" ' (u) du, for any s € [0, 7].
The solution of (95) is radial, say Gy = B(z, ;). According to (95), starting from Ry = ro, we have

Sil’lnil(ét + \/iBt>
J(R, + V2B,)

Vielo,t), dR, = <2 — (n—1) cot(R; + \/§Bt)> dt (102)

where
T = Hlf{t >0 : ét =TT — \/§Bt or ét = —\/§Bt or ét = 0}

We get

~ B sin" (R, + V2B,) Ctn— 1) eot( B
Vte[0,7), d(R ++V2B,) = (2 17 + V25, (n — 1) cot(R, +\/§Bt)> dt +/2dB,

Again, we have as r goes to 0,

sin"” (r) (n—1)cot(r) ~ n+1

2 I(r) r
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and this behavior is sufficient to get that 0 is an entrance boundary for the diffusion (th + V2B 0.
It follows that it never hits 0. To show that (R;)¢>o is non-decreasing, let us check that

Vre(0,m), 2%—@—1)@“@ = 0
Observe that it is clearly satisfied for r € [, 7). For r € (0, 5), we have:
fr sin” (u)du = " B dv
0 o V1-u?
sin”(r) sin(r) il

A d
necos(r) Jo  nv/1—02(1 —v?) v

sin”(r) B sin”(r)

ncos(r) — (n—1)cos(r)
We deduce that r € (0, §),

sin" ()

1(r)

—(n—1)cot(r) = M > 0

’ ()

From these considerations, it appears that the solution to (102) is well-defined until the (a.s. finite)
stopping time
T = inf{t>0: R, + V2B, = 7}
and we have
Vie[o,1], D, = B(x,R,+ 2B,

In fact T is the hitting time of the whole sphere S™ by (Dy)se[o. Since for all f € C*(S™), we have
L[F](S™) = 0, it is natural to let the latter process be absorbed at S”, namely to extend it by

V t 2 T, Dt = Sn

so that (D;);so provides a solution to the martingale problem associated to the generator (®, £) and
starting from B(zo, ro).

As in the Euclidean and hyperbolic cases, the martingale problem associated to the generator (9, £)
and starting from the singleton {z} is solved by letting ry go to zero.

6 About the martingale problems associated to £

After proving Theorem 5, we will show that the martingales naturally associated to £ are directed by
a unique Brownian motion, property corresponding to the radial evolution (3). Next, we will enrich
the set of elementary observables and see in the particular example of the diffusion X consisting of the
Brownian motion in the Euclidean plane how the enriched martingale problem is sufficient to deduce
that the dual domain-valued process ends up looking like a big disk, at least if it can be defined for all
times.
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6.1 Proof of Theorem 5

As explained above Theorem 5, we assume we are given a stochastic process (Dt)te[O,T) taking values
in G for positive times and solution to the martingale problem associated to (D, £), defined as in
the introduction, except that the elementary observables are defined on G instead of D. Despite this
generalization, the following arguments are similar to those given in the one-dimensional case treated
in [19].

Let a test function f € C*(R,) be given and consider the process (S;)w[o,r) defined by

Viel0,T), S = f(u(Dy))

Since the mapping G 3 D — §(Fy (D)) belongs to ©, there exists a local martingale (M )0 such that
for all ¢ € [0, T),

St = S() + Jt S[f 9 Fl[](DS) ds + Mt (103)

0

By definition of £, we have
Llfo il(D) = f(F)L[F] +§(Fu)le[Fr, Fa]

Recall that in the proof of Theorem 3, we computed, for any D € G, with C' := 0D,

o Lu(0)?
S{RID) = 22 (104)
Le[Fy, F1](D) = p(C)? (105)
so that
efo D) = wep (yir 2L o)
= 2u(C)*L[f](FL(D))
where

VeeRY, L =1d*+10

is the generator of the Bessel process of dimension 3 on R, (see e.g. Chapter 11 of the book [26] of
Revuz and Yor). Thus we obtain, for all ¢ € [0, T),

t

Sy = Sp+2 f (G2 LI (u(Dy)) ds + M,

It leads us to introduce the time change described by (12) and (13) and
V te [07 Q), Rt = M(De(t))

to get (R¢)tefo,) is a stopped continuous solution to the martingale problem associated to the generator
(C*(R4), L). It follows that (R;)w[o,) is a stopped Bessel process of dimension 3. For completeness, let
us just recall the underlying argument.
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Define for t € [0, <),
!
W, = R —R —J —ds
t t 0 . R.

According to the martingale problem, the process (W3).epo.) is a continuous local martingale whose
bracket is given by

t
Vtel0,5), W, = J I'c[id,id](Rs) ds
0
where I'z is the carré du champ operator associated to £ and id : R 5 x +— =z is the identity mapping
on R*. Since I'z[id,id] = (id)* = 1, we get
Vtel0,5), Wy, =t

so Lévy’s theorem shows that (W})e[o,) is a stopped Brownian motion. Then (R;)eqo.) is solution to
the stochastic differential solution

1
Vt6[0,§), th = th—i‘Edt
t

which admits a unique strong solution, once Ry is given. In particular the law of (Rt)te[o,g) is determined
by the initial distribution of Ry, it is the Bessel process of dimension 3 with initial law £(Xj).
[ |

6.2 The stochastic differential equation associated with the martingale
problem

With the notation of the above proof, for f = id in (103), we get My, = W, for t € [0,¢), or
Vtel0,T), My = Wy
where =1 : [0,T) — [0, ¢) is the inverse mapping of # given in (13). In particular, we get
Vtel0,T), (M), = 6;1

_ f (O ds

0

so that we can find a Brownian motion (B;);>¢ (up to enlarging the underlying probability space) such
that

t
Vtelo,T), M, = \/if w(Cy) dB,
0

Namely we have

M(Ct)Q
1(Dy)

The same Brownian motion (By);so is driving all the (F(Dy))eon), for all f e C*(V), and even
more:

Vtel0,7), du(D,) = 2 dt +v/2u(C;) dB, (106)
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Proposition 53 For all F € ©, we have
t

vielom, 800 = 800+ [ SEID)ds V2 f\/m[mws)d& (107)

0

where the determination of the sign of A/I'e[§,§] is
VDD, VREFD) = X ai(Fy e Fr)D) [ fido
C

le[n]

when § = §(Fy,, ..., Fy,), with the notation of the introduction.

Proof

By definition of (D, £) and due to the usual rules of continuous stochastic calculus (see for instance the
book [26] of Revuz and Yor), it is sufficient to check the above formula on the elementary observables,
namely that for all f e C*(V),

Vte [O,T), Ff(Dt) = Ff(Do) + ft S[Ff](DS) ds + \/ﬁj‘tq/rg[Ff,Ff](D )dB

with the determination of sign: /I's[F}, Ff] :=§ f do. From the martingale problem, we know that for
any f e C®(V), the process
t

vtelo,t), M/ = Ff(Dt)—Ff(Do)—LS[Ff](DS)ds

is a local martingale whose bracket is given by
¢
VtE[O,T), <Mf>t = QJ\ FQ[Ff,Ff](DS)dS
0

So our goal is to check that
! FE[Ff’Ff](D)dMIl
Lo F, Fi1] ’

Since all the considered martingales start from 0, it is equivalent to show that

/Te[Fy, Fyl
Vtel0,7), <Mf J Vel 1yl )M]1> =0
t

VTe[F, Fi]

vtelo,t), M/

Developing by polarization the l.h.s., we obtain

(M7, +<J W dM1> <ijw 5) M1>

I'e Fﬂ,F]l I'e Fﬂ,F]l
= s [P acn, -2 [ VERER D),
~ j Laly (D) ds 2 [ %ws) Col Py F1)(D)ds
% (D) Tel Fy, Fyl(D.)ds
= 4Lt (F;:[Fvaf] - %&[Fmﬂf]) (Ds) ds

= 0
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where we used that for any D € G,

(n[ﬂfﬂ—%&[m,m) o) = ([ ra) L) [ ra
-0

Remark 54 The stopped standard Brownian motion (B;)sfo,r) in (107) is (a.s.) on the random interval
[0,T), the same as the one appearing in Theorem 17, when above, one considers the stochastic process
(D¢)tefo,ry constructed in Theorem 17. This is a consequence, on one hand of (106), which enables to
recover (By)ieox) from (Dy)iefo,r), since By = 0 and u(Cy) > 0 for t € [0,7), and on the other hand of
the fact that in the proof of Theorem 17, we have

Vtielo,t), M, = ﬁf; (Lsfdg) dB,

so by taking f = 1, we can recover (Bt)te[o,’r) in the same way.

In the same spirit as Theorem 5 and similarly to [19], we also have

Proposition 55 Under the setting of Theorem 5, the process (1/11(Dy))iefo,r) s a positive local martin-
gale. It follows that lim;_ . u(Dy) exists a.s. in (0,400].

Proof

Consider the mapping § : G 3 D — 1/u(D), which belongs to ®. To see that (1/u(D;))scqox) is a local
martingale, it is sufficient to check that £[F]| = 0. By definition,

VDG SRID) = g SRID) + el F(D)
_ 1 M(C)Q 2 2
= 5D w0 T HoMY

where (104) and (105) were taken into account.
Thus as a positive submartingale 1/u(D;), converges a.s. as t goes to T from below, to a limit
belonging to [0, +00). By taking the inverse, we get the announced result.
|

6.3 Enrichment of the elementary observables

Up to now, we only considered elementary observables of type (4), since they were sufficient for our
purposes, but other functionals are interesting to go further. To simplify the presentation, we restrict
ourselves to the situation of the Brownian motion on a Riemannian manifold, namely we take b = 0, so
that u = X\, u = 0 and p® = p. The general case can be treated similarly (see the manipulations of the
proof of Theorem 3).
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The first of new elementary observables we would like to add have the following form, for any

fece(v),
G;:DsD — GyD ffdo— (108)

Indeed, the action (6) of the generator £ can then be rewritten, taking into account Stokes’ theorem
(21), as

VDeD, g[F](D) = JC<Vf,u>+2%fda

Gi(D)G (D)

= FAf(D)-f—Q FH(D)

so it seems natural to study the evolution of (G'¢(Dy))efo,x), when (Dy)sefo,r) is a solution to the martingale
problem associated to £.

Unfortunately, it seems difficult to work directly from this martingale problem, while we still don’t
know if it is well-posed. Our hope is that by enriching the domain of functionals to which it is applied,
we should be more able to obtain that it is well-posed. So we rather consider the process (Dt)te[oﬂ)
given by (52) and construct new martingales for it. More precisely, up to reducing T (replacing it by its
minimum with the first time D; is no longer included into a nice tubular neighborhood of Dy), we will
assume that D, is defined and belong to D. Before investigating the functionals of the form (108), we
are interested in the composition of the process (Dy)se[o With the normal flow, which already played
a crucial role in the construction of (Dy)s[o+]- So define

R = {reR:Vte|0,1], D;eD,}
VreR,Yte[0,T), DU = W(D,r) (109)
= U(G, V2B + 0, +1)

where (G)sefo and (6;)sefo,q are defined as in (51). For any r € R, consider

¥DeD,Yrel,  al(x) = pole) - puen (o, ()

and the operator £) acting on D_, via

¥ feC?(V),¥DeD_,, LU[F](DD) = L (Vfvy+ (2% - ag‘”) fdo

(\I’(C’ Scfda
A (D, —r))

= fAfd)\JrQ +Ja§;*>fda (110)
D C

Its interest comes from:

Lemma 56 For any f € C*(V), t€[0,7] and r € R, we have
t ¢

Ff(Dgr)) — Ff(DéT)>_|_f Q(T)[Ff](Dgr))dS-l-\@f Gf(DS"))dB
0

0

Proof
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The arguments are similar to those of the proof of Theorem 17, which lead to

dF (Y (G, V2B, + 0, + 7))
r

-1
Pow(Gr/aB,+6,) © Vocnv2B,+6, © ¥ f dU) dt
Jow (G, V2B +0,+1) (G e+ ‘ e 0Gt,V2Bi+0:+7

-
f do) (v/2dB; + 0,6,dt)
)

+ o+

(&

(&

0V (Gy ,\/éBz +0i+1
r

v, V[ da—i—f

OV (G,V/2Bi+0:+7)

pf da) dt

0U(G, V2B +0,+1)
N
Pow (G, V2B +6:) © wa‘lf(Gt,\/iBH-Ot—i-r),—r f dU) dt

(&

0V (Gt,v/2Bt+0:+r)
N

+ <l/, Vf> + pf + 8t€tf dO') dt

OV (Gt,v/2Bt+0:+7)

+V2 (f fda) dB,
a\IJ(Gt ,ﬁBt +91 +T‘)

_ ( f W,V F5+ (h(\p(Gt, V2B, +0,)) + a(‘ﬁl)) fda) dt
a\I}(Gt,\/iBt+9t+T) aDt

+1/2 (J fda) dB,
(7\1’(Gt ,\/ﬁBt +0; +T)

- g(r)[Ff](Dy))dt +4/2 (J ( )fda) dB,
oD\"
[ ]
For any D € D, define
VaeC,  pi(2) = drpuien(or (@)l (111)

= 0,08 (@)l

= 20" (@)l
By differentiation with respect to r at 0 in Lemma 56, we get:

Proposition 57 For any f € C*(V), we have

t

Vite [O,T], Gf(Dt) = Gf(DO) +JO

L[G](D,) ds + \/if: <L (VI V) +pf da) dB,

where

VDeD, £[G/(D) = LAfw%@,fo (Q%Hpu))ma

Proof

Consider the evolution described in Lemma 56. Certain terms are very easy to differentiate with respect
to r: according to the first part of Lemma 10

Vtelo, 7], O Fi DMl = G4[Dy]
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For the Brownian part, use the second part of Lemma 10:

Vtel0,7], aD“")de = JC (Vf,v)y+pfdo

For the remaining term, we decompose the derivative in
OO FN(Dm0 = (L0 [EF(D) + 2 LIFF1(D;”) =0
Use (110) for both terms of the r.h.s. For the first one, we get for any D € D,

Spdo§.fdo _o(C)*\.fdo 0
—2 /\(5) +2 /\(Dc)z +Jp( fdo

(0,270 [Ff)(D) =

For the second one, again for any D € D, taking into account that a(co) = 0, we have

o(W(C,r)) S\I,(ar) fdo

O, L[F(T(D, 1))l = & L(D )Afd)\+2

NU(D, 1)) .
B Spda Scfda a(C)? Scfda o(C) SC w,Vf)+pfdo
- f Aldr 2y T2 e 2 A(D)

Putting together these computations, we obtain

& Fy) (D=0 = L Af+pW fdo+ 2% L W,V )+ pfdo

which leads to the definition of L[G¢].

Note that for any f e C*(V) and D € D, we have

Gr(D )FAf(D) + QM Jcpfda + Jcp(l)fda

LE[Gfl(D) = GAf(D)Jr?Fl(D) (D)

but neither { pf do nor §, p) f do are of the form F, of G, for some g € C*(V). We are thus lead to
introduce two new types of elementary observables:

Hy :D>D — HyD) ::J pf do
HY :D>D w HyD):= L pV f do
Investigating the evolution of these observables, one will have to consider more generally for any [ € Z
HY :D>D — HyD):= L PO f do (112)

where by iteration, for any n e Z.,

Ve C, p(CT«H_l)(l’) = rp\p(cr (77Z)CT( ))|T

Probably other functionals will also appear (such as D 3 D +— So pv,VfydoorD>sD w— SC p>f do,
see the next lemma), but the study of these iterations, as well as their impact on the well-posedness of
the corresponding martingale problems, is left for a future work.

In the same spirit, we remark that the introduction of p¥ and H® are already needed to consider
a third derivative in Lemma 10:
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Lemma 58 For any f € C*(V) and D € D, we have
SH VDo = | 9@ VI o 1 P do
c
It follows that

BE (D) = L Af+pw, V) + pVf + g f do

Proof

The domain D € D being fixed, consider a tubular neighborhood T of D such that for any y € T', there
exists a unique 7 € R and = € C such that y = ¢¢,(x). Consider then the mapping p : T'— R given by
p(y) = pwcr)(y). With this definition, we have for r sufficiently small, H;(V(D,r)) = G3;(¥(D,7)).
It follows that

S HH (WD, ))smo = 6:Gap(¥(D, 7))
~ | 5@+ s
It remains to note that on C', we have
w,V(pf) = pwv,V)+ fw.Vp)
= p, V) + [

to get the first identity.
The second one comes from the rewriting, in our present context, of the second equality in Lemma
10 as

O2F¢(¥(D,r)) = f AfdX\+ J pf do
W(D,r) v (C,r)
= Fpp(¥(D,r)) + Hp(¥(D,r))
and by differentiating with respect to r at 0.
[ |

The case f = 1 is particularly interesting, since Gy(D) = o(C) for any D € D. The quantity
SC pdo is called the total mean curvature of C' and according to the previous lemma, Sc pM + p?do is
the derivative of the total mean curvature along the normal radial flow. In the situation of constant
curvature in dimension 2, the terms p™ and p? are in fact comparable:

Lemma 59 Assume that V is a surface of constant curvature K € R. Then we have

VY DeD, oM = oK

Proof

When V is the Euclidean plane, the result follows by differentiating at » = 0 the first formula given in
Lemma 48. The other null curvature situations (cylinders and flat torus) can be treated similarly, since
they can be up-lifted to their locally isometric covering R2.

For the other constant curvature cases, use instead Lemma 50 of Subsection 5.1.
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Remark 60 (a) When V is the Euclidean plane, it follows from Lemma 59 that

GTJ pdo = 0
(C,r)

namely locally the normal radial flow leaves the total curvature of a smooth curve invariant. This is in
fact a consequence of Hopf’s Umlaufsatz Theorem, stating that for any piecewise differentiable curve

C in R?
J pdo = 2m (113)
c

(with an appropriate convention for the jumps of the tangent vectors, where pdo has to be seen as
the difference of angles times a Dirac mass at the considered singular point). When C' is the smooth
boundary of a convex domain, this can be obtained by letting r go to +c0 in

fpda = f pdo
C v (C,r)

and by remarking that for large r > 0, ¥(C, r) is quite close to a circle of radius r.
It would be interesting to see if this argument could be adapted to treat the general case.

(b) Consider the Euclidean space (or any null curvature space) of dimension larger than 2. From
Remark (49), we deduce that

pO(z) = — >, ()

me[n—1]

More generally, when V' has a constant sectional curvature K, we get

pPV(z) = —K(n—1) Z 22

me[n—1]

Recall that the Gauss curvature at x € C' is given by

ko) =[] Amcl@)

me[n—1]
Similarly to (111), we can introduce
Vel  w(®) = Okuen(on(@))lho

and, if one has indexed in a coherent (e.g. nondecreasing) way the eigenvalues of the second fundamental
form,

VeeC,Vmeln—1],  A)(@) = &dnwon(Wer(@))]=o

Then we have, at least if none of the eigenvalues vanishes,

AL
Vaxed, Iig)(I) = kel(x) Z ﬁ(m)

me[n—1]
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As in the proof of Lemma 58, we deduce that

Oy J kdo
(C,r)

The last two formulas are valid on any Riemannian manifold V' of dimension n.
But when V has a constant sectional curvature K, since

= J kW + pr do (114)
c

r=0

VeeC,¥Vme[n-1], )\g)c(x) = —K-X, ¢

we obtain that, at least if none of the eigenvalues vanishes,

VrzeC, /fg)(x) = —|po(z)+ K Z ! ko(x)

Integrating this relation with respect to o on C| it follows from (114) that

Or f ko do = —Kf
(C,r)

r=0 me[n— 1]]

KJC do

When n = 3, we have

1 1
(— + —) Ko = )\170 -+ )\270

thus

= —Kf CdU
r=0

= —KaA¥(D,7))].—

Namely the quantity
J ke do + KX(D)
c

is invariant under the normal radial flow (as long as it remains in D). This is a very special case of the
Gauss-Bonnet theorem, asserting that the above quantity is equal to 27 times the Euler characteristic
of V.

Again, one is left wondering about possible links between the normal radial flow and the generalized
Gauss-Bonnet theorem.

(c) It is also natural to ask for a generalization of Lemma 59 when V is a surface whose curvature
is not constant.

Let us come back to our martingale problem and to Proposition 57. The explicit description of
the martingale associated to the evolution of (G¢(D))se[oq in terms of the stopped Brownian motion
(Bt)ieo4], enables us to see that for any f,ge€ C*(V) and D € D,

Lol Fy, Gol(D) = Gy(D) (Fag(D) + Hy(D))
LelGy, Gol(D) = (Fap(D) + Hy(D)) (Fag(D) + Hy(D))
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These formulas leads to an enrichment of the algebra ® of the introduction. Indeed, consider the
new algebra ® consisting of the functionals of the form § = §(Ay, ..., A,), where n € Z,, Ay, ..., A, are
elementary observables of the form (4) or (108) and f : R — R is a C* mapping, with R an open
subset of R™ containing the image of D by (A, ..., A,,). For such a functional §, define

L3 = D) oA L ADEA]+ D) daf(Ar o A)Te[Ar, Al
jelin] k,le[1,n]

~

To two elements of ®©, § = f(A4;,..., A,) and & := g(ﬁl, ., Ay, we also associate

Le[3,6] = > (A1, .., An)g(Ar, oo, A)Te[Ar, Ay

le[n],ke[m]

These formulas can be directly obtained as consequences of It6’s formula applied to the expressions
given in (107) and Proposition 57, since the corresponding Brownian motions are the same (cf. Remark
54).

6.4 Asymptotic behavior for large times on the plane

In this last subsection, we present an example of application of the above extension of the domain of
£. We consider the Laplacian L = A on the Euclidean plane R?. We assume the domain of £ has
been extended to contain all mappings of the forms (4) and (108), defined on G, an extension of D as
described before Theorem 5. Just make the hypothesis that the boundaries of the elements of G are
piecewise differentiable curves.

Theorem 61 Let (D;)i=o be a solution to the martingale problem associated to £ defined for all times.
Then we have a.s. in the Hausdorff metric,

AL

where B(0,1/+/m) is the Euclidean ball centered at 0 of radius 1/+/m.

Proof

From Theorem 5, we know that for any ¢t > 0, A(D;) > 0, namely D; is not a singleton and belongs to
G by assumption. Up to replacing (D;);=0 by (D14¢)i=0, we assume in this proof that D, belongs to G
for all t > 0.

In the Euclidean plane, the following isoperimetric inequality holds:

o(C)?

YV Deg, D)

> Ar (115)

with equality if and only if D is a ball.
From Proposition 55 and T = +00, we deduce that

liminfo(Cy) = 2 lim /7A(D;) > 0

t—+00 t—+00

Thus in (12) we get ¢ = 400 and in (13), limy—, o 0; = +00.
In these circunstances, Theorem 5 asserts that (A(Dy,)):=o is a Bessel process of dimension 3 and in
particular

t—+00
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We now use Proposition 57. From the relation Gy(D) = o(C), we get in general that

do(Cy) = (L P+ 2%pda> dt ++/2 (L pda) dB,

But for the Euclidean space, we have p) = —p? and { pdo = 2, according to Lemma 59 and Hopf’s
Umlaufsatz Theorem (113) (taking into account that the considered boundaries are piecewise differen-
tiable), respectively. Thus we get

a(Ct)
AMDy)

do(Cy) = (—f p*do + 4x ) dt + 2+/27 dB,
Ct

and

a(Cy)
A(Dy)

do(C)? = 2 (—J p*do + 4x ) o(Cy) dt + 4v2mo (Cy) dBy + Sm2dt
Cy

Recall from (106) that

U(Ct)2
A(Dy)

d\(D,) = 2 dt + /20 (Cy) dB,

Consider the process Z = (Z;);>o defined by
Vi 0, Zt = O'(Ct)2 — 47T)\(Dt>

From the above computations, we deduce that
Vit=0, Az, = 2 (47r2 - O’(Ct)f P’ da) dt
Cy

By Cauchy-Schwarz’ inequality, we have for any t > 0,

2
4m? = (J pda) < O'(Ct)J p? do
Ct Ct

showing that Z is a.s. non-increasing. Thus we have
Vit=0, Zy < Zy (116)
For any ¢t > 0, denote D, = Dy/A/A(D;). We have for any t > 0,

o(Cy)? — 4r\(Dy)
A(Dy)

o(Co)* — 4w\ (Dy)
A(Dy)

o(C)? = 4nA(D;) =

~

and the last expression goes to zero as t goes to +00. From Bonnesen’s inequality (see e.g. the book
of Burago and Zalgaller [4]), we deduce that as t goes to infinity, D; becomes closer and closer, in

Hausdorff metric, to a disk of volume 1. To see the announced result, it is sufficient to see that the
barycenter of D, which is the barycenter of D; divided by 4/A(Dy), i.e.

1
oy,
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converges a.s. to 0 as t goes to +0o. It amounts to see that Ff/Ff/Q(Dt) converges to zero for t large,
where f is either the first or the second canonical projection of R%. So let f be the first coordinate
mapping (the second coordinate can be treated similarly, note that a symmetry argument cannot be used
here, since the well-posedness is missing). Before investigating the evolution of Ry 3¢ — Fy/ FE’/ 2(Dt),
we need a preliminary result.

Lemma 62 A transition phenomenon occurs:

+o0 1
Va>1, J ds < +w
o A(Dy)"

while

Furthermore, we have for large t = 0, a.s.,

f Lo (D)

Proof

This is based on the fact that A(D;) goes to infinity as ¢ goes to infinity. More precisely, taking into
account (104) and (105), we compute, for any a > 0 and any D € G,

1 B a ala+1)
L lF_ﬁl] (D) = —Wﬂ[ﬂ](l)) + WFS[FIM F](D)
o(C)?
= ala— 1))\(D)a+2

Ve || 0) = -t e

Fi*(D)
ac(C)
/\(D)a+1

where +/Tg [1/F2] stands for 4/Te [1/F§, 1/F§]. Since for any a > 0, we know that 1/F¢(D;) converges
to zero as t goes to infinity, we deduce that

1 —(D,) - 1 —_(Dy) = ftz[Fa] D,) ds+\ff\ﬂlif] ) dB,

o Fr
_ a(a—l)L )\(I(DC)) ds—faf (Uzgs)) dB, (117)

converges for large t > 0. By a contradictory argument, assume that

+00 O'(Os>2
R . A— —
J;) A(DS)2¢1+2 S +0
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which implies in particular that

Lw%ds = 4w (118)

since limy_, o, A(D;y) = +00. The bracket of the local martingale (Sé \/FQ[FLE](DS) dBs)=0 is given for

(Ve || = [n]g|we

t 2
_ QQJ a(Cs) s
0 )\(D8>2a+2

any t > 0 by

so that the iterated logarithm law for continuous local martingales implies

limsupf VFS[F“] s)dB; = +ow

t——+00

1
lim inf Ie| = | (Ds)dBs = —
?fﬁ%ﬂﬁlm]“”s "

In view of (118), it would follow that for large ¢ > 0, the expression in (117) admits —co as liminf if
< 1 and +oo as limsup if @ > 1, this is in contradiction with the existence of a finite limit. Thus we
get

ds < 4w

We get the first announced result, remembering that for large ¢t = 0, 0(C}) ~ 2+4/7TA(Dy).
For the second result with @ = 1, rather consider the observable In(1/Fy). We have for any D € G,

Ln(F)] (D) = FﬂgD)s[Fﬂ](D)_%mm(D) _ o(0)?

and

Ve [In(Fy)] (D) = WGH(D) ~ (D)

So via similar contradictory arguments as before with

(R0~ (F) (D) = [ S s (119)

o A(Ds)?

which diverges to +o0 as t goes to infinity, we end up with

+00 O.(CS>2
L ND.)? ds = 4

For the last result, we need to apply more carefully the iterated logarithm law. Let (M;);=o be the
continuous local martingale defined by

t
Vi=0, M, = f“ws) dB,

0 )‘<Ds)



Its bracket is given by

Viz0, (M), = L%d

Since (M), diverges to 400 for large t > 0, the iterated logarithm law asserts that

i 1
im sup

t—>+00 \/<M>t ln(ln(<M>t))

It follows that for large t > 0,

+00 O’(Cs)z
P/ANRS L )\(DS)2d8

and the last statement of the lemma is a direct consequence of (119) and of the fact that o(Cy)* ~
4Aw\(Dy), for large t > 0.

[ |
Let us come back to our objective to show that & converges a.s. toward 0, where
F¢(D
Vi=0, & = #
Fy7(Dy)

with f the first coordinate mapping of R?. Instead of applying the martingale problem directly to the
composed observable D 3 D — Fy/ FE’/ ?(D), it seems more convenient to decompose & into M, /+/A(Dy),
where (M;);=0 is defined by

From Theorem (3), we have

so it follows that (M;);>o is a local martingale. More precisely, we get from Proposition 53 that

t
Vit=0, M, = M()—I—fhsdBS
0

where for any s > 0,

hs = /Te[Fy/Fi](Ds)

G F

= ﬁ(Do - F—]J%(Ds)Gn(Ds)
Gy G F

- Sy (G—f - ;f) (D.)

. . . . 1. G, F,
When f is replaced by the identity mapping id: R? — R2, for any D € G, the vector (G_]? - F—ﬁ) (D)

is the difference between the barycenter of C' and the barycenter of D, so it appears easily that for any
s =0,

|hs| <




More precise computations, separately presented in [20] because they rely on techniques belonging to
the field of isoperimetric stability, show that there exists a universal constant ¢ > 0 such that for any
D e G with 0(C)? — 47 \(D) < A\(D)/7, we have

’ Gia 13

2 (D) — 2 (D)H < AVA(D)(o(C)? — 4x (D)4

Thus taking into account the decreasing property (116) and the fact that A(D;) diverges to +o0 as s
goes to infinity, we get there exists (a.s.) a random time S and a constant x (depending on Dy) such
that

X
AD4)/A

From the iterated logarithm law, we deduce that as ¢ goes to +o0,

~ t 1
it = o\ ) -

where the notation ¢(t) = O(¢(t)), for two functions ¢, ¢ : Ry — R, with limy_, 4o ¢(t) = +00, means
that

(1)

s (@) ~ "

Applying the martingale problem to the composed functional /Fy, we get that for any ¢ > 0,

] 30 o(CR [ el
VRD) - VAD) + 1 | {5t | At

Using again, on one hand that o(C,)? and \(D,) are of the same order for large s > 0, and on the other
hand the iterated logarithm law, we deduce that for large ¢ > 0,

= OGADy) + V1) (121)

753
—ds
0 /\(DS)
Another application of the iterated logarithm law to three independent Brownian motions enables to
see that if (R;)¢>o is a Bessel process of dimension 3, then a.s.,

R, = OW1) (122)
Recall that (R;)i=0 = A(Dg,)i=0 is a Bessel process of dimension 3, according to Theorem 5, where

(04)¢>0 is defined by

0
Vit=0, QJ o(Cy)?*ds = t
0

The martingale problem applied to Fy shows that for any ¢t > 0,

AD,) = A(D0)+2f o(Cy)°

DY) ds + \@L o(Cs) dBs
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Replacing t by 6;, we deduce that

97& ~

It follows that

2 = O™
O(R2..)

= O(MDy)?)

where =1 stands for the inverse mapping of § : R, — R,. Finally we obtain

~

vt = O(/A(Dy) (123)

and this is sufficient to insure that a.s.

in view of (120) and (121).

Remark 63 From (123), it appears that
In(t)
limsup ——+—
o In(AN(Dy))
We believe (in accordance with the beginning of Lemma 62) that
In(A(Dy))

t>+o  In(t)

< 1

=1

but we have not been able to show it, even taking into account a lower bound on the rate of escape for
the Bessel process (R;);>o of dimension 3, stating that for any a > 1,
Ry In“(t
lim inf L() = +0
t—+00 \/%
according to Theorem 3.2 (ii) of Shiga and Watanabe [27], see also Motoo [23] (the part (i) of their
theorem extends (122) to any Bessel process with a positive parameter). This implies that

In(R;) 1

i In(t) 2

Furthermore, note that in the above proof we did not use the last part Lemma 62, which also gives
an equivalent of In(A(D,)) for large ¢t = 0.

These shortcomings are an invitation to study further the asymptotic behavior of the renormalized
domains (D;/A/A(D¢))t=0, in particular their fluctuations around the convergence of Theorem 61.
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7 Elliptic density theorem revisited

Here we assume that Conjecture 6 is true: not only we can construct a solution (Dt)te[O,T] to the
martingale problem associated to (9, £) and starting from any singleton {z,} < V, but it can be
coupled with the primal diffusion X starting from x, so that (14) and (15) are satisfied. Let us show
how to quickly recover the density theorem for elliptic diffusion from this property.

The proof is based on the following elementary observation:

Lemma 64 Let A c V be a negligible event with respect to i and denote f its indicator function. For
any measurable D < V with u(D) > 0 and s = 0, we have

A[RAND) = 0

where (Py)i=o is the Markov semi-group associated to L, seen as a family of Markov kernels.

Proof

Taking into account that y is invariant for (P;);=0, we have

u[1p Pyl f1]
n(D)
u[ P f1]
n(D)
Al
1(D)
= 0

ALPLAND) =

We can now come to the

Proof of Corollary 7

With the notations of the above lemma and Corollary 7, we want to check that for any xq € V' and
any 1> 0, Pu[f](0) = By [F(X,)] = 0,

For any ¢t > 0, let F; be the o-field generated by X[o4 and Dyga-. From (14), we get the diffusion
X = (Xy)i=0 is also strongly Markovian with respect to the filtration (F;);>9. Remark that T > 0, the
stopping time entering into the definition of (Dy)[o., is also a stopping time with respect to (F)so-
It follows that

Ewo [f(Xr)] = Ezo []E$O[f(XT)|FT/\T]]
= E:}co [PTfT'/\T[f] (Xr/\'r)]

For any t > 0, let D; be the o-field generated by Do ¢.-. It follows from (14) with 7" = r A T, that
E[h(r A T, Xont)|Drae] = A(Dppe, h(r A T,-))
for any non-negative measurable mapping h : Ry x V' — R,. We deduce that

E,, [f(Xr)] = Eg [Emo [PT—MT[f] (XMT)|DMT]]
Euo[A[Pr—p ax f1](Drax)]
0
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according to Lemma 64. Indeed, we took into account Theorem 5, insuring that for any ¢ € (0, T], we
have u(Dy) > 0.
|

With Marc Arnaudon, we are currently working on the existence of a coupling as in Conjecture 6
and some results in this direction will be presented in a future paper.

When the solutions to the martingale problems associated to (®, £) and to initial singleton sets can
be defined for all times, there is no need to have such a coupling at our disposal to recover the density
theorem for elliptic diffusions. Indeed, assume that for any x¢ € V', we can construct a solution (D;);=0
to the martingale problem associated to (D, £) and starting from the singleton {zo} < V. First, we
remark that we can enrich the martingale problem by adding a temporal component. Let us just sketch
the argument: when § € © and f € C!([0,¢]) with ¢ > 0 are given, define

¥(s,D)e[0,t]xD,  E[f@F|(s,D) = &f(s)5(D)+ f(5)L[F(D) (124)

A simple computation shows that the process (M/®¥ )sef0,4] given by

S

Vsel0d],  MIS = f(5)F(D.) - F0)F(Do) - j £ ©3](u. D) du

0

is a martingale, whose bracket process is given by

Vsel0t], (MI®) = L FA(w)e[F, T1(Dy) du

By traditional approximations, these considerations can be generalized to more general mappings § :
[0,#] x D — R, in particular they must be C' with respect to the time component so that (124) can be
extended to

v (s, D)e[0,t] xD,  L[§](s, D) = (s, D) + £[F(s,-)](D)

The fact that the corresponding process defined by

S

V s e0,t], M3 = F(s,D,) —F(0,Dg) — f £[5](u, D,) du
0
is a martingale is called the Dynkin’s formula.
Fix g € C*(V), the above considerations can be applied to the mapping

§:[0,t] xD > (s, D) — A[P[g]](D)

for which we compute £[F] = 0, due to the intertwining relation of Theorem 3. Taking expectations, it
follows that

B [Algl(D)] = AlR[g]]({zo})

which amounts to intertwining relations at the level of semi-groups:

VgeC™(V),  BulAlgll({zo}) = AlRlgll({zo})
= Bilgl(zo)

where ()0 is the Markov semi-group associated to £. Since both the Lh.s. and the r.h.s. can be seen
as integration of the mapping ¢, this relation is extended to any non-negative measurable function g¢.
When we take for g the indicator function of a measurable set negligible with respect to u, we get

V> 07 E{xo}[A[g] (Dt)] = 0
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according to Lemma 64 and due to the fact that u(D;) > 0, from Theorem 5. We deduce that
P,g](zo) =0, for any t > 0 and z¢ € V, as wanted.
An immediate extension is:

Proposition 65 Assume that there exists € > 0 such that for any xo € V, we can construct a solution
(D¢)tefo,q to the martingale problem associated to (D, L) and starting from the singleton {zo} < V.
Then for any t > 0 and whatever the initial law L(Xy), the law of X, is absolutely continuous with
respect to (.

Proof

The arguments presented above the statement of this proposition show that for any s € (0, €] and any
function f : V — R, negligible with respect to p, we have that Ps[f] = 0. By invariance of u, we also
have that for any u > 0, P,[f] is negligible with respect to u: u[P,[f]] = u[f] = 0. We deduce that
P f] = Ps[P.lf]] = 0 and the announced result follows.

[

Of course Corollary 7 and Proposition 65 are well-known in the present elliptic diffusion framework.
Nevertheless, we think this new approach can be adapted to more complicated context, as Theorem 5 is
quite universal (it was shown to hold also for hypoelliptic diffusions, for the moment in dimension 1, in
[18]). We believe it should always be possible to associate to a diffusion some evolving sets (as mentioned
in the introduction) whose weights for an invariant measure behave like a continuous martingale. By
conditioning the primal diffusion X to remain inside these sets, we would be led to a Bessel-3 process, up
to a time-change and at least if the randomness of X is sufficient, as the Brownian motion conditioned
to stay positive ends up being a Bessel-3 process.

Another noticeable downside of Corollary 7 is that it requires the a priori knowledge that u is
absolutely continuous with respect to the Riemannian measure. A more general statement would only
conclude, at positive times, to the absolute continuity of the time-marginal laws with respect to the
invariante measure. In this paper we only considered kernels A which are directly related to the invariant
measure 4, but it would be instructive to condition with respect to other measures, even time-dependent
ones.

A About product situations

As already mentioned in the introduction, there are in general several dual generators intertwined
through A with a given generator L. We consider in this appendix the product situation, where this
multiplicity is particularly obvious.

Let L and L be two smooth generators on the manifolds V and V of dimension larger or equal to
1. Con81der V= V x V endowed with L == L®I+ 1 ®L (I and I are the 1dent1ty operators acting
on C*(V) and C*(V) respectively). All the notions relative to L (respectively L) will receive a tilde
(resp. a hat). Assume that L admits an invariant Radon measure it and consider on Q an approprlate
set of compact subsets of 1% with positive measures, the kernel A naturally associated with fi. Let @

be an algebra of observables on G on which we are given an operator £ intertwined with L through A:
€A = AL. Make similar hypotheses for L. Next define

Gindep = {N D:De G and De QA}
gindep 3’5 ® 35
Lindep = £R1 5+t 1z ® e



where Iy and Iy are the identity operators on D and D respectively. It is immediate to check that
LindepA = AL, where A := A ® A is the natural Markov kernel associated with the measure W= i,
invariant for L. When (Dt) efo,7) and (ﬁt)te[o,?) are independent processes satisfying the martingale
problems associated with (”}5 E) and (ZA), f}) respectively, then (Dy)e[o,r), defined by

T = TA

7’:
Vie[0,7), Dy = (Di,D;) € Gindep

is a solution to the martingale problem associated with (Dindep, Lindep)-

It should be clear that such a solution is very different from the one obtained from Theorem 4, due
to the fact that the evolutions on G and Q are mdependent In fact, the state spaces Ginqep and D are
even disjoint. Consider the example where L = L is the Laplacian on R and add the singletons to G
and D. Starting from a singleton, the solution associated with L£iyqep €volves as rectangles (centered
at the initial point) with independent side-lengths behaving as Bessel processes of dimension 3, while
the solution associated with Theorem 4 evolves as disks (centered at the initial point) whose radius are
Bessel process of dimension 4 (according to Subsection 2.1). It could be objected that this argument is
not really valid, since we did not show uniqueness of the solution to the martingale problem associated
with (D, £), or with formal extensions of (®,£), in the sense that exactly the same definitions are
applied to more general subsets than those from D. But in Proposition 61, it is proven that a solution
to such a martingale problem, which is furthermore defined for all times, ends up looking like a big disk
and this is not true for the processes associated with (Dindep, Lindep), since starting from a rectangle, it
remains in the set of rectangles.

The fact that under £ the evolutions of different parts of the boundary of a domain are strongly
correlated could suggest to try to couple the evolutions under ¢ and £. More precisely, assume that
G = D and that ® and £ are constructed as in the introduction, similarly for (g o) 2) Let (Dt)te[ 0.7)

and (Dt)te [0 be solutions to the corresponding martingale problems. According to Proposition 53,
there exist Brownian motions (B;);=0 and (B;);=0 such that

¥ eC®(V),Vte[0,7),  dFyD) = L[F;|(Dy)dt+V2y/T[F;](D;)dB,
= E[F{(Dy)dt +v2G; (Dt)dBt
and
VfeCH(V),Vte[0,7), dFi(Dy) = L[F;|(Dy)dt+ v2/T[F{(D;)dB,
= E[Ff](Dt) dt + V2G3(Dy) dBt

In the previous independent framework, (B;)=o and (B;);o are independent and we end up with the
generator L£inqep. Now we would like to couple (Dt)te[o 5 with (Dt)te[OT by taking (Bt)t>0 = (Bt)t>0,
since this is suggested by a naive extension of the radial evolution (3) to the domains belonging to
Gindep- But again we end up with a process different from the one obtained from Theorem 4, for the

same reason as above: in the case L = L = 0%, it will evolve as squares if it is started from a square. It
can also be seen on the action of the generators on observables of the form Fjg 3 where f e C*(V) and

f € COO(XA/). In the general setting, Itd’s formula leads for the above coupling to the generator Lequal
acting on Gindep as

sequal[Ff®f] = F@S[ ]+F ®£[ ]+2G @G
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with the notation of Subsection 6.3. But simple computations show that the formal extension of £ to
Gindep should be given by

e[F:

Gy G
ofl = LIFH®F;+ F;@E[F ]+2F]IILF ®Gp+26G5© -

where T € C*(V) and 1 € C*(V) are the functions always taking the value 1.
But in both cases, we have the same carré du champs: for any f € C*(V) and f e C*(V),

Fe[Frgfl = TepulFrgf]
2
(Ff@Gf—i-Gf@Ff)

which is different from
Fsindep [Ff®f:| = ng‘ ® G‘Qf + G?N ® ng‘

Nevertheless, the generator Lequal is not intertwined with L through A. Indeed, for any fe (V)
and f e C*(V), denote

. Gy Gy
Rigi = Gr®Gr— EFJ?(@GJ?— Gy ® FFf
so that
’gequal[Ff@)f] = S[Ff@)f] + 2mf®f

From the proof of Theorem 3, we have, with f := f@ f and 1:=1® i,

2 2 1
FirLequalALf]] = LequalFr] — Ersequal [Fy, Fi] + Fy <F2 Lo, [ F15 F1] — Eﬂequal[FnD

2 2 1
= fgequal[Ff] - EFS[Ffu FIL] + Ff (EFS[FIU FIL] - ngqual[FIl]>

1

R LML) + 2%, — 250,
Fy

Fy
= FA[L[f]] + 2R — 2- 1M,
Fy
Thus if the generator Lequai Was to be intertwined with L through A, we would have for any fNE COO(‘N/)
and f e C*(V),

ef T TR

This equality holds on Gingep, namely for any DeDand De 15, we have

Ji(
Figi(Dx D) = —=—< s



The sets D and D being fixed, the mapping f@ f — f@ f(l~? X 15) corresponds to an integration of
f® f on the boundary of D®D while f® f — f@f(

on the interior of D ® D. Thus for any function f (respectively f ) whose support is 1ncluded in the
interior of D (resp. D) we get Ff®f(D X D) — 0, i.e. i ® Ji vanishes on the interior of D ® D. Since

D x D) correspond to an integration of f ® f

this is true for any DeDand De D we would conclude that 1 = 0 and i = 0, a contradiction.
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