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High-throughput sequencing has provided the capacity of broad virus detection for both
known and unknown viruses in a variety of hosts and habitats. It has been successfully
applied for novel virus discovery in many agricultural crops, leading to the current drive to
apply this technology routinely for plant health diagnostics. For this, efficient and precise
methods for sequencing-based virus detection and discovery are essential. However, both
existing alignment-based methods relying on reference databases and even more recent
machine learning approaches are not efficient enough in detecting unknown viruses in
RNAseq datasets of plant viromes. We present VirHunter, a deep learning convolutional
neural network approach, to detect novel and known viruses in assemblies of sequencing
datasets. While our method is generally applicable to a variety of viruses, here, we trained
and evaluated it specifically for RNA viruses by reinforcing the coding sequences’ content
in the training dataset. Trained on the NCBI plant viruses data for three different host
species (peach, grapevine, and sugar beet), VirHunter outperformed the state-of-the-art
method, DeepVirFinder, for the detection of novel viruses, both in the synthetic leave-out
setting and on the 12 newly acquired RNAseq datasets. Compared with the traditional
tBLASTx approach, VirHunter has consistently exhibited better results in the majority of
leave-out experiments. In conclusion, we have shown that VirHunter can be used to
streamline the analyses of plant HTS-acquired viromes and is particularly well suited for the
detection of novel viral contigs, in RNAseq datasets.

Keywords: novel virus detection, RNA viruses, plant virome, alignment-free method, deep learning, artificial neural
network

INTRODUCTION

Study of viromes at an unprecedented scale has been enabled by the adoption of high-throughput
sequencing (HTS) technologies and is now frequently undertaken across an increasing range of host
species. In particular, sequencing of plant viromes has become quite common, partly due to its
relevance to the agricultural sector. The acquired datasets help to elucidate important questions such
as virus spread among host reservoirs and effects of agriculture on the ecosystems and their
biodiversity as well as the identification of novel viruses in crops and natural environments (Lefeuvre
et al., 2019). These developments are fast advancing our knowledge of viral diversity through the
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discovery of previously unknown viral species or variants and the
identification of new hosts of known viruses (Roossinck et al.,
2015; Massart et al., 2017). Following the classification proposed
by Stobbe and Roossinck (2014), viruses identified in HTS
datasets can be classified into three different groups as follows:
1) viruses that are already known to infect a given host; 2) novel
viruses from a known family or known viruses that have not been
found previously described to infect a given host; and finally 3)
completely novel viruses that share little to no sequence similarity
with known viruses already present in the databases.

Using an efficient virus detection method, including for the
identification of novel viruses, is essential for efficient disease
management. Standard diagnostic tests (ELISA assays and PCR-
based assays) depend on specific antibodies or primers and thus
require prior knowledge of the virus and of its phylogenetic
neighbors. Precise identification of viruses is further complexified
by the large diversity encountered in the majority of viral species
which is linked to the high mutation rate of these agents. This is
particularly true for plant viruses, the majority of which are RNA
viruses whose mutation rate is very high (Jenkins et al., 2002).
Moreover, the new variants emerging from genomic
rearrangements or recombination events can also significantly
differ from the parental viruses (Domingo 2010). Also, many of
the plant viruses are multihost pathogens, and a single plant can
be infected by multiple unrelated viral species (Roossinck, 1997).
Such infections by multiple viruses represent an additional
challenge for detection since the viral load of different
pathogens can be very unequal (Martín and Elena, 2009).
Moreover, in most cases, background contamination is
currently unavoidable (Kleiner et al., 2015; Maree et al., 2018;
Kutnjak et al., 2021). In this context, HTS combined with
bioinformatics tools has been shown to be a valuable
approach, both for detection of known viruses and for the
discovery of novel ones (Maree et al., 2018; Villamor et al.,
2019; Mehetre et al., 2021).

Viruses do not have a universal genemarker that could be used
for their identification, contrary to the conserved regions of the
16S rRNA and ITS genes, commonly used to classify bacteria and
fungi at the genus or species level (Mokili et al., 2012). Moreover,
the abundance of viral genomic material in plant sequencing
samples can be very low (Massart et al., 2019), due to the
dominance of the host material. Hence, specific sample
preparation to enrich plant RNA viral-specific sequences is an
important step that makes the downstream detection of viruses by
bioinformatics methods more reliable. They include approaches
providing a high and targeted enrichment of viral sequences, such
as the purification of viral double-stranded RNAs (dsRNAs) or
that of virion-associated nucleic acids (VANAs) as well as less
specific approaches generally affording lower enrichment, such as
the sequencing of small interfering RNAs (siRNAs) or inclusion
of a ribodepletion step prior to the sequencing of total cellular
RNAs (Maree et al., 2018; Kutnjak et al., 2021). As already
discussed in a range of reviews, each of these approaches have
advantages and weaknesses. In particular, strategies providing
high enrichment factors may improve detection sensitivity but
often at the cost of introducing biases with the risk of
compromising the detection of some particular viruses (Maree

et al., 2018; Kutnjak et al., 2021). For example, dsRNA-based
approaches are usually poor at detecting DNA viruses, while
VANA-based ones may perform poorly for viruses with labile
particles.

When interested in known viruses or potentially novel viruses
but from a known family, bioinformatics methods that compare
the sequenced reads to genomes in public databases are very
efficient for virus detection and identification (Stobbe and
Roossinck, 2014; Massart et al., 2019). Read-based analysis is
thus particularly suited to study viral diversity of sequencing
samples in terms of known viral species. Generalistic
metagenome analysis tools such as, for example, Kaju (Menzel
et al., 2016), Kraken 2 (Wood et al., 2019), and Centrifuge (Kim
et al., 2016) show good performance in terms of sensitivity and
precision in detection of present known viral species (De Vries
et al., 2021).

For the discovery of novel viruses, use of de novo assembly to
recover novel viral contigs from sequencing data is an essential
step in order to overcome the incompleteness of virus reference
databases, annotation errors and, importantly, the limited
homology between novel viral sequences and reference
genomes (Sutton et al., 2019). The assembly step is a staple of
short-read sequencing studies, which are still the vast majority
today (Maree et al., 2018; Kutnjak et al., 2021). It represents its
own challenges, in particular, for very short reads such as those of
siRNAs and for viral populations with multiple and microdiverse
variants (Warwick-Dugdale et al., 2019), often leading to
microdiversity-associated fragmentation and, sometimes, to
chimeras in the resulting contigs (Martinez-Hernandez et al.,
2017; Roux et al., 2017), which in turn affects the downstream
analysis, including estimation of viral diversity and identification
of novel viruses (Nayfach et al., 2021). Popular assembler choices
are the generalistic de Bruijn graph assembly metaSPAdes (Nurk
et al., 2017) and Trinity, for RNAseq (Grabherr et al., 2011).

Following the recent review (Kutnjak et al., 2021), the methods
used to analyze assembled contigs can be grouped into three main
categories: 1) alignment and mapping-based methods, 2) protein
domain searches, and 3) k-mer-based approaches that can either
rely on signatures or leverage machine learning. Among this large
plethora of tools, alignment-based methods are widely adopted
when working with assembled contigs since they provide a longer
sequence for homology search against reference genomes using
either BLAST (Altschul et al., 1990) and its derivatives or the
amino acid alignment of protein-coding genes predicted from the
assembled contigs using DIAMOND (Buchfink et al., 2015). Also,
focusing the analysis on coding regions is particularly relevant for
RNAseq data since the non-coding sequences of viruses are not
highly represented in such samples, even if they can be well
conserved in certain viral taxa. However, the main drawback of
alignment- or mapping-based approaches lies on the fact that
they are both computationally intensive and require expertise for
filtering and interpreting the results. As for the generalistic k-mer
signature approaches, they remain demanding in terms of
memory and are best suited for diversity analysis tasks
(Kutnjak et al., 2021).

The emergence of machine learning tools for contig-based
analysis of virome sequencing data holds much promise to
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streamline the discovery of novel viruses in sequencing datasets
by both avoiding the time-consuming sequence similarity
analyses and modeling even highly divergent sequences. These
methods build models based on sequences with known class
labels such as “virus” and “host” and learn features that allow
them to differentiate between the classes. VirFinder (Ren et al.,
2017) and VirSorter2 (Guo et al., 2021) rely on classical machine
learning, the former being based on a regularized logistic
regression applied to the k-mer frequency matrix extracted
from the sequence and the latter on a random forest model
built from genomic features. Methods based on deep learning
networks have also been proposed for virus detection, such as
DeepVirFinder (Ren et al., 2020) and ViraMiner (Tampuu et al.,
2019) that both rely on a combination of convolutional neural
networks (CNNs) and dense neural networks, and VirNet
(Abdelkareem et al., 2018) that relies on a long short-term
memory (LSTM) architecture. These three deep learning
methods were developed for identification of viral contigs in
metagenomic samples and evaluated on bacterial and human
metagenomes. However, DeepVirFinder has been recently
successfully used in plant-related virome studies (Santos-
Medellin et al., 2021).

In this work, we present VirHunter, a deep learning method that
uses convolutional neural networks (CNNs), classifies previously
assembled contigs to identify potential viral, host, and bacterial
(contamination) sequences in RNAseq samples. The hybrid
architecture of VirHunter combines a multi-network CNN-based
module covering different k-mer sizes with a downstream random
forest classifiermodule.We have trainedVirHuntermodels for three
different plant host species: peach, grapevine, and sugar beet.
Importantly, we have shown that VirHunter is especially
performant for the task of completely novel virus discovery by
building 31 leave-out datasets, in which each viral family is excluded
from the training dataset, and comparing the results with a standard
BLAST-based solution on one side and a state-of-the-art deep
learning method, DeepVirFinder, the other side. VirHunter not
only systematically outperformed DeepVirFinder in terms of virus
detection but also has considerably reduced the False Positive rate.
Cross-evaluation has shown that host detection accuracy remained
high and decreased slightly when test sequences originated from the
plant species were further phylogenetically removed from that used
to train the model. We have further evaluated the detection capacity
of VirHunter on in silico mutated contigs sampled from the NCBI
virus database and have shown that it decreased only slightly with a
progressively increased mutation rate (e.g., True Positive rate of
0.898 for 20% mutation rate). Moreover, we generated 12 RNAseq
datasets for a range of host species and have shown that VirHunter
was not only able to uncover the viruses that were previously
identified but also to streamline the analyses by considerably
reducing the need for manual curation.

MATERIALS AND METHODS

Datasets
We downloaded all complete and incomplete viral sequences
from the NCBI virus database for which the host’s taxonomic id

belongs to Viridiplantae on 26/10/2021, which yielded 122,832
sequences. Plant sequences have been downloaded for Prunus
persica (peach), Vitis vinifera (grapevine), Beta vulgaris (sugar
beet), and Oryza sativa (rice) from the NCBI RefSeq genomes
database. On one hand, they consist of the latest available
assemblies, GCF_000346465.2, GCF_000003745.3,
GCF_000511025.2, and GCF_001433935.1 for peach,
grapevine, sugar beet, and rice, respectively, and of the coding
region sequences (CDSs), on the other hand. In the absence of the
plastid sequence in the reference assembly of the sugar beet, we
used the separately available sugar beet plastid sequence
(NC_059012.1). All complete representative bacterial genomes
have been downloaded from the NCBI RefSeq database on 28/10/
2021 using the genome_updater.sh script.

To simulate the discovery of completely unknown viruses that
do not have expected similarities with the available data, we
constructed virus family leave-out datasets by excluding in turns
all the sequences of a given plant viral family from the
downloaded virus dataset. The NCBI taxonomy contains 45
viral families. We excluded the Pospiviroidae and the
Avsunviroidae families of viroids as they have very small
genomes (average length < 1,000). All families with the
number of available sequences < 100 were merged in one
dataset called small families. Finally, all sequences without
family labels constituted the unclassified dataset. This resulted
in 31 leave-out datasets.

Moreover, we generated 12 novel virome-sequencing RNAseq
datasets, sampled from peach, grapevine, and sugar beet (see
Sample Preparation and Sequencing). Description of these
datasets and presence of viruses identified by aligning
assembled contigs against the NCBI GenBank database (see
Assembly of RNAseq Datasets and Annotation of Viral Contigs)
are listed in the Supplementary Table S1.

Sample Preparation and Sequencing
Total RNAs were extracted from three peach leaf samples,
three grapevine phloem scrapping samples, and three sugar
beet leaf samples using the CTAB method (Chang et al., 1993),
the Spectrum™ Plant Total RNA Kit (Sigma-Aldrich, Saint
Quentin-Fallavier, France), and the NucleoSpin RNA plant kit
(Macherey-Nagel SAS, Hoerdt, France), respectively. RNAseq
libraries were prepared either from total RNAs (peach and
grapevine samples), messenger RNAs (grapevine samples), or
ribodepleted RNAs (sugar beet samples). High-throughput
sequencing was performed on an Illumina platform
(Hiseq3000 or NovaSeq600) using a paired-end read length
of 2 × 150 bp. Accession numbers for each of the three studies
(peach, grapevine, and sugar beet) containing raw FASTQ
sequencing files are provided in the Supplementary Table S1.

Assembly of RNAseq Datasets and
Annotation of Viral Contigs
All of the 12 selected plant virome datasets (see Datasets) were
processed with the QIAGEN CLC Genomics Workbench
(v.21.0.5). Briefly, reads were first quality-controlled and
trimmed using default parameters and then assembled using
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de novo assembly (word size 50, bubble size 300, and minimum
contig length 250). To identify viral contigs present in these
datasets, we followed a standard three step BLAST-based
approach, see e.g., (Candresse et al., 2018). 1) All contigs
were aligned using the CLC built in tBLASTx tool against
the NCBI nucleotide non-redundant database limited to
taxonomic identifiers of viruses. Contigs having significant
hits (e-value below the 10−20 cut off) were selected. 2) Contigs
were further filtered by aligning them using BLASTn and
BLASTx with default parameters against the whole
GenBank non-redundant nucleotide and protein databases,
respectively, and keeping contigs for which the best hits
correspond to plant viruses for both BLASTn and BLASTx.
Additional manual expert curation allowed to discard contigs
with incoherencies between the two alignment results. 3)
Finally, all reads passing quality control were mapped
against the plant viral contigs, resulting from step 2 using
the CLC built-in mapping utility with default parameters with
high stringency (90% identity of 90% of read’s length). Only
contigs with length > 750 nucleotides and having sufficient
read coverage (expert curation) were retained.

Annotation results together with the counts of thus identified
viral contigs are listed in the Supplementary Table S1.

Data Preprocessing
To prepare the data for processing by the neural network module,
datasets were preprocessed by creating representative one-hot
encoded fragments (see Figure 1). Specifically, let us denote the
virus dataset byV, the plant dataset byH (for “host”)—composed
of the full assembly G, the coding sequences C, the chloroplast
sequence L, and the bacterial dataset by B. Given a fragment size
n of 500 and 1,000 nucleotides, V was split into fragments of size
n with a sliding window with an increment of n/2. Sequences
shorter than n nucleotides and longer than 0.95 × n were padded
to n bp length with gaps (those shorter than 0.95 × n are
discarded), together yielding N viral fragments. Same number
N of fragments of size nwas randomly sampled from B. As for the
plant, G was split into 0.6 × N fragments using a sliding window
with an increment of size n, C was split into 0.3 × N fragments
with a sliding window with increment of n/2, and finally 0.1 × N
fragments were sampled randomly from L.

Including plastids in relatively high proportion into the plant
dataset H was important to avoid the potential incorrect
assignment of contigs originating from plastids to B, given the
phylogenetic proximity of plastids and bacteria (McFadden,
2001). Moreover, there are RNA viruses that are known to be
replicated in tight association with plastids (mostly chloroplasts) -

FIGURE 1 | Dataset preprocessing procedure and architecture of the multi-CNN module. Panel (A): Reference datasets (virus, plant, and bacteria) are first
fragmented with a pre-defined fragment size (500 and 1000 bp). Each fragment is further one-hot encoded and carries the class label. Panel (B): Three CNNmodules are
built for k-mers of size k � 5,7, and 10. One-hot encoded genomic fragments of a fixed size are processed by convolutional and global max-pooling layers before being
concatenated. A total of two dense layers are followed by the softmax activation function to produce a 3-class classification.
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see e.g., (Budziszewska and Obrępalska-Ste ̨plowska, 2018;
Delgado et al., 2019). Enriching for CDS sequences was
necessary since the envisioned application of VirHunter is for
RNAseq virome datasets. Five compositions of G/C/L
proportions of H were tested (100/0/0, 90/0/10, 60/30/10, 50/
40/10, and 45/45/10, data not shown) and the best was retained.

Fragments were further transformed from length n ACGT-
character strings to n × 4 one-hot encoded arrays, in which an A
is encoded by [1, 0, 0, 0], a C is encoded by [0, 1, 0, 0] etc., while
gaps are encoded by [0, 0, 0, 0]. Moreover, the encoded dataset is
augmented by adding the reverse complement of each original
fragment. Indeed, it has been shown by Shrikumar et al. (2017)
that CNN models in genomics require the reverse-complement
data augmentation combined with parameter sharing between
the forward- and reverse-complement representations of the
model. Class labels V, H, or B are assigned to each fragment
according to its provenance.

VirHunter Architecture
VirHunter architecture was defined with two main components
the first component is a multi-path neural network shown in
Figure 1, and the second component is a machine learning
classification module shown in Figure 2.

1. Neural network component. The neural network module
follows a k-mer-based approach. To alleviate a potential
difficulty related to the choice of k, VirHunter implements a
multi-model solution for k � 5, 7, and 10 (see Figure 1), with
three independent CNN models having the same architecture.

These values of k were chosen based on the accuracy of the
individual CNN networks in the family leave-out experiment
(see Supplemental Figure S1). The genomic DNA sequence
and its reverse complement for each n-size fragment are
transformed from nucleotides (in ACGTN alphabet) to an n ×
4 one-hot encoded array as presented in Data Preprocessing. A
convolution layer with leaky rectified linear unit activation
function (a � 0.1) and global max-pool and dropout layers are
then applied independently to the forward fragments and their
paired reverse-complement versions. The use of dropout layers was
introduced to alleviate the issue of overfitting. Models with k � 5, 7
have the convolution layer with 256 filters, while the model for
k � 10 has 512 filters. The two resulting vectors for the forward-
and reverse-complement fragments are then concatenated. Finally,
two dense layers are applied. The first dense layer has the number
of units equal to 256 for the paths with k � 5, 7 and 512 for the path
with k � 10. It employs a rectified linear unit activation function.
The second dense layer has three units and uses the softmax
activation function to enable three-class classification.

2. Random Forest component. The second module of the
VirHunter implements a random forest classifier (see
Figure 2) with the goal to aggregate the predictions from
three neural networks. The classifier receives nine real-valued
predictions from the multi-network module (three per network)
and outputs one of the three classes using the majority vote
implementation of random forest. The random forest classifier
was chosen over other approaches such as linear regression and
simple voting, based on performance (data not shown).

FIGURE 2 | Training of the VirHunter’s machine learning module. The individual network predictions are subsetted to contain an equal number of both poorly
predicted (prediction value for viral class < 0.8) and well-predicted (prediction value ≥ 0.8) viral fragments (with the goal to overselect poor predictions relative to their
overall frequency in order to drive the model to recognize even completely novel viruses). The random forest classifier uses these subsetted predictions for its training.
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Training
The neural network and machine learning modules were trained
separately for each of the three plant host species (peach,
grapevine, and sugar beet) and for fragment sizes n of 500
and 1,000.

The training dataset for the CNN module was built as
presented in Data Preprocessing. Training batches with size
512 were prepared in a balanced manner across the three
classes (virus, plant, and bacteria) from the training dataset
and are split into training and validation with the ratio of 9:1.
Each of the three individual networks was trained for 10 epochs,
followed by 1 epoch of training on the validation set to take into
account all the data.

For training and testing the machine learning components,
predictions for the three trained networks were obtained on
100, 000 randomly selected fragments of size n from each V
and B. Likewise, 100, 000 fragments of size n were randomly
sampled from H, following the ratio described in Data
Preprocessing. Predictions for random viral fragments were
further subsetted in the following manner. We split the test
dataset viral fragments into those having good quality
predictions (prediction value for viral class ≥ 0.8) and low-
quality predictions (prediction value < 0.8) and maintained
10, 000 randomly selected fragments from each category,
yielding 20, 000 predictions. These 20, 000 predictions were
further selected for plant host H and bacterial B fragments.
The resulting dataset with three predictions for each of 60, 000
fragments was further split in train and test datasets with 2:1 ratio,
and the machine learning module was trained with parameters
max_depth = 5, n_estimators = 10, max_features = 1, and
max_samples = 0.2.

We verified that overfitting was successfully circumvented by
the individual CNN networks that compose the neural network
component of our model by comparing the accuracy on
validation and test datasets obtained by these individual
networks trained on families in the leave-out experiment for
peach (see Supplementary Table S9). No significant difference
was observed.

Contig Classification
VirHunter trained on fragments with n � 500 was used to
classify contigs with length 750< l < 1500, while VirHunter
trained on fragments with n � 1000 was used to classify
contigs with 1500< l . Indeed, an ORF of 500 nucleotides
corresponds to an 18 kDa protein, this size covering the vast
majority of viral polymerases, movement proteins, and capsid
proteins for plant viruses. Contigs with l < 750 were
considered as very small for prediction by the smaller of the
two models and were discarded.

Each fragment of an input contig was preprocessed following
the procedure presented in Data Preprocessing. Predictions were
produced by the neural network module for each of these one-hot
encoded fragments, yielding three probabilities of belonging to a
specific class (V, H, B). These class probabilities were further
processed by the random forest component, resulting in a unique
class label for each of the fragments. Finally, given class labels for
each of the fragments of the input contig, a vote was applied to

decide to which class belongs the whole contig, viral if the number
of viral (V) fragments is greater than those from H and from B,
host if the number of host (H) fragments is greater than those
from V and from B, and bacterial otherwise.

RESULTS

VirHunter Outperforms State-of-the-Art
Tools on Family Leave-Out Datasets
VirHunter was trained on GPU (Nvidia Tesla T4) with n � 1000
for 31 family leave-out datasets and three different plant datasets
(peach, grapevine, and sugar beet), resulting in 63 leave-out
models. The test datasets were prepared by random sampling
of 30,000 fragments with n � 1000 from the corresponding left-
aside families of viral sequences, bacteria, and plant.

Classification results for the viral fragments by VirHunter
in this family leave-out experiment are shown in Figure 3 and
in Supplementary Tables S2, S3. We compared the capacity of
VirHunter to detect novel viruses in the family leave-out
setting with the BLAST-based approach on one hand and
two state-of-the-art machine learning methods,
DeepVirFinder and VirSorter2, on the other hand as also
shown in Figure 3. Briefly, each test dataset was aligned
using tBLASTx (v2.12.0), preserving one best hit with
parameters -max_target_seqs 1 -max_hsps 1, against the
respective virus database with the leave-out family removed,
and filtered by e-value < 10−10, percent identity > 0.5, and
alignment length > 50 amino acids (see results in
Supplementary Table S4) in order to emulate the
annotation workflow without manual inspection;
DeepVirFinder was trained on the same 31 leave-out
datasets but excluding bacterial fragments from the training
dataset since this method provides the possibility to have only
two class labels and using the recommended parameters (Ren
et al., 2020) on 10 CPUs Intel Xeon CPU E5-2630 v4 (see
results in Supplementary Table S5); VirSorter2 was evaluated
on each test dataset using pretrained models provided by
authors (see results in Supplementary Table S6).

Variability of correct classification was observed for viral
fragments of different left-out families for all three methods as
shown in Figure 3 (see for detailed results in Supplementary
Tables S2–S4). We have split the families into three groups
according to the lowest True Positive (TP) rate of VirHunter
across the three plant host species: 21 “easy to classify” (TP rate
> 0.7), 7 “moderately difficult to classify” (TP rate between 0.5
and 0.7), and 3 “difficult to classify” (TP rate < 0.5). VirHunter
almost systematically outperformed DeepVirFinder in terms
of TPs (virus fragments from the leave-out family classified as
being viral). In total, there are four exceptions, namely,
Reoviridae, Mayoviridae, Phycodnaviridae, and small
families, out of which Reoviridae presented a considerable
performance gap. After inspection, it appeared that
VirHunter’s false negatives for these four families mostly
corresponded to viral fragments being classified as bacteria.
This is possibly due to the fact that Mayoviridae are
bacteriophages, Reoviridae concern a very wide range of
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hosts and present characteristics of bacteriophages [likely
evolutionary relationship to the Cystovirus family of
bacteriophage (Guglielmi et al., 2006)], while the small
families contain a wide variety of viruses, and
bacteriophages are one among them (Mitoviridae). This is
to be counterbalanced by the fact that being trained only on
plant and virus sequences due to the 2-class approach,
DeepVirFinder systematically erroneously considers the
majority of bacterial fragments as being viral (see
Supplementary Table S4). As for the Phycodnaviridae
family, it contains dsDNA viruses, which could potentially
have contributed to the poorer performance of VirHunter
relatively to DeepVirFinder for two of the host species.
Altogether, VirHunter has shown consistently better
capacity to detect novel viruses than DeepVirFinder.

Of note is also the difference in time requirement for training
the VirHunter and DeepVirFinder models. On average, training a
full model for one leave-out family for one plant host required
11 h for VirHunter (three CNNs, each for both fragment sizes 500
and 1000 – 6 CNNs in total—and the random forest) and 72 h for
DeepVirFinder (four CNNs for fragment sizes 150, 300, 500,
and 1000).

Compared to both VirHunter and DeepVirFinder,
VirSorter2 has shown poorer performance in the family
leave-out setup on all the families except two. Indeed, the
TP rate was below 0.5 threshold for all families except for the
Amalgaviridiae and the Alphasatellitidae. For the former,
VirSorter outperformed DeepVirFinder, while showing

poorer results than VirHunter, while for latter it was the
best performing method together with tBLASTx (see Panel
A of Figure 3).

As shown in Figure 3, despite the reasonably permissive
filtering criteria, tBLASTx shows best results comparable with
VirHunter and for certain families exhibits particularly poor
performance relative to the two machine learning methods.
For the “easy to classify” families, the difference was mostly in
favor of VirHunter, sometimes drastically (see for example,
Nanoviridae and Genomoviridae in Panel A and the boxplot
in Panel B). In seven cases, tBLASTx outperformed
VirHunter, but this difference was mostly marginal (5.8%
difference in TP rate on average), the outlier being
Tolecusatellitidae and Tymoviridae, where the gain in favor
of tBLASTx was the strongest. For the “moderately difficult to
classify” families, VirHunter had a higher TP rate than
tBLASTx in all cases. For the three “difficult to classify”
families, even if VirHunter’s performance was globally low,
it still outperformed tBLASTx, with the notable exception of
Tospoviridae. Altogether, VirHunter has shown consistently
better results than that of tBLASTx, for which the
TP rate was frequently below the threshold 0.5 (16 families
out of 31).

As for the capacity to correctly classify bacterial fragments,
VirHunter has shown a systematically high TP rate, ranging from
0.958 to 0.983, across all the leave-out experiments. As for plant
fragments, the TP rate was also satisfactory, sugar beet TP from
0.950 to 0.961, grapevine TP from 0.983 to 0.991, and peach TP

FIGURE 3 | Detection of novel viral fragments in the family leave-out setup. Panel (A): Results for the percent of correctly classified fragments (out of 10, 000) with
length n � 1000 from the corresponding left-aside families. VirHunter results are depicted by circles, tBLASTx by stars, DeepVirFinder by triangles, and VirSorter2 by
diamonds. Black lines represent thresholds separating families into three difficulty groups for VirHunter as follows: easy to classify (minimum TP rate across the three
plants >0.7), difficult to classify (minimum TP rate <0.5), and moderately difficult to classify (minimum TP rate between 0.5 and 0.7). Panel (B): Differences in the
True Positive rate between VirHunter, DeepVirFinder (red), tBLASTx (blue), and VirSorter2 (green).
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from 0.983 to 0.989 (see columns “Bacteria” and “Plant” in
Supplementary Table S2).

Plant Fragments Are Accurately Classified
When VirHunter Is Trained on
Phylogenetically Close Plant Species
VirHunter was trained independently with n � 1000 for three
selected plants (peach, grapevine, and sugar beet) and all the
downloaded viruses and bacteria, generated as described in Data
Preprocessing, yielding three models.

We cross-evaluated VirHunter’s ability to correctly predict
fragments from the plant absent in the training by sampling
from the three studied plants, and 10, 000 random fragments
with n � 1000 were selected. Those three plant test datasets
were supplemented with two datasets with n � 1000 , sampled
randomly from all viral sequences and from bacteria,
respectively.

As previously described (see VirHunter Outperforms State-
of-the art Tools on Family Leave-out Datasets), plant fragments,
coming from the same plant that the models were trained on, are
consistently well classified for all the three models with the TP
rate ranging between 0.95 (“sugar beet”model tested on random
fragments from the sugar beet genome) and 0.99 (the “peach”
model tested on random fragments from the peach genome) as
shown in Table 1. When the plant host species used for training
the model is reasonably phylogenetically close to the one of the
test datasets, the impact on the TP rate is not very important.
For example, the “peach” model tested on random fragments
from the grapevine genome still produces the TP rate of 0.9, and
the “grapevine” model tested on peach fragments gives the TP
rate of 0.836. However, both these models generate a lower TP
rate when tested on random fragments from the more

phylogenetically distant sugar beet fragments, 0.827 and
0.781, for the “peach” and “grapevine” models, respectively.
Similarly, the “sugar beet” model performs less well for both
peach and grapevine random fragments, with TP rates of 0.854
and 0.887, respectively.

The three plants used for training models are phylogenetically
distant from one another as they belong to different families, sugar
beet belongs to theAmaranthaceae family, grapevine belongs to the
Vitaceae family, and peach to the Rosaceae family; all the three are
eudicots. Out of these three plants, sugar beet is the outlier. Peach
and grapevine belong to the Rosids higher clade, while sugar beet
belongs to the Caryophyllids higher clade. Given the phylogenetic
distance, the lower bound of 0.78 for the true positive rate between
these three plants is reasonable.

To evaluate how strongly the performance would be
affected if the host of RNAseq dataset was to be from an
even further phylogenetically removed plant (belonging to
the monocots), we trained a model on the rice (Oryza sativa)
dataset that belongs to monocots higher clade. As shown in
the Supplementary Table S7, the performance drop was
coherent with the increase of the phylogenetic distance
(TP rate was 0.766, 0.759, and 0.702 for fragments from
peach, grapevine, and sugar beet, respectively); however,
the recall remained high for both viral and bacterial
fragments. These results highlight that when the host of
the RNAseq dataset is phylogenetically highly divergent
from any of the plants used to train the available models, a
new model for a phylogenetically closer plant has to be
trained.

VirHunter Enables Classification of Long
Mutated Viral Fragments
To evaluate the potential quality of VirHunter’s predictions on
contigs’ classification, we randomly sampled 10,000 long
fragments with n ∈ [1500, 2000, 2500, 3000, 4500, 6000]
from the whole virus dataset V. Furthermore, to better
emulate contigs resulting from assembly of sequencing
reads, we applied a point mutation rate
m ∈ [0, 0.05, 0.1, 0.15, 0.2] to these long fragments.
Classification of the resulting mutated long fragments was
performed using models trained for the three plants as
described in VirHunter Enables Classification of Long-
Mutated Viral Fragments and following the procedure for
contig classification described in Contig Classification.

We observed that VirHunter generated highly accurate predictions
for long viral fragments with 0 mutations and that across different
fragment sizes (column “Mutation rate” 0 in Supplementary Table
S5). The TP rate slowly decreased with the increase of the mutation
rate: for example, the average TP rate across different fragment sizes
with the mutation rate 0.2 was 0.885 for the “peach”model, 0.924 for
the “grapevine” model, and 0.885 for the “sugar beet” model.
Moreover, these results were consistent between the three plant
host species used to build the models: the “peach” model’s TP rate
was 0.944 in average across different fragment lengths and mutation
rates, the “grapevine” models’ average TP rate was 0.960, and the
“sugar beet” model’s average TP rate was 0.936.

TABLE 1 | VirHunter results for prediction of fragments from different plants.
Classification results for three plant-specific models of 10, 000 fragments for
length 1000 randomly drawn from three plants’ reference genomes, from all viral
sequences and bacteria are shown. In bold are predictions for the expected class.

Plant
used for training

Plant
used for testing

Predicted label

Plant Virus Bacteria

Peach Peach 0.988 0.007 0.006
Grapevine 0.892 0.064 0.044
Sugar beet 0.804 0.113 0.083
Virus 0.002 0.996 0.002
Bacteria 0.005 0.017 0.978

Grapevine Peach 0.845 0.106 0.005
Grapevine 0.986 0.011 0.004
Sugar beet 0.78 0.148 0.072
Virus 0.002 0.997 0.002
Bacteria 0.007 0.021 0.973

Sugar beet Peach 0.824 0.132 0.045
Grapevine 0.878 0.087 0.035
Sugar beet 0.956 0.018 0.026
Virus 0.002 0.996 0.002
Bacteria 0.012 0.019 0.969
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VirHunter Uncovers Expected Novel and
Known Viral Contigs in Virome
The capacity of VirHunter to detect novel viral contigs from real
RNAseq-sequencing data was evaluated and compared to that of
DeepVirFinder and VirSorter2. The 12 virome RNAseq
datasets, sampled from peach, grapevine, and sugar beet (see
Supplementary Table S1) were assembled as described in
Assembly of RNAseq Datasets and Annotation of Viral
Contigs. To imitate the novel virus discovery setting, we
excluded from the virus dataset those viral species that were
annotated as present in the studied plant viromes, and models
for each plant species were trained accordingly for VirHunter
and DeepVirFinder. For example, to train the “grapevine”
model, all viral species present in samples from grapevine
(Supplementary Table S1 column “Present viruses”) were
deleted from the virus dataset. The same procedure was
carried out for training the “peach” and “sugar beet” models.
VirSorter2 pretrained models were used following the
recommendations in Guo et al. (2021).

The assembled contigs > 750 nt were analyzed by
VirHunter, DeepVirFinder, and VirSorter2 (see Table 2 and
Supplementary Table S8). Importantly, VirHunter assigned a
viral label to a lower number of contigs than DeepVirFinder in
eight out of 12 datasets (“Viral contigs #” under VirHunter and
DeepVirFinder columns). These are the contigs that have to
undergo additional manual expert analysis. To better
understand their nature, we aligned the contigs identified by
VirHunter to the BLAST NCBI nucleotide database limited to
“Viruses” taxonomic id as was performed for Assembly of
RNAseq Datasets and Annotation of Viral Contigs analysis.
Contigs getting at least one alignment with percent identity

>0.5, length >50 amino acids, and e-value < 10−10are reported
in the column “tBLASTx hits.”

Moreover, for six datasets (P1, P2, P3, G4, S2, and S3)
VirHunter and DeepVirFinder have correctly identified contigs
that were previously annotated as viral. For four datasets (G1, G2,
G3, and G6), VirHunter was able to discover additional 4, 3, 5,
and 1 contigs, respectively. However, for two cases (G5 and S1),
DeepVirFinder identified one more annotated contig relative to
VirHunter. While VirSorter2 exhibited lower overprediction
comparted to VirHunter and DeepVirFinder, its ability to
correctly identify viral contigs was low, as it detected at best
60% of the expected viral contigs.

Remember that contigs annotated by experts were all
removed from the virus dataset used for the training of
VirHunter and DeepVirFinder, V. Consequently, strictly
from the computational point of view, detection of these
contigs as being viral can thus be considered as detection of
novel viruses for those tools. Simple tBLASTx alignment of
these expertly annotated contigs against V produced variable
percent identity, which was as low as 32.4% for a contig from
the G1 grapevine dataset and as high as 99% for a contig from
the S1 sugar beet dataset (see Supplementary Table S1).
According to the classification of Stobbe and
Roossinck, (2014), discovery of these viruses could thus be
assimilated in our setup with the discovery of “novel viruses
from a known family” and potentially of “completely novel
viruses.”

Moreover, it is possible that at least some potentially novel
viruses were missed during expert annotation and that the
overprediction in columns “# detected” and “tBLASTx hits”
(e-val < 10−10) is lower in reality. Indeed, a large number of
unidentified novel viruses have been recently shown to be

TABLE 2 | Performance of VirHunter, DeepVirFinder, and VirSorter2 on 12 RNAseq virome datasets. For each of the 12 datasets shown are the number of contigs that were
annotated as being viral by experts and the number of contigs in the initial assembly with length >750. Columns “VirHunter,” “DeepVirFinder,” and “VirSorter2” show
predictions run on these contigs by each method. Columns “# detected” show the total number of contigs detected as being viral by each of the two methods, and columns
“detected ∩ annotated” indicates how many of these were previously identified by the curators. Finally, the “tBLASTx e-value < 10−10” column indicates how many of “#
detected” contigs align against viruses for VirHunter.

Dataset ID and
plant origin

#
Contig
>750

# Contig
annotated as

viral

VirHunter DeepVirFinder VirSorter2

#
detected

Detected ⋂
annotated

tBLASTx
hits

(e-val < 10−10)

#
detected

Detected ⋂
annotated

#
detected

Detected ⋂
annotated

P1 Peach 1,009 2 35 2 14 45 2 10 1
P2 Peach 415 2 19 2 10 32 2 8 1
P3 Peach 685 2 23 2 10 49 2 7 1
G1 Grapevine 9,154 10 153 10 47 133 6 52 4
G2 Grapevine 17,024 10 178 10 40 131 9 117 6
G3 Grapevine 18,750 20 208 18 59 137 17 142 11
G4 Grapevine 4,332 15 95 14 32 81 11 24 4
G5 Grapevine 19,395 25 262 23 73 302 23 144 8
G6 Grapevine 2,932 15 70 14 30 86 13 26 12
S1 Sugar

beet
6,082 11 236 10 48 335 11 28 6

S2 Sugar
beet

8,902 16 277 16 49 419 16 37 7

S3 Sugar
beet

6,912 11 203 11 51 307 11 21 4
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present in public RNAseq datasets by Edgar et al. (2021),
where the authors have identified 105 novel RNA viruses.
Finally, of note is the considerable gain of time left for expert
curation of contigs by approaches similar to that presented in
Assembly of RNAseq Datasets and Annotation of Viral
Contigs, given the numbers in the “# detected” column,
where VirHunter has shown improvement over
DeepVirFinder in eight out of 12 datasets.

DISCUSSION

High-throughput sequencing (HTS) is capable of broad virus
detection for both known and unknown viruses in a variety of
hosts and habitats. It has been successfully applied for novel virus
discovery in many agricultural crops, leading to the current drive
to apply this technology routinely for plant health diagnostics.
For this, efficient and precise methods for HTS-based virus
detection and discovery are essential.

RNA viruses are the most abundant pathogens infecting
plants. However, RNA plant virus detection using HTS
presents a number of challenges due to their genetic diversity,
lack of conserved regions across viral species, short genome
lengths, high mutation rate, and incomplete knowledge present
in reference databases. To address this challenge, we developed a
novel deep learning method, VirHunter, to detect novel and
known plant viruses in RNAseq datasets.

VirHunter is particularly well-suited for the discovery of novel
viruses as it was exemplified on 31 synthetic leave-out family
datasets, where VirHunter systematically outperformed
DeepVirFinder and VirSorter2, reference machine learning tools
for virus detection. When compared with the standard tBLASTx
approach, we have shown that for most (21 out of 31) leave-out
families, VirHunter obtained a higher TP rate. In six cases, tBLASTx
was slightly better (5.8% on average). However, there remained four
cases where we have seen a much worse performance in VirHunter
results. For these specific families, it can be noted that they are
particularly well-suited to the alignment-based virus identification,
for example, Alphasatellitidae viruses carry high sequence similarity
to Geminiviridae (which was confirmed by the majority of tBLASTx
hits).

We have shown that the 3-class classification design of
VirHunter, accounting for possible bacterial contamination,
was justified by evaluating how such contaminating contigs
would be classified. Not surprisingly, VirHunter efficiently
dealt with bacterial contamination, while DeepVirFinder
classified bacteria mostly (65%) as viruses, which should have
been “plants” if the goal is to identify viruses. We have also
demonstrated that VirHunter is also perfectly suited for the
detection of known divergent viruses, by evaluating
classification accuracy on contigs with progressively increasing
the mutation rate.

Note the fact that VirHunter is designed to be trained
separately for a specific plant host species. However,
classification of plant contigs still remained reasonable
(minimum 0.78 TP rate) when we performed a cross-
evaluation by classifying sequences coming from three

phylogenetically distant plants (peach, grapevine, and sugar
beet) by each of the three models. As expected, VirHunter
performed better, when the plants it was trained and tested on
were phylogenetically closer: grapevine and peach belong to
the same rosids higher clade resulted in better mutual
predictions, while sugar beet as an outgroup belonging to
the caryophyllids higher clade has shown a relative drop in
performance. All these three plants are eudicots (Pin 2012).
When the model was trained on an even further
phylogenetically distant plant, rice that belongs to monocots
and tested on fragments from peach, grapevine, and sugar beet,
the classification accuracy of VirHunter was expectedly lower.
Together this implies that to classify contigs from an RNAseq
experiment, using a pretrained model trained on the exact
same plant species as the host of the experimental dataset is not
mandatory, but it is preferable to use one trained on a
phylogenetically close plant, ideally from the same family
and at least belonging to the same eudicots/monocots higher
clade. A possible avenue to explore in the future work is the
feasibility of transfer learning (Eraslan et al., 2019), to enable
fast on-demand retraining for a new plant or building a
generalistic plant model.

Finally, we validated VirHunter’s capacity to detect novel
viruses on 12 newly acquired RNAseq datasets for peach,
grapevine, and sugar beet. In these datasets, VirHunter
detected at least 90% (73% for DeepVirFinder and 26% for
VirSorter2) of all expert-annotated viral contigs, and in seven
datasets it was 100%. Another contribution is the low rate of
false positives generated by VirHunter, leaving from 19 to 277
contigs depending on the dataset to be inspected by an expert.
These results indicate that VirHunter efficiently
reduces the number of contigs requiring manual expert
curation.

In conclusion, we have shown that VirHunter can be used to
streamline the analyses of plant HTS-acquired viromes and is
particularly well suited for the detection of novel viral contigs, in
RNAseq datasets.
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