
HAL Id: hal-03671309
https://hal.science/hal-03671309v1

Submitted on 18 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ADAPTIVE SUBSAMPLING OF MULTIDOMAIN
SIGNALS WITH PRODUCT GRAPHS

Théo Gnassounou, Pierre Humbert, Laurent Oudre

To cite this version:
Théo Gnassounou, Pierre Humbert, Laurent Oudre. ADAPTIVE SUBSAMPLING OF MUL-
TIDOMAIN SIGNALS WITH PRODUCT GRAPHS. IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP) 2021, Jun 2021, Toronto, France. pp.5295-5299,
�10.1109/ICASSP39728.2021.9413459�. �hal-03671309�

https://hal.science/hal-03671309v1
https://hal.archives-ouvertes.fr


ADAPTIVE SUBSAMPLING OF MULTIDOMAIN SIGNALS
WITH PRODUCT GRAPHS
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ABSTRACT

In this paper, we propose an adaptive subsampling method for mul-
tidomain signals based on the constrained learning of a product
graph. Given an input multidomain signal, we search for a product
graph on which the signal is bandlimited, i.e. have limited spectral
occupancy. The subsampling procedure described in this article
is composed of two successive steps. First, we use the input data
to learn a graph that will be optimized to favor efficient sampling.
Then, we derive an algorithm for choosing the best nodes and pro-
vide a sampling strategy for multidomain signals. Experiments on
synthetic data and two real datasets show the efficiency of the pro-
posed method and its relevance for multidomain data compression
and storing.

Index Terms— Graph signal processing, graph product, sub-
sampling, graph learning, Laplacian matrix estimation

1. INTRODUCTION

In standard signal processing, the sampling theory states that a ban-
dlimited signal sampled above its Nyquist rate can be perfectly re-
constructed. This important property is at the cornerstone of the
sampling of Euclidean signals. However, when signals are defined
over a more complex domain, the design of adaptive sampling strate-
gies is still an active topic of interest. In order to deal with signals
residing on irregular domains, Graph Signal Processing (GSP) [1, 2]
has emerged as a powerful alternative to standard approaches. In this
formalism, the graph defines a support, and the signals, now called
graph signals, are defined on this support. This allows to capture the
structure on which a signal evolves, hence providing more informa-
tion than considering the signal alone. By generalizing concepts and
tools of signal processing to signals recorded over graphs, GSP has
proven its success in many tasks such as filtering [3], reconstruction
[4], and sampling [5].

For the later, one idea proposed in the univariate case is to recon-
struct a graph signal from its measurement at some nodes by taking
advantage of its underlying graph. This approach known as graph
sampling set selection (or subset sampling) is now well investigated
[6, 7, 8]. For instance, (in the noiseless setting) assuming that the
graph signal is bandlimited one can show that a random selection of
a reasonable number of samples/nodes is sufficient to enjoy a perfect
reconstruction with a high probability [9]. Unfortunately, there exist
some major limitations of such methods.

First, to date, most articles have focused on univariate signals.
However, recent publications in GSP have argued the need for mul-
tidomain graph signal processing that allows to deal with tensor data
instead or vector data [10, 11]. Indeed, in several application con-
texts such as sensor networks, data streams are recorded as multi-
variate time series that evolve on a network, thus defining at least

three domains: space, time and dimension. Second, these meth-
ods are mostly based on the computation of the first eigenvectors
of the Laplacian. This step is computationally prohibitive for large
graphs. Third, as in many computational tasks such as spectral clus-
tering, and semi-supervised learning, the availability of the under-
lying graph is a core assumption. However, in most situations, no
natural graph can be derived or defined and this graph must be in-
ferred from the available data.

In this paper, we propose to address these issues in order to
provide an efficient adaptive subsampling method for multidomain
signals. Our approach extensively relies on tensor algebra to take
into account the multidomain property of signals. To circumvent
the complexity problem, we exploit the product structure of large
graphs by factorizing them as the product graph of smaller graphs.
This is a standard technique used to lower the complexity of GSP
algorithms [12, 13]. The adaptive property of our subsampling pro-
cedure is based on a graph learning step that will search for a graph
on which the signals can be efficiently sampled. As this graph learn-
ing problem is inherently an ill-posed problem, most state-of-the-art
approaches use additional constraints such as smoothness (minimal
signal variability between adjacent nodes) in order to retrieve an ad-
equate graph [14, 15]. In the context of adaptive sampling, which is
the core of this article, a less-studied constraint naturally emerges:
the bandlimitness [16, 17, 18]. Indeed, Graph Fourier Transform
(GFT) theory insures that if a graph signal if K-bandlimited (i.e.
has only K non null spectral coefficients), then a perfect recovery is
possible from its values on only K well-chosen nodes [6]. In order
to take advantage of this property, we will seek for a graph where
the signals have a sparse spectral representation, which will in turn
ensure that the signals will be easy to sample efficiently.

2. BACKGROUND

We now introduce the notations of this paper on tensor algebra and
graph product (see [19, 20] for more complete introductions).

Tensor algebra. For d1, d2, . . . , dP ∈ N+, let denote a tensor
of order P by Y ∈ Rd1×d2×...×dP . This tensor can be seen as a
discretized multidomain signal with each of its entries indexed over
P domains. The matrix Y(m) in Rdm×(d1...dm−1·dm+1...dP ) repre-
sents the tensor Y unfolded along the dimension m . The mode-m
matrix product between a matrix X ∈ Rj×dm and Y is defined as
Y ×m X ⇐⇒ XY(m). The operator ⊗ represent the Kronecker
product. When multiple products are necessary, we use upper ver-
sion of the notations.

Graph notations. Throughout the paper, let consider a weighted
and undirected graph G = (V, E), where V is a set of N nodes and
E is a set of edges. The combinatorial Laplacian matrix of this graph
is a N by N matrix defined as L = D −W , where D is the
degree matrix and W the weight matrix. Since G is an undirected



graph, L is a symmetric and positive semi-definite matrix verifying
L = XΛXT with Λ the diagonal matrix of non-negative eigen-
values of L and X the matrix of the corresponding eigenvectors
as columns. Assuming that G has one connected component, L
has λ1 = 0 for first eigenvalue associated with the eigenvectors
X:,1 = 1N/

√
N with 1N the unitary vector of size N . The space

of such Laplacian matrices is given by:

L = {L ∈ SN+ | L1N = 0N , Lij = Lji ≥ 0, ∀i 6= j} , (1)

where SN+ is the set of real, symmetric and positive semi-definite
matrices of size N ×N .

Graph Signal Processing. A graph signal is a function y :
V → RN assigning a scalar value to each node of a graph G. This
function can be represented as a vector y ∈ RN , where yi is the
function value at the i-th node. The eigenvectors of the Laplacian of
G provide a Fourier-like basis for graph signals, allowing to decom-
pose any signal into its spectral components. From this formalism,
the Graph Fourier Transform (GFT) of y is defined by h = XT y.
A K-bandlimited graph signal is thus a signal for which hi 6= 0 in
K entries [1, 2].

Cartesian graph product. Consider two weighted and undi-
rected graphs G1 = (V1, E1) and G2 = (V2, E2) with N1 and N2

nodes. According to the foregoing there are L1 = X2Λ1X
T
1 and

L2 = X2Λ2X
T
2. A graph G is said to be a Cartesian graph when

it is the result of the Cartesian product between G1 and G2. The
Laplacian matrix of G is then given by:

L = (X1 ⊗X2)(Λ1 ⊕Λ2)(XT
1 ⊗XT

2) , (2)

where ⊕ denotes the Kronecker sum i.e. for A ∈ RN1×N1 and
B ∈ RN2×N2 , A ⊕ B = I2 ⊗ A + B ⊗ I1 with In the identity
matrix of size Nn.

The notion of GFT and K-bandlimitedness can be extended in
this multidomain context. The multidomain GFT of a graph signal
Y ∈ RN1×N2 , is given by:

H = X1YXT
2 ⇐⇒ H = Y ×1 XT

1 ×2 XT
2 . (3)

Furthermore, given a vector K = (K1,K2), a K-bandlimited graph
signal is a signal for which H has K1 rows and K2 columns differ-
ent than zero. In other word, a signal is K-bandlimited when it is
simultaneously Ki-bandlimited respectively in each domain.

It is possible to generalize equations (2) and (3) to P graphs
(Gp)Pp=1 with (Np) nodes. Denoting by Lp = XpΛpX

T
p their re-

spective Laplacian matrices, the Laplacian matrix of their Cartesian
products is [20]:

L = (

P⊗
p=1

Xp)

P⊕
p=1

Λp(

P⊗
p=1

XT
p) . (4)

The multidomain GFT for the graph signal Y ∈ RN1×N2×...×NP is

then given byH = Y
P
×
p=1

XT
p . Recall that by definition of the mode

product, we also have Y = H
P
×
p=1

Xp .

3. SUBSAMPLING OF MULTIDOMAIN SIGNALS

Let consider a multidomain signal Y ∈ RN1×...×NP and a vector
K = (K1, . . . ,KP ). We want to efficiently subsample Y by using
only

∏P
p=1 Kp samples. This problem can be decomposed into two

main tasks. First, learn an adaptive multidomain graph representa-
tion where the signal is K-bandlimited. Second, select the

∏P
p=1 Ki

nodes (i.e. samples) that allow to achieve the best reconstruction er-
rors.

3.1. Learning the graph Fourier basis
In this step, our goal is to learn the P graph Fourier basis {Xp}Pp=1

of each subgraph composing the Cartesian graph together with the
sparse spectral representationH of the signal on this graph.
The associated optimization problem writes as:

minimize
{Xp}p,H

‖Y −H
P
×
p=1

Xp‖2F

s.t. XT
pXp = I,xp1 = 1Np/

√
Np, ∀p

‖H(p)‖2,0 ≤ Kp, ∀p ,

(5)

where ‖ · ‖F is the Frobenius norm and ‖H(p)‖2,0 simply counts
the number of nonzero rows in the matrix H(p). In this problem, the
first constraints insures that the matrices {Xp}p are proper graph
Fourier basis and the second that the input signal is K-bandlimited
in the spectral domain induced by the learned basis. Indeed, the
norm imposes zeros on the rows of the unfolding H which make it
adapted for the bandlimitedness assumption. To solve (5) we use an
alternating procedure on X1, . . . ,XP andH.

Xp̄ computation. To learn Xp̄ with fixed ({Xp}p6=p̄ ,H), we
reformulate the objective function of (5) into:

‖Y −H
P
×
p=1

Xp‖2F = ‖Y ×p̄ XT
p̄ −H

P
×

p=1,p 6=p̄
XT
p‖2F

= ‖XT
p̄Y

(p̄) − H̄(p̄)‖2F ,
(6)

with H̄(p̄) , (H
P
×

p=1,p 6=p̄
XT
p)

(p̄). This manipulation leads to the

following optimization problem:

minimize
Xp̄∈RNp̄×Np̄

‖XT
p̄Y

(p̄) − H̄(p̄)‖2F

s.t. XT
p̄Xp̄ = Ip̄,xp̄1 = 1Np̄/

√
Np̄ ,

(7)

where a solution can be derived from [17]: let X̃ be any matrix
that verifies the constraint of (7). Introducing the matrix M =

(X̃TY(p̄)H̄
(p̄)
1:,1:) the submatrix containing everything except the first

column and the first row. Let PDQT be the singular value decom-
position of M. The problem accepts the following closed form:

Xp̄ = X̃

[
1 0T

Np̄−1

0Np̄−1 PQT

]
. (8)

This can be computed in O(N3
p̄ ) leading to a complexity of

O(
∑
pN

3
p ) to compute all {Xp}p. Note than the use of graph

products is particularly interesting in this context, since the standard
complexity (when the full graph is not supposed to be a Cartesian
graph) is O((

∏P
p=1 Np)

3).
H computation. To compute H with fixed {Xp}p, we use the

strategy proposed in [21]. By fixing all dimensions except the p̄-th,
the solution of the subproblem is obtained by sorting the rows of

the matrix
(
Y

P
×
p=1

XT
p

)(p̄) by their `2-norm and then by selecting

the Kp̄ rows with larger norms (row/column-wise hard threshold-
ing) [22]. The complexity of this sorting process is O(

∏P
p=1 Np +

Np̄ log(Np̄)) for each p̄. In the following, we will denote by Kp the
set of Kp indexes corresponding to the selected rows. The matrix
Xp(:,Kp), is thus Xp where only the column indexed by Kp are
kept.



Fig. 1. Evolution of the RMSE (± standard deviation) with the percentage of removed nodes for the three dimensions.

3.2. Selection of the best subset of nodes
In this second step, we want to choose the best subset of nodes. This
choice is based on the frequency components kept in the previous
step. Considering a graph from a graph product, selecting the best
nodes of each graph is equivalent to selecting a subset of rows from
each associated Xp. To this end, we introduce the selection ma-
trices {Sp}Pp=1, respectively in RKp×Np , with elements satisfying:
Sp(i, j) ∈ {0, 1}, ∀i,

∑
j Sp(i, j) = 1, and ∀j,

∑
i Sp(i, j) ≤ 1

[5]. The sampled graph signal Ys lies in RK1×···×KP instead of

RN1×···×NP and is defined as Ys = Y
P
×
p=1

Sp. Y can be approxi-

mated from Ys according to the following equation:

Ŷ = Ys
P
×
p=1

Xp(:,Kp)(SpXp(:,Kp))−1 . (9)

The only thing left to do is to properly choose the {Sp}p. For each
dimension, one related optimization problem is:

minimize
Sp∈RKp×Np

‖Y − Ys
P
×
p=1

Xp(:,Kp)(SpXp(:,Kp))−1‖2F . (10)

This optimization program is computationally expensive because of
the particular structure of Sp. For multi-domain graphs, all meth-
ods in the literature for the selection of the rows are approximate:
these iterative methods select one node per iteration in a greedy pro-
cedure. There are different existing works such as D-optimality[23]
and frame potential [24]. Following these approaches, we use a low-
complexity greedy algorithm to sample signals that reside on the
nodes of a product graph [25].

3.3. Learning a Cartesian graph structure
Although the recovery of the underlying graph is not mandatory for
subsampling, it can help to visualize the data in a compact form and
to assess the relevance of the selected nodes in an application per-
spective. In this context, since the Xp have been computed in the
optimization problem (5), the only missing information is linked to
the eigenvalues Λp. In the univariate case, a procedure for learning a
Laplacian matrix from the graph Fourier basis and a sparse spectral
representation has been introduced by Sardellitti et al. [16]. We pro-
pose here to learn a Cartesian graph with the {Xp}p as eigenvectors,
hence extending this strategy to the case of multidomain signals. For
the multidomain framework, we cast this problem as:

minimize
{Lp}p,{Cp}p

〈HK,

P∑
p=1

HK ×p Cp〉+

P∑
p=1

µp‖Lp‖F

s.t. Lp ∈ L, tr(Lp) = Np ∀p
LpXp(:,Kp) = Xp(:,Kp)Cp,Cp � 0 ∀p ,

(11)

where HK is the tensor H where the “non-selected rows” of each
dimension are removed, and each Cp ∈ RKp×Kp is a matrix rel-
ative to the sparsity of H. Note that, 〈HK,

∑P
p=1HK ×p Cp〉 =

vec(Y)T
P⊕
p=1

Lpvec(Y), where vec(·) denotes the vectorization.

Hence, we look for a Cartesian graph on which vec(Y) is smooth.
For more details on the optimization program and the additional
matrices {Cp}p, the readers shall refer to the aforementioned paper.

We reformulate the first term of the objective function as:

〈HK,

P∑
p=1

HK ×p Cp〉 =

P∑
p=1

tr(H(p)T

K CpH
(p)
K ) , (12)

where H
(p)
K is the tensor HK unfolded on the dimension p. Thus,

it turns out that because of the use of a Cartesian graph, the
full objective function naturally splits into P separable functions
i.e. P separable optimization problems for (Lp̄,Cp̄) with fixed
{(Lp,Cp)}p6=p̄. Therefore, we can simply solve each independent
problem:

minimize
Lp̄,Cp̄∈RKp̄×Kp̄

tr(H(p̄)T

K Cp̄H
(p̄)
K ) + µ‖Lp̄‖2F

s.t. Lp̄ ∈ L, tr(Lp̄) = Np̄

Lp̄Xp̄(:,Kp̄) = Xp̄(:,Kp̄)Cp̄,Cp̄ � 0 .

(13)

This last formulation is the same as in Sardellitti et al. [16] (univari-
ate case) where they proposed to solve it with CVXPY [26].

4. EXPERIMENTS

Our method is now tested on synthetic and real data and compared
to other non-adaptive sampling strategies. For each simulation, we
compute the Root-Mean-Square-Error (RMSE) of the reconstruction
as a function of the percentage of removed nodes. The code to re-
produce all the subsequent results is available at https://github.com/
Tgnassou/adaptive subsampling multidomain graph.

4.1. Synthetic data
We consider a Cartesian graph constructed from three sub-graphs
G1, G2, and G3 of different sizes. As the bandlimited property
is relative to the clusters of a graph [16], we generate them using
the Stochastic Block Model (SBM), one of the most widely stud-
ied generative model that exhibits community structure [27]. The
sizes of the clusters, and the edge densities connecting clusters are
parameters of SBM. In this experiment, each graph is composed of
3 clusters of respectively 4, 5 and 6 nodes. Dimensions of the three
graphs are thus respectively N1 = 12, N2 = 15 and N3 = 18. Two
nodes of the same group have a probability of 0.9 to be connected
together and two nodes of different group have a probability of 0.2
to be connected together. Then, we generate noisy compressed ban-
dlimited signals. They are known to provide more flexibility for the
low-frequency component, hence reflecting better the data structure
exhibited in several application contexts [7]. Graph signals are gen-
erated as Y = H×1 X1×2 X2×3 X3 + E where E ∼ N (0, 0.01)
andH(k1, k2, k3) ∼ N (1, 0.5) for all k1 ≤ K1 = 3, k2 ≤ K2 = 3

https://github.com/Tgnassou/adaptive_subsampling_multidomain_graph
https://github.com/Tgnassou/adaptive_subsampling_multidomain_graph


Fig. 2. Learned Graphs of the representatives and the votes, where
the larger yellow nodes are the selected nodes.

and k3 ≤ K3 = 3. For the others indexes,H(k1, k2, k3) is equal to
the outer product of three vectors w1,w2 and w3, where wi(ki) = 1
for all ki ≤ Ki and wi(ki) = (Ki/ki)

2β for all ki > Ki with
β = 2 and i = {1, 2, 3}. With this construction, the values on
frequencies upper than (K1,K2,K3) drastically decrease to zero.

Method. We compare the reconstruction performances to those
obtained by a correlation graph, the real graph (that was used for
data generation), and a random graph (Erdős-Rényi). The quality
of the reconstruction is measured by the RMSE between the learned
signal and the noiseless real signal (Y − E). For each method, we
reconstruct the signal with a fixed number of nodes and compare
the RMSE performances. For sake of clarity, we display the results
on Figure 1 dimension per dimension. Note that when the graph
is known (which is the case for the three competitor methods), the
optimization problem (5) reduces to the learning ofH.

Results. Evolution of the RMSE with respect to the percentage
of removed nodes is displayed in Figure 1 (average on 10 simula-
tions). The importance of the structure of the graph clearly appears.
The random graph and the correlation graph do not allow the sup-
pression of nodes since they do not capture the structure of the data.
For these graphs, the RMSE grows linearly with the percentage of re-
moved nodes. On the other hand, our adaptive procedure efficiently
learns a graph structure that is appropriate for efficient subsampling.
Thanks to the learned graph, it is possible to remove more than 60%
and still have a good reconstruction with a RMSE close to zero. In
fact, for each dimension our learned graph allows to select only 3
nodes (reflecting the 3 clusters in the graphs and the Ki parame-
ters), and still have a RMSE equals to 0.03. These curves underline
another surprising property: the RMSE obtained with our graph is
sometimes actually better than the one obtained with the true graph.
This may be due to the fact that the bandlimitness constraint used in
our method does not necessary learns the original graph but rather a
graph structure that is optimised for sampling. Note that during our
experiments, we also tried with other graphs such as Erdős-Rényi or
Barabási graphs and we obtained similar results.

4.2. Real data
Illinois House of Representation. In this part, we measure the ef-
fectiveness of our method on a real dataset consisting on the votes of
the Illinois House of Representatives during 2015-2017. This dataset
is available at voteview.com. There are N1 = 18 seats at the Illi-
nois House of representatives, one for each district. Each seat corre-
sponds to a US Representative belonging either to The Democratic
or The Republican parties. In our study, we used the N2 = 50 first
available votes. Each vote is represented by a vector of size 18 with
values +1 (Yes) and -1 (No).

In this case we have two dimensions, one for the US Represen-
tatives, another for the votes. We use our algorithm to compute the
Fourier basis, select the nodes and learn the graph structure. Figure

Fig. 3. Evolution of the RMSE with the percentage of removed
nodes for the dimension of trials, the spatial dimension and the time
dimension (top and bottom right). Electrodes learned graph (bottom
right). In yellow, the four selected nodes/channels.

(2) shows the two graphs (one per dimension). Two clusters appear
in the US representatives graph corresponding to Democrats and Re-
publicans. For the votes graph, three clusters appear corresponding
to questions with the same answer distribution (e.g. questions where
all Republicans answer Yes and all Democrats answer No). As ex-
pected, we see that the selected nodes (in yellow) are coherent be-
cause we selected a node in each cluster: two nodes for the first
graph and three nodes for the second graph.

Brain Computer Interface. This data set contains ElectroEn-
cephaloGram data (EEG) recorded during a Brain Computer In-
terface (BCI) experiment consisting on 4 different motor imagery:
movement of left hand, movement of right hand, movement of both
feet, and movement of tongue. Each action is imagined and repeated
10 times (leading to N1 = 4 · 10 = 40 trials). The EEG is recorded
with N2 = 22 electrodes and each time signal contains N3 = 188
samples. For a much more complete description of the data set see
[28]. The signal is therefore a three dimensional tensor.

Figure 3 displays the evolution of the RMSE as a function of the
percentage of removed nodes for each dimension for our method and
for a random graph (naive sampling). The sampling performances
differ according to the dimension of interest (trials, space/electrodes,
time samples). For the trial dimension, subsampling is tricky since
as soon as a node is removed, the reconstruction is largely degraded,
which is probably due to the fact that we work on the raw signals
that do not allow to correctly represent the different types of move-
ments. In contrast, it is possible to remove 82% of the electrodes
and 75% of the time samples and to obtain a global RMSE of 2.8
(which corresponds to the inflexion point on the plots). The graph
of electrodes learned in this configuration is displayed on the bottom
right of Figure 3. The nodes which are selected for sampling are in
yellow.

5. CONCLUSION

In this paper, we proposed a method to adaptively sample multido-
main signals. By merging results from GSP, tensors, and graph prod-
ucts, we showed that it is possible to learn a graph structure that al-
lows sampling and a useful data modelling and visualization. Using
the learned structure we were able to deduce the number of nodes
that could be deleted, select the best remaining nodes and accurately
reconstruct the graph signal. This method also offers nice perspec-
tives for the processing of datasets of N multidomain signals or size
N1 × . . .×NP . Indeed, by constructing a new tensor of dimension
N ×N1 × . . .×NP (where the first dimension of the tensor serves
to store the different signals), our algorithm can directly be used.

voteview.com
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