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An uncertainty principle for lowband graph signals
Antoine Mazarguil, Laurent Oudre, and Nicolas Vayatis

Abstract—In this article, we introduce a novel lower bound on
the support size of lowband graph signals. This result allows the
deduction of an optimality criterion for the lowband and sparse
decomposition of any graph signal, establishing the uniqueness
of well behaving solutions. A comparison of the new bound
with previously introduced results is performed, showing the
improvements brought by the present work. An illustration on a
practical denoising usecase on a real graph is also provided.

Index Terms—graph signal processing, uncertainty principle,
lowband graph signals

I. INTRODUCTION

In the literature, uncertainty principles encompass a wide
variety of inequalities that jointly limit the occupancy of a
signal in different representation spaces. The most famous
uncertainty principle is the widely known Heisenberg inequal-
ity, which states that the “spread” of a signal and its Fourier
transform cannot be arbitrarily small simultaneously (see [1],
[2] for review and applications).
With the development of digital signal processing, a tremen-
dous line of search has been to derive similar inequalities for
discrete signals. Numerous approaches have been investigated,
each requiring a new definition of signal uncertainty. However,
a first challenge that appeared is that with the most natural
notion of spread (i.e. standard deviation in the studied space),
there exist signals that are perfectly localized in a space (i.e.
the spread is null) while their representation in an other space
is well defined (i.e. <∞). Therefore, a discrete equivalent to
the Heisenberg’s inequality cannot be derived. The search for
uncertainty principles then requires defining a more suitable
notion of signal spread or localization, and each definition
gives rise to a specific uncertainty principle. For an extensive
review on discrete uncertainty principles and an overview of
the main approaches and results, see [1]–[5].

In the context of discrete signals, an important uncertainty
principle involving sparsity has been introduced in [6], [7]. In
this framework, the 0-norm is presented as a relevant notion of
signal spread, as it quantifies the size of the signal support. The
associated uncertainty principle is stated as follows. Provided
two vector bases Φ = (ϕ1, ..., ϕN ) and Ψ = (ψ1, ..., ψN )
and a signal x ∈ RN , we denote by xΦ and xΨ the respective
signal expression in each basis. Then, the following inequality
holds:

|| xΦ||0 || xΨ||0 ≥ 1

µ(Φ,Ψ)2
(1)

with µ(Φ,Ψ) the mutual coherence of the two bases, defined
as follows :

µ(Φ,Ψ) = max
1≤i,j≤N

|⟨ϕi, ψj ⟩|. (2)
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For pair of bases such that µ(Φ,Ψ) is small enough, inequality
(1) prevents the representations of the signal in the two
bases from being both sparse simultaneously. This theorem
leads to theoretical results which have concrete applications
in compressed sensing for instance [8].

Since the emergence of the Graph Signal Processing (GSP)
field, the search for uncertainty principles adapted to this
framework and to the Graph Fourier Transform has been an
active line of research [9], [10]. As for discrete signals, dif-
ferent notions of signal localization or spread lead to different
uncertainty principles. The sparsity uncertainty principle (1)
has been adapted to the graph framework in [11], deriving a
first sparse graph uncertainty principle. We now present two
other major approaches.

The first graph spectral uncertainty principle has been
introduced and studied in [12]. Based on a generalization of
the notion of spread, they introduce ∆g(x) the graph spread
of a signal x and ∆s(x) the graph spectral spread of x. Their
work derives an additive uncertainty principle involving the
two spreads, and present a extensive analysis of the region of
feasible pairs (∆g(x),∆s(x)).

Another major approach to deriving a graph uncertainty
principle is to use the theory presented in [4], [13] for the
graph framework. This study, conducted in [14], focuses on
the following quantities for a signal x:

α2 =
||DSx||22
||x||22

β2 =
||BFx||22
||x||22

(3)

where α2 and β2 represent the amount of energy confined in
the set of vertices S and the set of frequencies F (with DS and
BF the corresponding projection matrices). An uncertainty
principle involving these quantities is presented along with
theoretical results on graph signal sampling. Other approaches
for the elaboration of an uncertainty principle for graph signal
or related work can be found in [15]–[17].

The main contribution of this paper is a novel uncertainty
principle for lowband graph signals, which provides theoretical
guarantees for instance on the graph signal decomposition
problem. From this principle, we derive an optimality criterion
for the problem of sparse-lowband decomposition of a graph
signal, which has practical consequences in the graph signal
denoising task.

II. UNCERTAINTY PRINCIPLE FOR LOWBAND GRAPH
SIGNALS

The present work focuses on inequalities of the form (1)
for a graph signal and its Graph Fourier Transform (GFT).
The aim of this section is to introduce our novel bound for
lowband graph signal.
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Fig. 1. A graph signal achieving sparsity in both nodal and spectral domains.

A. Notation and Background

We consider a symmetric, connected and undirected graph
G = (V,E) consisting of a set of N nodes V = {1, 2, ..., N},
along with a set of edges E = {(i, j)} ∈ V ×V . The graph is
supposed to be connected, i.e. there exist a path in G between
each pair of nodes. A signal x over a graph G is defined as a
mapping from the vertex set to the set of complex numbers,
i.e. x : V −→ C. We denote by || · ||p the p-norm of a signal,
for p ∈ {0, 1, 2}. The combinatorial Laplacian matrix of the
graph is defined as L = D − A, with D the graph degree
matrix and A the adjacency matrix. The Laplacian matrix is
the characteristic operator that quantifies the smoothness of
a graph signal, i.e. how strongly the signal values vary along
the graph edges. The smoothness SG(x) of a graph signal x is
defined as SG(x) =

∑
(i,j)∈E(xi−xj)2 = xTLx In order to

control their smoothness, graph signals can be studied in the
eigen-basis of the Laplacian operator. We introduce the eigen-
decomposition of the Laplacian matrix L = UΛUT where
Λ is a diagonal matrix with non-negative real eigenvalues
0 = λ1 < λ2 ≤ ... ≤ λN and U is an orthogonal matrix.
The Graph Fourier Transform (GFT) x̂ of a graph signal
x is defined as x̂ = UTx. A signal x is said to be k-
lowband if only the k first frequencies are active in its Fourier
transform, i.e. x̂ = (x̂1, ..., x̂k, 0, ..., 0)

T . The space of k-
lowband signals is denoted by PWG(λk), and by extension
we denote by PWG(λ) the space of signals whose active
frequencies are restricted to the band [0, λ]. The symbol |S|
denotes the cardinality of set S, i.e. the number of elements
of S , and xS denotes the values of the vector x restricted to
the indexes in S.

B. Demotivating example : sparsity in both node and fre-
quency spaces.

Let us consider a graph G defined as a path of size N , to
which two nodes have been added and connected to the first
node of the path. Figure 1 displays the constructed graph. It
is straightforward that the vector u = (1,−1, 0, ..., 0)T is an
eigenvector of the combinatorial laplacian of G, associated to
the eigenvalue 1. Disregarding other possible multiplicities of
the eigenvalue 1, the signal u satisfies ||u||0 = 2 and ||û||0 =
1, therefore achieving sparsity in both domain simultaneously.
This example demonstrates that, without any hypothesis on
the graph G or the signal u, a relevant inequality similar to
(1) cannot be derived (see [11]). In fact, the appearance of
specific sub-structures of size n << N in the graph G can lead
to the existence of a sparse eigenvector in the decomposition
of the Laplacian, inducing a n+ 1 sparse representation over
the two domains. It is also relevant to note that, apart from

these sub-structures, the rest of the graph can be of any
size or organization, implying no existence of upper-bounds
depending on the graph size N .

C. Uncertainty principle
As stated previously, there exist sparse signals in both node

and GFT space for specific graph structures. However, the
node-sparsity of these signals seems to induce a relatively high
variation on the graph. An intuitive line of search is then to
study the link between signal variation and node sparsity. We
state the first result as follows.

Theorem 1 (Lowband graph uncertainty principle): Given
a graph G of size N > 2 and a non-null signal x ∈ PWG(λ)
with λ < 2, the following inequality holds:

||x||0 ≥ 1

2

(
π

cos−1(1− λ
2 )

− 1

)
(4)

Sketch of proof: The theorem is based on two major lemmas.
The first lemma lower-bounds the smoothness of a signal by
the squared gaps between its ordered values. If x is a signal
on G and y is a vector containing the ordered values of x, the
following inequality holds:

SG(x) =
∑

(i,j)∈E

(xi − xj)
2 ≥

N−1∑
i=1

(yi − yi+1)
2 (5)

This lemma is proven by an algorithmic procedure that trans-
forms the first sum into the second one, while the process
decreases the overall quantity at each step. Sparsity appears
in the second sum as the gaps between the multiple occur-
rences of the value 0 do not contribute. The second lemma
establishes the minimal value of the second sum for a signal
of unit norm assuming that it contains a null value, yielding
a second inequality that involves ||x||0. The composition of
the two lemmas along with the property SG(x) ≥ λ||x||2 for
x ∈ PWG(λ) yields the theorem. For a more detailed version
of the proof, see Appendix A.

In the rest of the article, we will denote by C(λ) this lower-
bound.

The inequality presented in Theorem 1 lower-bounds the
size of the support of lowband signal, which are extensively
used in the GSP literature [9], [14]. It is relevant to note that,
even though the bound is well defined for any λ ∈]0, 4[, this
inequality does not provide interesting result for λ > (3 −√
5)/2 ≈ 0.38. In this case, the bound C(λ) is lower than 2

and the theorem yields ||x||0 > 1, which is always respected
by any signal x ̸= 0. The bound C(λ) is a decreasing function
of the maximum active frequency, and we emphasize that the
theorem is as useful as λ is low.

We inform the reader that the as the bound of Theorem 1 is
a function of λ, its efficiency is intrinsically linked to the graph
spectrum distribution. Relations between the graph eigenvalue
distribution and topological properties (such as appearance
of clusters, degree distribution or appearance of hubs in the
graph) are a complex question that are the subject of a wide
corpus [18]–[20]. Therefore, for a study of the impact of such
topological properties on bound of Theorem 1, we redirect the
reader to relevant literature. In the present article, this analysis
is limited to experiments on 4 different graphs.
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III. OPTIMALITY CRITERION FOR SPARSE-LOWBAND
SIGNAL DECOMPOSITION

In this section, we present a consequence of the uncertainty
principle of Theorem 1. First, we introduce the notion of
Sparse-Lowband Decomposition (SLD) of a graph signal.
Then we derive an optimality condition for this decomposition
problem.

A. Sparse-lowband decomposition of a signal

In several usecases of signals gathered on a sensor network,
transmission error or sensor malfunction can lead to corruption
in the collected data, i.e. a subset of the values can be altered.
The task of removing this impulsive noise from the corrupted
signal is then of utmost importance, as well as identifying
the corrupted nodes. Assuming that the studied process is
lowband, this recovery takes the form of a Sparse-Lowband
Decomposition (SLD) of the measurements.

Definition 1 (Sparse-Lowband Decomposition (SLD)): Pro-
vided a graph signal x, a λ-SLD of x is a pair (t, s) ∈ (RN )2

such that: 
x = t + s

s ∈ PWG(λ)

t is sparse
(6)

A λ-SLD for a given signal x is optimal if there is no other
λ-SLD that achieves a better sparsity on the t component. An
optimal decomposition is therefore a solution of the following
optimization problem:t∗ ∈ argmin

t
||t||0 s.c. x− t ∈ PWG(λ)

s∗ = x− t∗
(7)

By construction, the problem (7) decomposes a signal x such
that one component is as sparse as possible (t∗) while the other
component is lowband (s∗ ∈ PWG(λ)). However, the non-
convexity of the L0 term in (7) makes the problem difficult
to solve. Classical optimization methods would either include
combinatorial exploration or could lead to local minimums.
As in many L0 optimization problems, a practical way to
search for a minimum is to introduce the L1 counterpart of
the problem (7). The L1 equivalent of the previous problem
is convex and can be handled by linear programming. Yet,
in many practical use-case, the optimal solution happens to be
sparse, thus revealing a candidate solution for problem (7) [8].

B. Uniqueness of the Sparse-Lowband decomposition

In this subsection, we present a sufficient condition for an
λ-SLD to be optimal, which is a consequence of Theorem 1.

Theorem 2 (SLD unicity criterion): Let us consider a graph
G, a non-null signal x and a cutoff frequency λ < 2. Let us
also consider (t, s) a λ-SLD of x such that:

||t||0 <
C(λ)

2
(8)

Then, the pair (t, s) is the unique optimal λ-SLD of x.
Sketch of proof: Consider (t1, s1) and (t2, s2) two different
optimal λ-SLD of a vector x satisfying the conditions of the

theorem. Observing that ||t1||0 + ||t2||0 < ||t1 − t2||0 =
||s1 − s2||0 and applying Theorem 1 yields a contradiction,
thus proving the theorem.

The previous theorem provides a methodology to check
if a λ-SLD is the only optimal, even if the decomposition
problem is not convex. In a deeper sense, this theorem induces
a data corruption limit below which the exact reconstruction
of lowband signals is optimal in the sense of sparsity. We
emphasize that this application is restricted to lowband signals,
and that the theorem is stronger when the frequency band is
low.

IV. EXPERIMENTS

In this section, we compare the lower bound obtained in
Theorem 1 to other literature graph uncertainty principles and
display some illustrations of the consequences of Theorem 2
to the classical denoising problem.

A. Comparison of sparse graph uncertainty principles

In this first experiment, we compare the uncertainty bound
of Theorem 1 to another sparse uncertainty bound that is
derived from [7]. Applying exactly the same demonstration
to a signal x ∈ PWG(λk), we obtain the following result:

||x||0 ||x̂||0 ≥ 1

µ2
k

(9)

with µk the mutual coherence of the canonical basis and
(u1, ...,uk) the k first eigenvectors of the Laplacian matrix.
This leads to the following expression for µk:

µk = max
1≤i≤N
1≤j≤k

|uji | (10)

Moreover, x ∈ PWG(λk) implies that ||x̂||0 ≤ k, which leads
to a lower bound for the sparsity of x :

||x||0 ≥ 1

k µ2
k

(11)

We denote this lower bound by B(k), and compare it to
C(λk) introduced in Theorem 1 for 4 different non-weighted
symmetric graphs:

• G1 : Uniformly sampled graph.
A set of 500 positions are uniformly drawn in the unit
square. The graph is generated through a 4-nearest-
neighbor procedure and symmetrized.

• G2 : 4-blog graph.
A set of 500 positions are drawn according to gaussian
distributions of variance 1 centered on the corners of the
unit square. The graph is generated through a 4-nearest-
neighbor procedure and symmetrized.

• G3 : Minnesota graph.
The Minnesota road network from the MatlabBGL library
[21], composed of 2642 nodes and 3304 vertices.

• G4 : Bunny graph.
The Stanford Bunny is a set of 3D points representing the
surface of a bunny [22]. The graph is generated through
a 3-nearest-neighbor procedure and symmetrized.
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Fig. 2. Graphs G1 to G4 represented in their native spaces.

Fig. 3. Evolution of the bound of Theorem 1 and B(k) as a function of
the maximum active frequency λk . Only the k = 100 first eigenvalues are
presented.

Fig. 2 displays the studied graphs, and Fig. 3 displays the
sparsity bounds on these graphs as a function of the maximum
active frequency λk. As we can see, for each studied graph, the
lower bound C(λk) is higher that B(k) for a significant range
of λk, therefore ensuring an improved uncertainty inequality
for the any signal in PWG(λk). This improvement can be
especially seen for larger values of λk for G3 and G4, which
corresponds to k > 100 for these graphs. The poor quality
of the bound B(k) for large values of k is a consequence
of the definition of the mutual coherence µk that becomes
inefficient quite fast. Indeed, as soon as an eigenvector u is
included in PWG(λk) such that ||u||∞ ≈ 1/k, the bound B(k)
becomes close to 1. On the other hand, for lower values of
k, the bound derived from [7] is usually better, especially
for k < 5 for G1 to G3, and k < 20 for G4 in the
presented experiments. We emphasize that in the presented
results, both bounds are correct, and therefore each can be
used in the ranges where it is most effective. As a remark,

Fig. 4. The corrupted lowband signal (left) and the recovered sparse
component (right). The set of corrupted nodes is highlighted by the black
curve.

in the case of duplicate eigenvalues (λk = λk+1) which
occurs naturally when working with non-weighted graphs, the
bound C(λ) remains unchanged whether the space PWG(λk)
or PWG(λk+1) is considered, whereas the bound B(k) is
usually less efficient for PWG(λk+1).

B. Sparse-Lowband signal decomposition

As a second illustration, we perform a SLD of a corrupted
graph signal on the Minnesota graph (G3). The ”true” low-
band signal s is generated with k = 5 active frequencies, with
activities drawn according to a centered normal distribution
of variance 100. A sparse corruption noise t is generated
on a local set of 11 nodes, with values drawn according to
a Rademacher distribution (ti = 1 or −1 with probability
0.5). The corrupted signal is given by x = s + t, and a λ5-
SLD is sought through the resolution of the L1 counterpart
of problem (7). Figure 4 displays the corrupted signal and
the recovered sparse component. In the presented experiment,
the true decomposition of x is recovered, hereby identify-
ing the corrupted nodes. Moreover, observing that the value
C(λ5)/2 ≈ 11.05 is above the sparsity of the recovered
component ||t||0 = 11, the condition for the application of
Theorem 2 are met, ensuring that the computed solution is
also the unique optimal λ5-SLD.

V. CONCLUSION

In this paper we have presented a novel uncertainty principle
for lowband graph signals, that lower-bounds the size of their
supports. The main asset of this novel principle resides in
its generality: the bound can be applied for any graph, inde-
pendently of the studied structure. The problem of corrupted
graph signal denoising is introduced through the formalism
of optimal sparse-lowband decomposition, and an optimality
criterion for this optimization problem is derived from the pro-
posed uncertainty principle. Comprehensive illustrations of the
proposed uncertainty principle are performed, and an instance
of the task of sparse-lowband decomposition problem is pre-
sented. Interesting further developments include the refinement
of the uncertainty principle under stronger assumptions and
implications of the presented principle regarding other graph-
related problems (more specifically, the presented uncertainty
principle yields interesting results regarding interpolation).
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APPENDIX A
PROOF OF THEOREM 1

In order to prove the Theorem 1, we need to introduce
several objects. First, let G = (V,E) be a connected graph
of size N > 2, and let x be a non-null graph signal on G. We
denote by SG(x) the smoothness of x on G.

Smoothness of the sorted values. We introduce an ordered
sequence of values of x, i.e. a sequence xσ(1) ≤ ... ≤ xσ(N).
Then, we define the smoothness of the ordered values as
follows :

Ssorted(x) =

N−1∑
i=1

(xσ(i) − xσ(i+1))
2 (12)

We are now ready to introduce the main lemmas:
Lemma 1: From graph smoothness to sorted smoothness.

The following inequality holds:

SG(x) ≥ Ssorted(x) (13)

Sketch of proof:
Let us consider T = (V,ET ) a spanning tree of the graph

G. Such a tree exists because the graph G is connected, and
we have ET ⊂ E, which yields:

SG(x) ≥ ST (x) (14)

Then, starting from the tree T1 = T , we will construct a
sequence of trees (Tk)1≤k≤N such that:{

STk
(x) ≥ STk+1

(x) ∀ k < N

STN
(x) = Ssorted(x)

(15)

In order to generate such trees, we construct a sequence
of path (Pk)1≤k≤N on which the values of x are sorted and
such that each Pk is a subgraph of Tk. Please note that Tk
and Pk are not subgraphs of the initial graph G. These paths
are constructed along the sequence of trees (Tk)1≤k≤N as
described by the following procedure :

• We initialize T1 to T , and P1 to a single random node
of the tree T1.

• Provided Tk and Pk, we select a random node n that is
connected by an edge e to Pk but that is not contained
by Pk. Then, we construct the path Pk+1 by inserting the
node n in Pk such that the values of x are sorted along
Pk+1. The tree Tk+1 is obtained by performing the same
insertion and removing the edge e.

Figure 5 displays an example of the presented procedure.
By construction, the following results hold for k ≤ N :

Tk is a tree
Pk is a subgraph of Tk
Pk is a path of size k
The restriction of x to Pk is ordered along Pk

(16)

Moreover, a simple enumeration of the possible cases yields
for any k < N :

STk
(x) ≥ STk+1

(x) (17)

91.7 0 1.5

2.1 0.5 0.2 91.3

Pk

91.7 0 0.5 1.5

2.1 0.2 91.3

Pk+1

Fig. 5. An iteration of the algorithm transforming the tree Tk (left) into the
tree Tk+1 (right). The values of the signal x are displayed on the nodes.
The paths Pk and Pk+1 are delimited by the green boxes. The node n
selected randomly and added to Pk+1 is highlighted in red. The insertion is
performed such that the values of X are ordered in Pk+1. All edges of Tk
not represented on the figure remain unchanged in Tk+1.

Observing that TN = PN , we have proven the assertions
(15). Along with (14), the proof of lemma 1 is complete.

Lemma 2: Sorted smoothness lower-bound.
Let us consider a x ∈ RN with exactly M < N non-zero
values and such that ||x||2 = 1. Then we have:

Ssorted(x) ≥ 2

(
1− cos

(
π

2M + 1

))
= f(M) (18)

Sketch of proof: As the count of zeros in a vector x does
not change the value Ssorted(x), the demonstration can be
reduced to the case M = N − 1. Let us consider an integer
N > 1 and a vector y ∈ RN . For any index k in 1..N , we
introduce the optimization problem (Pk):

min
y

N−1∑
i=1

(yi − yi+1)
2 s.c.

{
||y||22 = 1

yk = 0
(19)

In this sketch of proof, we will only consider the case
k < N/2, but it can be handled symmetrically. The optimal
conditions for the Lagrangian yields solutions of the form:

yj =

{
0 if j ≤ k

α sin( (j−k)π
2p+1 ) if j > k

(20)

Using ||y||2 = 1, we can compute the minimum (19):

2

(
1− cos

(
π

2(M − k) + 1

))
= f(M,k) (21)

Taking the minimum of (21) over k yield the minimal value
of Ssorted(y), thus proving lemma 2.

Proof of Theorem 1.
Les us consider a graph signal x ∈ PWG(λ). Without loss of
generality, we will assume that ||x||2 = 1. From, lemma 1 and
lemma 2 successively, he have:

SG(x) ≥ Ssorted(x) ≥ f(||x||0) (22)

For a signal x ∈ PWG(λ), we have

SG(x) ≤ λ||x||22 = λ (23)

Then, combining (22) and (23) yield

λ ≥ 2

(
1− cos

(
π

2||x||0 + 1

))
(24)

A step by step inversion of this inequality leads to the result
presented in Theorem 1.


