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Learning spatial filters from EEG signals
with Graph Signal Processing methods

Pierre Humbert1,2, Laurent Oudre1,2 and Clément Dubost1,2,3

Abstract— In this paper, we propose to learn a spatial filter
directly from Electroencephalography (EEG) signals using
graph signal processing tools. We combine a graph learning
algorithm with a high-pass graph filter to remove spatially
large signals from the raw data. This approach increases
topographical localization, and attenuates volume-conducted
features. We empirically show that our method gives similar
results that the surface Laplacian in the noiseless case while
being more robust to noise or defective electrodes.

Clinical relevance— The proposed method is an alternative
to the surface Laplacian filter that is commonly used for
processing EEG signals. It could be used in cases where this
standard approach does not provide satisfying results (low
signal-to-noise ratios due to a low number of epochs, defective
electrodes). This could be particularly interesting in case of an
electrode defect, as it can happen in clinical practice.

I. INTRODUCTION

Electroencephalography (EEG) is commonly used to track
the brain activity by measuring the scalp electrical potentials
generated by cortical postsynaptic currents. However, the
analysis of EEG data remains a major challenge. Indeed,
because the spatial–temporal information is mixed at the
source level, the signal recorded from each electrode reflects
a complex combination of electrophysiological dynamics
from multiple brain regions [1]. To extract meaningful and
physiologically interpretable patterns of activity from EEG
signals, one standard approach consists of using filters
(temporal and/or spatial) that will allow to highlight the
phenomena of interest. Although there are several different
types of temporal filters, most of the filters that are applied
in cognitive electrophysiology (e.g., Morlet wavelet convolu-
tion, filter-Hilbert, and short-time FFT-based procedures such
as Welch’s method or multitapers) produce nearly identical
results [1]. This can be contrasted with spatial filters, the
topic of this paper.

In EEG analysis, a spatial filter is a mathematical method
that produces new values by taking weighted combinations
of signals from other electrodes. As in temporal filtering,
the purpose is to highlight features present in the raw data
but difficult to observe without applying any transforma-
tions. One popular example of such filter is the surface
Laplacian. The most common motivations for using the
surface Laplacian are to increase topographical localization,
to facilitate electrode-level connectivity analyses, and to
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attenuate volume-conducted features of the data. However,
because the surface Laplacian is inherently computed from
signal differences, it is very sensitive to noise [2] e.g. if one
electrode is defective, it would affect all the others surround-
ing in the filter’s computation. Another concern is linked
to the difficulty of computing the surface Laplacian at the
edge of the EEG montage. Indeed, while an approximation,
(usually referred to as Hjorth’s approximation) [3] is used
for central electrodes, we cannot compute it for estimates
along the border of the electrode grid and in this case, a less
accurate approximation has to be used.

To overcome these issues, one idea is to construct adaptive
filters that will be able to model the irregular domain the
signals are residing on. Thus, rather than considering that the
neighbouring electrodes record similar signals, we quantify
the similarity between electrodes based on their correspond-
ing signals. Two electrodes that are not necessarily close in
space could now be close in the resulting irregular domain.
To define this domain, Graph Signal Processing (GSP) [4]
has emerged as a powerful alternative to standard approaches.
In this formalism, a graph defines a support (the irregular
domain), and signals, now called graph signals, are defined
on this support. This allows to capture the structure on
which a signal evolves, thus providing more information
than considering the signal alone. By generalizing concepts
and tools of signal processing to signals recorded over
graphs, GSP has proven its success in many tasks such as
reconstruction [5], sampling [6], and filtering [7].

In this paper, we show that it is possible to automatically
learn a spatial filter from the raw signals. More specifically,
using techniques from the GSP field, we first learn a graph on
which the raw EEG signals are smooth and well-represented,
a property known as bandlimitedness. Then, we removed
the graph low-frequencies (i.e. the spatially large signals)
present in the raw signals with a graph filter constructed from
the learned graph. Results suggest that our method is more
robust to defective electrodes than the surface Laplacian.
Furthermore, the modularity of our framework allows to
define multiple types of spatial filters which may pave the
way to others possibilities of analysis.

II. BACKGROUND

a) Surface Laplacian: The proposed method is an
alternative to the surface Laplacian, also commonly referred
to as Current Source Density (CSD) or Scalp Current Density
(SCD) [8], [1]. This is a spatial filter that is useful for
attenuating volume conduction effects for better connectivity
analyses. It is computed using the methods from [9]. The



three parameters for the Laplacian are smoothing (lambda),
Lagrange order (number of iterations when computing the
Legendre polynomial), and spherical spline order (m).

b) Graph notations: Throughout the paper, let consider
a weighted and undirected graph G = (V, E), where V is a
set of N nodes and E is a set of edges. The combinatorial
Laplacian matrix of this graph is a N by N matrix defined
as L = D − W , where D is the degree matrix and
W the weight matrix. Since G is an undirected graph, L
is a symmetric and positive semi-definite matrix verifying
L = XΛXT with Λ the diagonal matrix of non-negative
eigenvalues of L and X the matrix of the corresponding
eigenvectors as columns. Assuming that G has one connected
component, L has λ1 = 0 for first eigenvalue associated
with the eigenvectors X:,1 = 1N/

√
N with 1N the unitary

vector of size N . Care should be taken not to confuse
the Laplacian matrix and the surface Laplacian in the
following.

c) Graph Signal Processing: A graph signal is a func-
tion y : V → RN assigning a scalar value to each node
of a graph G. This function can be represented as a vector
y ∈ RN , where yi is the function value at the i-th node. The
eigenvectors of the Laplacian of G provide a Fourier-like
basis for graph signals, allowing to decompose any signal
into its spectral components. From this formalism, the Graph
Fourier Transform (GFT) of y is defined by h = XT y. A
K-bandlimited graph signal is thus a signal for which hi 6= 0
in K entries [4]. Finally, a smooth graph signal is a signal
for which the quantity yTLy is small.

III. PROPOSED METHOD

In our context, the input corresponds to multichannel EEG
signals which can be represented by a matrix Y =
[y1, . . . ,yT ] in RP×T , with P the number of channels and
T the number of time points. Throughout this paper our goal
is to learn the underlying structure of the channels in order
to construct an adapted spatial filter. To do so, we consider
a particular factor analysis model first introduced in [10]:
∀i, yi = zi + εi where yi follows a N (0,L† + σIP ) with
noise parameter σ ∈ R and pseudo-inverse † ; Here, L is
the Laplacian of the spatial graph we want to learn. These
assumptions implies that Y is smooth and (mutually) K-
bandlimited under the spatial graph characterized by L. In
matrix notation, this means that (i) tr(YTLY) is small and
(ii) there exist a set of indices K of size K such that HK,: =
0 where H has the same size as Y and corresponds to the
spectral representation of the graph signals through the GFT.
Note that, in our context, smoothness makes sense because of
the volume conductivity which implies that electrodes tend
to record very similar signals.

A. Denoising with graph learning

To learn L, we choose to minimize the following objective
function:

min
H,X,Λ

‖Y −XH‖2F + α‖Λ1/2H‖2F + β‖H‖2,1 , (1)

s.t.


XTX = IP , x1 = 1√

N
1P , (a)

(XΛXT)k,` ≤ 0 k 6= ` , (b)
Λ = diag(0, λ2, . . . , λP ) � 0 , (c)
tr(Λ) = N ∈ R+

∗ , (d)

where IP is the identity matrix of size P , tr(·) denotes the
trace of an input matrix, and Λ � 0 indicates that the matrix
Λ is semi-definite positive.
This problem conjointly learns the Laplacian L (i.e. (X,Λ))
and a bandlimited smooth approximation XH of the true
EEG signals Y − E . Finally, notice that X̂Ĥ is a filtered
version of Y obtained with a non-linear low-pass filter
adapted to the learned graph L̂. Hence, this approximation
should have less noise than Y.
The solution of (1) can be computed using one of the two
algorithms proposed in [11], [10]. The first one solved the
problem by combining barrier methods, alternating mini-
mization, and manifold optimization. The second one is a
relaxed algorithm which is more scalable with respect to the
graph dimensions. In the following, we will use the relaxed
algorithm.

B. High-pass graph filtering

From the learned Laplacian L̂, we can construct a spatial
graph filter that will adapt to the structure of the recorded
signals. Because of the volume conductivity problem, we
need to remove parts of the signals which are common in all
channels i.e. spatially broad features which are characterized
by low frequencies on the learned graph. In the following,
we will therefore design a high-pass graph filter.
Formally, a graph filter is a linear operator acting on a graph
signal by amplifying or attenuating parts of its spectrum [12].
Denoting this operator by F , a filtered graph signal yF is
then obtained through yF = Fy. Probably one of the most
used low-pass graph filter is the one obtained via Tikhonov
regularization. Given a scalar γ ≥ 0 and a graph signal y,
the filtered signal yF is the solution of

yF = argmin
s
‖y − s‖22 + γsTL̂s . (2)

The left term asks for a signal to be close to the input
y, while the second term enforces a smoothness prior.
The solution has an explicit formulation given by yF =(
I + γL̂

)−1
y = Fy with F the low-pass graph filter

associated to (2). As this filter extracts the low frequencies
of the input signal that we want to remove, we will use
the residual ŷ = (y − yF ) as the high-pass version of our
original signal. Note that, we filter the reconstruction X̂Ĥ
instead of Y as it is consider closer to the true signals. The
full process of our method is provided in Algorithm 1.

IV. RESULTS

Our approach is tested both on synthetic and real EEG data.
All experiments are performed in Python using MNE [13].
Code is available online.



Algorithm 1 Learned spatial graph filtering
Input: Y ∈ RP×T , α, β, γ
B Learn the Laplacian

Ĥ, L̂←− Solve problem (1)
B Filtering of the graph signals

YF ←−
(
I+ γL̂

)−1

X̂Ĥ

B Remove low frequencies
Ŷ ←− (YF − X̂Ĥ)

Fig. 1. On the left, the raw ERP at two given times. On the right, the
approximations returned by Problem (1).

A. Experimental setup

a) Synthetic data: We simulate 60 EEG signals with
sampling frequency of 600 Hz for 5 phase-locked epochs of
150 points (250 ms) as follows. First, we define a dipole
time series consisting of a sine wave at 18 Hz with a peak
amplitude of 10 nAm (signal at the cortical level). This dipole
is activated in a region located at the bottom left of the
brain (i.e. cortical areas around superior temporal sulcus).
To obtain simulated sensor data we project the time series
onto 60 virtual EEG electrodes arranged according to the 10-
20 system (forward problem). Reference is set to average.
Finally, we add a multivariate Gaussian noise. We repeat
these operations 10 times and for 10 different amount of
noise in order to have a Signal to Noise Ratio (SNR) between
10 and 60. We therefore obtain 10 · 10 = 100 datasets
of size (5 × 60 × 150). We report the Mean Square Error
(MSE) between the true Event-Related Potential (ERP) i.e.
the average of the true epochs – without noise – and the
ERP approximation returned by Problem (1) (i.e. average
of the refold version of X̂Ĥ in R5×60×150 along the first
dimension) as a function of the SNR.

b) Real data: We consider an EEG dataset from [14]. It
consists in 64 EEG signals with sampling frequency of 256
Hz for 99 epochs of 640 points. The reference is set to the
average. During the graph learning phase, we concatenate
the epochs and obtain a matrix Y of size (64 × 40960).
The graph is learned from this matrix. Parameters in (1) are
set to β = 0.001 and α = 0.0001. Once done, we solve
(2) with γ = 10 and compute Ŷ = X̂Ĥ − YF . Finally,
we refold Ŷ into an array of size (99 × 64 × 640) and

Fig. 2. Evolution of the MSE (avg ± std) between the true ERP
(without noise) and: (blue) the ERP approximation returned by Problem
(1) (denoising); (orange) the raw ERP, as a function of the SNR.

Fig. 3. Topographies at four given times from the experiment on real EEG
data. From top to bottom: Topographies of (i) raw ERP, (ii) data returned
by Problem (1), (iii) data returned by Problem (1) follow by (2), and (iv)
data after applying the surface Laplacian.

average the 99 epochs to obtain the approximated ERP. The
proposed method is compared to the surface Laplacian with
smoothing parameter, Lagrange order, and spherical spline
order respectively set to 105, 10, and 4. The smoothing and
spline order values are typical parameters for 64-channel
EEG [14].

B. Results on synthetic data

In this section, we highlight the capacity of Problem (1)
to remove the noise from the raw EEG data. Note that
because of the low number of epochs, only averaging them
is not enough to properly remove the noise (Figure 1, left
panel). The surface Laplacian is therefore not effective in
this situation. In contrast, our method returns well-localized
topographies even for a large amount of noise (Figure 1, right
panel). This observation is corroborated by Figure 2 where
our method allows a better denoising of the initial signal than
an averaging of the epochs.

C. Results on real data

a) Sharper topographies: The raw ERP and its filtered
version (with our GSP filter and the standard surface Lapla-
cian filter) are displayed in Figure 3. This figure illustrates



Fig. 4. Evolution of the Coherence at 8 Hz as a function of the electrode
distances. From left to right: coherence on (i) raw ERP, (ii) after Problem
(1) (denoising), and (iii) after Problem (2)

Fig. 5. Topographies at four given times from the experiment on real EEG
data with a defective Fp1 electrode. From top to bottom: Topographies of (i)
raw ERP, (ii) data returned by Problem (1), (iii) data returned by Problem
(1) follow by (2), and (iv) data after applying the surface Laplacian.

the capacity of our filter to separate individual components
based on differences in topography. Furthermore, we see
that, while providing similar results as the surface Laplacian,
the proposed method could tend to sharper topographies.
To highlight the capacity of our method to attenuate the
volume-conductivity, we display on Figure 4 the spectral
coherence between channels [14] as a function of the distance
between electrodes. We see that in the raw ERP (left panel
of Figure 4) the coherence is driven almost entirely by
interelectrode distance. In contrast, after our method or the
surface Laplacian (middle and right panels of Figure 4),
connectivity is no longer correlated with distance.

b) Robustness to malfunction: In this second experi-
ment, we simulate the malfunction of an electrode at the
edge of the EEG montage. To do so, the signal recorded
at Fp1 (Top left electrode) is replaced by max(Y). The
obtained results are displayed on Figure 5. Despite electrode
Fp1 dysfunction, the GSP filter is globally not affected and
returns comparable results as the ones of Figure 3 (when all
electrodes are good). From the learned graph, we actually see
that the node corresponding to Fp1 is almost disconnected
from the other ones. Hence, it does not contribute in the

graph filtering. In the other hand, because the surface Lapla-
cian is computed from spatially close signal differences, it
fails to recover the true topography near Fp1. For instance,
at 800 ms, we clearly see that we loose information at the
top right while the GSP filter works.

V. CONCLUSION

In this article, we introduced an GSP-based spatial filter that
adapts to the data. We empirically shown that thanks to an
adequate graph learning procedure, it automatically provides
similar if not better results than the well-known surface
Laplacian, especially in presence of defective electrodes and
low signal-to-noise ratio. This preliminary work paves the
way for further investigations on the links between EEG
study and GSP, especially regarding the design of efficient
GSP filters. Possible future investigation could be to consider
other filters [12], time varying graph or graph products
[15], and to incorporate physical prior in the graph learning
process.
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