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Abstract. We describe microbial growth and production of value-added chemical compounds
in a continuous bioreactor through a dynamical system and we study the local stability of the
equilibrium of interest by means of the classical Routh-Hurwitz criterion. The mathematical
model considers various biological and structural parameters related to the bioprocess (concen-
tration of substrate inflow, constants of the microchemical reactions, steady-state mass fractions
of intracellular proteins, etc.) and thus, the stability condition is given in terms of these pa-
rameters. This boils down to deciding the consistency of a system of polynomial inequalities
over the reals, which is challenging to solve from an analytical perspective, and out of reach
even for traditional computational software designed to solve such problems. We show how to
adapt classical techniques for solving polynomial systems to cope with this problem within a
few minutes by leveraging its structural properties, thus completing the stability analysis of our
model. The paper is accompanied by a Maple worksheet available online.

1. Introduction

1.1. Biological context

The dynamical system analyzed in this paper is based on previous works [31, 28, 26], and it
represents a simplified version of a bioprocess used in scientific research and in the chemical and
pharmaceutical industries for the production of value-added chemical compounds. The model
is two-fold. On one side, it considers a bacterial model representing the main cellular functions
involved in growth and chemical production: metabolism and production of proteins [8, 33, 27,
32]. On the other hand, it models a continuous bioprocess, a production scheme ocurring in a
bioreactor that allows steady-state operation for long periods of time, avoiding shutdown for
cleaning and maintenance [5]. Thus, through a multi-scale modelling approach, the biological
model aims to capture intracellular reactions, extracellular processes, and the interplay between
them [29, 30].

The principle behind continuous processing is that the bacterial culture is supplied a continu-
ous flow of fresh medium rich in nutrients, while waste products and microbial cells are removed
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at the same volumetric flow rate. This creates a constant volume inside the bioreactor and—
provided the appropriate operating conditions—a steady-state production regime. The outflow
of compounds of interest excreted by bacteria is linear in the volumetric flow, and so the process
yield can be improved through this operation parameter. However, if too large, it can lead to
washout : a undesired condition in which there is no more bacteria in the bioreactor. This usually
occurs when the rate of growth of the bacterial culture is not able to ”catch-up” with the rate of
dilution of the bioreactor. Hence, understanding the asymptotic behavior of the system becomes
crucial in successfully operating continuous bioreactors [14].

Additionally, biological models are known to be subject to non-negligible parametric uncer-
tainty [25]. This occurs not only due to the inherent complexity of microorganisms, but also
to their genetic variability: generation after generation, bacteria face genetic modifications that
can progressively deviate the mathematical model from the real system [9]. Online parameter
estimation can compensate for these issues [7], but the operation parameters should be adjusted
accordingly. In this context, computing the stability of the equilibria in terms of the internal
parameters represents an important advantage.

1.2. Reduction to polynomial system solving

In the analyzed dynamical system, the existence of the equilibrium of interest is described by
a series of strict inequalities in terms of the system parameters; and its local stability is given
by the well-known Routh-Hurwitz stability criterion [6], which yields an additional inequality.
Deciding—through an algorithmic procedure—the consistency over the real numbers of poly-
nomial systems with real coefficients is a central problem in the area of effective real algebraic
geometry. Such systems define basic semi-algebraic sets. There are two families of algorithms for
tackling such a decision problem. The very first one goes back to Hilbert’s 17-th problem which
asks whether a non-negative multivariate polynomial with real coefficients can always been writ-
ten as a sum of squares of polynomials with real coefficients. Artin [1] showed that non-negative
polynomials with real coefficients are actually sums of squares of rational fractions with real
coefficients. A central result of real algebra is the Positivstellensatz [12, 22] which exhibits the
pattern of a certificate of emptiness for a basic semi-algebraic set. Computing such certificates
is proved to be hard. A more popular approach to certify non-negativity is based on reductions
to semi-definite programming through the moment method and the so-called Lasserre hierarchy
(see e.g. [16, 13]). These approaches are convenient to assess that some polynomial (or a family
of polynomials) are non-negative while in our setting we have strict inequalities. Besides the
certificates which are returned are approximate ones since the resulting semi-definite programs
are solved numerically. Lifting them to exact certificates is also far from easy [18], especially in
our setting (which involve strict inequalities over an unbounded domain).

We then focus on another family of algorithms which are “root finding” methods that can
handle systems involving strict inequalities. These procedures will compute points in the solution
set of the polynomial system under consideration whenever there exist. When the solution set is
empty, they just return an empty list (hence, without a witness of emptiness). To ensure exact-
ness, these algorithms make use of computer algebra methods which manipulate symbolically
the input polynomials with an exact arithmetic. Within this framework, there are two families of
algorithms. The very first one, initiated by Collins [4], computes a partition of the semi-algebraic
set defined by the input into pieces which are homeomorphic to ]0, 1[i, for i ranging from 0 to
the dimension of the ambient space, and which are arranged cylindrically through repeated pro-
jections on coordinate subspaces. The computational cost of this approach is doubly exponential
in the dimension of the ambient space and polynomial in the number of input polynomials and
their maximum degree. A more modern approach, introduced in [10] and refined in [2] allows
one to compute sample points per connected components of basic semi-algebraic sets in time
which is singly exponential in the number of variables and polynomial in the number of input
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polynomials and their maximum degree. We refer the reader to [3] for the foundations of such
approaches and to [20] for more modern algorithms based on the critical point method and to
the Maple package RAGlib [19] which implements them. The two main functions which are
provided by Maple package RAGlib are HasRealSolutions and PointsPerComponents. Both
take as input polynomial systems of equations and strict inequalities with coefficients in Q. They
respectively decide if the solution set is empty (when it is not a sample point assessing the non-
emptiness is provided) and compute sample points per connected components. The polynomial
system we need to solve is out of reach to the software implementing all the aforementioned
methods. None of them was able to solve our problem within a full month of computation.

1.3. Contributions

We investigate some structural properties of the polynomial system to solve and in particular the
degree pattern of our polynomial constraints w.r.t. the involved variables. By leveraging this de-
gree pattern, we simplify significantly the first steps of the Cylindrical Algebraic Decomposition
algorithm and show that on the system we need to solve, the classical complexity growth one is
faced does not occcur. We push forward this investigation and show how to exploit even better
the degree patterns of intermediate data to find even stronger simplifications. In the end, after
those simplifications, we obtain a polynomial system with less variables which can be solved
rather easily (within a few seconds) by the RAGlib Maple package. These simplifications are
based on a careful geometric analysis of the solution set to the system we need to solve. This anal-
ysis enables us to find more compact ways to describe their projection on coordinate subspaces
thanks to the degree patterns we already mentioned. In Section 2, we recall the self-replicator
model of the bioreactor under consideration and show how using Routh-Hurwitz criterion, lead
to polynomial system solving issues. In Section 3, we describe how we leverage degree patterns
in our problem to solve our polynomial system. The last section gives more details about the
data manipulated during our computations.

2. Self-replicator model for bacterial growth

2.1. Model definition

We consider a self-replicator mathematical model representing bacterial growth [31], which is
described in this paper in a simplified manner. A more detailed description of the dynamical
system can be found in [28], with a thorough analysis of the biological principles and assumptions
behind its derivation. In the model, the bacterial culture in the bioreactor has constant volume
Vext, and is subject to an inflow of fresh medium rich in substrate. The medium is supplied at
constant volumetric flow rate F (measured in liters per hour) and with substrate concentration
sin (measured in grams per liter). The bioreactor is also subject to an outflow of same volumetric
flow rate F of bacterial culture, containing substrate, microbial cells and metabolites of interest.
The quantities in the bioreactor are given in concentrations with respect to the culture volume
Vext:

• s: the concentration of substrate, which is used by bacteria to grow and to produce the
compounds of interest.

• V: the volume of the bacterial population.

• x: the concentration of the compound of interest.
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The composition of the bacterial culture is described at the cell level as in [33], and thus the
quantities are mass fractions of the total bacterial volume:

• p: mass fraction of precursor metabolites, used to produce biomass and the compound
of interest.

• r: mass fraction of proteins of the gene expression machinery, responsible for the pro-
duction of biomass.

• m: mass fraction of proteins of the metabolic machinery, responsible for the uptake of
substrate from the medium, and the production of compounds of interest.

As, in nature, the precursor metabolites p occupy a negligible fraction of the cell, the cellular
mass is assumed to be described by m and r, such that m+ r = 1. The system can be externally
controlled through two essential parameters:

• u ∈ [0, 1]: the allocation control, which decides whether the precursors are being used to
produce proteins r or m. In nature, the allocation of resources is governed by natural
mechanisms optimized by evolution. In biotechnological processes, this parameter can be
controlled through biosynthetic methods able to affect the expression of RNA polymerase
[11, 15]. As this paper focuses on the steady-state behavior of the system, u is a constant
parameter.

• D > 0: the dilution rate (defined as the ratio of in-flow rate to culture volume F/Vext).
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Figure 1. Extended coarse-grained self replicator model [33].
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The dynamical model is

ṡ = D(sin − s)− vM (s,m)
V
Vext

,

ṗ = vM (s,m)− vR(p, r)− vX(p,m)− µ(p, r)p,

ṙ = u vR(p, r)− µ(p, r)r,

ṁ = (1− u) vR(p, r)− µ(p, r)m,

ẋ = vX(p,m)
V
Vext

−Dx,

V̇ = (µ(p, r)−D)V.

(Soriginal)

The functions vM , vR and vX are defined according to Michaelis-Menten kinetics [17], and linear
in the concentrations m and r [21], such that

vM (s,m)
.
= k2m

s

K2 + s
,

µ(p, r) = vR(p, r)
.
= r

p

K + p
,

vX(p,m)
.
= k1m

p

K1 + p
.

(2.1)

As the system is analyzed in a steady-state regime, the control is fixed to a constant parameter
u = u∗. Thus, the set of parameters is defined as θ

.
= (K, k1,K1, k2,K2, u

∗, D), which is subject
to the constraints

K > 0, k1 > 0, K1 > 0, k2 > 0, K2 > 0, 1 ≥ u∗ ≥ 0, D > 0. (2.2)

Using m + r = 1, we can express m = 1 − r, and thus remove m from the dynamical model.
Additionally, by analyzing the dynamics of the quantities s+(p+1)V+x and s+(p+r/u∗)V+x,
we can see that they both tend asymptotically to the constant value sin when t → ∞. Thus,
the ω-limit set (i.e. the set of points that can be limit of subtrajectories of the system) is
characterized as follows.

Proposition 2.1. The ω-limit set of any solution of system (Soriginal) lies in the hyperplane

Ω1
.
=
{

(s, p, r, x,V) ∈ R5 : s+ (p+ 1)V + x = sin
}
. (2.3)

Moreover, under a constant allocation control u(t) ≡ u, this is also true for the hyperplane

Ω2
.
=
{

(s, p, r, x,V) ∈ R5 : s+
(
p+

r

u∗

)
V + x = sin

}
, (2.4)

for u∗ 6= 0.

The latter implies that, for every trajectory, r converges to u∗ asymptotically, and x can be
expressed in terms of the remaining states as

x = sin − s− (p+ 1)V. (2.5)

The case u∗ = 0 is excluded from the study for its triviality, as it is rather simple to analyze.
Indeed, for this case, the hyperplane s+ (p+m/(1− u∗))V + x = sin can be used for a similar
study. Without loss of generality, a change of variables can be made that allows to omit the

5



A.G. Yabo, M. Safey El Din, J.-B. Caillau, & J.-L. Gouzé

constants sin and Vext from the model. Thus, the asymptotic behavior of the original system
(Soriginal) can be studied through its limiting system given by

ṡ = D(1− s)− vM (s, 1− u∗)V,

ṗ = vM (s, 1− u∗)− vX(p, 1− u∗)− (p+ 1)vR(p, u∗),

V̇ = (vR(p, u∗)−D)V,

(S)

In order to ensure that the original system (Soriginal) converges to the equilibria of the liming
system (S), an additional analysis is required. The reader can refer to [28] for an application of
the theory of asymptotically autonomous systems [24].

2.2. Stability of the equilibrium of interest

In (S), there is a single equilibrium of interest (s∗, p∗,V∗), as the other existing equilibrium
(usually referred to as the washout equilibrium) is characterized by having V∗ = 0, which does

not allow for bacterial growth and metabolite production. By solving ṡ = ṗ = V̇ = 0, we obtain
the steady-state values in terms of the system parameters θ.

Proposition 2.2. The equilibrium of interest is

p∗(θ) =
DK

u∗ −D

s∗(θ) = K2

k1(1− u∗) p∗(θ)
K1+p∗(θ)

− (p∗(θ) + 1)u∗ p∗(θ)
K+p∗(θ)

k2(1− u∗)− k1(1− u∗) p∗(θ)
K1+p∗(θ)

− (p∗(θ) + 1)u∗ p∗(θ)
K+p∗(θ)

V∗(θ) =
D(1− s∗(θ))(K2 + s∗(θ))

k2(1− u∗)s∗(θ)

(2.6)

As the variables represent concentrations and biomass, they are non-negative quantities. Thus,
additional inequalities are required for the existence of the equilibrium, which can be obtained
by enforcing (s∗, p∗,V∗) > 0:

1 > u∗ > D, 1 > s∗(θ) > 0. (2.7)

The steady state is thus determined by 7 variables. In order to study the local stability of the
equilibrium, we compute the eigenvalues over C of the Jacobian matrix

−D − ∂
∂s∗ vM (s∗, 1− u∗)V∗ 0 −vM (s∗, 1− u∗)
∂
∂s∗ vM (s∗, 1− u∗)

∂
∂p∗ vX(p∗, 1− u∗)− vR(p∗, u∗)

− ∂
∂p∗ vR(p∗, u∗)(p∗ + 1)

0

0 ∂
∂p∗ vR(p∗, u∗)V∗ 0

 (2.8)

and check whether their real part is negative. The characteristic polynomial is

P (λ) =
V∗k22s∗(u∗ − 1)2u∗

(
p∗

K+p∗ − 1
)(

s∗

K2+s∗
− 1
)

(K + p∗)(K2 + s∗)2
(2.9)

+

−(p∗ + 1)u∗
(

p∗

K+p∗ − 1
)

K + p∗
+
k1(u

∗ − 1)
(

p∗

K1+p∗
− 1
)

K1 + p∗
+ λ+D

V∗k2(u∗ − 1)
(

s∗

K2+s∗
− 1
)

(K2 + s∗)
+D + λ

λ.
(2.10)
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Defining

φ1(θ) =
V∗k22s∗(u∗ − 1)2u∗

(
p∗

K+p∗ − 1
)(

s∗

K2+s∗
− 1
)

(K + p∗)(K2 + s∗)2
, φ2(θ) = −

(p∗ + 1)u∗
(

p∗

K+p∗ − 1
)

K + p∗
,

φ3(θ) =
k1(u

∗ − 1)
(

p∗

K1+p∗
− 1
)

K1 + p∗
, φ4(θ) =

V∗k2(u∗ − 1)
(

s∗

K2+s∗
− 1
)

(K2 + s∗)
,

(2.11)

that satisfy φi(θ) > 0 for i ∈ {1, . . . , 4}, we see that the characteristic polynomial can be
expressed as

P (λ) = φ1 + (φ2 + φ3 + λ+D)(φ4 +D + λ)λ (2.12)

= λ3 + (2D + φ2 + φ3 + φ4)λ
2 (2.13)

+
(
D2 +Dφ2 +Dφ3 +Dφ4 + φ2φ4 + φ3φ4

)
λ+ φ1. (2.14)

The Routh-Hurwitz criteria for degree-three polynomials states that the roots of a degree-three
polynomial λ3 + α2λ

2 + α1λ+ α0 belong to the open left complex plane if and only if

α2 > 0, α0 > 0 and α1α2 > α0.

For (2.14), since all φi’s are positive, the stability criteria reads

(2D + φ2 + φ3 + φ4)
(
D2 +Dφ2 +Dφ3 +Dφ4 + φ2φ4 + φ3φ4

)
− φ1 > 0. (2.15)

In order to prove the latter, we can prove that no state-parameter combination satisfies the
negation of the condition,

(2D + φ2 + φ3 + φ4)
(
D2 +Dφ2 +Dφ3 +Dφ4 + φ2φ4 + φ3φ4

)
− φ1≤0. (POL)

Ultimately, the stability of the steady state of interest can be computed by showing that the set
of solutions of this system in terms of θ ∈ R7 is empty. We performed an exhaustive numerical
exploration—by fixing the parameters θ to random values satisfying the constraints—that failed
to find regions of unstability, suggesting that (POL) has no solution, and thus the equilibrium
of interest is stable. Routh-Hurwitz criterion reduces the study of the local stability of an equi-
librium to an algebraic problem. In some cases, depending on the complexity of the dynamical
system (such as its dimension and non-linearity), such a problem may be solved analytically.
The difficulty in our case stems from the large number of non-zero coefficients of the right-hand
side of (POL) in the standard monomial basis. Using the tailored computer algebra methods
described in the next section allows us to obtain the local stability of the family of equilibria of
interest:

Theorem 2.3. On a dense subset of the set of admissible parameters θ = (K, k1,K1, k2,K2, u
∗, D),

the equilibrium (s∗(θ), p∗(θ),V∗(θ)) is locally stable.

The Maple worksheet used to prove the result is available online 1 as a companion notebook of
the current paper. It makes an intensive use of the RAGlib package.

3. Computer algebra analysis of stability

Instead of solving the system of inequalities w.r.t. (s∗, p∗,V∗), we parametrize both the con-
straints and the equation (POL) in terms of (K, k1,V∗), where K, k1 and V∗ can be obtained

1See ct.gitlabpages.inria.fr/gallery/stability/stability.html
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by solving ṡ = ṗ = V̇ = 0, as done in (2.6). Additionally, we define

K ′1 = K1 + p∗, K ′2 = K2 + s∗ (3.1)

and thus, the new set of variables becomes θ′ = (s∗, p∗,K ′1 − p∗, k2,K ′2 − s∗, u∗, D) ∈ R7, and
the resulting system of inequalities become

K > 0, k1 > 0, K ′1 − p∗ > 0, k2 > 0, K ′2 − s∗ > 0,

1 > u∗ > D > 0, 1 > s∗ > 0, and C < 0. (3.2)

where C is a polynomial of total degree 13 involving the above 7 variables, whose number of
non-zero coefficients in the standard monomial basis is 164. To determine the stability of the
system, one needs to decide whether this system of polynomial inequalities is inconsistent, i.e.
whether the set of solutions of this system in R7 is empty or not. The rest of the section is
devoted to proving the following result, from which Theorem 2.3 proceeds.

Proposition 3.1. The semi-algebraic set defined by (3.2) is empty.

As a consequence, for any admissible values of the parameters in the dense subset defined by
C < 0, all equilibria of the dynamical system are locally stable, which is Theorem 2.3. Feeding
HasRealSolutions with the above system (3.2) without further simplification does not allow
to obtain a solution in reasonable time.2 The crucial observation to obtain a computationally
tractable proof of Proposition 3.1 is related to the degree pattern of the input system. In-
deed, observe that the system (3.2) involves 12 polynomial inequalities in the polynomial ring
Q[s∗, p∗,K ′1, k2,K

′
2, u
∗, D] but only two of them have positive degree in K ′1. In other words,

amongst the 13 inequalities, 10 lie actually in Q[s∗, p∗, k2,K
′
2, u
∗, D]. This gives rise to the fol-

lowing idea: one may reduce our initial problem (deciding the consistency of the system (3.2)) to
the study of some semi-algebraic set defined by polynomial inequalities in Q[s∗, p∗, k2,K

′
2, u
∗, D].

Hence, we are in the process of eliminating the variable K ′1 from (3.2), that is computing
polynomial inequalities that would define the projection of the solution set to (3.2) on the
(s∗, p∗, k2,K

′
2, u
∗, D) coordinate space. A key tool for algebraic elimination is the resultant of

two univariate polynomials, which we now recall.
Let f and g be two polynomials in R[x] where R is a ring of respective degree p and q. The

resultant associated to (f, g) is the determinant of the Sylvester matrix which is the one obtained
by stacking on each row the coefficients of the polynomials xif and xjg for 0 ≤ i ≤ q − 1 and
0 ≤ j ≤ p − 1 (see e.g. [3, Chapter 4]). This resultant is 0 if and only if f and g have a gcd
of positive degree. The discriminant of a polynomial f is the resultant of f and its derivative
∂f
∂x divided by an appropriate power of the leading coefficient of f (see e.g. [3, Chapter 4]).
When dealing with polynomials f and g in Q[x1, . . . , xn], one can see them as polynomials
in Q[x1, . . . , xn−1][xn]. The resultant (resp. discriminant) associated to (f, g) (resp. f) is then
denoted by resultant(f, g, xn) (resp. discriminant(f, xn)). Note that they lie in Q[x1, . . . , xn−1] (as
does the leading coefficient of f w.r.t. xn which we denote by lc(f, xn)). These are the tools we
use to describe the projection on a subspace of coordinates of a semi-algebraic set. This process
is the one which is used by the Cylindrical Algebraic Decomposition algorithm and its so-called
“open” Cylindrical Algebraic Decomposition which applies to systems of strict inequalities [23].
Let now f1, . . . , fs be polynomials in Q[x1, . . . , xn] and let S ⊂ Rn be the semi-algebraic set
defined by

f1 > 0, . . . , fs > 0 (3.3)

with fi ∈ Q[x1, . . . , xn−1] for 1 ≤ i ≤ t and deg(fj , xn) > 0 for all t+1 ≤ j ≤ s. Note that since S
is open for the Euclidean topology, whenever it is not empty, its projection on the (x1, . . . , xn−1)

2Computation not terminated after one month on an Intel(R) Xeon(R) Gold 6244 CPU @ 3.60GHz with 1.5 To
of RAM.
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coordinate space is open too. Let S′ be the semi-algebraic set defined by

fi > 0 for 1 ≤ i ≤ t, and

resultant(fi, fj , xn) 6= 0, discrim(fi, xn) 6= 0,

lc(fi, xn) 6= 0 for t+ 1 ≤ i ≤ j ≤ s.
(3.4)

By [23], there exist connected components C1, . . . , C` of S′ such that C1∪· · ·∪C` is semi-algebraic
and dense in the projection of S on the (x1, . . . , xn−1) coordinate space. We call OpenCAD, the
operator which, given the polynomial system f1 > 0, . . . , fs > 0 and the variable xn as inputs,
computes the polynomial system (3.4). Hence, in order to decide the consistency over the reals
of the system of inequalities (3.3), it suffices to

(a) compute from it the system of polynomial inequations and inequalities (3.4) using
OpenCAD;

(b) compute at least one sample point per connected component in the semi-algebraic set S′

defined by (3.4) – this is what the command PointsPerComponents from the RAGlib
package is designed for;

(c) letting α1, . . . , αr be those sample points, solve the univariate system of polynomial
inequalities

f1(αi, xn) > 0, . . . , ft(αi, xn) > 0.

If the system is not consistent over the reals then one can conclude that S is empty (in
other words, the system (3.3) is not consistent over the reals).

Launching this computation on system (3.2) is still not computationally tractable. To further
reduce computations, we rely on the following property of the system, which can easily be
checked on the Maple worksheet attached with the paper.

Lemma 3.2. In system (3.2), only two polynomials have positive degree in K ′1: one has degree
2 in K ′1, and the other one has degree 1 in K ′1.

We assume from now on that deg(fs, xn) = 2 (so fs has real roots if and only if its discriminant
is non-negative) and deg(fi, xn) = 1 for t+ 1 ≤ i ≤ s− 1. We let C be a connected component
of S′ that is contained in the projection of S on the (x1, . . . , xn−1) coordinate space. In other
words, for any α ∈ C ⊂ Rn−1, there exists ϑ ∈ R such that fi(α, ϑ) > 0 for t + 1 ≤ i ≤ s. By
definition of S′, the discriminant of fs does not vanish over C. We then consider the two possible
cases:

• when discrim(fs, xn) is negative over C, for any α ∈ C, fs(α, xn) has no real root and is
then positive;

• when discrim(fs, xn) is positive over C, for any α ∈ C, fs(α, xn) has exactly two real
roots with multiplicity one and there exists ϑ such that fs(α, ϑ) is positive.

Note that the leading coefficient of fs did not play any role in the above observations. This leads
us to consider the semi-algebraic set S′′ which is defined by

fi > 0 for 1 ≤ i ≤ t, and

resultant(fi, fj , xn) 6= 0, discrim(fi, xn) 6= 0,

lc(fi, xn) 6= 0 for t+ 1 ≤ i ≤ j ≤ s− 1.

(3.5)

Note also that the only difference is that we do not consider the leading coefficient of fs any-
more. The connected components of S′′ are unions of some connected components of S′ and
some connected components of the intersection of S′ with the vanishing set of lc(fs). More-
over, by definition of S′′, over any connected component C of S′′, the discriminant polynomial
discrim(fs, xn) is sign invariant.
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Proposition 3.3. Assume that the semi-algebraic set S in non-empty. Then, there exists a
connected component C of S′′ such that any α ∈ C which does not cancel lc(fs, xn) lies in the
projection of S on the (x1, . . . , xn−1) coordinate space.

Proof. Consider the semi-algebraic set defined by f1 > 0, . . . , fs−1 > 0. Running the algorithm
OpenCAD([f1, . . . , fs−1], xn) builds a polynomial system which is the same as system (3.4) without
the constraints discrim(fs, xn) 6= 0 and resultant(fi, fs, xn) 6= 0 for 1 ≤ i ≤ s − 1. Let C be a
connected component of S′′. By [23], there exist finitely many continuous semi-algebraic maps
(i.e. maps whose graphs are semi-algebraic sets) ξ1, . . . , ξk from C to R such that the cylinder
C × R is the disjoint union of cells defined as

• either the graph of one of the map ξi for 1 ≤ i ≤ k,

• or a band of the cylinder

Bi = {(α, ϑ) | α ∈ C and ξi(α) < ϑ < ξi+1(α)}
for 0 ≤ i ≤ k with ξ0 = −∞ and ξk+1 = +∞ by convention,

over which the polynomials f1, . . . , fs−1 are sign invariant (because the system output by OpenCAD([f1, . . . , fs−1], xn)
is contained in (3.4), and then defines a dense open semi-algberaic of S′′). Note that, geomet-
rically (see [23]), for α ∈ C, ξ1(α), . . . , ξk(α) is the ordered sequence of roots of the univariate
polynomials ft+1(α, xn), . . . , fs−1(α, xn). Assume now that C has a non-empty intersection with
the projection of S on the (x1, . . . , xn−1) subspace of coordinates (note that if S is non-empty,
there exists such a connected component C of S′′ since S and S′′ are both open for the Eu-
clidean topology). Let α be in this intersection such that lc(fs) does not vanish at α (such a
point α exists because C is open for the Euclidean topology as well as the projection of S and
the solution set to lc(fs, xn) 6= 0). In other words, there exists ϑ such that

f1(α, ϑ) > 0, . . . , fs(α, ϑ) > 0.

Let Bi be the band which contains (α, ϑ). Consider now α′ ∈ C and assume that lc(fs, xn)(α′) 6=
0. We need to prove that there exists ϑ′ ∈ R such that (α′, ϑ′) ∈ S. Note that, by the sign
invariance property over the band Bi of f1, . . . , fs−1, we already know that there exists ϑ′ such
that fj(α

′, ϑ′) > 0 for 1 ≤ j ≤ s− 1. Hence, what is missing is a control on the sign of fs.

Lemma 3.4. Assume that there exists a continuous semi-algebraic path γ : [0, 1]→ C such that
γ(0) = α and γ(1) = α′ such that for any v ∈ [0, 1], lc(fs, xn) does not vanish at γ(v), with α in
the projection of S on the (x1, . . . , xn−1) coordinate space. Then, for any v ∈ [0, 1], γ(v) lies in
the projection of S on the (x1, . . . , xn)-space.

Proof. Note that for any v ∈ [0, 1], and any ξi(γ(v)) < ϑv < ξi+1(γ(v)), the following holds:

f1(γ(v), ϑv) > 0, . . . , fs−1(γ(v), ϑv) > 0.

Recall also that, by definition of S′′, the discriminant discrim(fs, xn) is sign invariant over C. If
it is negative, then for any v ∈ [0, 1], fs(γ(v), xn) has no root in R (because we have assumed
that lc(fs, xn) does not vanish at γ(v)). Since, by construction, fs(γ(0), xn) is positive over R,
we deduce that for any v ∈ [0, 1], fs(γ(0), xn) is positive over R (else, by continuity of γ, there
would exist some v′ such that fs(γ(v′), xn) has some real root while lc(fs, xn) does not vanish
at γ(v′), which would contradict our assumption of the negativity of discrim(fs, xn) over C).
Assume now that discrim(fs, xn) is positive over C. As above, we need to prove that for any
v ∈ [0, 1], there exists ϑv ∈ Bi such that fs(γ(v), ϑv) > 0. We start with v = 0. We already know
by construction that there exists ξi(γ(0)) < ϑ < ξi+1(γ(0)) such that fs(γ(0), ϑ) > 0. Assume
by contradiction that there exists v′ ∈ [0, 1] such that for any ξi(γ(v′)) < ϑ′ < ξi+1(γ(v′)), it
holds that fs(γ(v′), ϑ′) ≤ 0. By continuity of γ, the set of such reals v′ is closed in [0, 1]. We
let v′min be the smallest element of this set. By continuity of the ξi’s we deduce that either
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fs(γ(v′min), ξi(γ(v′min))) = 0 or fs(γ(v′min), ξi+1(γ(v′min))) = 0. Recall that there exists some
t + 1 ≤ j ≤ s − 1 such that ξi maps α ∈ C to the r-th root of fj . In other words, the gcd of
fs(γ(v′min), xn) and fj(γ(v′min), xn) has degree ≥ 1. This implies that for some j, the resultant
polynomial resultant(fj , fs, xn) vanishes at γ(v′min). This is a contradiction since C is a connected
component of S′′, defined by (3.4) which contains the constraint resultant(fj , fs, xn) 6= 0. This
ends the proof of the above lemma. �

Assume now that any continuous semi-algebraic path in C linking α to α′ meets the vanishing
set of lc(fs, xn). Note that since the vanishing set of lc(fs, xn) has dimension at most n− 1, one
takes a continuous semi-algebraic path linking α to α′ whose intersection with the vanishing set
of lc(fs, xn) is finite.

γ(0) = α, γ(1) = α′ and ]{v ∈ [0, 1] | lc(fs, xn)(γ(t)) = 0} <∞ (3.6)

Hence, there exist {v1, . . . , vN} ⊂ [0, 1] such that

{v1, . . . , vN} = {v ∈ [0, 1] | lc(fs, xn)(γ(t)) = 0}

and we define v0 = 0 and vN+1 = 1. We let γj be the semi-algebraic continuous path v ∈
]vj , vj+1[→ γ(v) for 0 ≤ j ≤ N . We are going to apply the next lemma to each path γj .

Lemma 3.5. Let γ : [0, 1]→ C be a semi-algebraic continuous map such that

• for all v ∈ [0, 1[, lc(fs, xn) does not vanish at γ(v) but does at γ(1);

• γ(0) lies in the projection of S on the (x1, . . . , xn−1) coordinate space.

Then, for all v ∈ [0, 1], γ(v) also lies in the projection of S on the (x1, . . . , xn−1) coordinate
space.

Proof. Applying Lemma 3.4, we deduce that for any w ∈]0, 1[, γ(w) lies in the projection of S
on the (x1, . . . , xn−1) coordinate subspace. Recall that, by construction, for any w ∈]0, 1[, there
exists ϑw in the band Bi (i.e. ξi(γ(w)) < ϑw < ξi+1(γ(w))) such that

ft+1(γ(w), ϑw) > 0, . . . , fs−1(γ(w), ϑw) > 0, fs(γ(w), ϑw) > 0

and that for ξi(γ(w)) < ϑ < ξi+1(γ(w)), the following holds

ft+1(γ(w), ϑ) > 0, . . . , fs−1(γ(w), ϑ) > 0, fs(γ(w), ϑ) > 0.

By continuity of γ, the equality γ(1) = limw→1(γ(w)) holds. We are going to prove that
γ(1) lies in the projection of S on the (x1, . . . , xn−1) coordinate subspace. By assumption,
lc(fs, xn) vanishes at γ(1). Note that, by definition of the discriminant of a quadratic poly-
nomial, this implies that discrim(fs, xn) is positive at γ(1). Also, discrim(fs, xn) is sign invariant
over γ([0, 1]) (since the inequation constraint discrim(fs, xn) 6= 0 is part of the polynomial system
(3.4)). Hence, we can deduce that discrim(fs, xn) is positive γ([0, 1]). Recall that we established
that, for all w ∈]0, 1[, γ(w) lies in the projection of S on the (x1, . . . , xn−1) coordinate space.
Hence, for w ∈]0, 1[, the univariate polynomial fs(γ(w), xn) has two real roots – let us de-
note them by ρ1(γ(w)) and ρ2(γ(w)) – and the locus where it is positive meets the interval
]ξi(γ(w)), ξi+1(γ(w))[. Assume by contradiction that γ(1) does not lie in the projection of S
on the (x1, . . . , xn−1) coordinate space. Then, by continuity of γ, ξi, ξi+1 and the two roots ρ1
and ρ2 of fs(γ(.), xn) we deduce that one of the two roots ρ1(γ(1)), or ρ2(γ(1)) coincides with
either ξi(γ(1)) or ξi+1(γ(1)). By definition of the ξi’s, this implies that the resultant polynomial
resultant(fr, fs, xn) (for t + 1 ≤ r ≤ s − 1) vanishes at γ(1). This is a contradiction since this
resultant polynomial cannot vanish over γ([0, 1]) (by definition of S′′). Hence we deduce that
γ(1) lies in the projection of S on the (x1, . . . , xn−1) coordinate space as requested. �
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We eventually apply inductively Lemmas 3.4 and 3.5 to the semi-algebraic continuous paths
γj (up to translating and scaling [vj , vj+1] to [0, 1]). We deduce that γj([vj , vj+1]) lies in the
projection of S on the (x1, . . . , xn−1) coordinate space for 0 ≤ j ≤ N . We then deduce that
γ(1) = α′ lies in this projection, which ends the proof of Proposition 3.3. �

Denoting ModifiedOpenCAD a procedure which takes as input f1, . . . , fs as above and returns
the system of polynomial constraints as in (3.4). By Proposition 3.3, it suffices to compute
sample points α1, . . . , α` per connected components of the semi-algebraic set defined by (3.4) at
which lc(fs, xn) do not vanish – recall that doing so is the purpose of the PointsPerComponents

command of RAGlib – and decide the univariate system of polynomial inequalities

ft+1(αi, xn) > 0, . . . , fs(αi, xn) > 0

has real solutions (which is easily done with real root isolation algorithms). Running this com-
putation does not provide any result in a reasonable time, even when one takes advantage of
special simplifications which we make explicit in the next section. However, note that one can
apply OpenCAD to (3.4) which provides a new system of polynomial inequalities/inequations.
Computing sample points per connected components for the semi-algebraic set defined by this
new system is done within a minute on a standard laptop with PointsPerComponents (when
exploiting some simplifications which we make explicit in the next section). Next, one can “lift”
those points by instantiating x1, . . . , xn−2 in (3.4) and solve the obtained univariate polyno-
mial systems of constraints. This will provide sample points per connected components of the
semi-algebraic set defined by (3.4), which can be lifted as sketched above and finally solve our
decision problem. These latter steps take a few second. All in all, these computations prove that
the semi-algebraic set defined by (3.2) is empty, which is Proposition 3.1.
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