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BASICS ON POSITIVELY MULTIPLICATIVE GRAPHS AND ALGEBRAS

JÉRÉMIE GUILHOT, CÉDRIC LECOUVEY AND PIERRE TARRAGO

Abstract. A graph is said positively multiplicative when its adjacency matrix A embeds in a
matrix algebra admitting a basis B with nonnegative structure constants in which the matrix
multiplication by A coincides with A. The goal of this paper is to present basics on this notion
and expose, through various simple examples, how it relates to highly non trivial problems like
the combinatorial description of fusion rules, the determination of spectrum in Cayley graphs,
the description of the minimal boundary of graded graphs or the study of random walks on
alcove tilings.

1. Introduction

This paper is devoted to positively multiplicative algebras and positively multiplicative graphs
which permit to give a unified background to many problems at the interaction between algebra,
combinatorics and probability. Given a finite set Z of indeterminates and a field k containing R, a
positively multiplicative algebra is a unital k[Z±1]-algebraA admitting a basis B such that 1 ∈ B
and with structure constants in k+[Z±1], the subset of k[Z±1] of Laurent polynomials with
nonnegative real coefficients. This class of algebras contains in particular the fusion algebras,
the group algebras or the character algebras associated to finite groups, the character algebras
of simple Lie algebras but also homology or cohomology rings defined from algebraic varieties
related in particular to Schubert calculus or to the geometry of affine Grassmannians.

Due to the positivity of the constant structures in A, the matrix of the multiplication by any
positive linear combination s of elements in B expressed in the basis B can be regarded as an
adjacency matrix for a weighted graph with set of vertices labelled by B. Conversely, starting
from a graph Γ weighted by elements in k+[Z±1], it is a natural question to look for an underlying
positively multiplicative algebra structure. We will say that Γ is positively multiplicative at a
vertex vi0 when its adjacency matrix A can be embedded in a matrix algebra which is positively
multiplicative with a basis B indexed by the vertices of Γ in such a way that bvi0 = 1 and the
matrix of the multiplication by A expressed in the basis B is the matrix A itself. One may
observe here that we have two types of constraints for a graph to be positively multiplicative
which are of very different nature.

(1) The first one relates to linear algebra: does there exist a matrix algebra A with a basis B
in which bvi0 = 1 and the matrix of the multiplication by A is A? If so, we will say that Γ
is multiplicative at vi0 .

(2) The second one is of geometric nature: does there exists an algebra as in (1) whose cone
C(B) of nonnegative linear combinations of elements in B is stable by multiplication?

We shall see that answer to question (1) is positive when the graph Γ has maximal dimension,
that is when the algebra K[A] has dimension card(Γ) (here K is the fraction field of k[Z±1]).
In this case, the algebra A and its basis B are indeed unique when they exist and can be
computed by elementary linear algebra techniques. In contrast, it is highly non trivial to find
general conditions sufficient to guarantee a positive answer to question (2). Moreover, even
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when a graph Γ is positively multiplicative, it is often very difficult to get a combinatorial
description of the structure constants of the basis B, for example by counting paths in Γ. This
problem is reminiscent of the description of tensor product multiplicities in representation theory,
the determination of combinatorial fusion rules or that of the constant structures in the affine
Grassmannians homology rings. For tensor product multiplicities of Kac-Moody algebras, an
elegant description exists in terms of the Littelmann path model [17] or the combinatorics of
crystal graphs [14]. For the symmetric groups, these multiplicities (Kronecker coefficients) are
much less understood. The determination of combinatorial descriptions for the fusions rule in
conformal field theory [1] or the constant structures in affine Grassmannians homology rings [19]
is yet an unsolved problem.

The goal of the paper is first to propose a unified approach in the study of positively multi-
plicative graphs independent of the algebraic or geometric context where they appear naturally.
The results, presented in an expository style, gather basics on these notions that we will need in
future works and for which we did not find explicit references in the literature. Although they
use quite elementary tools, we believe that they deserved to be written down. We will explain in
particular how to decide whether a graph is multiplicative and then provide simple procedures
to compute the related basis. When a graph Γ is positively multiplicative at vi0 we will also give
a general construction (called expansion) yielding an infinite graded rooted graph Γe defined
from Γ for which it is easy to get a complete description of the extremal positive harmonic
functions. These functions are essential tools in the study of random walks on graphs or alcoves
tilings (see for example [15] and [23]). Our second objective is to establish basics results on
positively multiplicative algebras and graphs that we will need in [10] and [11] to study respec-
tively random walks on alcoves tilings and convergences of random particle systems disposed on
a circle.

In each of the sections, we have chosen to present numerous examples of the notions we
introduced. We hope they will be sufficiently helpful for the reader. The paper itself is orga-
nized as follows. Section 2 is devoted to the notion of positively multiplicative algebras and
its connection with fusion algebras. We also explain how to construct a symmetric version of
such an algebra A starting from any finite-order automorphism of A regarded as a A-module
(for example an involutive automorphism of algebra). In Section 3, we define and study multi-
plicative graphs Γ. We introduce the notion of roots, that is the vertices whose corresponding
elements in the multiplicative basis B are invertible. When Γ has maximal dimension, we give
a simple procedure to check whether a graph is multiplicative at vi0 and then to compute its
associated basis B. The positively multiplicative graphs are presented in Section 4 where we
also study how they behave under conjugation by generalized permutations (i.e. permutation
matrices in which the coefficients 1 can be replaced by monomials in k+[Z±1]). When A is
commutative, we show in particular that the subset of vertices labelling elements of B which
are generalized permutations has the structure of an abelian group. When B itself contains
only generalized permutations, it follows that the graph Γ coincides, up to normalization of the
weights on its arrows, with the Cayley graph of an abelian group. In Section 5, we detail the
expansion procedure evoked previously and explain how to get a parametrization of the minimal
boundary (i.e. of the extremal positive harmonic functions) on each extended graph coming
from a positively multiplicative graph. Finally, in Section 6 we present two important examples
of positively multiplicative graphs whose definition is elementary but with structure constants of
high combinatorial complexity. Their generalizations and their study will be our main objective
in [10].
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2. Positively multiplicative algebras

In this section, we introduce the notion of positively multiplicative algebra which lies at
the heart of the paper. In the following, k is a subfield of C and A a unital algebra over
the Laurent polynomial ring k[Z±1] where Z = {z±1

k | k ∈ X} is a set (possibly empty) of
formal indeterminates. Write k+[Z±1] for the subset of k[Z±1] containing the polynomials with
nonnegative (real) coefficients. Also let K be the fraction field of k[Z±1].

2.1. Positively multiplicative bases.

Definition 2.1. The algebra A is said positively multiplicative (PM for short) when it admits
a k[Z±1]-basis B = {bi, i ∈ I} satisfying the following conditions:

(1) 1 ∈ B,
(2) for any i, j ∈ I

bibj =
∑
k∈I

cki,jbk with cki,j ∈ k+[Z±1].

It is said strongly positively multiplicative (SPM for short) when it is positively multi-
plicative and for any (j, k) ∈ I2 there exists at least an index i in I such that cki,j 6= 0.

Example 2.2.

(1) For any integer n, the algebra kn is positively multiplicative with PM-basis B = {bi |
i = 0, . . . , n − 1} where b0 = (1, . . . , 1) and for i = 1, . . . , n − 1, bi = ei where ei is the
i-th element of the canonical basis of kn. It is easy to construct other PM-basis for kn:
in general a PM basis is not unique.

(2) Any finite-dimensional C-algebra A generated by one element is positively multiplicative.
Indeed, if we set A = C[a] and denote by µa the minimal polynomial of a, we can
factorize µa

µa(X) =
k∏
i=1

(X − αi)mi

where α1, . . . , αk are the k distinct complex roots of µa. Then, by using the Chinese
remainder theorem, we get

A ∼=
k∏
i=1

C[X]/(X − αi)mi .

The right hand algebra is positively multiplicative because each algebra C[X]/(X−αi)mi
is for the basis {1, X − αi, . . . , (X − αi)mi−1}.

(3) Regarded as a two-dimensional R-algebra, the field C of complex numbers is not a
positively multiplicative algebra. Indeed if such a basis (1, z) existed, we could assume
that z2 = a + bz with (a, b) ∈ R2

≥0 and get that z is a non real root of the polynomial

X2 − bX − a. Since its discriminant is positive, this yields a contradiction.
(4) Let A be a finite-dimensional commutative subalgebra ofMn(C) (the algebra of complex

matrices) stable by the adjoint operation. Then, each matrix A in A is diagonalizable
because AA∗ = A∗A. Moreover, since A is commutative, there is a common basis
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of diagonalization. Therefore, the algebra A is isomorphic to Cn which is positively
multiplicative.

(5) Consider any polynomial P (X) = Xn − an−1X
n−1 − · · · − a0 with (an−1, . . . , a0) ∈ Rn≥0

and A its companion matrix. Then k[A] is a n-dimensional positively multiplicative
subalgebra of Mn(k) for the basis {Ak | k = 0, . . . , n− 1}.

(6) For any finite group G, the group algebra C[G] is a PM algebra for the basis {g | g ∈ G}.
(7) For any finite group G, its complex character ring R[G] is a commutative PM algebra

with basis the set of irreducible characters. Observe that R[G] is isomorphic to Cn just
by considering the basis of indicator functions associated to the conjugacy classes of G.

(8) Homology and cohomology rings associated to algebraic varieties are other important
examples of PM algebras.

The last two previous examples are particular cases of fusion algebras. Recall that a fusion
algebra is an algebra over k = C (here Z = ∅) with a positively multiplicative basis B = {bi, i ∈
I} and an involutive anti-automorphism ∗ satisfying

(2.1) b∗i = bi∗ with i∗ ∈ I for any i ∈ I and cki,j = cji∗,k for any i, j, k ∈ I.

Lemma 2.3. Every fusion algebra is strongly positively multiplicative.

Proof. Let A be a fusion algebra with basis B. Since ∗ is an anti-automorphism, we have cki,j =

ckj∗,i∗ = ci
∗
j,k by (2.1). Assume there exists (j, k) ∈ I2 such that cki,j = 0 for any i ∈ I. By the

previous argument, we have ci
∗
j,k = 0 for any i ∈ I and thus cij,k = 0 for any i ∈ I since the map

i 7−→ i∗ is a bijection on I. We get the equality bjbk = 0. This implies that bj∗bjbkbk∗ = 0. Now

observe that c1
j∗,j = cjj,1 = 1 and similarly c1

k,k∗ = 1. Since 1 ∈ B and the structure constants of
the fusion algebra A are nonnegative, the coefficient of 1 in the product bj∗bjbkbk∗ is positive.
Hence bj∗bjbkbk∗ 6= 0 and we get the desired contradiction. �

We resume the general setting of Definition 2.1.

Lemma 2.4. Assume A is positively multiplicative with I finite. Then it is integral over k[Z±1].

Proof. Since A is generated over k[Z±1] by the elements bi, i ∈ I of the basis B, it suffices
to show that the elements bi are integral over k[Z±1]. For any such bi, the matrix of the left
multiplication Li by bi in A in the basis B has coefficients in k[Z±1] (in fact in k+[Z±1]). Thus
the characteristic polynomial of Li has coefficients in k[Z±1]. This implies that its minimal
polynomial, which is also the minimal polynomial of bi also has coefficients in k[Z±1]. This
shows that bi is integral over k[Z±1]. �

Remark 2.5.

(1) Given a PM-algebra A with Z 6= ∅, any morphism θ : k[Z±1]→ k defines a specialization
of A that we shall denote Aθ. When θ(zk) ∈ R>0 for any zk ∈ Z, the algebra Aθ remains
positively multiplicative. Also if A is strongly positively multiplicative, so is Aθ.

(2) In § 6.3 we will need to apply the following classical theorem (see [4], Corollary 4 page
35) to the algebras k[Z±1] and A. Let A1 ⊂ A2 be two algebras over k such that A2 is
an integral domain over A1 and ϕ̂ : A1 → C a morphism of algebras. Then, there exists
a morphism ϕ : A2 → C which coincides with ϕ̂ on A1.

The following theorem is an analogue for SPM algebras of a classical result on fusion algebras.
It can be regarded as an analogue of the Perron-Frobenius theorem. Consider a finite-dimensional
SPM algebra A over k (thus Z = ∅ here) with basis B = {b0 = 1, b1, . . . , bn−1}. Write Li
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(respectively Ri) for the matrix of the left multiplication (respectively right multiplication)
by bi expressed in the basis B. We have Li = (cki,j)k,j , that is the j-th column of Li contains the

coefficients cki,j , k ∈ {0, . . . , n − 1}. Similarly, Ri = (ckj,i)k,j . One may observe that for any i, j
we have LiRj = RjLi. Now define

S =
∑
i∈I

Li

so that S = (sk,j) with sk,j =
∑

i∈I c
k
i,j . One can then consider two linear maps

Ml :

{
A →Mn(k)
bi 7−→ Li

and Mr :

{
A →Mn(k)
bi 7−→ Ri

which are the left and right multiplications by the elements of A expressed in the basis B. Both
are injective and we have

Ml(xy) =Ml(x)Ml(y), Mr(xy) =Mr(y)Mr(x)

so that Ml is a morphism of algebras and Mr an anti-automorphism of algebras.

Theorem 2.6. For any finite dimensional strongly positively multiplicative algebra A over k
with basis B = {b0 = 1, b1, . . . , bn−1}, we have the following properties:

(1) The matrix S is positive (i.e. has real positive entries).
(2) The left Perron-Frobenius1 vector v > 0 with first coordinate equal to 1 of S is a common

eigenvector for all the matrices Ri.
(3) If we write tvRi = di

tv, the n-tuple (d0, . . . , dn−1) belongs to R≥0 with d0 = 1.
(4) The linear map f : A → k defined by

f(bi) = di, i = 0, . . . , n− 1

for any i = 0, . . . , n− 1 is the unique morphism of algebras, positive on B. The n-tuple
d = (d0, . . . , dn−1) is called the vector dimension of the algebra A.

Proof. 1: Assume there exists j and k such that sk,j =
∑n−1

i=0 c
k
i,j = 0. By definition of S and

since the matrices Li only have nonnegative integer entries, we must have cki,j = 0 for any i ∈ I
which contradicts the assumption that A is SPM. We get that S is a positive matrix and it
admits a left Perron-Frobenius eigenvector v normalized so that its first coordinate is equal to 1.

2: Since LiRj = RjLi for any i, j = 0, . . . , n−1, we obtain SRi = RiS for any i = 0, . . . , n−1.
Therefore v is also an left eigenvector of each matrix Ri because Ri stabilizes the dimension one
eigenspace Rv associated to S.

3: If we set tvRi = di
tv, we must have di ≥ 0 because tvRi and tv have nonnegative coordi-

nates (recall that Ri has nonnegative entries). Also d0 = 1 for R0 = In.
4: Consider the linear map f : A → R such that f(bi) = di, i = 0, . . . , n−1. We have f(bi) ≥ 0

by Assertion 3 and it remains to prove this is indeed a morphism of algebras. Since

bibj =
n−1∑
k=0

cki,jbk

we need to prove that

didj =
n−1∑
k=0

cki,jdk.

1We can also use right Perron-Frobenius vectors instead of left ones in this theorem. We choose the left version
for compatibility with forecoming results in the paper.
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We have

tvdjdi = tvRjRi = tv
n−1∑
k=0

cki,jRk = tv
n−1∑
k=0

cki,jdk

because Mr an anti-automorphism of algebras. This proves the above relation by considering
the first coordinate of the vectors. Now to get the unicity, we start with a morphism f : A → R
nonnegative on the bi and define u as the vector whose j-th coordinate is f(bj). We must have

f(bi)f(bk) = f(bk)f(bi) =
n−1∑
j=0

cji,kf(bj) for any i, k in {0, . . . , n− 1}.

We also have f(b0) = f(1) = 1. Write xk for the k-th coordinate of the vector tuS. We can write

xk =
n−1∑
j=0

sj,kf(bj) =
n−1∑
j=0

n−1∑
i=0

cji,kf(bj) =
n−1∑
i=0

n−1∑
j=0

cji,kf(bj) =
n−1∑
i=0

f(bk)f(bi) = f(bk)f

(
n−1∑
i=0

bi

)
.

Since this is true for any k = 0, . . . , n−1, this means that tu is a left eigenvector with nonnegative

coordinates for S associated to the nonnegative eigenvalue d = f
(∑n−1

i=0 bi

)
. Since S is a positive

matrix, this implies that u = v because f(b0) = 1 = d0. �

Remark 2.7.

(1) In the group algebra case (which is a fusion algebra), the unique positive morphism of the
theorem corresponds to the trivial representation such that f(g) = 1 > 0 for any g ∈ G.

(2) For the character ring R[G] (which is a fusion algebra), the unique positive morphism f
is such that f(χi) = χi(1) = dimVi the dimension of the irreducible representation
with character χi. This justifies the general terminology of vector dimension for d =
(d0, . . . , dn−1).

(3) Under the hypotheses of the previous theorem, we can consider any linear combina-
tion s ∈ A of the bi’s with nonnegative coefficients and the matrix As of its right
multiplication expressed in the basis B. When it is irreducible, the vector v is yet
its normalized Perron-Frobenius vector and, if λs is the associated eigenvalue, the ma-
trix Π = (πi,j) such that πi,j = vi

λsvj
ai,j becomes a stochastic matrix. The stationary

distribution of its associated Markov chain is v
‖v‖1

. In many cases (see for example [8]),

this Markov chain is interesting in itself (for example there are cut-off phenomenons).

2.2. Symmetrization. Consider a commutative algebra A with positively multiplicative ba-
sis B = {1 = b0, . . . , bn−1}. As usual, we set

bibj =
n−1∑
k=0

cki,jbk for any i, j = 0, . . . , n− 1.

We now assume that there exists a linear automorphism2 ω : A → A such that ω(bi) = λibσ(i) for

any i = 0, . . . , n−1 where σ is a permutation of Sn and λi is a positive monomial in k+[Z±1]. This
automorphism is also supposed to have finite order m. Therefore the cyclic group generated by ω
acts on the set I = {0, . . . , n−1} just by setting ω ·i = σ(i). We can decompose I = {0, . . . , n−1}

as the disjoint union I =
r−1⊔
l=0

Ol of the ω-orbits in such a way that O0 is the orbit of 0. Then,

2Here ω is not necessarily an algebra automorphism.
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for each l = 0, . . . , r− 1 write il = min(Ol) (thus Ol is the orbit of il under the action of ω) and
define

sl =

m−1∑
a=0

ωa(bil) ∈ Vl = span(bi | i ∈ Ol).

For any a = 0, . . . ,m − 1 and any l = 1, . . . , r, set ωa(bil) = λa,ilbσa(il). For any k ∈ Ol, we

set k = σpk(il) and bk = λ−1
pk,il

ωpk(bil) so that we have

m−1∑
a=0

ωa(bk) = λ−1
p,il

m−1∑
a=0

ωa+pk(bk) = λ−1
pk,il

sl.

Thus, up to a scalar multiple, sl does not depend on the choice of a representative in Ol. We
also have

ω(sl) =
m∑
a=1

ωa(bil) =
m−1∑
a=0

ωa(bil) = sl

since ωm = 1. The elements sl, l = 0, . . . , r − 1 are linearly independent because they belong
to the subspaces Vl, l = 0, . . . , r − 1 whose direct sum is equal to A. We can thus consider the
subspace S(A) = ⊕r−1

l=0 k[Z±1]sl in A.
Now assume that A = k[Z±1][T ], i.e the algebra A is generated by the finite subset T in A

(in most applications, the set T will be reduced to a singleton). Finally, for any x ∈ T , let us
write mx for the multiplication by x in A (which is an endomorphism of A).

Proposition 2.8. With the previous notation, the following assertions hold.

(1) The space S(A) is the set of elements in A fixed by ω with basis S(B) = {sl | 0 ≤ l < r}.
(2) Assume that ω commutes with mx for any x ∈ T 3. Then S(A) is an ideal of A which is

PM for the S(B).
(3) Assume that ω is an algebra automorphism. Then S(A) is a subalgebra of A with PM

basis S(B).

Proof. To prove Assertion 1, consider A1 = ker(ω − id) the space of elements fixed by ω in A.
Since ω(sl) = sl for any l = 0, . . . , r−1, we have S(A) ⊂ A1. Conversely, if ω(x) = x, by writing

x =

n−1∑
i=0

αibi =

r−1∑
l=0

m−1∑
a=0

ασa(il)bσa(il)

and applying ω, we get αiλi = ασ(i) for any i = 1, . . . , n − 1. Fix l ∈ {0, . . . , r − 1}.
We obtain ασ(il)bσ(il) = αilλilbσ(il) = αilω(bil). Similarly, ασ2(il)bσ2(il) = ασ(il)λσ(il)bσ2(il) =

αilλilλσ(il)bσ2(il) = αilω
2(bil). By using the same arguments, one shows that ασa(il)bσa(il) =

αilω
a(bil) for any a = 0, . . . ,m− 1. Thus, we obtain

x =
r−1∑
l=0

ail

m−1∑
a=0

ωa(bil) =
r−1∑
l=0

ailsl ∈ S(A)

which proves that S(A) = A1 is the space of elements fixed by ω and S(B) = {sl | 0 ≤ l < r−1}
is a basis for S(A).

3Since T generates A, this is equivalent to say that ω is an automorphism of the algebra A regarded as a
A-module.
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For Assertion 2, consider s ∈ A such that σ(s) = s and x′ ∈ A. Write T = {x1, . . . , xp}.
One can set x′ = P (x1, . . . , xp) where P ∈ k[Z±1][T1, . . . , Tp] is a polynomial in the inde-
terminates T1, . . . , Tp with coefficients in k[Z±1]. The multiplication mx′ by x′ in A satis-
fies mx′ = P (mx1 , . . . ,mxp). Since mx1 , . . . ,mxp commute with ω, we get that mx′ also commutes
with ω. This gives

ω(x′ × s) = ω ◦mx′(s) = mx′ ◦ ω(s) = mx′(x) = x′ × s.
This shows that x′ × s = s × x′ belongs to S(A) as soon as s ∈ S(A). Finally, if we consider l
and l′ in {0, . . . , r−1}, the product slsl′ decomposes on the basis B with coefficients in k+[Z±1]
and also on the basis S(B). Since the supports of the sl’s as elements of B are disjoint, we get
that S(B) is a PM basis of S(A).

For Assertion 3, S(A) is clearly stable by multiplication thus is a subalgebra of A. We get
that S(B) is a PM basis of S(A) by using the same arguments as previously. �

Remark 2.9. Assertion 2 in the previous proposition holds for any commutative ∗-algebra by
taking for ω the involution ∗. In particular, since b0 = 1 is fixed by ∗, the algebra S(A) is unital
in this case.

The structure constants for S(B) can be computed from those of B starting from the equalities

sl × sl′ =

m−1∑
b=0

ωb(bil)× sl′ =

m−1∑
b=0

ωb(bil × sl′) and

bil × sl′ = bil ×
m−1∑
a=0

ωa(bi′l) =
n−1∑
k=0

m−1∑
a=0

λa,il′ c
k
il,σa(il′ )

bk.

We get in particular the following corollary.

Corollary 2.10. For any l′ = 0, . . . , r − 1, we have s0 × sl′ = msl′ in S(A). It follows that
S(A) is also an algebra with unit 1

ms0 (which is not the same unit as in A in general).

Proof. We apply the previous equality with l = 0 that is il = 0 and bil = 1 which gives

s1 × sl′ =
m−1∑
b=0

ωb(bil)× sl′ =
m−1∑
b=0

ωb(1× sl′) = msl′ .

�

Example 2.11. The group algebraA = Ce0⊕Ce1⊕Ce2 of Z/3Z is a fusion algebra where e∗0 = e0

and e∗1 = e2. The matrix of the multiplication by e1 in (e0, e1, e2) is the adjacency matrix of
the cyclic graph with 3 vertices. By considering s0 = e0 = 1 and s1 = e1 + e2. We get the PM
algebra S(A) = Ce0 ⊕ C(e1 + e2) and B = {e0, e1 + e2}.
Example 2.12. Consider the algebra A of complex characters of the symmetric group Sn.
Each irreducible character is labelled by a partition λ of n and we write χλ for the character
associated to λ. The character associated to the trivial representation is χ(n) and the sign ε
corresponds to χ(1n). Then for any partition λ, we have εχλ = χλ′ where λ′ is the conjugate

partition of λ. Since ε2 = 1, the multiplication by ε in A is a linear automorphism. It is clear
that it commutes with the multiplication by any element of A so that we can apply Assertion 2
of the previous proposition. Let Πn be the set of partitions of n and choose a subset Un of
representatives in each orbit O = {λ, λ′ | λ 6= λ′}. Then we get

S(A) =
⊕
λ∈Un

C(χλ + χλ′)⊕
⊕

λ∈Πn,λ=λ′

Cχλ.
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The basis S(B) = {χλ + χλ′ | λ ∈ Un} ∪ {χλ | λ ∈ πn, λ 6= λ′} is PM in S(A). For any λ ∈ Πn,
we have (χλ + χλ′)(1 + ε) = 2(χλ + χλ′) and S(A) is a unital algebra with the unit 1

2(1 + ε).

3. Multiplicative graphs

Let Γ be a finite oriented graph with set of vertices V = {v0, . . . , vn−1} and oriented arrows
weighted by polynomials in k+[Z±1]. The entries of the adjacency matrix A of Γ are in k+[Z±1].
Recall that K = k(Z) is the field of fraction field in the variables {z1, . . . , zm}. The adjacency
algebra of A is the algebra k[Z±1][A] of polynomials in A with coefficients in k[Z±1]. In the
following, we shall assume that our graphs Γ are strongly connected. This means that for each
pair of vertices (vi, vj), there is an oriented path from vi to vj . Any morphism θ : k[Z±1] → R
such that θ(zβ) ∈ R>0 for any β ∈ Zm yields a specialization Aθ of the matrix A which can again
be regarded as the adjacency matrix of a weighted graph Γθ. The vertices and arrows of Γθ are
the same as those of Γ but the weights on these arrows become positive reals. In particular Γθ
is also strongly connected.

We will denote by Gn the group of generalized permutation matrices of size n. These are
matrices in which each row and each column contains exactly one nonzero entry equal to a
monomial czβ with c ∈ R>0 and β ∈ Zm. Let GΓ be the subgroup of Gn of generalized permu-
tation matrices commuting with A. They correspond to the notion of graph automorphisms in
the context relevant to the graphs considered here.

Roughly speaking, a multiplicative graph Γ is a graph from which one can construct a matrix
algebra containing A with a basis labelled by its vertices and multiplication by A encoded by its
edges. We will examine conditions for the existence and the unicity of such a basis, especially
when dim K[A] = n.

3.1. The notion of multiplicative graph.

Definition 3.1. The strongly connected graph Γ is said to be multiplicative at vi0 if its adjacency
algebra is contained in an algebra4 A ⊂Mn(K) over K with a basis Bi0 = {bi, i = 0, . . . , n− 1}
satisfying

(3.1) bi0 = 1 and Abi =
n−1∑
j=0

ai,jbj for any i = 0, . . . , n− 1.

When Γ is multiplicative, we have

A =

n−1⊕
i=0

Kbi ⊂Mn(K).

Definition 3.2. The graph Γ has maximal dimension when dim K[A] = n where n is the number
of vertices in Γ.

When Γ has maximal dimension, the commutant of its adjacency matrix is the algebra K[A].
In particular, we obtain GΓ = Gn ∩K[A].

Example 3.3.

(1) The companion matrix A of any polynomial P (X) = Xn−an−1X
n−1−· · ·−a0 with co-

efficients a0, . . . , an−1 in R>0 can be regarded as the adjacency matrix of a multiplicative
graph Γ rooted at v0 with basis B0 = {In, A, . . . , An−1} of maximal dimension. Below
we give an example of such graph with P (X) = X4 − 2X3 −X2 − 3X − 4.

4The algebra A is not assumed commutative even if will be often the case in the following.



10 JÉRÉMIE GUILHOT, CÉDRIC LECOUVEY AND PIERRE TARRAGO

1 X X2 X3

1

3

4

2

(2) In general if A is the complex character algebra of a finite group G with PM basis the
set B = {χ0, . . . , χn−1} of irreducible characters and

ϕ = a0χ0 + · · ·+ an−1χn−1

with (a0, . . . , an−1) ∈ Rn, the matrix Aϕ of the multiplication by ϕ in the basis B can
be regarded as the transition matrix of a graph with set of vertices the n irreducible
representations of G and edges weighted by tensor product multiplicities. The basis I =
{1C0 , . . . , 1Cn−1} of characteristic functions associated to the conjugacy classes of G is
another PM basis forA from which it is easy to see thatA is isomorphic to the algebra Cn.
It follows that Aϕ is of maximal dimension if and only if ϕ takes distinct values on each
conjugacy class.

(3) Let A =k[Gn] be the group algebra of the symmetric group Gn. It is strongly multi-
plicative because this is a fusion algebra. For

s =
∑

2≤i≤n
(1, i).

where (i, j) is the transposition which flips i and j, we can consider the Cayley graph Γ
of Gn associated to the transpositions (1, i) for i = 2, . . . , n. It corresponds to the mul-
tiplication by s in the basis B = {eσ | σ ∈ Sn} of k[Gn] and is clearly multiplicative at
any vertex σ0 for the basis e−1

σ0 B . Nevertheless, the graph Γ is not of maximal dimension
since k[A] is a commutative subalgebra of k[Gn] (which is not commutative) thus has
dimension less than n!.

Remark 3.4.

(1) For a multiplicative graph Γ at vi0 , we obtain by induction that for any integer j ≥ 0
and any vertex vk

(3.2) Ajbk =

n−1∑
i=0

mk
i,jbi

where mk
i,j is the sum of the weights of the paths with length k in Γ from the vertex vk

to the vertex vi (the weight of a path being the product of the weights of its arrows).

(2) Let Mi0 be the matrix M = (mi0
i,j). Since bi0 = 1, we have

(3.3) Ajbi0 = Aj =

n−1∑
i=0

mi0
i,jbi.

Given a multiplicative graph Γ, we set as usual for any 0 ≤ i, j ≤ n− 1

bibj =
n−1∑
k=0

cki,jbk.
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Since A is a K-algebra, the structure coefficients cki,j belong to K. In fact, we shall see that

the matrices bi and the coefficients cki,j have coefficients in a k[Z±1]-submodule of K of the form
1
∆k[Z±1] where ∆ only depends on A.

Lemma 3.5. Assume that Γ is strongly connected and multiplicative. For any 0 ≤ j, k ≤ n− 1,
there exists at least one i ∈ {0, . . . , n− 1} such that cki,j 6= 0.

Proof. Assume that we have 0 ≤ j0, k0 ≤ n − 1 such that ck0i,j0 = 0 for any i ∈ {0, . . . , n − 1}.
This means that the ideal (bj0) generated by bj0 in A is contained in ⊕k 6=k0Kbk. Thus for any

nonnegative integer `, we have A`bj0 ∈ ⊕k 6=k0Kbk by (3.2). By the previous remark, this implies
that there cannot exist a path in Γ from vj0 to vk0 which contradicts our assumption that Γ is
strongly connected. �

3.2. Multiplicative graphs of maximal dimension. When dim K[A] < n, the algebra K[A]
cannot contain a basis satisfying (3.1). Let us now study the case when Γ has maximal dimen-
sion n.5

Proposition 3.6. Let Γ as above with n vertices and adjacency matrix A and assume that Γ
has maximal dimension.

(1) There exist bases B = {bj , j = 0, . . . , n− 1} of K[A] such that for any i = 0, . . . , n− 1

(3.4) Abj =

n−1∑
i=0

ai,jbi.

(2) The group of invertible elements of K[A] acts transitively by translation on the set of
such bases. In particular, two bases satisfying (3.4) coincide up to multiplication by an
invertible of K[A]. For each vertex i0 in Γ, the matrix bi0 is either always invertible or
never invertible.

(3) When bi0 is invertible, there exists a unique basis B of K[A] satisfying (3.4) and such
that bi0 = 1 (i.e. so that Γ is multiplicative at i0).

Proof. Let mA be multiplication by A in the algebra K[A]. To establish the proposition, we have
to show that there exists a basis B in K[A] such that MatB(mA) = A. Since dim K[A] = n, the
set B′ = {Ai, i = 0, . . . , n−1} is also a basis of K[A] and we have MatB′(mA) = CµA , that is the
matrix of mA in the basis B′ is the companion matrix of the minimal polynomial µA of A. The
matrices CµA and A have entries in K and are conjugate in K because dim K[A] = n is the degree
of µA. Thus A = PCµAP−1 where P is an invertible matrix P with entries in K. Now, if we
define the basis B such that the transfer matrix MatB′(B) is equal to P , we get MatB(mA) = A.
Next observe that if B1 and B2 are two bases of K[A] such that MatB1(mA) = MatB2(mA) = A,
the transition matrix Q between B1 and B2 commutes with A and thus is an invertible in K[A]
(recall that the commutant of A is here equal to K[A] for dim K[A] = n). We can set Q = U(A)
where U ∈ K[X] is a polynomial in K[X] of degree less than n. In particular, as a linear
map on K[A], the matrix Q acts as the multiplication by the invertible element U(A). The
relation (3.4) is preserved by multiplication by any invertible in K[A]. We so get a transitive
action of the abelian group of invertible elements in K[A] on the set of bases satisfying (3.4).
This implies that bi0 is invertible in every basis B satisfying (3.4) or no such basis can exist
with bi0 invertible. The normalization with bi0 = 1 is easily obtained when bi0 is invertible up
to multiplication by b−1

i0
. �

5In particular, if the graph Γ is multiplicative, its associated algebra is commutative and equal to K[A].
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Remark 3.7.

(1) The previous proposition shows that the existence of a multiplicative basis for strongly
connected graphs of maximal dimension depends on the choice of a root. In Example 3.10
we define a graph Γ with 3 vertices v0, v1 and v2 which can only be rooted at v1 and v2.
Also there exist graphs which are not multiplicative whatever the choice of the root (for
instance the graph in Example 3.10 with z1 = z2 = 1).

(2) Relation (3.4) permits to get the matrix corresponding to the multiplication of any
element of K[A] in the basis B. We nevertheless warn the reader that in general, the
action of a linear endomorphism of A does not coincide with the multiplication by its
matrix in the basis B (which does not necessarily commute with A). This is in particular
the case when we consider generalized permutation matrices associated to the basis B.

When µA, the minimal polynomial of A, is irreducible, the situation simplifies. Recall that
our graph Γ is assumed strongly connected.

Proposition 3.8. Assume that µA is irreducible over K. Then Γ has maximal dimension for
any choice of the root i0 and there is a unique basis in K[A] satisfying (3.1) and bi0 = 1.

Proof. Consider the Frobenius reduction of the matrix A in the field K. Denote its invariant
factors by µ1 = µA, µ2, . . . , µr with µi+1 | µi for any i = 1, . . . , r − 1. Since µ1 is irreducible
we must have µ1 = µ2 = · · · = µr. The matrix A is conjugate in K to a matrix B with r
identical blocks equal to CµA the companion matrix of µA. Let us write B = PAP−1. The
matrix P has entries in the field K thus can be written under the form P = 1

dP
′ where P ′

has coefficients in k[Z±1] and d ∈ k[Z±1]. As a consequence, there exists a specialization fθ
such that fθ(zk) > 0 for any k = 1, . . . ,m and fθ(d) 6= 0. As already observed, the matrix Aθ
then remains irreducible because Γ is strongly connected, thus its Perron-Frobenius eigenvalue λ
corresponds to an eigenspace of dimension 1. This implies that r = 1. Indeed, the matrix Aθ is
conjugate in C to the matrix Bθ with r identical blocks, each of them having the eigenvalue λ
because it is a root of θ(µA). Since r = 1, the minimal polynomial µA has degree n and we can
apply Proposition 3.6 to get a basis B satisfying (3.1). Further since K[A] ' K[X]/µAK[X] we
know that K[A] is a field. Now bi0 6= 0 (otherwise Γ is not connected) and we can normalize the
basis B by multiplicating its elements by b−1

i0
. �

Recall that Mi0 is the matrix whose coefficient mi,j is obtained by counting in Γ the number
of paths of length j from the root vi0 to the vertex vi. When the matrix Mi0 is invertible, it gives
a simple combinatorial criterion to insure that bi0 is invertible and to compute the normalized
basis B.

Proposition 3.9.

(1) The graph Γ has maximal dimension and there exists a basis Bi0 as in Proposition 3.6
with bi0 = 1 if and only if the matrix Mi0 is invertible. Moreover in this case, the
columns of M−1

i0
give the vectors of the normalized basis Bi0 = {b0, . . . , bi0 = 1, . . . , bn−1}

expressed in the basis {1, A, . . . , An−1}.
(2) The entries of the matrices in the basis B belong to 1

detMi0
k[Z±1].

(3) When µA is irreducible, the matrix Mi0 is invertible.

Proof. Let us prove Assertion 1. When dim K[A] = n, the matrix Mi0 is by (3.2) the transition
matrix of the basis {1, A, . . . , An−1} expressed in the basis Bi0 normalized so that bi0 = 1.
Therefore, it is invertible and the columns of M−1

i0
yields the basis Bi0 .
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Assume now that Mi0 is invertible and that there exists a a non trivial n-tuple (x0, . . . , xn−1)

in Kn such that
∑n−1

j=0 xjA
j = 0. By observing that the j-th column Cj of Mi0 coincides with

the i0-th column of Aj , we get
∑n−1

j=0 xjCj = 0 and thus a contradiction. This shows that when

Mi0 is invertible, we have dim K[A] = n and there thus exists a basis Bi0 satisfying (3.1). Now,

by using the equality Ajbi0 =
∑n−1

i=0 m
i0
i,jbi for any 0 ≤ j ≤ n − 1 obtained from (3.1) and the

fact that Mi0 is invertible, we get that the family {Ajbi0 | j = 0, . . . , n−1} is also a basis of K[A]
(its transfer matrix to the basis Bi0 is the invertible matrix Mi0). This can only be true if bi0 is
invertible.

The second assertion follows easily from the first one. The third assertion follows from As-
sertion 1 and Proposition 3.8. �

Example 3.10. Consider the strongly connected graph Γ with 3 vertices v0, v1, v2 and transition
matrix

A =

 0 z1 z2

1 0 1
1 1 0

 .

We have µA(X) = (X + 1)
(
X2 −X − z1 − z2

)
thus A is of maximal rank. We get

M0 =

 1 0 z1 + z2

0 1 1
0 1 1

 , M1 =

 0 z1 z2

1 0 z1 + 1
0 1 z1

 , M2 =

 0 z2 z1

0 1 z2

1 0 z2 + 1


and

detM0 = 0, det(M1) = z2 − z2
1 , det(M2) = z2

2 − z1.

Thus, in order to get a multiplicative graph, Γ cannot be rooted at v0 and can be rooted at v1

(resp. at v2) if and only if z2 6= z2
1 (resp. z1 6= z2

2). Observe that when z1 = z2 = 1, Γ is never
multiplicative whatever the choice of the root.

Example 3.11. Consider the graph Γ with adjacency matrix

A =


0 0 z1 z3 z2 0
1 0 0 0 0 z2

0 1 0 0 0 z3

0 1 0 0 0 z1

0 0 1 1 0 0
0 0 0 0 1 0


We get µA(T ) = T 6 − 2 (z1 + z3)T 3 − 4z2T

2 + (z1 − z3)2 which is irreducible. The matrices M0

and M−1
0 are respectively

1 0 0 z1 + z3 2z2 0
0 1 0 0 z1 + z3 4z2

0 0 1 0 0 z1 + 3z3

0 0 1 0 0 3z1 + z3

0 0 0 2 0 0
0 0 0 0 2 0

 and



1 0 0 0 − z1+z3
2 −z2

0 1 2z2
z1−z3

2z2
z3−z1 0 − z1+z3

2

0 0 3z1+z3
2z1−2z3

z1+3z3
2z3−2z1

0 0

0 0 0 0 1
2 0

0 0 0 0 0 1
2

0 0 −1
2z1−2z3

−1
2z3−2z1

0 0

 .



14 JÉRÉMIE GUILHOT, CÉDRIC LECOUVEY AND PIERRE TARRAGO

The graph Γ rooted at v0 is multiplicative. One can check that all the entries in {b0 =
1, . . . , b6} belong to Q[z1, z2, z3]. For example, we have

b2 =
1

z1 − z3

(
2z2A+

1

2
(3z1 + z3)A2 − 1

2
A5

)
=


0 z1 z2 0 0 z1z3

0 0 z1 0 z2 0
1 0 0 0 0 0
0 0 0 0 z1 z2

0 1 0 0 0 z1

0 0 0 1 0 0


Each element in K[A] can be regarded as a n× n matrix with coefficients in the field K, that

is as a linear map on Kn = ⊕n−1
i=0 Kei where (e1, . . . , en) is the canonical basis of Kn . We can

reinterpret the invertibility of the matrix M in this context which gives the following theorem.

Theorem 3.12. The matrix Mi0 is invertible if and only if ei0 is a cyclic vector for the ma-
trix A.6 In this case:

(1) The basis Bi0 = {b0, . . . , bi0 = 1, . . . , bn−1} of K[A] in Theorem 3.9 satisfies bi(ei0) = ei
for any i = 0, . . . , n− 1, that is the i0-th column of bi is equal to ei.

(2) We have for any 0 ≤ i, j ≤ n− 1

bibj =

n−1∑
k=0

cki,jbk

where the coefficients cki,j , k = 0, . . . , n − 1 are exactly those of the j-th column of the
matrix bi.

(3) For any 0 ≤ i, j ≤ n− 1, the j-th column of the matrix bi is the same as the i-th column
of the matrix bj.

(4) The graph Γ is multiplicative at vi0 if and only ei0 is cyclic and in this case the entries
of the matrices in the basis Bi0 and the coefficients cki,j all belong to 1

detMi0
k[Z±1].

Proof. For any 0 ≤ k < n, the vector Akei0 is given by the i0-th column of Ak which coincides
with the k-th column of Mi0 . Thus Mi0 is invertible if and only if ei0 is cyclic.

1: Define the matrix C such that Cei = bi(ei0). To prove that C belongs to K[A], it suffices
to show that C commutes with A (because comm(A) = K[A]). On the one hand, we have for
any j = 0, . . . , n− 1

CAej = C

(
n−1∑
i=0

ai,jei

)
=

n−1∑
i=0

ai,jCei =

n−1∑
i=0

ai,jbiei0 .

On the other hand

ACej = (Abj)ei0 =

(
n−1∑
i=0

ai,jbi

)
ei0 =

n−1∑
i=0

ai,jbiei0

where we use (3.1) in the second equality. Now the matrix C is invertible because {biei0 |
0 ≤ i < n} is a basis of Kn. Indeed, if we assume there exists (x0, . . . , xn−1) in Kn such that∑

0≤i<n xibiei0 = 0, we get Bei0 = 0 with B =
∑

0≤i<n xibi ∈ K[A]. Thus B = 0 because ei0 is

6Recall that a vector v in Kn is cyclic for A when {Amv | 0 ≤ m < n} is a basis of Kn. Equivalently, the
linear map K[A]→ Kn sending any B on Bv is injective.
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a cyclic vector for A in Kn. This shows that B′ = C−1Bi0 is a basis of K[A] satisfying (3.1).
Moreover for any i = 0, . . . , n− 1 we have

b′iei0 = C−1biei0 = C−1Cei = ei.

Now observe that for any B ∈ K[A] we have

(3.5) B =
n−1∑
i=0

xib
′
i ⇐⇒ Bei0 =

n−1∑
i=0

xiei

since b′i(e0) = ei. We have for any i = 0, . . . , n−1 the equalities b′ib
′
i0

(ei0) = b′i(ei0) = ei and thus,
by the previous argument, b′ib

′
i0

= b′i. Since B′ is a basis of K[A], we must have b′i0 invertible
and this implies that b′i0 = 1. We have obtained that our basis B′ satisfies (3.1) and b′i0 = 1. By
Theorem 3.9 it should coincide with Bi0 and C = id.

2: We have

bibjei0 =
n−1∑
k=0

cki,jbkei0 ⇐⇒ biej =

n−1∑
k=0

cki,jek

hence the desired assertion.
3: This follows from the fact that bibj = bjbi in the commutative algebra K[A].
4: If Γ is multiplicative at i0, their should exist a basis Bi0 = {b0, . . . , bi0 = 1, . . . , bn−1} of a

K-algebra A satisfying (3.4). But by Proposition 3.9, M is then invertible and B is the basis
of K[A] determined by Proposition 3.9 which is thus contained in 1

detMi0
Mn(k[Z±1]). Also by

Assertion 1, ei0 is a cyclic vector for A and by Assertion 2 the structures constants cki,j also

belong to 1
detMi0

Mn(k[Z±1]). �

Remark 3.13. (1) In the course of the previous proof, we have used the equivalence (3.5)
which permits to decompose easily an element of K[A] on the basis Bi0 just by looking
to its i0-th column.

(2) By Proposition 3.8 and Theorem 3.12, we get a simple combinatorial procedure for
computing the unique normalized basis Bi0 satisfying (3.1) when it exists. For instance,
we can compute explicitely all the structure constants of the homology ring of affine
grassmannians for affine Weyl groups of rank 2 [10].

Definition 3.14. Let Γ be a multiplicative graph of maximal dimension. An index i0 ∈
{0, . . . , n − 1} is a root for Γ when Γ is multiplicative at vi0 . We denote by RΓ the set of
roots for Γ

By Theorem 3.12, the set RΓ is the set of indices i0 such that ei0 is a cyclic vector for A or
equivalently for which the matrix bi0 ∈ Bi0 is invertible.

4. Positively multiplicative graphs

In this section, we introduce positively multiplicative graphs from multiplicative graphs. This
notion is implicit in many problems related to representation theory, random walks on graphs
or the study of harmonic functions on infinite graphs.
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4.1. The notion of positively multiplicative graphs.

Definition 4.1. A positively multiplicative graph at vi0 is a multiplicative graph at vi0 for
which the structure constants cki,j of the basis Bi0 belong to k+[Z±1] for any 0 ≤ i, j, k ≤ n− 1.

Remark 4.2. For a positive multiplicative graph we can and will replace the K-algebra of Defi-
nition 3.1 by its k[Z±1]-analogue A =⊕ni=0k[Z±1]bi in which we can specialize the indeterminates
in Z to any positive real numbers.

The notion of positively multiplicative graphs is related to that of positively multiplicative
algebras. Indeed, let A be a positively multiplicative algebra over k[Z±1] with positively multi-
plicative basis B0 = {1 = b0, b1, . . . , bn−1}. Consider

(4.1) s =
n−1∑
i=0

βibi where β = (β0, . . . , βn−1) ∈ Rn≥0.

Let Γ be the graph with set of vertices {v0, . . . , vn−1} and weighted arrows vj
ai,j→ vi where

sbj =

n−1∑
i=0

ai,jbi.

Then, the graph Γ has adjacency matrix A = (ai,j) which is the matrix of the multiplication
by s in A expressed in the basis B0. In general the graph Γ is not strongly connected or even
connected. To insure the strong connectivity, we need additional hypotheses on the algebra A.
For example, if A is strongly positive and β ∈ Rn>0, the graph Γ is strongly connected and
coincides in fact with a complete weighted graph since we have ai,j 6= 0 for any pairs of vertices
vj and vi. For any a ∈ A, recall that L(a) is the matrix of the left multiplication by a expressed
in the basis B. Then the map

ρ :

{
A →Mn(K)
a 7−→ L(a)

is an injective morphism of algebras. In particular, L(s) = A. Therefore, Γ is positively multi-
plicative for the algebra A′ = ρ(A).

Example 4.3. In Example 3.11, one can check that the matrices of the elements in the basis B0

have coefficients in Z+[z1, z2, z3]. Thus the graph is positively multiplicative at i0. This is also
the case for the graphs in Example 3.3.

Example 4.4. Here is an example of a positively multiplicative graph which is not of maximal
dimension. Recall that the characters of the symmetric group Sn are parametrized by the
partitions λ of n. Let χλ be the character associated to λ. It was proved by Hamermesh that

χλ × χ(n−1,1) = (lλ − 1)χλ +
∑
µ6=λ

χµ

where the sum runs over the partitions µ obtained by moving a box in the Young diagram of λ
and lλ is the number of distinct parts in λ. The algebra A of characters for Sn is PM for the
basis B = {χλ | λ a n}. This implies that the Hamermesh graph Γ (whose adjacency matrix
is that of the multiplication by χ(n−1,1) in the basis B) is PM. The graph Γ is not of maximal
dimension in general. For example, for n = 4, we get the strongly connected graph
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with transition matrix

A =


0 1 0 0 0
1 1 1 1 0
0 1 0 1 0
0 1 1 1 1
0 0 0 1 0


whose minimal polynomial has degree 4.

Example 4.5. In general, if we define a matrix Γ as above starting from the algebra A of
complex characters of a finite group G and its basis B of irreducible characters, it is known that
the graph Γ will be strongly connected if and only if the character s in (4.1) is that of a faithful
representation of G.

4.2. Relabelling of vertices and weight changes on PM graphs. Given a positively mul-
tiplicative graph Γ at i0 with adjacency matrix A, algebra A and basis Bi0 as in Definition 3.1, it
is natural to consider a larger class of graphs constructed from Γ by authorizing the two following
variations (we will see that they preserve the property of being positively multiplicative):

(1) for a permutation σ ∈ Sn, switch the labels of the vertices in Γ: the label i becomes σ(i).
This gives a new adjacency matrix Aσ = T−1

σ ATσ where Tσ is the permutation matrix
associated to σ.

(2) for λ0, . . . , λn−1 positive monomials in k+[Z±1] and for any vertex vj in Γ, change each

arrow vj
ai,j→ vi into vj

(λj/λi)ai,j→ vi. This gives a new adjacency matrix AD = D−1AD
where D = diag(λ0, . . . , λn−1).

Recall that Gn is the group of n×n generalized permutation matrices and that GΓ is its subgroup
containing the matrices which commute with A. Since any generalized permutation matrix of
Gn can be written under the form P = DTσ, we have an action of Gn on the adjacency matrices
whose description is easy by composing the two previous transformations. Write ΓP for the
image of Γ under the action of P . Its adjacency matrix if P−1AP . We are going to see that
this action of Gn (by conjugation on the adjacency matrices) restricts to the set of positively
multiplicative graphs.

First, we have for all j = 0, . . . , n− 1

Abj =

n−1∑
i=0

ai,jbi ⇐⇒ Abσ(j) =

n−1∑
i=0

aσ(i),σ(j)bσ(i) ⇐⇒ Aσb′σ(j) =

n−1∑
i=0

aσi,jb
′
σ(i)
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where b′i = T−1
σ biTσ for i = 0, . . . , n − 1 and Aσ = (aσi,j) Thus, by setting bσi = b′σ(i) we

obtain that the graph Γσ with transition matrix Aσ is positively multiplicative at σ−1(i0) with
basis Bσ

σ−1(i0) = {bσi | i = 0, . . . , n− 1}.
Similarly, we get AD = (ai,j × λj

λi
) and the equivalences

Abj =
n−1∑
i=0

ai,jbi ⇐⇒ A (λjbj) =
n−1∑
i=0

λj
λi
ai,j (λibi)⇐⇒ AD

(
λjb

′′
j

)
=

n−1∑
i=0

λi
λj
ai,j

(
λib
′′
i

)
where b

′′
i = D−1biD for any i = 0, . . . , n− 1. Hence the graph ΓD with transition matrix AD is

positively multiplicative at i0 for the basis Bσ
i0

= {bDi | i = 0, . . . , n− 1} where bDi = λiD
−1biD.

Proposition 4.6. With the previous notation, for any P = DTσ ∈ Gn, the graph Γ is positively
multiplicative at i0 for the basis Bi0 if and only if ΓP is positively multiplicative at σ(i0) for the
basis BP

σ−1(i0) = {bP0 , . . . , bPn−1} where bPi = λσ(i)P
−1bσ(i)P for any i = 0, . . . , n− 1.

The corresponding adjacency algebra is obtained similarly by conjugacing with the same
generalized permutation matrix and thus also the multiplicative basis of Theorem 3.12. We will
consider in Section 5 the case of generalized permutations in GΓ.

Remark 4.7. When P commutes with each elements in the algebra A (thus in particular with
the adjacency matrix A), we get bPi = λσ(i)bσ(i) and thus BP

σ−1(i0) is just the image of Bi0 by

the generalized permutation matrix P .

4.3. Root changes. Assume Γ is positively multiplicative at i0 and j is another root for Γ
(see Definition 3.14). We can try to move the root from vi0 to vj . This modifies the basis Bi0 .

In particular, by Theorem 3.12, we get the new basis Bj = b−1
j Bi0 . Indeed, the basis b−1

j Bi0

is the unique basis satisfying (3.4) whose j-th vector is equal to 1. Nevertheless, the structure
constants of Bj are different from those of Bi0 and the graph Γ is not positively multiplicative
at j in general. The positivity property of the basis B is not preserved in general by root moves.
We say that a root i0 is positive when Γ is positively multiplicative at i0 and denote by R+

Γ the
set of positive roots of Γ. This suggests the following definition.

Definition 4.8. The graph Γ is is positively multiplicative when R+
Γ is not empty.

Example 4.9. The graph Γ

1

2 3

q

with transition matrix

A =

 0 0 1
1 0 q
0 1 0


is PM because it is PM at v0 (for M0 = id) but not at v1 or v2 when q > 0 as it can be easily
checked.

Remark 4.10. A root change in a graph Γ (which does not modify its adjacency matrix) should
not be confused with a relabelling of its vertices as studied in § 4.2 (which changes the adjacency
matrix). For instance, the corresponding modifications induced on the basis Bi0 have completely
different expressions.
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5. The group of maximal indices

We shall assume in this section that Z = ∅ and k = C and thus only consider C-algebras.
In § 4.3, we have seen that in general the property of a finite graph to be positively multiplicative
is not stable by changing its root. Let Γ be PM finite graph at the fixed root vi0 and assume
that its associated algebra A is commutative. Consider the cone

C(Bi0) =
n−1⊕
j=0

R≥0bj

in the algebra A. We will consider in this section the set of indices i such that

C(Bi0)(ei) = Rn≥0

and prove in particular it admits the structure of a commutative group. We start with PM
graphs of maximal dimension and next consider the general situation of PM algebras possibly
infinite dimensional.

5.1. Generalized permutations and PM graphs of maximal dimension. Consider a PM
graph Γ with adjacency matrix A. We will assume in this paragraph that Γ is PM at 0 and
has maximal dimension so that A = C[A] is its associated PM algebra with basis B0 = {1 =
b0, . . . , bn−1}. Also, we can apply Theorem 3.12 to Γ. Thus the vector e0 is cyclic and the map

ϕ : C[A] → ⊕ni=0Cei
P (A) 7→ P (A) · e0

is an isomorphism of vector spaces. This implies that bi, i = 0, . . . , n − 1 is the unique element
in A such that bi(e0) = ei.

We say that a label i0 ∈ {0, . . . , n−1} is maximal if for any µ ∈ Rn≥0 with µ0 + · · ·+µn−1 = 1
there exists ν ∈ Rn≥0 such that

(5.1)
n−1∑
i=0

νibi(ei0) = µ.

This is equivalent to the condition C(Bi0)(ei0) = Rn≥0 but will be easier to extend to the case of

infinite-dimensional algebras. In particular, since bi(e0) = ei for any i = 0, . . . , n− 1, we get for
any µ as above

n−1∑
i=0

µibi(e0) = µ

and 0 is maximal. Also, the previous n-tuple ν ∈ Rn≥0 in (5.1) is unique because e0 is cyclic.
Recall that we have defined the subgroup

GΓ = {U ∈ Gn | UA = AU}

of Gn which is the group of generalized automorphisms of the graph Γ whose action on the
vertices and edges is described in § 4.2.

Since the ground field is k = C, the group GΓ is contained in the commutant of A which is
equal to A and we have in fact GΓ = Gn∩A. If we set U(ei) = λieσ(i) with (λ0, . . . , λn−1) ∈ Rn>0

for i = 0, . . . , n− 1 and σ ∈ Sn, we get

biU(e0) = Ubi(e0) = U(ei) = λieσ(i).
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Then
n−1∑
i=0

µσ(i)

λi
λ0bi(eσ(0)) =

n−1∑
i=0

µσ(i)

λi
biU(e0) = µ.

This shows that eσ(0) is maximal and bσ(0) = 1
λ0
U ∈ GΓ because U belongs to A and 1

λ0
U(e0) =

eσ(0). Let us denote by Im the set of maximal indices for Γ. We will prove in the next paragraph
the following properties:

• each ei0 , i0 ∈ Im is a cyclic vector for A and thus defines a multiplicative basis B(i0) =

{b(ii0 )

i , i ∈ I},
• for any i0 ∈ Im, the basis B(i0) is contained in the group GΓ,
• the group GΓ acts on Im transitively,
• the set Im itself has the structure of an abelian group.

In fact, we will establish a stronger result for PM algebras A with bases indexed by a countable
set I.

5.2. Generalized adjacency algebra and positivity. Consider a positively multiplicative
commutative algebra A and assume it has a countable distinguished basis B = {bi, i ∈ I}. Then,
the (possibly infinite) matrix Ai of the multiplication by any bi expressed in the basis B can

be regarded as the adjacency matrix of a graph with weighted arrows bj
cki,j→ bk for any i, k in I.

When n = card(I) is finite, the family {Ai, i ∈ I} generates a sub-algebra of Mn(C) isomorphic
to A.

We can formalize this phenomenon by the notion of generalized adjacency algebra. Through-
out this section, I is a countable set and V will denote the normed vector space `1(I) of complex
sequences (vi) indexed by I with the `1-norm ‖v‖1 =

∑
i∈I |vi|. The vector space V is complete,

and we identify I with the Schauder 7 basis (ei)i∈I of V given by ei(j) = δij for i, j ∈ I. We
write V+ for the cone of V consisting of complex sequences taking non-negative real values, and
V+,1 the subset of V+ having `1-norm equal to one. From a measure theory point of view, V
denotes the set of finite complex measures on the set I, while V+ (resp. V+,1) denotes the set of
positive (resp. probability) measures on V .

We denote by B(V ) the set of endomorphisms of V which are bounded with respect to the
`1-norm, namely the set of linear maps T : V → V such that

‖T‖1,1 = sup
v∈V,‖v‖1=1

‖Tv‖1 < +∞.

The map T 7→ ‖T‖1,1 defines a norm on B(V ). If T ∈ B(V ), we write Tij for the coefficient of
Tej along ei for i, j ∈ I. Given T1 and T2 in B(V ), we have

‖T1T2‖1,1 ≤ ‖T1‖1,1 ‖T2‖1,1
so that T1T2 also belongs to B(V ). This shows that B(V ) is stable by composition of the
operators.

Notation 5.1. Given any normed space E and any subset S ⊂ E, write

C(S) = {
∑
s∈S

λss|λs ≥ 0, s ∈ S} and C1(S) = C(S) ∩B(0, 1)

where the closure is taken with respect to the norm on E and B(0, 1) is the unit ball.

7A Schauder basis S of a Banach space V is a subset of V such that any element v ∈ V as a unique writing as
a convergent sum

∑
s∈S ass with as ∈ C, s ∈ S. This is the natural extension of the definition of the basis of a

vector space in the Banach space setting.
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Definition 5.2.

• An adjacency operator on I is an operator T ∈ B(V ) such that

Tij ≥ 0

for all i, j ∈ I.
• A generalized adjacency algebra on I is a closed commutative unital subalgebra of B(V )

generated by adjacency operators on I.

For an adjacency algebra A (regarded as a normed space as previously), define the adjacency
cone of A as the cone

C(A) = C({T ∈ A, T adjacency operator on I}).
By definition, A is then generated by C(A). Since C · C ⊂ C, this implies that

(5.2) A = span(C).

Example 5.3. If S is a finite set identified as the basis {e0, . . . , en−1} of a n-dimensional vector
space and A is the adjacency matrix of a graph on S then k[A] is an adjacency algebra on S. We
always have C(Ak, k ≥ 0) ⊂ C(A), but in general the inclusion is strict. Consider for example

A =

(
1 0
0 2

)
where A−A2/2 =

(
1/2 0
0 0

)
∈ C(k[A]) \ C(Ak, k ≥ 0).

Definition 5.4. Two adjacency algebras A,A′ on I are isomorphic if there exists an invertible
adjacency operator U : V → V such that U−1 is again an adjacency operator and such that
A′ = {UAU−1 | A ∈ A}.

It is then straightforward to prove that for two isomorphic adjacency algebras A and A′ we
have C(A′) = UC(A)U−1. As the following lemma shows, isomorphisms between adjacency
algebras are approximately equivalent to generalized permutations of the set I i.e. permutations
and diagonal rescalling of the basis (ei)i∈I .

Lemma 5.5. If T is an invertible adjacency operator such that T−1 is also an adjacency oper-
ator, then T is a permutation up to a multiplication by a diagonal, meaning that there exists a
permutation σ of I and a family {λi}i∈I of positive reals such that

Tei = λieσ(i).

Proof. Suppose by contradiction the existence of i0 ∈ I and i1, i2 ∈ I with i1 6= i2 such that

Tei0 = λei1 + µei2 +
∑

i∈I\{i1,i2}

liei

with λ, µ > 0 and li ≥ 0 for all i ∈ I \ {i1, i2}. Then, since T−1Tei0 = ei0 and T−1 has non-
negative entries, the latter equality implies that both T−1ei1 and T−1ei2 belong to R≥0ei0 . But
this contradicts the fact that T−1 is invertible. �

For i ∈ I and an adjacency algebra A, denote by evi : A → V the evaluation map A 7→ Aei.
In the following definition, recall that A is a Banach space as a closed subspace of B(V ) and
that a linear map f : E → F between Banach spaces is coercive if infx∈E,‖x‖E=1 ‖f(x)‖F > 0.
Remark in particular that coercivity implies injectivity for a linear map. Both notion coincide
when I is finite because A is then finite-dimensional and its unit ball is compact.

Definition 5.6. Let A be an adjacency algebra A on I and consider an element i ∈ I.

• The element i is nondegenerate if evi is coercive (and thus injective) as a linear map
from A to V .
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• The element i is maximal if evi is surjective from C(A) to V+.

In the latter definition, coercivity can be replaced by injectivity when I is finite. We first state
a result proving that we mostly have to establish non-degeneracy at one maximal element to
get non-degeneracy at any maximal element. Remark also that maximality of an element i ∈ I
implies by (5.2) that ei is a cyclic vector for A.

Lemma 5.7. Suppose that i0 ∈ I is non-degenerate and maximal. Then, any i ∈ I which is
maximal is also non-degenerate. If I is finite and i0 ∈ I is maximal for A, then i0 is also
non-degenerate and dimA = |I|.

Proof. Suppose that i0 ∈ I is maximal and non-degenerate for A, and set

α = inf
T∈A,‖T‖1,1=1

‖evi0(T )‖1.

We have α > 0 by coercivity of evi0 . Let i ∈ I be another element which is also maximal.
Let T ∈ C(A) be such that ‖T‖1,1 = 1. Since ei and ei0 are maximal, there exist U ∈ C(A)
such that Uei = ei0 and U ′ ∈ C(A) such that U ′ei0 = ei. Hence, UU ′ei0 = ei0 , and by non-
degeneracy of ei0 we have UU ′ = Id = U ′U (recall that A is commutative). In particular,
‖TU ′‖1,1 ≥ ‖U‖−1

1,1‖T‖1,1. Hence,

‖evi(T )‖1 = ‖evi0(TU ′)‖1 ≥ α‖TU ′‖1,1 ≥ α‖U‖−1
1,1‖T‖1,1,

so that infT∈A,‖T‖1,1=1 ‖evi(T )‖1 ≥ α‖U‖−1
1,1 > 0, and evi is is also coercive. Finally, i is also

non-degenerate for A.
Suppose that I is finite of cardinal n, so that V is finite dimensional. Then, A is a subalgebra

of Mn(C). By maximality at i0, the map evi0 is surjective from A to V , which yields dim(A) ≥
dimV = n. Suppose that T ∈ A is such that Tei0 = 0. By surjectivity of evi0 , for all v ∈ V
there exists Tv ∈ A such that Tvei0 = v. Then, by commutativity of A,

Tv = TTvei0 = TvTei0 = 0.

Hence, Tv = 0 for all v ∈ V , and so T = 0, which implies that evi0 is injective and dim(A) ≥ n.
Thus dimA = n and evi0 is a linear isomorphism, in particular it is coercive. �

Remark 5.8. In general, a commutative sub-algebra of Mn(C) can have a dimension much
bigger than n: by a theorem of Schur, such an algebra can have dimension at most bn2/4c+ 1,
the bound being sharp. Hence, by the latter lemma, a finite-dimensional adjacency algebra for
which there exists a maximal element is much closer to the case of a maximal commutative
∗-subalgebra of Mn(C) (see Example 2.2). Beware however that an adjacency algebra is not
necessarily diagonalizable, even if there exists a maximal element. This is for example the case
for the algebra of upper triangular matrices

A =



λ1 λ2 . . . λn

0 λ1
. . .

...
...

. . . λ2

. . . λ1

 , λ1, . . . , λn ∈ C

 ,

for which en is maximal.

Proposition 5.9. Suppose that A is an adjacency algebra for which i0 is non-degenerate and
maximal. Then, there exists a basis B = {bi}i∈I ⊂ C(A) of A such that C(A) = C(B) and
biei0 = ei for all i ∈ I. In particular, A is positively multiplicative.
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Proof. Suppose that i0 is non-degenerate and maximal for A, and denote by bi the element
of C(A) such that biei0 = ei. Remark that {bi}i∈I is a free family, since it acts freely on ei0 by
non-degeneracy. Let T ∈ C(A). Then, Tei0 =

∑
i∈I λiei, with λi ≥ 0 because T is an adjacency

operator, and

‖Tei0‖1 =
∑
i∈I

λi ≤ ‖T‖1,1 ‖ei0‖1 = ‖T‖1,1 < +∞.

By non-degeneracy of i0, the map evi0 is coercive, implying that infT∈A,T 6=0
‖Tei0‖1
‖T‖1,1 = α > 0.

Hence, for i ∈ I we have ‖biei0‖1 ≥ α‖bi‖1,1. On the other hand by construction, ‖biei0‖1 =
‖ei‖ = 1 for i ∈ I. Hence, for all i ∈ I we have ‖bi‖1,1 < 1

α .

Hence, T ′ :=
∑

i∈I λibi satisfies ‖T ′‖1,1 ≤ 1
α

∑
i∈I λi < +∞ and thus is a well-defined element

of C(A) which satisfies T ′ei0 = Tei0 . By non-degeneracy, T ′ = T , and thus T ∈ C(bi, i ∈ I).
Therefore, C(A) = C(bi, i ∈ I). For i, i′ ∈ I, we have bibi′ ∈ C(A) and by the previous

result bibi′ =
∑

i′′∈I λ
i′′
ii′bi′′ for some nonnegative λi

′′
ii′ . Therefore the basis {bi}i∈I is positively

multiplicative. We deduce that A is positively multiplicative. �

Example 5.10. Given a discrete commutative group G, define

`1(G) = {f : G→ C |
∑
g∈G
|f(g)| < +∞},

and consider the group algebra C[G] =
⊕

g∈GCg with multiplication given by the group struc-

ture. Consider the left-regular representation ρ of G on the basis {δg, g ∈ G} of `1(G) such
that

ρ(g)δg′ = δgg′ .

Let AG be the closure of ρ(C[G]) in B(`1(G)) with respect to the ‖ · ‖1,1. The algebra AG
is then an adjacency algebra G, and the adjacency cone is C(AG) =

⊕
g∈GR>0ρ(g). In-

deed, each operator ρ(g) acts by permutation and thus is an adjacency operator. Moreover,
since ρ(g)ρ(g′) = ρ(gg′) for g, g′ ∈ G, we indeed have span(C(AG)) = AG. Remark that every
element δg with g ∈ G is maximal and non-degenerate for AG.

We will see below that the latter example is actually the only example of adjacency algebra
on a countable set I for which every element of I is nondegenerate and maximal, up to a
normalization. We will fist prove a more general result in Theorem 5.11. If I is countable, any
permutation σ of I extend linearly to an operator of B(V ) (also denoted by σ) with the formula

σ(ei) = eσ(i)

and we have ‖σ‖1,1 = 1.
So, let A be an adjacency algebra on I, and denote by Im ⊂ I the set of elements which are

maximal and nondegenerate. We will assume that Im is not empty and that one (and thus all
by Lemma 5.7) element of Im is non-degenerate for A. Also denote by G the group of linear
automorphisms T : V → V such that T (ei) = λieσ(i) with λi ∈ R>0 and σ any permutation of I.
Recall that GA is the subgroup of G ∩ A.

Theorem 5.11. Under the previous hypotheses, the following assertions hold.

(1) Each i0 ∈ Im defines a multiplicative basis B(i0) = {b(i0)
i , i ∈ I} for the algebra A.

(2) For any i0 ∈ Im, the set B(i0) = {b(i0)
i , i ∈ I} is contained in the group GA.

(3) The group GA acts on Im transitively.
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(4) The set Im has the structure of a commutative group. Moreover, there exits a represen-
tation ρ of Im on V such that {ρ(i) | i ∈ Im} ⊂ C(A) and ρ(i)ej ∈ R>0ei·j for i, j ∈ Im,
where (i, j) 7→ i · j denotes the product structure on Im.

Example 5.12. We refer to § 7.5 for the example of the fusion rule for the affine group ŝu(2)
where the set Im and its associated group structure can be made explicit easily.

The latter theorem says in particular that up to a non-degeneracy condition, the set of max-
imal elements Im has the structure of an abelian group and, up to a scaling, the action of the
group algebra C[Im] on `1(Im) (as introduced in Example 5.10) extends to a representation on
all `1(I) whose image forms an adjacency subalgebra of A. Beware that the group structure
on Im is not uniquely defined and depend on the choice of an element in Im.
To prove the theorem, we first need the following independent lemma, which roughly says that
given a countable commutative group G, there is, up to isomorphism, a unique commutative
group G̃ with an exact sequence 0→ (R>0,×)→ G̃→ G→ 0 (we then say that G̃ is a central

extension of G by R>0). Namely we then have G̃ ' G× R>0.
A multiplicative 2-cocycle on a group G is a map f : G×G 7→ R>0 such that

f(g, g′)f(gg′, g′′) = f(g, g′g′′)f(g′, g′′)

for all g, g′, g′′ ∈ G. It is symmetric when f(g, g′) = f(g′, g) and f(1, g) = f(g, 1) = 1 for
all g, g′ ∈ G. One says that f is a 2-coboundary when there exists a function h : G → R \ {0}
such that

f(g, g′) =
h(gg′)

h(g)h(g′)
.

Lemma 5.13. Let G be a commutative countable group. Then any symmetric multiplicative
2-cocycle is a 2-coboundary.

Both sets Z2(G,R>0) of 2-cocycles and the set B2(G,R>0) of 2-coboundaries have a commu-
tative group structure given by pointwise multiplication, and B2(G,R>0) ⊂ Z2(G,R>0), so that
H2(G,R>0) = Z2(G,R>0)/B2(G,R>0) is a well-defined abelian group. The proof of the lemma
amounts to show that any symmetric 2-cocycle of Z2(G,R>0) is sent to 1G×G in H2(G,R>0).

Proof. For K a group, denote by Ext(K,R>0) the subgroup of H2(G,R>0) consisting of symmet-
ric 2-cocycles, which is well-defined since all 2-coboundaries are symmetric 2-cocycles. Since G is
countable and commutative, we can write G = Zr ×G′ for some r and some finite commutative
group G′. By Künneth formula (see [13, Corollary 2.6]),

Ext(G,R>0) ' Ext(G′,R>0)× Ext(Z,R>0)× · · · × Ext(Z,R>0)︸ ︷︷ ︸
r times

.

Since G′ is finite and the map t 7→ tk, with k the order of G′, is an automorphism of R>0, we
have Ext(G′,R>0) = H2(G′,R>0) = 1 (see [13, Theorem 1.7.(v)]). One also has H2(Z,R>0) = 1
(see [5, Ch. III, Sec 1]), so that Ext(Z,R>0) = 1. Finally Ext(G,R>0) = 1.

Hence, if f is a R>0-valued 2-cocycle on G which is symmetric, then f is a coboundary and
there exists h : G→ R>0 such that

f(g, g′) =
h(gg′)

h(g)h(g′)
.

�
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Proof of Theorem 5.11. Let Im be the subset of maximal elements for A. By hypothesis and
Lemma 5.7, they are also non-degenerate. For i ∈ Im, i′ ∈ I, let bi,i′ ∈ C(A) be such that bi,i′ei =
ei′ . Then, if i′ ∈ Im, there exists bi′,i ∈ C(A) such that bi′,iei′ = ei. This implies that bi′,ibi,i′ei =
ei, and by non-degeneracy of ei and the fact that Id ∈ C(A), this in turn implies that bi′,ibi,i′ =
bi,i′bi′,i = Id. Since bi,i′ and bi′,i both have positive entries, Lemma 5.5 yields that bi,i′ and bi′,i
belong to GA. Hence, for each i, i′ ∈ Im, there exists a permutation matrix Σi,i′ and a diagonal
matrix Di,i′ with positive diagonal entries such that

(5.3) bi,i′ = Σi,i′Di,i′ .

Fix an element i0 ∈ Im and set bi = bi0,i, Σi = Σi0,i and Di = Di0,i. We get the basis B(i0) by
Proposition 5.9 and each bi(ei0) = ei for any i ∈ I. We can write

(5.4) bibi′ =
∑
i′′∈I

λi′′bi′′ ,

for all i, i′ ∈ Im with λi′′ ∈ R≥0 for any i′′ ∈ I. Since bi and bi′ belong to the group GA, we
also have bibi′ in GA. Therefore, by looking to the expression on the right hand side of the
equality, there should exist j ∈ I such that bibi′ = µbj for some µ > 0. Recall that bj(ei0) = ej
and i0 ∈ Im. It follows that we also have j ∈ Im and we can set i · i′ := j ∈ Im and λi,i′ = λj > 0
to get

bibi′ = λi,i′bi·i′ .

From the commutativity and the associativity of the product in A, we deduce that the product
(i, i′) 7→ i · i′ is commutative and associative. There is also a neutral element given by i0,
since bi0 = Id. Likewise, expending bi,i0 on the basis {bi}i∈I and using a similar argument as
before yields an element i′ ∈ I such that

bi,i0 = b−1
i = λbi′ .

Hence, this implies

bi0 = Id = λbi′bi = λλi′,ibi′·i,

and i′ · i = i0. Finally, Im has a commutative group structure given by the product (i, i′) 7→
i · i′. Let us denote by GIm this group. Then, the map i 7→ bi yields an abelian projective
representation of GIm on

⊕
i∈Im Cbi. Therefore, (i, i′) 7→ λi,i′ is a symmetric multiplicative

2-cocycle of GIm with values in R>0. By Lemma 5.13, λ is a coboundary, and thus there exists

f : GIm 7→ R>0 such that λi,i′ = f(i·i′)
f(i)f(i′) . Set b̄i = f(i)bi. Then,

b̄ib̄i′ = f(i)f(i′)bibi′ = f(i)f(i′)λi,i′bi·i′ =
λi,i′f(i)f(i′)

f(i · i′)
b̄i,i′ = b̄i,i′ ,

so that the map ρ : i 7→ b̄i yields a representation of GIm on V such that ρ(i) ∈ GA for all i ∈ Im.
Moreover, for i, j ∈ Im,

b̄iej = f(i)bibjei0 =
f(i · j)
f(j)

bi·jei0 =
f(i · j)
f(j)

ei·j ∈ R>0ei·j ,

which implies that ρ yields a free and transitive permutation representation on the set of half-
lines {R>0ei, i ∈ Im}. �

As a corollary of Proposition 5.11, we can consider the particular case where all elements of I
are maximal for A.
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Corollary 5.14. Suppose that A is an adjacency algebra for which each i ∈ I is maximal and
nondegenerate. Then, there exists a commutative group structure on I, and a positive diagonal
operator Λ such that ΛAΛ−1 = AI , where as in Example 5.10 the algebra AI is the norm-closure
of the left-regular representation of C[I] on `1(I) in the Banach algebra B(`1(I)).

Proof. By Proposition 5.11, I has a group structure and there is an action ρ : I → B(V ) such
that ρ(i) ∈ A for all i ∈ I and ρ(i)ej ∈ R>0ei·j for all i, j ∈ I. Let i0 be the neutral element of I
and set bi = ρ(i). By the arguments used in the previous proof, for any i ∈ I there exists λi > 0
such that biei0 = λiei·i0 = λiei, with the particular case λi0 = 1. Hence, defining the diagonal
operator Λ by Λei = λ−1

i ei, we have ΛbiΛ
−1ei0 = ei. Hence, for i, j ∈ I,

ΛbiΛ
−1ej = Λρ(i)Λ−1Λρ(j)Λ−1ei0 = Λρ(i)ρ(j)Λ−1ei0 = Λρ(i · j)Λ−1ei0 = ei·j .

Let AI be the algebra generated by ΛbiΛ
−1, i ∈ I. By the latter results, we have AI = ρ(C[I]),

where ρ is the left regular representation introduced in Example 5.10. By Proposition 5.9, A is
the norm closure of

∑
i∈I Cbi. Hence, ΛAΛ−1 is the norm closure of AI , and thus we have

ΛAΛ−1 = AI .

�

Example 5.15. One can use Corollary 5.14 to construct finite PM-graphs with I = Im. Con-
sider for example the group algebra

A =Ce(0,0) ⊕ Ce(1,0) ⊕ Ce(0,1) ⊕ Ce(1,1)

of Z/2Z× Z/2Z. Let T and T ′ be the matrices of the multiplication by e(1,0) and e(0,1) expressed

in the previous basis and (a, b) ∈ R2
>0. Then

U = aT + bT ′ =


0 a 0 0
a 0 0 0
0 0 0 a
0 0 a 0

+


0 0 b 0
0 0 0 b
b 0 0 0
0 b 0 0

 =


0 a b 0
a 0 0 b
b 0 0 a
0 b a 0

 .

Now choose λ = (λ1, λ2, λ3, λ4) ∈ R4
>0 and set V = DUD−1 where D is the diagonal matrix

defined by λ. The matrix

V =


0 aλ1λ2 bλ1λ3 0
a
λ1
λ2 0 0 bλ2λ4

b
λ1
λ3 0 0 aλ3λ4
0 b

λ2
λ4

a
λ3
λ4 0


is the adjacency matrix of a PM-graph such that I = Im.

We end this section by showing that the set of positive roots in PM-graphs (see § 4.3) coincides
with the set Im of maximal indices in its associated basis B.

Proposition 5.16. Let Γ be a finite PM graph rooted at i0 with basis Bi0.

(1) The set of maximal indices labels the positive roots of Γ, that is R+
Γ = {vi | i ∈ Im}.

(2) Set Bm,i0 = {bi ∈ Bi0 | i ∈ Im}. Then, we have Bm,i0 = Bi0 ∩GΓ: the maximal indices
labels the generalized permutations appearing in Bi0.

Proof. Let us prove Assertion 1. Recall that vi belongs to R+
Γ if and only if b−1

i Bi0 has nonnega-

tive structure constants. This means that we then have b−1
i Bi0×b−1

i Bi0 ⊂ b−1
i C(A) because C(A)
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coincides with C(Bi0) by Proposition 5.9. For any i ∈ Im, it follows from Theorem 5.11 that bi
is a generalized permutation. Thus b−1

i ∈ C(A) and also b−1
i Bi0 ⊂ C(A). Now we have

b−1
i Bi0 × b−1

i Bi0 = b−1
i (b−1

i Bi0 ×Bi0) ⊂ b−1
i (C(A)× C(A)) ⊂ b−1

i C(A)

because C(A) is stable by product. This shows that Im ⊂ R+
Γ . Conversely, assume that i ∈ R+

Γ .

Then, bi is invertible and b−1
i ∈ b−1

i Bi0 since 1 ∈ b−1
i Bi0 . Thus, we get b−1

i × b−1
i = b−1

i c

with c ∈ C(A). This proves that b−1
i ∈ C(A). Since the cone C(A) is stable by multiplication, it

follows that the map c→ biC(A) is a bijection from C(A) on itself (with inverse the multiplication
by b−1

i ). This implies that

C(A)(ei) = C(A)bi(ei0) = biC(A)(ei0) = C(A)(ei0) = V+.

We get that i is maximal. But it is also nondegenerate by Lemma 5.7 because Γ is finite. Thus,
we have R+

Γ = Im as desired.
To prove Assertion 2, observe first that we have Bm,i0 ⊂ Bi0 ∩ GΓ by Assertion 2 of The-

orem 5.11. Now, if bi belongs to Bi0 ∩ GΓ its inverse is an adjacency matrix in A and we
have b−1

i ∈ C(A). By using the previous arguments, we get biC(A) = C(A) and therefore
C(A)vi = C(A)bivi0 = C(A)vi0 = V+ which shows that i ∈ Im. Thus, Bm,i0 ⊃ Bi0 ∩ GΓ as
desired. �

6. Infinite PM graphs and harmonic functions

The goal of this section is to present a general combinatorial construction (called expansion)
yielding infinite rooted graphs from finite ones. To simplify the exposition, we will also assume
that all the algebras considered are commutative.

6.1. Expansion of a graph. Let Γ be a strongly connected rooted graph with root v0 and
transition matrix A = (ai,j) in Mn(k+[Z±1]). For any 0 ≤ i, j ≤ n− 1, we can set

ai,j =
∑
βi,j

mi,jz
βi,j

with mi,j ∈ R≥0 and βi,j ∈ N. It will be convenient in this section to replace each arrow

vj
ai,j→ vi weighted by the polynomial ai,j by the collection of arrows vj

mi,jz
βi,j

→ vi weighted by
the monomials appearing in ai,j . Thus we will now assume the weights on the arrows of Γ are
positive monomials in k+[Z±1]. A path π of length ` on Γ is a sequence of ` + 1 vertices on Γ
starting at v0 with two consecutive vertices being connected by an oriented arrow. The length
of a path π is denoted `(π). The weight wt(π) of the path π is the product of the weights of the
arrows encountered. Therefore wt(π) is a positive monomial of the form czβ with c > 0.

Definition 6.1. The expansion of the graph Γ is the rooted graded graph with graded set of
vertices Γe = (Γ`)`∈N constructed by induction as follows:

• (v0, 1, 0) ∈ Γ0

• if (vi, z
β, `) ∈ Γ` and there is an arrow vj

mi,jz
βi,j

→ vi in Γ then (vj , z
β+βi,j , `+ 1) ∈ Γ`+1

and there is an arrow (vi, z
β, `)

mi,j→ (vj , z
β+βi,j , `+ 1) in Γe

Let Γ be a positively multiplicative finite graph with associated algebra A and basis B =
{b0 = 1, b1, . . . , bn−1}. By definition A is an algebra over k[Z±1] whose structure constants cki,j
belong to k+[Z±1] and can thus be written on the form

cki,j =
∑
δ∈Nm

cki,j(δ)z
δ.
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The algebra A is also a k-algebra that we will denote by Ak. The k-algebra Ak is infinite-
dimensional algebra with basis {zβbi | i = 0, . . . , n − 1 and β ∈ Nm}. In order to extend the
notion of positively multiplicative graphs to the expansion Γe of Γ, we will in fact need the larger
algebra A′e = Ak ⊗

k
k[q] where q is a new indeterminate distinct from z1, . . . , zm. The powers

of q will record the lengths of the paths starting from the root of Γe. As a k-algebra, it has basis

B′e = {q`zβbi | i = 0, . . . , n− 1, β ∈ Nm, ` ∈ N}.
Let us write Ae for the subspace of A′e with basis Be = {q`zβbi | (vi, zβ, `) ∈ Γe}.
Proposition 6.2. With the previous notation, the following assertions hold in Ae.

(1) For any vertex (vj , z
β, `) ∈ Γe

qA× q`zβbj =
∑

(vj ,zβ ,`)
mi,j→ (vi,zβ

′ ,`+1)

mi,jq
`+1zβ

′
bi.

(2) The element 1 = q0z0b0 belongs to Be and the product of two elements in the basis Be

expands on Be with nonnegative real coefficients. In particular Ae is a subalgebra of A′e
with PM basis Be.

Proof. 1: Consider (vj , z
β, `) a vertex in Γe. We have

qA× q`zβbj = q`+1zβAbj = q`+1zβ
n−1∑
i=0

ai,jbi =

n−1∑
i=0

mi,jq
`+1zβ+βi,j bi =

∑
(zβ ,vj ,`)

mi,j→ (zβ
′
,vi,`+1)

mi,jq
`+1zβ

′
bi.

2: Given q`zβbi and qszγbj in the basis B′e, we can write

q`zβbi × qszγbj =

n−1∑
k=0

cki,jq
`+szβ+γbk =

n−1∑
k=0

∑
δ∈Nm

cki,j(δ)q
`+szδ+β+γbk

which shows that zβbi × zγbj expands positively on B′e. To get assertion 2, it then suffices to

observe that Be is the subset of B′e containing the elements q`zβbi, ` ≥ 0 which appear with a
positive coefficients in the expansions of the powers (qA)`, ` ≥ 0 on the basis B′e. �

Example 6.3. Let Γ the graph v0 � v1. It is positively multiplicative with A = RI2 ⊕RA and

B = {I2, A} where A =

(
0 1
1 0

)
. It expansion is the graph below where we have omitted the

power of z which is always equal to 1:

(v0, 0)→ (v1, 1)→ (v0, 2)→ (v1, 3)→ · · · .
Remark 6.4. In fact, the interesting finite graphs Γ have often additional properties which
simplify the definition and the study of their expansion . This is the case when

(1) The weights of Γ are only nonnegative reals (there is no indeterminate zi) as in the
previous example.

(2) The length of a path is completly determined by its weight and by its end point in Γ.
In this case, the indeterminate q in the previous construction is redundant and can be
omitted. This is for example the case for the graph considered in the example below.

Example 6.5. The graph Γ

∅
z1 z2
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with transition matrix A =

(
0 z1 + z2

1 0

)
is PM (the minimal polynomial µA(X) = X2+z1+z2

of A is irreducible) with A = RI2⊕RA and B = {I2, A}. We draw the graph Γe of the expansion
of Γ below on the left handside. The indeterminate q can be omitted, since when (v, zβ, `) ∈ Γe
we must have ` = 2 (β1 + β2) + 1 if v = � and ` = 2(β1 + β2) if v = ∅. We have

Ae = R[z1, z2]I2 ⊕ R[z1, z2]A.

Note that the graph Γe is in fact the graph of 2-bounded partitions (that is partition parts less
than or equal to 2), we draw this graph on the right handside.

(∅,1,0)

( , 1, 1)

(∅, z1, 2) (∅, z2, 2)

( , z1, 3) ( , z2, 3)

(∅, z2
1 , 4) (∅, z1z2, 4) (∅, z2

2 , 4)

( , z2
1 , 5) ( , z1z2, 5) ( , z2

2 , 5)

(∅, z3
1 , 6) (∅, z2

1z2, 6) (∅, z1z
2
2 , 6) (∅, z3

2 , 6)

∅

Figure 1. The graph Γe and the graph of 2-bounded partitions

6.2. Infinite PM graphs and harmonic functions. Let Γ = (Γ`)`≥0 be an infinite graded

oriented graph with root v0 and arrows v
av′,v→ v′ weighted by nonnegative reals av′,v. For any

vertex vi0 in Γ, let Γvi0 be the rooted graph with root vi0 obtained by considering only the
vertices v connected to vi0 by a path in Γ and the arrows belonging to such a path. Also let
Γ \ Γvi0 be the graph obtained by deleting in Γ all the vertices of Γvi0

and all the edges that
end in Γvi0 .

Definition 6.6. The infinite graph Γ is said

• positively multiplicative when there exists an associative algebra A over k, positively
multiplicative for a distinguished basis B = {bv | v ∈ Γ} ⊂ A, such that bv0 = 1, and

γbv =
∑
v→v′

av′,vbv′ for any v ∈ Γ

where8

γ =
∑
v0→v′

av′,v0bv′ .

• positively quotient multiplicative if it is positively multiplicative for a commutative alge-
bra A and for any vi0 ∈ Γ, the subspace Ivi0 = ⊕v∈Γvi0

kbv is an ideal in the algebra A.

The following proposition justifies our terminology.

8Note that γ is given by the fact that we must have γbv0 =
∑
v→v′ av′,vbv′ and γbv0 = γ.
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Proposition 6.7. Assume Γ is positively quotient multiplicative for the commutative algebra A
with basis B. For any vertex vi0 ∈ Γ, the graph Γ \ Γvi0 is positively multiplicative for the

algebra Avi0 = A/Ivi0 with basis Bvi0
= {b̄v | v /∈ Γvi0} where x→ x̄ is the canonical projection

from A to Avi0 .

Proof. We have by definition of Avi0 , b̄v = 0 if v ∈ Γvi0 . Assume, there exist v1, . . . , va vertices

in Γ \ Γvi0 and x1, . . . , xa in ka such that

a∑
l=0

xbv̄l = 0.

Since Ivi0 = ⊕v∈Γvi0
kbv, this means that

∑a
l=0 xlbvl belongs to ⊕v∈Γvi0

kbv which is only possible

if each xl is equal to zero because B is a k-basis of A. This implies that Bvi0
is a basis of Avi0 .

For v and v′ in Γ \ Γvi0 , we get

b̄v b̄v′ =
∑
v′′∈Γ

cv
′′
v,v′ b̄v′′ =

∑
v′′∈Γ\Γvi0

cv
′′
v,v′ b̄v′′

for b̄v′′ = 0 if v′′ ∈ Γvi0 . We have proved that Γ \Γvi0 is positively multiplicative for the algebra
Avi0with basis Bvi0

. �

Definition 6.8. A nonnegative (resp. positive) harmonic function on Γ is a map f : Γ→R≥0

such that f(v0) = 1 and for any vertex v ∈ Γ

f(v) ≥ 0 (resp. f(v) > 0) and f(v) =
∑
v→v′

av′,vf(v′).

Observe that we have then

1 = f(v0) =
∑
v0→v′

av′,v0f(v).

Remark 6.9. Positive harmonic functions on Γ are strongly connected to Markov chains. In-
deed, if f is positive harmonic, we can define a Markov H chain on Γ with transition matrix Π
such that

Π(v, v′) = av′,v
f(v′)

f(v)
.

It then becomes possible to study H (for example to get its drift, a law of large number etc.)
when f is sufficiently simple, in particular when f is extremal (see [15], [21] and [23] for exam-
ples).

We denote by H(Γ) the set of nonnegative harmonic functions on Γ. This is a convex cone
and we write H∂(Γ) for its subset of extremal points. Recall the following theorem essentially
due to Kerov and Vershik (see [15] and also [22]).

Theorem 6.10. Assume that k = R and Γ is positively multiplicative with associated algebra A
and basis B = {bv | v ∈ Γ} with 1 ∈ B. Then the map f : Γ → R≥0 belongs to H∂(Γ) if and
only if the linear form ϕ : A→ R such that

ϕ(γ) = 1 and ϕ(bv) = f(v) for any v ∈ Γ

is a morphism of R-algebras.
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Example 6.11. Let Yn be the Young lattice of partitions with at most n parts. Recall that
its vertices are the Young diagrams λ associated to the partitions with at most n parts and
we have an arrow λ → µ if the Young diagram of µ is obtained by adding a box to the Young
diagram of λ. Let A = Sym[x1, . . . , xn] be the R-algebra of symmetric functions in the indetermi-
nates x1, . . . , xn and B = {sλ | λ ∈ Yn} where sλ is the Schur function associated to λ. Then Y is
positively multiplicative for A with distinguished basis B. Its extremal positive harmonic func-
tions are the morphisms ϕ : A→ R such that ϕ(sλ) ∈ R>0. One can show in this case that these
morphisms are parametrized by the vectors p = (p1, . . . , pn) ∈ Rm≥0 with p1 + · · · + pn = 1, the
morphism ϕp corresponding to p being the specialization xi = pi, i = 1, . . . , n. The structure co-
efficients cνλ,µ are the Littlewood-Richardson coefficients and it is a classical result that cνλ,µ > 0

only if ν can be reached from λ by a path in Yn (i.e. λ ⊂ ν). This implies that Yn is also
positively quotient multiplicative.

6.3. Positive harmonic functions on expanded graphs. Now let Γ be a finite, strongly
connected, positively multiplicative graph rooted at v0 with coefficient in k+[Z±1]. Let A be its
adjacency matrix and Γe the corresponding expanded graph. We shall assume in the following
theorem that algebra A associated to Γ is a domain. Also since Γ is rooted at v0, we have b0 = 1
in the basis B. By Proposition 3.8, we know that A is a domain when µA is irreducible over K.

Theorem 6.12. Under the previous assumption and with the notation of § 6.1, the following
assertions hold.

(1) The infinite graph Γe is positively multiplicative with basis Be.
(2) The set H+

∂ (Γe) of extremal positive harmonic functions is parametrized by a subset
of Rm>0. More precisely, to any t = (t1, . . . , tm) ∈ Rm>0 corresponds an extremal harmonic
function ft on Γe such that

ft(vi, z
β, q`) = tβs`πi for i = 0, . . . , n− 1

where π = (π0, . . . , πn−1) is the left Perron-Frobenius vector of the specialization zk =
tk, k = 1, . . . ,m in the matrix A and

s =

 ∑
v0→v′

av′,v0πi

−1

.

Moreover, all the elements in H+
∂ (Γe) are obtained in this way.

Proof. 1: This immediately follows from Proposition 6.2.
2: By Theorem 6.10, the elements of H+

∂ (Γe) are determined by the morphisms ϕ : Ae → R
positive on the basis Be and such that ϕ(γ) = 1 where

γ = q
∑
v0→v′

av′,v0bv′ .

Consider such a morphism and set ϕ(q) = s ∈ R>0, ϕ(zk) = tk ∈ R>0 for each k = 1, . . . , n. For
any j = 1, . . . , n− 1, we have in the expanded algebra Ae

Abj =

n−1∑
i=0

mi,jz
βi,jbi

(recall that the weights of Γ are now monomials up to addition of arrows) which gives

(6.1) ϕ(bj)ϕ(A) =
n−1∑
i=0

mi,jt
βi,jϕ(bi).
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Let At be the matrix obtained by specializing each indeterminate zi in ti. If we set πi = ϕ(bi) for
any i = 0, . . . , n− 1, then the vector π = (π0, . . . , πn−1) is a left eigenvector of At with positive
entries for the positive eigenvalue λ = ϕ(A). Since the matrix At is still irreducible (because the
ti’s are positive), π should be equal to the unique left Perron-Frobenius vector of At and ϕ(A)
is the associated Perron-Frobenius eigenvalue. The corresponding positive extremal function f
is defined on Γe by f(vi, z

β, q`) = ϕ(q`zβbi) = s`tβπi where

(6.2) s =

 ∑
v0→v′

av′,v0πi

−1

because ϕ(γ) = 1.
Conversely, for any t = (t1, . . . , tm) ∈ Rm>0, let At be the matrix obtained by specializing in A

each indeterminate zi in ti and (π0 = 1, π1, . . . , πn−1) its normalized Perron-Frobenius vector.
We have a morphism ϕ̂ : k[Z, q] → R defined by ϕ̂(q) = s (s is as in (6.2)) and ϕ̂(zk) = tk for
any k = 1, . . . ,m. Since Ak is a domain and Ae = Ak ⊗

k
k[q], the algebra Ae is also a domain.

We have moreover the inclusions of algebras

k[Z, q] ⊂ k[Z, q][A] ⊂ Ae
which are all domains. By Lemma 2.4 the algebra Ae is an integral domain over k[Z, q], thus
also over k[Z, q][A]. Let λ be the left Perron-Frobenius eigenvalue of At. We can extend ϕ̂
to a morphism of algebras ϕ̃ : k[Z, q][A] → R just by setting ϕ̃(A) = λ. Now, as explained
in Remark 2.5, one can extend ϕ̃ to a morphism of algebras ϕ : Ae → C. Then, the numbers
ϕ(bj), j = 0, . . . , n−1 satisfy the equality (6.1) which means that (ϕ(b0) = 1, ϕ(b1), . . . , ϕ(bn−1))
is the left eigenvector of ϕ̂(A) = At associated to λ normalized so that its first coordinate is
equal to 1. Since, this eigenvector is unique, we must have ϕ(bj) = πi for any i = 0, . . . , n − 1.
This proves that we can indeed define from any t = (t1, . . . , tm) ∈ Rm>0 a morphism ϕ : Ae → R
positive on the basis Be and such that ϕ(γ) = 1. �

Remark 6.13. The arguments used in the proof of the previous theorem show that the mor-
phisms obtained (and thus also the harmonic functions) are essentially determined by their
restrictions to k[Z±1] thanks to the Perron-Frobenius theorem. Nevertheless, in the previous
construction, it can happen that two elements in Rm>0 give the same positive harmonic function.

7. Column and row KR crystals of affine type A

The goal of this section is to present two particular families of positively multiplicative graphs.
In contrast to their combinatorial definition which is very simple, their associated multiplicative
algebras have sophisticated structure constants for which no simple combinatorial description is
known. They will provide us interesting illustrations of the notions and results presented in the
previous sections of the paper. For more detail about their connection with the representation
theory of affine quantum groups, we refer the reader to [6].

7.1. Partition, column and row tableaux. A partition of length k is a sequence of inte-
gers λ = (λ1 ≥ · · · ≥ λk ≥ 0). It is conveniently identified with its Young diagram as illustrated
by the example below

λ = (5, 3, 3, 2)←→
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By a column tableau of length k on the alphabet An = {1 < 2 < · · · < n}, we mean a filling of
the Young diagram of shape (1, 1, . . . , 1) (with k ones) by letters of An which strictly increase
from top to bottom. By a row tableau of length l on the alphabet An, we mean a filling of the
Young diagram of shape (l) by letters of An which increase from left to right.

Example 7.1. For n = 5, k = 3 and l = 4,

1
2
3

and 1 2 2 4 5

are column and row tableaux, respectively.

7.2. The Kirillov-Reshetikhin (KR) column crystals. Given integers n ≥ 2 and 1 ≤ k ≤
n, the KR crystal Ba

k,n is the colored oriented graph with vertices the set of column tableaux of
length k on the alphabet An and arrows

• C
i→ C ′ with i ∈ {1, . . . , n − 1} if and only if i ∈ C, i + 1 /∈ C and C ′ is the column

obtained by replacing i− 1 by i in C;

• C
0→ C ′ if and only if n ∈ C, 0 /∈ C ′ and C ′ is the column obtained by replacing n by 0

in C and then reordering.

The crystal Ba
k,n admits an anti-automorphism of graph ♦ such that

C
i→ C ′ ⇐⇒ (C ′)♦

n−i→ C♦.

The column C♦ is obtained by changing each letter i ∈ C by n− i and then reordering. There
is also a graph automorphism P called the promotion and such that

C
i→ C ′ ⇐⇒ P (C)

i+1 mod n→ P (C ′).

The column P (C) is obtained by adding 1 modulo n to each entry in C and then reordering
(taking {1, . . . , n} as set of residues). Observe that there is a simple bijection between the
columns of height k on {1 < 2 < · · · < n} and the partitions contained in the rectangle (n−k)k.
It associates to each column C = {ck > ck−1 > · · · > c1) the partition λ = (ck − k, ck−1 − k +
1, . . . , c1}. It is easy to check that for any partition λ ⊂ (n − k)k the action of the promotion
operator satisfies

P (λ) =

{
(λ1 + 1, . . . , λk + 1) if λ1 < n− k,
(λ2, . . . , λk, 0) if λ1 = n− k.

Fix and order on the vertices of Ba
k,n and write Aan,k for the adjacency matrix of Ba

n,k.

Example 7.2. (1) Assume n = 5 and k = 2. We get

Aa2,5 =



0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 0
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with the columns of height 2 ordered as follows

1

2

1

3

2

3

1

4

2

4

1

5

3

4

2

5

3

5

4

5

and minimal polynomial X10 − 11X5 − 1. In particular, B2,5 is of maximal dimension.
(2) When n = 6 and k = 2, the minimal polynomial of Aa2,6 is X13 − 26X7 − 27X. Thus

Ba
2,6 is not of maximal dimension.

1

2

1

3

2

3

1

4

2

4

1

5

3

4

2

5

1

6

3

5

2

6

4

5

3

6

4

6

5

6

Figure 2. The graph Ba
2,6

7.3. The KR row crystals. Given any integer l ≥ 2, the KR crystal Bs
l,n is the colored oriented

graph with set of vertices the set of row tableaux of length l on the alphabet An and arrows

• L
i→ L′ with i ∈ {1, . . . , n−1} if and only if i ∈ L and L′ is the row obtained by replacing

i by i+ 1 in L;

• L
0→ L′ if and only if n ∈ L and L′ is the row obtained by replacing n by 1 in L and

then reordering.

The crystal Bs
l,n also admits the anti automorphism of graph ♦ such that

L
i→ L′ ⇐⇒ (L′)♦

n−i→ L♦.

The row L♦ is obtained by changing each letter i ∈ L by n − 1 and next reordering. There is
again the promotion operator P such that

L
i→ L′ ⇐⇒ P (L)

i+1 modn→ P (L′).

The row P (L) is obtained by adding 1 modulo n to each entries in L and next reordering.
Observe that the partitions λ contained in ln−1 are in bijection with the row tableaux of length l
on An by associating an entry i + 1 to each column of height i ∈ {0, . . . , n − 1} appearing in
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the Young diagram of λ. This time, the action of the promotion operator adds a box in each
column of λ and next deleting the column of height n if any.

Example 7.3. The graph Bs
3,3 is as follows

1 1 1

1 1 21 1 3

1 2 21 2 31 3 3

2 2 22 2 32 3 33 3 3

7.4. Quotients of the algebra of symmetric polynomials. Let Λk = Sym[x1, . . . , xk] =
Q[e1, . . . , ek] be the algebra of symmetric polynomials in the k variables x1, . . . , xk. Here

em =
∑

1≤i1<···<ia≤m
xi1 · · ·xim for any 1 ≤ m ≤ k.

Write Pk for the set of partitions with at most k parts. It is well-known that that Λk admits
the two distinguished bases

{eλ′ | λ ∈ Pk} and {sλ | λ ∈ Pk}
where for any partition λ = (λ1, . . . , λk) we have eλ = eλ′1 · · · eλ′k and sλ is the Schur polynomial

associated to λ. For any positive integer l, consider Ik,l the ideal of Λk defined by

Ik,l = 〈sλ | λ has l + 1 columns of height less than k〉.

Write P lk the set of partitions in Pk with at most l columns of height less than k.

Lemma 7.4. (See [18]) We have Ik,l = 〈hl+1, . . . , hl+k−1〉.

We define the ideals

Iqk,l = 〈hl+1, . . . , hl+k−1, hl+k = (−1)k−1q〉 and Jk,l = 〈hl+1, . . . , hl+k−1, ek = 1〉

and set
Qk,l := Λk/Ik,l,Aqk,l := Λk/I

q
k,l and Sk,l := Λk/Jk,l.

Clearly the algebras Qk,l and Aqk,l are isomorphic by sending hl+k mod Ik,l on (−1)k−1q. They

were considered in [2] and [18] from where we can extract the following theorems gathering some
important properties of these algebras.

Theorem 7.5. (see [18]) Set n = l + k.

(1) The set Ba
k,l = {bλ := sλ modAqk,l | λ ⊂ l

k} is a Z[q]-basis of Aqk,l so thatdimAqk,l =
(
n
k

)
.

(2) When q = 1, we have in A1
k,l for any λ ⊂ lk

b(1) · bλ =
∑
ν⊂lk

bν

where ν is obtained by adding one box to λ or deleting the first row and column when
λ1 = l and λ has k rows (i.e. by removing the unique possible hook of length l + k − 1



36 JÉRÉMIE GUILHOT, CÉDRIC LECOUVEY AND PIERRE TARRAGO

if any). In particular, in the algebra A1
k,l, the matrix of the multiplication by b(1) in the

basis bλ is the adjacency matrix of the KR-crystal Bk,n.
(3) The structure constants associated to Ba

k,l in the algebra A1
k,l are nonnegative integers.

Corollary 7.6. The graph Ba
k,n with n = l + k is positively multiplicative for the algebra Aqk,l

with the basis Ba
k,l.

Now, let us turn to the algebra Sk,l := Λk/Jk,l = Qk,l/〈ek = 1〉.

Theorem 7.7. (See [1, 2]) Set n = k. In the algebra Sk,l the following statements hold.

(1) The set Bs
k,l = {bλ mod Jk,l | λ ⊂ lk−1} is a Z-basis of Sk,l so that dimSk,l =

(
l+k−1
l

)
.

(2) In Sk,l, we have for any λ ⊂ lk−1

b1 · bλ =
∑

ν⊂lk−1

bν

where ν is obtained by adding one box to λ, next by deleting a column of height k if this
makes appear one. In particular, in the algebra Sk,l, the matrix of the multiplication
by b1 in the basis Bs

k,l is the adjacency matrix of the KR-crystal labelled by the rows of

length l on {1, . . . , k}.
(3) The structure constants associated to Bs

k,n in the algebra Sk,l are nonnegative integers.

Corollary 7.8. The graph Bs
l,n with n = k is positively multiplicative for the algebra Sk,l with

the basis Bs
k,n.

7.5. An example: the graph Bs
l,2. We consider KR-graphs Bs

l,2 with one row and l columns

filled with integers in {1, 2}. The first examples of these graphs are :

1 2

1 1 1 2 2 2

1 1 1 1 1 2 1 2 2 2 2 2

The adjacency matrix of Bs
l,2 is the (l + 1)× (l + 1)-matrix

Al =



0 1 0 0 . . . 0
1 0 1 0 . . . 0
0 1 0 1 . . . 0

0 0
. . .

. . .
. . . 0

0 0 . . . 1 0 1
0 0 . . . 0 1 0


.

The algebra S2,l is by construction equal to the quotient

Sym[x1, x2]/(e2 = 1, hl+1 = 0).

Since e2 = x1x2, we just have x2 = x−1
1 and by setting x = x1, the elements of Sym[x1, x2]/(e2 =

1) can be regarded as the Q-algebra L[x, x−1] of Laurent polynomials P in the indeterminate x
such that P (x−1) = P (x). Now in L[x, x−1], we have

ha(x, x
−1) =

∑
1≤i≤j≤l|i+j=a

xix−j = x−a
a∑
i=0

x2i =
xa+1 − x−a−1

x− x−1
.
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Therefore S2,l is isomorphic to the algebra L[x, x−1]/(xl+2 − x−l−2)). A simple computation
shows that

hi(x, x
−1)× hj(x, x−1) =

j∑
k=0

hi+j−2k(x, x
−1)

Write writing bi, i = 0, . . . , l for the image of ha(x, x
−1) in L[x, x−1]/(xl+2 − x−(l+2)) and define

B = {b0 = 1, . . . , bl}. By setting x = xmod(xl+2 − x−(l+2)) we get xl+2 = x−l−2. Therefore, for
any 0 ≤ a ≤ l − 1, one has since

bl+1+a =
xl+a+2 − x−l−a−2

x− x−1 =
x−l−2+a − xl+2−a

x− x−1 = −bl+1−a.

This gives if we assume i ≥ j
bibj = bi−j + bi−j+2 + · · ·+ bi+j if i+ j ≤ l

and

bibj =

j∑
k=0

bi+j−2k = bi−j + · · ·+ bl + 0− bl − · · · − bi+j−l−1

= bi−j + · · ·+ b2(l+1)−i−j−1 if i+ j > l.

This can be summarize by the rules

bibj =
b|i−j| + · · ·+ bi+j if i+ j ≤ l,
b|i−j| + · · ·+ b2(l+1)−i−j−1 if i+ j > l.

One may recognize the fusion rules for the fusion algebra ŝu2 (see [7]) at level l. This construction
is related to Conformal Field Theory. The Perron-Frobenius eigenvalue of the adjacency matrix
of Bs

l,2 is λ = 2 cos π
l+2 with normalized associated eigenvector

1

sin π
l+2

(sin
aπ

l + 2
)1≤a≤l+1.

It is also possible to determine the set Im of maximal indices and its group structure studied
in Section 5 and Theorem 5.11. Indeed, the previous fusion rules shows that b0bj = 1 and
blbj = bl−j for any j = 0, . . . , l. Also when i = 1, . . . , l − 1 the action of bi does not yields a
generalized permutation of the basis B. Thus Im = {0, l} and the group structure is given by

l · l = 0, l · 0 = 0 · l = l, 0 · 0 = 0.
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