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Tensor Convolutional Dictionary Learning
with CP Low-Rank activations

Pierre Humbert, Member, IEEE, Laurent Oudre, Nicolas Vayatis, and Julien Audiffren

Abstract—In this paper, we propose an extension of the
standard CDL problem with tensor representation, where each
activation is constrained to be “low-rank” through a Canonical
Polyadic decomposition. We show that this important additional
constraint increases the robustness of the CDL with respect
to strong noise and improve the interpretability of the re-
sults. Additionally, we discuss in details the benefits of this
representation. Then, we propose two new algorithms, based
on respectively ADMM or FISTA, that efficiently solve this
problem, by leveraging the low-rank property and achieve a lower
complexity than the leading CDL algorithms. Finally, we evaluate
our approach on a wide range of experiments, highlighting the
modularity and the important advantages of this tensorial low-
rank formulation.

Index Terms—Convolutional dictionary learning, convolutional
sparse coding, tensor, canonical polyadic decomposition

I. INTRODUCTION

The linear decomposition of a signal into few atoms of a
learned dictionary (instead of a predefined one), has led to
state-of-the-art results in a wide range of topics, including
image classification [1], [2], image restoration [3], and signal
processing [4]. Recently, its convolutional counterpart known
as Convolutional Dictionary Learning (CDL) or Convolutional
Sparse Coding (CSC), has gained renewed interest. The central
idea behind CDL is to replace the traditional patch based
representation with a global shift-invariant one. Various algo-
rithms built around the Alternating Direction Method of Mul-
tipliers (ADMM) or the Fast Iterative Shrinkage-Thresholding
Algorithm (FISTA) have been suggested to efficiently handle
the associated CDL problem. However, these solvers are
often designed to deal with univariate signals or images [5],
although multivariate data with a natural tensor structure are
encountered in many scientific areas such as audio signals [6].

To apply CDL techniques to tensor data, one strategy
consists in vectorizing the data and to use standard univari-
ate algorithms. However, this naive procedure ignores the
multidimensional structure of the data and is frequently sub-
optimal. One powerful idea to effectively exploit the struc-
tural information is to use multilinear analysis and tensor
factorization techniques such as low-rank assumptions [7].
Furthermore, by providing tools for handling multivariate data,
these approaches naturally simplify the adaptation of machine
learning and statistical methods to tensors. Thus, even recently,
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Fig. 1: Spectrograms of a stereo audio signal.

many works have consider with great success the tensor frame-
work e.g. in regression [8], [9], [10], [11], image completion
[12], processing of audio signals [6], and decomposition of
spectrograms or scalograms of ElectroEncephaloGram (EEG)
data [13].

In this article, we introduce two algorithms (one based on
ADMM, the other on FISTA) to solve CDL problems that
takes into account the underlying structure of the multivari-
ate/tensor signals. Unlike most previous works, we do not
rely on a low-rank constraint on the atoms. Instead, we extend
the standard minimization CDL problem to the tensor setting
by adding low-rank CP decomposition constraints on each
activation map. The idea of enforcing low-rank constraints
for CDL is not novel: Tigamonti et al. [14] and Sironi
et al. [15] used the idea of separable filters for learning
low-rank atoms in order to improve computational runtime.
More recent publications, including [16], [17], [18] have also
successfully used low-rank (or even rank-1) constraints on
the dictionary to introduce efficient solvers. Yet, in all these
approaches, the low-rank constraints have been enforced on the
dictionary/atoms. However, in several application contexts, the
low-rank structure naturally appears in the activations rather
than in the atoms/dictionary. To illustrate the relevance of our
new approach, we display in Figure 1 an example of two
spectrograms obtained from a stereo audio recording. Some
repetitive patterns/atoms (highlighted in red and orange) are
visible on the spectrograms which suggests that a CDL model
may appear as natural for such data. Indeed, in the figure, two
important properties can be highlighted. First, the activations
of these atoms are sparse i.e. atoms are only present in a
few places. Second, given a specific atom, we see that it is
always present at the same frequency and in both spectrograms
i.e. atoms are activated on a grid: for each atom, we can
draw a grid where it is activated at each line intersection.
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This important property is exactly the low CP-rank of the
activations. Note that, in this case, the low-rank structure of the
data is displayed by the tensors of activations rather than by the
observed patterns. In other words, although the time-frequency
atoms may be complex (and not following the low-rank
assumption), the activations (i.e. the time/frequency/channel
positions where these atoms appear) clearly exhibit a low-rank
structure. Here, this phenomenon may be explained by the
harmonic structure of the audio signals, the tempo grid used
by the instruments or the fact that both channels approximately
capture the same audio scene.

The organization of this paper is as follows. We first recall
in Section II the univariate CDL problem and the notations
on tensor algebra. Then, we introduce in Section III our
low-rank penalized multivariate CDL problem, referred to
as Kruskal Convolutional Dictionary Learning (K-CDL). We
propose two algorithms to solve it: one based on ADMM,
the other on FISTA, whose properties and derivations are
discussed in Section IV. Finally, we conduct in Section V
multiple empirical analysis on synthetic and real data to
highlight the performances of our approach.

II. BACKGROUND

This section describes the prerequisite notions for introduc-
ing our model, by recalling the standard resolution of the
univariate CDL problem as well as important definitions on
tensor algebra.

A. Univariate convolutional dictionary learning

Problem. Given a finite set of N signals y1, . . . ,yN in RM
and a scalar λ > 0, the `1-regularized CDL problem is defined
as

min
dk,zn,k

1

2

N∑
n=1

(
‖yn −

K∑
k=1

dk ©? zn,k‖22 + λ

K∑
k=1

‖zn,k‖1

)
, (1)

s.t. ‖dk‖2 ≤ 1 ∀k = 1, . . . ,K

where the dk ∈ RW are called the atoms, the zn,k ∈ RM
the activation maps, and ©? denotes the circular convolutional
operator.

Resolution. Even though the CDL problem is not jointly
convex in

(
{dk}Kk=1, {zn,k}

N,K
n,k=1

)
1, it is convex with respect

to each variable when the other one is fixed. A natural
optimization scheme for minimizing the objective function is
therefore to alternate between the minimization with respect to
the atoms {dk} when the activation maps {zn,k} are fixed and
vice versa. This strategy, known as alternating minimization
or block coordinate descent [19], [20], [21], has proven to be
very effective for such problems, even though the convergence
to a global minimum is not guaranteed in general. Solving
Problem (1) therefore consists in solving two subproblems:
the Convolutional Dictionary Learning (CDL) which searches
for {dk} with fixed {zn,k}, and a more difficult subproblem
which is the core of this article, the Convolutional Sparse
Coding (CSC) that updates {zn,k} with fixed {dk}.

1To ease the notation, in the following, we will drop the index k or n when
it is clear from the context, e.g. {dk}Kk=1 will be denoted by {dk}.

ADMM solvers. Zeiler et al. [22] were the first to propose
an efficient algorithm for the CSC problem by introducing
an auxiliary variable to separate the convolution from the `1-
regularization. This important idea of separating the fidelity
term from the sparsity term is commonly used in contemporary
methods. To do so, solvers often rely on ADMM [23], [24],
that uses the Fourier domain for the computational conve-
nience of convolutions [25], [26], [27]. The algorithm who
popularized ADMM for both the CSC and CDL is called
Fast Convolutional Sparse Coding (FCSC) [25]. In their paper,
authors have shown remarkable improvements in efficiency
by exploiting the Parseval’s equality and the convolutional
theorem for solving the CSC problem. The ADMM algorithm
has been proven to converge to the optimal solution [28].
Furthermore, in practice, this algorithm often gives an estimate
with sufficient accuracy within tens of iterations. Indeed,
with alternate minimization, each iteration does not need to
find an optimal point, but a point with medium accuracy.
Unfortunately, simple examples show that ADMM can be very
slow to converge to high accuracy [29].

FISTA solvers. Using FISTA [30] to solve the CSC problem
was first proposed by Chalasani et al. [31]. Based on the It-
erative Soft Thresholding Algorithm (ISTA) [32], this popular
proximal method has the advantage of being a gradient-based
algorithm involving very simple computations. Furthermore,
compared to ISTA, FISTA performs an extra step known as the
Nesterov’s momentum which accelerates its convergence. At
iteration t, FISTA has thus an optimal theoretical convergence
rate guarantee of O(1/t2) [30], which makes it very efficient
to solve the CSC problem. The proof of convergence and the
convergence rates do not depend on the particular structure of
the CSC problem and can also be proven.

B. Tensor algebra

A tensor is a multidimensional array which extends the
notion of vectors and matrices. Formally, a p-th order tensor
is an element of the tensor product of p ∈ N∗ vector spaces,
denoted X ∈ X , Rn1×···×np and addressed by p indexes. In
the following we denote x(q) the vectorization of the folding
of X along the dimension q.

Tensor products. Tensor algebra relies on several products
such as Kronecker or Khatri-Rao. The Kronecker product
between A ∈ Rm×n and B ∈ Rk×` is denoted A ⊗B. The
result is a matrix of size (mk)× (n`) such that

A⊗B =

a1,1B · · · a1,nB
...

. . .
...

am,1B · · · am,nB

 .

The Khatri-Rao product [33] between A ∈ Rm×k and B ∈
Rn×k is denoted A�B. The result is a matrix of size (mn)×
(k) such that

A�B = [a:,1 ⊗ b:,1, · · · ,a:,k ⊗ b:,k] .

In the following we denote as
←↩
�
p

i=1 the product of p Kha-
tri–Rao products in reverse order.

CP-rank and Kruskal operator. Given a tensor X ∈ X,
the Canonical Polyadic rank ofX (CP-rank(X ) is the smallest
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R > 0 such that there exist xri ∈ Rni , 1 ≤ i ≤ p, 1 ≤ r ≤ R
satisfying

X =

R∑
r=1

xr1 ◦ · · · ◦ xrp , (2)

where ◦ is the outer product. In this case (2) is referred to
as the CP decomposition of X . The Kruskal operator [[ · ]] is
defined as

[[X1, · · · ,Xp]] ,
R∑
r=1

xr1 ◦ · · · ◦ xrp , (3)

where Xi =
[
x1
i | . . . | xRi

]
∈ Rni×R, 1 ≤ i ≤ p.

III. TENSOR CONVOLUTIONAL DICTIONARY LEARNING
WITH CP LOW-RANK ACTIVATIONS

A. The K-CDL model

Let Y1, . . . ,YN ∈ Y , Rn1×···×np be N tensor inputs
of order p > 0 i.e. multidimensional signals. We define
the regularized Kruskal Convolutional Dictionary Learning
problem (K-CDL) as

min
DkZn,k

1

2

N∑
n=1

(∥∥∥∥Yn − K∑
k=1

Dk ©? Zn,k
∥∥∥∥2
F

(4)

+

p∑
q=1

αq

K∑
k=1

‖Zn,k,q‖1 +
p∑
q=1

βq

K∑
k=1

‖Zn,k,q‖2F

)

s.t.

{
Zn,k = [[Zn,k,1, · · · ,Zn,k,p]] ∀n ,
Dk ∈ D, ‖Dk‖F ≤ 1 ∀k ,

with α = (α1, . . . , αp),β = (β1, . . . , βp) � 0 two vectors of
hyperparameters, and matrices {Zn,k,q} in Rnq×R.
In this formulation, the {Zn,k} ∈ Y are multidimensional
sparse activation maps which specify where the multidimen-
sional atoms {Dk} in D , Rw1×···×wp , (w1 ≤ n1, · · · , wp ≤
np), are placed in the input signals. To take advantage of
the tensor structure, we add a CP low-rank constraint on the
activation maps via the Kruskal operator. The formulation
of the K-CDL problem therefore relies on four important
constraints and regularizations explained below.

The low CP-rank constraint on the activations. This
constraint controls the linear link between the different modes
of the activations maps. Instead of implicitly constraint the
CP-rank via the constraint {CP-rank(Zn,k) ≤ R ∀n, k}, we
choose to embed it using the Kruskal operator [[ · ]] (3). This
is an approach also used in the recent works of [34] and [35].
Hence, an activation Zn,k is replaced by [[Zn,k,1, · · · ,Zn,k,p]]
where the matrices {Zn,k,q} are in Rnq×R.

The unit-ball constraint. The constraint on the {Dk}
prevents the scaling indeterminacy between the atoms and the
activations as in the standard CDL.

The sparsity regularization. The regularization on the acti-
vation tensors. Here, we use a mode sparsity constraint, which
induces the sparsity of each element of the CP-decomposition
for every activation tensors independently. In tensor regression,
this regularization is also used in [36] for instance.

The ridge regularization. The CP decomposition is known
to be unique when it satisfies the Kruskal condition [37], but
only up to permutation of the normalized factor matrices. In
other words, the CP decomposition is unchanged by scaling
or permutation and the factors of this decomposition may not
be unique. In CP decomposition and tensor regression, this
property seems to make difficult for optimization methods to
find “the” solution because there is not just one. Generally,
this is handled by adding ridge penalizations (see [38], [39],
and [40]).

Sparsity and ridge regularizations. It should be noted
that both the `1 and `2 regularizations play important roles
in the objective function (4). Recently, several papers in low-
rank tensor regression (the closest model to ours but without
convolution) have considered objective functions with both
`1 and `2 penalties [41], [42], [36], [43]. In particular, our
problem can be seen as close to the equation (2.4) of [36],
where the authors show that using both penalties is essential
to obtain a sample complexity bound for tensor recovery
(equation (4.1) in [36]). Similarly, [44], [45] were only able
to prove the identifiability of their models under the condition
that the latent factors of the CP decomposition have same `2
norm. Importantly, this condition requires the addition of a `2
penalty to the objective function to be enforced, and cannot
be achieved with the `1 norm only. Finally, in [8] and [45],
the authors show that higher levels of ridge regularization
tend to convexify the objective and facilitate convergence to a
global optimum, which is in line with our previous remarks on
the ridge regularization. The `1 regularization has a different
but equally important role. Indeed, the aim of our methods
is to solve the complete CDL problem (which consists of
learning both the dictionary and the activations in an alternate
procedure). This entails a problem with many more unknown
variables than known ones. For an extreme example, in the 1-
D case, without the sparsity constraint, a single dirac atom and
activation signals identical to the input signals would lead to
a perfect reconstruction (except at the edges). Sparsity is thus
a key element to avoid such trivial solutions.Finally, during
our experiments, we observed that with no sparsity imposed,
the learned dictionary is of lower quality compared to the one
with sparsity. This may be explained by the fact that the non-
zeros entries of the activations are indicative where the atoms
of the dictionary need to be learned.

In the following we are mostly interested in solving the K-
CDL problem with atoms fixed i.e. the Kruskal-CSC (K-CSC)
problem. Given one signal Y , and with regard to the previous
remarks, the elastic-net K-CSC problem is

min
{[[Zk,1,··· ,Zk,p]]}k

1

2

∥∥∥∥Y − K∑
k=1

Dk ©? [[Zk,1, · · · ,Zk,p]]
∥∥∥∥2
F

(5)

+

p∑
q=1

αq

K∑
k=1

‖Zk,q‖1 +
p∑
q=1

βq

K∑
k=1

‖Zk,q‖2F ,

where the {Zk,q} are in Rnq×R and the ‖ · ‖2F is added
to improve the minimization process, as previously discussed.
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Note that, contrary to the K-CDL, index n has been removed
for sake of readability.

B. Links and differences with state-of-the-art models

Using tensor algebra in dictionary learning and CDL is not
novel (see related work in [46]). For instance, authors of [47]
have proposed to use tensor factorization techniques to build a
more scalable algorithm to solve the univariate CDL problem
(1). More recently, [48] introduced a multivariate linear system
solver which is also able to solve the CDL problem efficiently.

For the multivariate CDL problem, different lines of re-
search have been investigated. For instance, [46] introduced a
convolutional method for visual tensor data that finds atoms
efficiently sparifying an input tensor signal. Earlier works
have focused on methods to learn separable atoms, an idea
introduced in tensorial computer vision by [14] and [15]. In
their papers, they proposed two methods to learn high-order
CP low-rank dictionary and empirically showed that using
separable atoms as dictionaries in CSC provides significant
improvements in computational performance with respect to
non-separable implementations, while giving little loss in
accuracy or reconstruction quality. From this observation, very
recently, some papers have re-focused on the 2-D multivariate
CDL problem and assumed or learned separable/low-rank 2-
D filter banks [49], [16], [17]. The first one, [49], introduced
a computationally efficient algorithm when the dictionary
atoms are given and already separable. The two others, [16],
[17], proposed to directly learn the separable 2-D atoms. A
slight modification of this separable CDL problem is proposed
by [18] where they empirically showed that this alternative
formulation provides a reduction in computation time over the
stantard CSC and CDL algorithms.

Instead of trying to strictly extend the multivariate CDL
to tensor via the multivariate convolution operator, another
approach is to replace the convolution by specific tensor
products. In [50] for instance, authors used the t-product (see
definition in [51]) to provide another tensor CDL formulation
that has the potential to uncover high dimensional correlation
among channels, but is also computationally expensive. In
[52] and [53] exploit other products such as the t-linear
combination.

It is worth mentioning the two closest papers to this article,
[34] and [35], which introduce very similar formulations
as (4). Nevertheless, note that, [34] only considered order-
three tensor with CP-rank equals to one. Furthermore,
their algorithm is significantly more time-consuming as its
cost is proportional to the size of the signal. In [35], the
algorithm relies on the reformulation of the main problem
into another one called CSC with multichannel dictionary
filters and single-channel activation maps [54]. However, as
for [34], by not fully tacking into account the properties of
the multidimensional convolution, the algorithm has a much
higher complexity cost as the ones introduced in the following.

IV. RESOLUTION OF THE PROBLEM

Even though the problem (5) is not convex, it is convex
with respect to each of the Z-blocks {(Z1,q, · · · ,ZK,q)}pq=1 ,
or D-block (D1, · · · ,DK) when the other ones are fixed.

Furthermore, the two regularizations are separable with respect
to these blocks. A natural optimization scheme for minimizing
the objective function is therefore to use a block-coordinate
strategy or alternating minimization. The main idea is to split
the main non-convex problem into several convex subprob-
lems; 1) by freezing the D-block and all except one Z-
block at a time (referred as Z-step) 2) by only freezing all
the Z-blocks (referred as D-step). Although this algorithm
monotonically decreases the objective function, a stationary
point is not guaranteed to be a local minimum (it can be a
saddle point). Fortunately, we will see that in practice the block
relaxation algorithm almost always converges to at least a local
minimum. All proofs of the following results are deferred to
the Appendix.

Sub-problems to learn activations. To solve (5), we also
use an iterative strategy. For q varying from 1 to p, we consider

min
Z1,q,··· ,ZK,q

1

2

∥∥∥∥∥Y −
K∑
k=1

Dk ©? [[Zk,1, · · · ,Zk,q, · · · ,Zk,p]]

∥∥∥∥∥
2

F
(6)

+ αq

K∑
k=1

‖Zk,q‖1 + βq

K∑
k=1

‖Zk,q‖2F .

One naive solution is to rewrite the problem as a regression one
(without the convolution) and to use tensor regression solvers
[8], [10], [11]. However, it requires the construction of a very
large circulant tensor which is not tractable in practice due to
memory limitation. In the following, we propose two efficient
algorithms based on either ADMM or FISTA to solve (6).

A. Preliminary results and lemmas

Let first introduce important properties which will be useful
in the following for deriving our ADMM and FISTA solvers.

We first introduce the following notations:

f
(
{Zk,q}Kk=1

)
=

1

2

∥∥∥∥∥Y −
K∑
k=1

Dk ©? [[Zk,1, · · · ,Zk,p]]

∥∥∥∥∥
2

F

g
(
{Zk,q}Kk=1

)
= αq

K∑
k=1

‖Zk,q‖1︸ ︷︷ ︸
ϕαq (·)

+βq

K∑
k=1

‖Zk,q‖2F︸ ︷︷ ︸
ψβq (·)

.

In this equation, f is the fidelity term (i.e. the data fitting
term) that controls the difference between the input and its
reconstruction, and g is the summation of the regularizations
ϕαq and ψβq .

Lemma 1. (Mode-wise DFT) – Given the CP-decomposition
of a tensor X = [[X1, · · · ,Xp]], the Discrete Fourier Trans-
form (DFT) can be performed mode-wise, i.e.

X̂ =

R∑
r=1

x̂r1 ◦ · · · ◦ x̂
r
p , [[X̂1, · · · , X̂p]] , (7)

where ·̂ denotes the frequency representation of a signal. The
complexity of the computation of X̂ using the FFT goes from
O(
∏p
i=1 ni log(

∏p
i=1 ni)) to O(R

∑p
i=1 ni log(ni))). Notice

that the DFT is only performed on the second dimension of
each factor matrix, i.e. X̂q = [X̂q(:, 1) | . . . | X̂q(:, R)].
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We see from this lemma the important advantage of sepa-
rable signals over non-separable ones in term of complexity.

Lemma 2. (Equality in the Fourier domain) – The orthogonal-
ity of the Fourier basis implies a Plancherel formula. Therefore
the fidelity term f(·) is equal in the Fourier domain to

f (Zk,q) =
1

2
∏p
i=1 ni

∥∥∥∥∥Ŷ −
K∑
k=1

D̂k ∗ [[Ẑk,1, · · · , Ẑk,p]]

∥∥∥∥∥
2

F

,
1∏p
i=1 ni

f̂
(
Ẑk,q

)
,

where ∗ is the component-wise product and f̂ denotes the
fidelity term in the Fourier domain up to the factor 1/

∏p
i=1 ni.

Lemma 3. (A compact vectorized formulation) – The follow-
ing equality holds

f̂
(
Ẑk,q

)
=

1

2

∥∥∥ŷ(q) − Γ̂(Â⊗ I)ẑ(q)
∥∥∥2
F
, (8)

where ŷ(q) and is the vectorization of the folding of Ŷ
along the dimension q, ẑ(q) = [ẑ

(q)
ᵀ

1 , . . . , ẑ
(q)

ᵀ

K ]ᵀ where
∀k, ẑ(q)k is the vectorization of the matrix Ẑk,q , Γ̂ =

[diag(d̂1
(q)

), . . . , diag(d̂K
(q)

)] with d(q)k the vectorization of
the folding of D̂k along the dimension q, and

Â =

B̂1

. . .
B̂K

 where B̂k = (
←↩
�
p

i=1,i6=q Ẑk,i) .

(9)
Here, Γ̂ ∈ Cn1···np×Kn1···np , Â ∈ CK

∏p
1,i 6=q ni×KR, I ∈

Rnq×nq , and ẑ(q) ∈ CKRnq . Thus, the design matrix Γ̂(Â⊗I)
is in Cn1···np×KRnq .

B. T-ConvADMM: Z-step.

We now introduce T-ConvADMM, an ADMM-based solver
for Problem (6). Considering the previous splitting of the
objective function, the iterations of the ADMM algorithm with
a scalar ρ > 0 and {Uk} as dual variables are given by

{Z(s+1)
k,q } = argmin{Zk,q} f ({Zk,q}) +

ρ

2

∑K
k=1‖Zk,q − T

(s)
k +U

(s)
k ‖2F
(10)

{T (s+1)
k } = argmin{T k} g ({T k}) +

ρ

2

∑K
k=1‖Z

(s+1)
k,q − T k +U (s)

k ‖2F
(11)

{U (s+1)
k } = U (s)

k +Z
(s+1)
k,q − T (s+1)

k (12)

As g is fully separable, ∀k = 1, . . . ,K, subproblem (11)
admits the closed-form solution

T
(s+1)
k =

1

1 + 2βq/ρ
Sαq/ρ(Z

(s+1)
k,q +U

(s)
k ) ,

where Sγ(·) is the soft-thresholding operator defined as

Sγ(z)[i] = sign(zi)max(|zi| − γ, 0) . (13)

Solving the linear systems. Subproblem (10) also admits
a closed-form solution (with conditions [54]). However, this
solution is difficult to compute due to the size of the involved
matrices. One way to solve it efficiently is to exploit the
Parseval’s and convolution theorems in order to take advantage

Algorithm 1 T-ConvADMM for mode q
Input: signal Y , dictionary D1, · · · ,DK , regularization and ADMM
parameters λ, ρ, tolerance ε
Ŷ, {D̂k} ←− DFT(Y), {DFT(Dk)}
repeat

for q in {1, · · · , p} do
ŷ, {d̂(q)

k } ←− vec(Ŷ
(q)

), {vec(D̂(q)
k )}

{Ẑk,i}K,pk=1,i=1,i 6=q ←− {DFT(Zk,i)}K,pk=1,i=1,i 6=q
D̂ ←− Γ̂(Â⊗ I)
repeat

B Update of Z via equation (10)
Ẑ

(s)
, T̂

(s)
, Û

(s) ←− DFT(Z(s)),DFT(T (s)),DFT(U (s))

ẑ(s), t̂
(s)
, û(s) ←− vec(Ẑ

(s)
), vec(T̂

(s)
), vec(Û

(s)
)

ẑ(s+1) ←− Solve
(
D̂
H
D̂ + ρI

)
ẑ =(

D̂
H
ŷ + ρ(̂t

(s)
+ û(s))

)
Ẑ

(s+1) ←− Matricization of ẑ(s+1)

Z(s+1) ←− IDFT(Ẑ
(s+1)

)

B Update of T via equation (11)
T (s+1) ←− proxρ,αq,βq (Z

(s+1) +U (s))

B Update of u via equation (12)
U (s+1) ←− U (s) +Z(s+1) − T (s+1)

until ‖Z(s+1) −Z(s)‖∞ ≤ ε
end for

until ‖Z(s+1) −Z(s)‖∞ ≤ ε

of the convolutional structure of the problem (as in the
univariate case). Hence, using the Lemma 3, the solution of
(10) in the Fourier domain can be written as the solution in ẑ
of

(
(Â

H
⊗ I)Γ̂

H
Γ̂(Â⊗ I) + ρI

)
ẑ

=
(
(Â

H
⊗ I)Γ̂

H
ŷ + ρ(̂t− û)

)
,

where (·)H stands for the Hermitian transpose. The matrix(
(Â

H
⊗ I)Γ̂

H
Γ̂(Â⊗ I) + ρI

)
is of size KRnq × KRnq

which can be expensive to inverse. Fortunately, due to its
particular diagonal block structure, we can invert this matrix
by only solving nq independent KR×KR linear systems.

Complexity of T-ConvADMM The pseudo-code of the
Z-step of T-ConvADMM for one mode q can be found in
Algorithm 1.

The complexity of T-ConvADMM is obtained by the anal-
ysis of each step. The pre-computation of the tensors Ŷ and
{D̂k} is of complexity O((K + 1)(M log(M))) with M =∏p
i=1 ni. Then, given a particular mode q, we pre-compute the

FFT of the remaining Ẑk,i, (i 6= q). By Lemma 1, these opera-
tions have a complexity ofO(KR(p−1)

∑p
i=1,i6=q ni log(ni)).

Finally, the final matrix inversion involves nq linear systems
of size KR. By using Gaussian elimination or Cholesky
decomposition the complexity is therefore of O((KR)3nq).
However, it is possible to take advantage of iterative meth-
ods to reduce the complexity (see [29]). Finally, the soft-
threshold part and the dual variable updates are of complex-
ity O(Knq). The overall complexity is therefore of order
O((KR)3

∑p
i=1 ni).
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C. T-ConvFISTA: Z-step.

We now introduce our second algorithm T-ConvFista,
a FISTA-based solver for Problem (6). The idea of T-
ConvFISTA is to consider the previous splitting and to al-
ternate the minimization of (6) between i) a gradient descent
on f(·) + ψβq (·), ii) the proximal operator over ϕαq (·), and
iii) the Nesterov’s momentum. In order to keep the convention
of the FISTA algorithm, the proximal is taken only on the `1
norm. However, it is also possible to take the proximal from
the `1 + `2 norm, as in T-ConvADMM.

The only complex part within this process is to compute
the gradient to perform step i). Indeed, as ϕαq (·) is separable,
the proximal operator for each Zk,q is the standard soft-
thresholding operator.

Computation of the gradient. The gradient descent step
is performed in the Fourier domain. This trick decreases the
complexity of computing the gradient. A nice formulation of
the gradient of function f(·) in the Fourier domain can be
computed as a consequence of Lemmas 1, 2 and 3 as

IDFT
[(
Â
H
⊗ I

)
Γ̂
H
(
ŷ(q) − Γ̂(Â⊗ I)ẑ(q)

)]
. (14)

There are several ways to speed-up the computation of the
gradient.

First, we can exploit distributed computation by using a
parallel matrix-vector multiplication. For instance, as in our
specific case

∏p
i=1 ni � KRnq , it is valuable to precompute

the Gram matrix

G = (Â
H
⊗ I)Γ̂

H
Γ̂(Â⊗ I) (15)

and (Â
H
⊗ I)Γ̂

H
ŷ(q) involved in Lemma 3 and then use

distributed computation. In addition, the Gram matrix G has
a particular structure that we can exploit. Indeed, the matrix
G is composed of K2 blocks equal to Â

H

k Â` with

Â` = diag(d̂`
(q)

)

(
(
←↩
�
p

i=1,i6=q Ẑ`,i)⊗ I
)
. (16)

Each of these blocks can be computed in O(R2
∏p
i=1,i6=q ni)

and the full matrix G can therefore be computed in
O((KR)2

∏p
i=1,i6=q ni) operations (see Appendix). Fur-

thermore, G is a (KRnq × KRnq) banded matrix.
Its product with ẑ(q) can therefore be made in only
O((KR)2nq) operations. Hence, whenever the rank R ≤(

1

K

∏p
i=1,i6=q ni log(

∏p
i=1 ni)

)1/2

the complexity is smaller

than the one of FCSC.
Complexity of T-ConvFISTA. The pseudo-code of the
Z-step of T-ConvFISTA for one mode q can be found in
Algorithm 2.

The complexity of T-ConvFISTA is obtained by the analysis
of each step. The pre-computation of the tensors Ŷ and {D̂k}
is of complexity O((K+1)(M log(M))) with M =

∏p
i=1 ni.

Then, given a particular mode q, we pre-compute the FFT of
the remaining Ẑk,i, (i 6= q). By Lemma 1, these operations
have a complexity of O(KR(p− 1)

∑p
i=1,i6=q ni log(ni)). Fi-

nally, we perform the gradient step in the Fourier domain. Each
computation of the gradient is of complexity O((KR)2nq)

Algorithm 2 T-ConvFISTA for mode q
Input: signal Y , dictionary D1, · · · ,DK , regularization and step param-
eters α, β, η (η = 1/L, the inverse of Lipschitz constant if calculate),
tolerance ε
Initialization: Z(0)

Ŷ, {D̂k} ←− DFT(Y), {DFT(Dk)}
{Ẑk,i}K,pk=1,i=1,i 6=q ←− {DFT(Zk,i)}K,pk=1,i=1,i 6=q

G←− (Â
H ⊗ I)Γ̂

H
Γ(Â⊗ I)

G′ ←− (Â⊗ I)ŷ(q)

t(0) ←− 1
repeat

B Update of W via a proximal gradient step
(ISTA)

Ẑ
(s) ←− DFT(Z(s))

ẑ(s) ←− vec(Ẑ
(s)

)

ŵ(s+1/2) ←− ẑ(s) − η
(
Gẑ(s) −G′

)
Ŵ

(s+1/2)
←− Matricization of ŵ(s+1/2)

W (s+1/2) ←− IDFT(Ŵ
(s+1/2)

)
B Update of W via a proximal step (ISTA)
W (s+1) ←− proxη,αq,βq

(
W

(s+1/2)
k

)
B Nesterov momentum step (FISTA)

t(s+1) ←−
1 +

√
1 + 4 · t(s)2

2

Z(s+1) ←−W (s+1) +
t(s) − 1

t(s+1) + 1
(W (s+1) −W (s))

until ‖Z(s+1) −Z(s)‖∞ ≤ ε

if the Gram matrix is precomputed. The overall complexity
is therefore dominated by O((KR)2nq) for typical value of
parameters. As we do this process for every mode, we obtain
an overall complexity of O((KR)2

∑p
i=1 ni).

D. Comparison with previous solvers

Table I collects the theoretical complexity of T-ConvADMM
and T-ConvFISTA as well as the two most popular CDL algo-
rithms: ConvFISTA [31] and FCSC with iterative application
of the Sherman-Morrison equation (FCSC-ShM) [27]. With
typical values for K and R, the theoretical complexity of our
two algorithms is much smaller than the complexity of con-
ventional methods with dominant term O((KR)2

∑p
q=1 nq)

instead of O(K
∏p
q=1 nq log(

∏p
`=1 n`)). As an example, for

a signal of size (n1 × n2 × n3) = (128 × 128 × 128) with
K = 12 atoms and R = 3, (KR)2(n1 + n2 + n3) = 497, 664
while Kn1n2n3 log(n1n2n3) = 366, 316, 018.

E. Dictionary update, D-step.

Given activation tensors {Zn,k}, the dictionary update
aims at improving how the model reconstructs the inputs
Y1, · · · ,YN by solving

min
∀k,Dk∈D, ‖Dk‖F≤1

1

2

N∑
n=1

∥∥∥Yn − K∑
k=1

Dk ©? Zn,k
∥∥∥2
F
. (17)

This step presents no significant difference with existing
methods. This problem is smooth and convex and can be
solved using classical algorithms such as ADMM [5].

V. EXPERIMENTS

To illustrate the effectiveness and efficiency of T-
ConvADMM and T-ConvFISTA, we consider in this section a
wide range of synthetic and real data. To make comparisons
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Algorithm Time complexity (Z-step) Dominant term

ConvFISTA [31] T (KM︸ ︷︷ ︸
Gradient

+KM log(M)︸ ︷︷ ︸
FFTs

+ KM︸ ︷︷ ︸
Shrinkage

) K
(∏p

i=1 ni
)
log(

∏p
i=1 ni)

FCSC-SM [27] T ( KM︸ ︷︷ ︸
Linear systems

+KM log(M)︸ ︷︷ ︸
FFTs

+ KM︸ ︷︷ ︸
Shrinkage

) K
(∏p

i=1 ni
)
log(

∏p
i=1 ni)

T-ConvADMM T ((KR)3
p∑
q=1

nq︸ ︷︷ ︸
Linear system

+KR

p∑
q=1

nq log(M)

︸ ︷︷ ︸
FFTs

+KR

p∑
q=1

nq︸ ︷︷ ︸
Shrinkage

) (KR)3
∑p
q=1 nq

T-ConvFISTA T ((KR)2
p∑
q=1

nq︸ ︷︷ ︸
Gradient

+KR

p∑
q=1

nq log(M)

︸ ︷︷ ︸
FFTs

+KR

p∑
q=1

nq︸ ︷︷ ︸
Shrinkage

) (KR)2
∑p
q=1 nq

TABLE I: Comparison of the Time Complexity of the Z-steps of several solvers. T is the number of iteration, K the number of atoms,
M the size of the signal, and R the rank.

that are as fair as possible, each algorithm is implemented in
Python using Tensorly [55] (for tensor algebra), Sporco
[56] (a Python package for convolutional sparse represen-
tations with some C/C++ modules), and standard Python
libraries. Furthermore, to save memory and reduce the time
complexity, both methods are implemented with sparse matrix
packages. We also compare our methods to the two leading
batch CDL algorithms presented in the previous sections:
FCSC with iterative application of the Sherman-Morrison
equation (denoted as FCSC-ShM) [25], [27], and ConvFISTA
in the Fourier domain [31], [27]. They are both implemented
in Sporco. All subsequent simulations are run on a machine
through Linux/Ubuntu with 16-core of 2.5GHz Intel CPUs
and 64GB of RAM. Implementations of the methods are
available at https://github.com/pierreHmbt/Tensor_CDL.

A. Evaluation on synthetic data

Dataset. Small-scale and large-scale experiments are per-
formed by considering two different datasets:
• A small-scale dataset which contains 10 independent

input signals of size (25 × 25 × 25). Each signal is
generated as follows. We draw K = 3 atoms of size
(5 × 5 × 5) according to an Uniform distribution with
values in [−1, 1] and normalize them. We set the maximal
CP-rank of the sparse activations to R∗ = 2. They
are drawn from a Bernoulli-Uniform distribution with
Bernoulli parameter equals to 0.2, and range of values in
[−1, 1]. Finally, we generate the input tensor according
to the convolutional model induced by the K-CDL (4).

• A large-scale dataset which is generated as the small-
scale dataset but with input signals of size (128× 128×
128) and Bernoulli parameter equals to 0.02.

These two datasets are extended with their noisy counterpart
called noisy small-scale dataset and noisy large-scale dataset.
Following [27], for each input, we construct noisy input signals
by adding Multivariate Gaussian noise of progressively high
variance to obtain a Signal to Noise Ratio (SNR) with respect
to the original input of 25.5, 9.5, 4.5, and 0.09 dB.

Metrics. We evaluate the methods with the Root Mean
Square Error (RMSE) between the true input signal (resp. the
true activation maps) and the reconstruction. These metrics are

respectively denoted RMSE(Y) and RMSE(Z) and should be
as small as possible.

Evaluation on the CSC task. On this experiment, the
dictionary is assumed to be known and we only evaluate the
CSC task. For both the noiseless and noisy cases and for
each one of the 20 input signals, we run our methods with
R = 1, 2, 3, 4 and for 5 different initializations giving a total of
400 runs. The activations {Zk,q} are initialized with random
Uniform matrices. Each time, the initialization returning the
lowest RMSE(Y) of the 5 tries is kept.

a) Noisless case: Quantitative results for the noiseless
case are collected in Table II. Both proposed methods give
competitive results with RMSE under 1.e−7 as soon as R ≥ 2.
Furthermore, as expected, the best results are obtained when
the estimated rank R is equals to the true one, i.e. when R =
R∗ = 2. Notice that, although surprising, an overestimation
of the rank does not degrade the performance and still leads
to very low RMSE – under 1.e− 7. We also collected results
of the standard methods in Table II (bottom). With RMSE
only around 1.e−5, we clearly outperformed FCSC-ShM and
ConvFISTA.

b) Noisy case: Results on the noisy case with R = 2
are displayed on Figure 2. Interestingly, even with a lot of
noise (e.g. SNR< 6), we observe that T-ConvADMM and T-
ConvFISTA reconstruct the input signal with high accuracy
while FCSC-ShM and ConvFISTA is completely defective
and mostly overfits the noise. This was expected as the noise
does not share the low-rank structure the signals. Table IV
in the Appendix also shows that the RMSEs of the large-
scale data are lower than those of the small-scale data. This
was also expected because regardless of the size of the data,
R∗ = 2. Hence, we inherently impose much more structure
on large signals. In conclusion, while our two methods give
better results than the standard ones on these experiments, we
cannot yet conclude whether T-ConvADMM or T-ConvFISTA
is the best, as small differences between the two methods may
be due to multiple factors.

Evaluation on the whole CDL task. We now evaluate our
method on the full K-CDL problem i.e. both the dictionary
and the activations are unknown. We use the datasets of the
previous section, set R = 2, and use T-ConvFISTA combined
with the FCSC solver with Sherman–Morrison iterates for the
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CSC Small-scale dataset Large-scale dataset
CP-rank Metrics T-ConvADMM T-ConvFISTA T-ConvADMM T-ConvFISTA

R = 1 RMSE(Y) ↓ 0.016 (±0.005) 0.016 (±0.005) 0.025 (±0.002) 0.025 (±0.002)
RMSE(Z) ↓ 0.013 (±0.003) 0.013 (±0.003) 0.016 (±0.003) 0.016 (±0.003)
#{RMSE(Y) < 1.e−6} ↑ 0% 0% 0% 0%
#{RMSE(Z) < 1.e−6} ↑ 0% 0% 0% 0%

R = 2 RMSE(Y) ↓ 1.346 · e−7 (±8.996 · e−8) 1.966 · e−8 (±6.716 · e−9) 7.575 · e−11 (±5.528 · e−12) 2.804 · e−10 (±2.672 · e−10)
RMSE(Z) ↓ 8.041 · e−8 (±5.312 · e−8) 1.261 · e−8 (±4.025 · e−9) 4.476 · e−11 (±2.556 · e−12) 1.736 · e−10 (±1.723 · e−10)
#{RMSE(Y) < 1.e−6} ↑ 94% 96% 80% 85%
#{RMSE(Z) < 1.e−6} ↑ 96% 98% 90% 90%

R = 3 RMSE(Y) ↓ 3.195 · e−7 (±4.351 · e−7) 7.126 · e−7 (±2.348 · e−7) 6.439 · e−10 (±3.972 · e−10) 1.771 · e−8 (±7.898 · e−8)
RMSE(Z) ↓ 1.954 · e−7 (±2.533 · e−7) 4.266 · e−7 (±1.355 · e−7) 4.253 · e−10 (±2.833 · e−10) 1.200 · e−8 (±4.459 · e−9)
#{RMSE(Y) < 1.e−6} ↑ 72% 44% 90% 60%
#{RMSE(Z) < 1.e−6} ↑ 96% 96% 90% 56%

R = 4 RMSE(Y) ↓ 4.154 · e−7 (±1.494 · e−7) 9.290 · e−7 (±2.851 · e−7) 8.893 · e−10 (±4.922 · e−10) 4.365 · e−8 (±1.030 · e−8)
RMSE(Z) ↓ 2.646 · e−7 (±9.219 · e−8) 5.512 · e−7 (±1.796 · e−7) 5.248 · e−10 (±2.771 · e−10) 2.689 · e−8 (±5.989 · e−9)
#{RMSE(Y) < 1.e−6} ↑ 72% 20% 100% 100%
#{RMSE(Z) < 1.e−6} ↑ 98% 100% 100% 100%

CSC Small-scale dataset Large-scale dataset
CP-rank Metrics FCSC-ShM [25] ConvFISTA [31] FCSC-ShM [25] ConvFISTA [31]

– RMSE(Y) ↓ 3.072 · e−5 (±7.682 · e−6) 3.211 · e−5 (±5.364 · e−6) 2.840 · e−5 (±3.403 · e−6) 1.630 · e−5 (±1.000 · e−6)
RMSE(Z) ↓ 2.031 · e−5 (±4.601 · e−6) 8.746 · e−5 (±5.234 · e−6) 1.873 · e−5 (±2.128 · e−6) 1.435 · e−5 (±1.376 · e−6)
#{RMSE(Y) < 1.e−6} ↑ 0% 0% 0% 0%
#{RMSE(Z) < 1.e−6} ↑ 0% 0% 0% 0%

TABLE II: Results return on the CSC task on dataset without noise. For T-ConvADMM and T-ConvFISTA, R = 1, 2, 3, or 4. Mean and
standard deviation are reported. For the RMSE the lowest the better. For the other ones, the higher the better.

SNR=25.5 SNR=9.5 SNR=4.5 SNR=0.09

10 4

10 3

10 2

10 1

RM
SE

(
)

T-ConvADMM
T-ConvFISTA
FCSC-ShM
ConvFISTA

Fig. 2: RMSE(Z) when only the CSC is evaluated on the large
dataset with noise. For T-ConvADMM and T-ConvFISTA, R is set
to its true value, R∗ = 2. Mean and standard deviation are reported.
The standard deviation are indicated using black lines.

D-step [27]. This solver is preferred to T-ConvADMM as it
provides similar results on the K-CSC without the necessity
of tuning the ρ parameter (we calculate the Lipschitz constant
instead). The activations {Zk,q} and the atoms {Dk} are
initialized with random Uniform matrices or tensors. Then, we
normalize the atoms to satisfy the `2 constraint. On noiseless
signals, we obtain a range of RMSEs comparable to those
obtained with standard methods when R ≥ R∗. However,
on noisy signals, we observe that T-ConvFISTA returns better
results than FCSC-ShM and ConvFista even if the number of
active coefficients is lower.

Regarding the time performances of T-ConvFISTA, we
compare them to the ones of FCSC-ShM and ConvFista. For
sake of fairness, these two methods have been re-implemented
in Python using the same core functions. Figure 3 shows
the average time until convergence (i.e. until the relative

with 
 optimization

without 
 optimization

0

500

1000

1500

2000

Ti
m

e 
(s

)

R = 1
R = 2
R = 3
R = 4
FCSC-ShM
ConvFista

Fig. 3: Time until convergence of T-ConvFISTA on the dictionary
learning process (Z + D steps), with and without the optimizations
discussed in Section IV-C. The standard deviation are indicated using
black lines.

convergence tolerance becomes lower than 1e−4 [29]). While
it is important to remind that the relative speeds of each
methos are dependent of their choice of hyperparameters as
well as on the sparsity of the signals, we observe that (i) T-
ConvFISTA with the optimizations discussed in Section IV-C
is significantly faster than its regular counterpart and (ii) T-
ConvFISTA is faster than FCSC-ShM and ConvFista, even if
the advantage decreases as R increases. This is in line with
the complexity of Table I.

B. Evaluation on audio data

Data. Identifying recurring patterns in audio signal is an im-
portant problem in many scientific domains. A popular model
to achieve this is nonnegative matrix factorization (NMF)
[57]. A more recent model is the convolutive nonnegative
matrix factorization (CNMF) [58]. It extends the classic NMF
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(a) Left stereo audio: atom of drums (b) Right stereo audio: atom of drums

(c) Left stereo audio: atom of drums (d) Right stereo audio: atom of drums

(e) Left stereo audio: atom of guitar (f) Right stereo audio: atom of guitar

Fig. 4: On each of the four group of images: From left to right, the
learned atom, the activations relative to the first dimension (channel),
the activations relative to the second dimension (frequency), and
the activations relative to the third dimension (time). Then, the two
spectrograms corresponding to the reconstruction.

by introducing a convolutional structure into the low-rank
model reconstruction and thus, captures short-term temporal
dependencies in the data. However, these two methods never
deal with stereo or multidimensional signals. In this example,
we propose to use T-ConvFISTA to learn a dictionary (i.e.
short-lived temporal patterns) on a stereo audio signal.
This stereo signal is a 5 seconds audio file resampled at
8000Hz and issued from the Blind Source Separation Database
(BASS-DB) [59] – file Latino 1. Thus, we have a total of
2×5×8000 = 80000 data points. For the two sub-signals (one
per channel), we compute a Short-Time Fourier Transform
(STFT) to obtain a spectrogram. Window size is set to 512
with 50% overlap: only the first 50 bins have been conserved
(0 − 781.25Hz). To obtain sparse spectrograms, before any
learning, we threshold them in order to only keep the important
part of them. The final data consists in a third order tensor of
size (2× 50× 158) where the two spectrograms are stacked.
The goal is now to extract relevant time-frequency atoms from
this tensor data. To do so, using T-ConvFISTA, we reconstruct
the input using K = 25 atoms of size (1×4×8) (i.e. atoms of
0.224 seconds covering a band of frequencies of 46.875Hz).
The maximal CP-rank of each associated activation is set to
R = 5.

Metrics T-ConvFISTA FCSC-Sh Zeros∗

RMSE 3.415 · e−3 4.048 · e−3 1.060 · e−2
Sparsity 0.17 % 0.34 % 0.0 %

* reconstruction full of zeros.

TABLE III: Quantitative results on the audio signal.

Results. Results are displayed on Figure 4. We obtain a
RMSE(Y) of 3.415e−3 with 0.17% active coefficients while
with FCSC-ShM we obtain a RMSE of 4.048e−3 with more
than 0.34% active coefficients. For reference, the RMSE is
equal to 1.060e−2 when the reconstruction is full of 0.
These results are collected in Table III. Atoms and activations
returned by our method are displayed on Figure 4. Since in this
audio signal the different instruments play in distinct frequency
bands we can isolate them. For instance, the first two atoms of
Figure 4 correspond to the drums and the last one to the guitar.
This shows that the algorithm allows to extract the different
instruments by identifying the time-frequency patterns related
to each of them. Regarding the activations, we see that the
algorithm captures the temporal structure of the musical piece.
For instance, the second drum pattern is activated periodically,
which is probably linked to the tempo used in the audio file.

C. Evaluation on EEG data

Data.
We now consider multichannel EEG signals that record

brain activity with sensors covering a large part of the head.
Note that this is a difficult dataset due to the small signal-
to-noise ratio and the presence of impulsive noise. This two-
dimensional measurement is stored in a matrix X in RNs×Nt
where Ns is the number of sensors and Nt is the number of
samples.
The data consists in 32 EEG signals during a General Anes-
thesia (GA). We crop the full signal to keep only an important
phase of the GA known as the “Recovery of Consciousness”
(RoC) [60]. Recorded at 250Hz, each signal has a duration of
1000 seconds. With all channels included, it corresponds to
8, 000, 000 points. Signals are pre-processed with a bandpass
filter between 1 and 20Hz, to remove the potential drift below
1Hz, and to keep the frequencies below 20Hz that characterize
GA [61]. Then, on each channel the STFT is computed with
a window size of 1024 and 50% overlap: only the first 82
bins have been conserved (0 − 20 Hz). To obtain sparse
spectrograms, we hard-threshold them before any learning in
order to only keep the important part of them. We stack the
32 spectrograms in a final tensor Y of size (32× 82× 490).
As for the audio signal, the goal is now to extract relevant time-
frequency atoms from this tensor data with T-ConvFISTA.
During a GA, patients are static and EEG signals do not
present many patterns. As a consequence, we set R = 2, and
only learn K = 5 atoms of size (1 × 15 × 5) corresponding
to time-frequency atoms covering 8.19 seconds and a band of
frequencies of 3.42Hz. To reconstruct the 1-D initial signal
from the spectrograms we apply the inverse STFT.

Learned dictionary and activations. Three learned atoms
with their activations are displayed in Figure 5. One important
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Fig. 5: Three atoms of interest with their activations. From left to
right: the time-frequency atom, the channel activations (mode 1), the
frequency activations (mode 2), and the time activations (mode 3).

Fig. 6: Evolution of the time activations for the first and second
atoms of Figure 5 which are relative to the δ and α waves.

property is the high interpretability of our results. Indeed,
as we decompose the activations into the modes (channels
× frequencies × times), we can study each one of them
independently. For example, from the frequency activations
(mode 2), we see that the first two atoms are related to
important frequencies in anesthesia referred as α and θ-waves.
Regarding their time activations (mode 3), they decrease with
time (see Figure 6). This is a common behavior that occurs
during a GA induced by propofol [60]. Indeed, it is known that
when sedation begins, α and θ-waves appear. Then, during the
ROC stage, they gradually disappear and fade away. The third
atom corresponds to important spikes which may be explain
by impulsive noise. From the channel activations (mode 1), we
see that most of its contribution is on one channel. However,
due to the propagation of the electricity on all the scalp, the
other sensors also record these spikes at the same time. The
activation tensor relative to this particular atom is therefore
rank-1 (as found by the algorithm). Notice that, thanks to its
identification, we can remove its contribution from the final
reconstruction in order to not observe the spikes.

Robustness to noise and reconstruction. Via the channel
activations (mode 1) of one learned atom we identify three
deficient channels: 10 (CP1), 21 (CP2), and 28 (F4). In a
clinical context, these channels are at spatial positions where
the cap can come off. The sensors then only pick up noise
at these positions. Fortunately, as shown in the synthetic ex-
periments, due to the low-rank constraint, the model assumes

Fig. 7: On top, raw signal of a good channel (blue), a bad channel
(green), and a reconstruction of the bad channel with T-ConvFISTA
(orange). The other two figures are more focused on signals.

links between the channels and is robust to strong noise. In
our case, this leads to an automatic reconstruction of the bad
channels using the good ones. In Figure 7 for instance, we see
a bad channel (in green) presenting a lot of noise, especially
after 8 seconds. Using the other channels (e.g. the blue one),
our algorithm reconstructs a plausible underlying true signal
(in orange). Note that in this final experiments, we used the
Inverse STFT in order to re-obtain temporal signals (and not
only spectrograms).

VI. CONCLUSION

In this article, we extend the CDL problem to multivariate
signals using tensor algebra. More particularly, we supposed
that the activation maps are sparse and CP low-rank. We
proposed two algorithms based either on ADMM and FISTA
to efficiently solve the associated minimization problem. These
two algorithms are evaluated and compared on both synthetic
and real data. We showed that they provide better results than
conventional algorithms in term of reconstruction, sparsity, and
interpretability. On real datasets, we showed that the ability of
our methods to split the activation maps in each mode allows
a better comprehension of the input signal.
Several directions of research are available to improve mul-
tivariate CDL methods. Fist, some optimization steps of our
two algorithms could be improved e.g. Equation (10) could
maybe be solved more efficiently using conjugate gradient.
Second, it is difficult, for the two proposed methods (but
for CDL methods in general) to tune the hyperparameters.
For instance, some supervision could be introduced to learn
the adequate hyperparameters from an annotated database.
Finally, a thorough understanding of the theoretical aspect of
such model need to be investigated. Indeed, at the moment,
important questions remain unanswered (e.g. conditions of
ineffability of the atoms/activations).
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APPENDIX

CSC R = 2 noisy small-scale dataset noisy large-scale dataset
SNR Metrics T-ConvADMM T-ConvFISTA T-ConvADMM T-ConvFISTA

25.5dB RMSE(Y) ↓ 3.988 · e−4 (±4.121 · e−5) 3.999 · e−4 (±4.427 · e−5) 6.523 · e−5 (±5.970 · e−7) 7.606 · e−5 (±1.253 · e−6)
RMSE(Z) ↓ 2.397 · e−4 (±2.331 · e−5) 2.403 · e−4 (±2.528 · e−5) 3.820 · e−5 (±4.431 · e−7) 4.469 · e−5 (±1.1666 · e−6)
#{RMSE(Y) < 1.e−3} ↑ 98% 94% 86% 90%
#{RMSE(Z) < 1.e−3} ↑ 98% 96% 86% 90%

9.5dB RMSE(Y) ↓ 2.513 · e−3 (±1.046 · e−4) 2.492 · e−3 (±9.024 · e−5) 4.254 · e−4 (±9.016 · e−6) 4.958 · e−4 (±7.733 · e−6)
RMSE(Z) ↓ 1.509 · e−3 (±6.113 · e−5) 1.495 · e−3 (±5.066 · e−5) 2.504 · e−4 (±8.241 · e−6) 2.913 · e−4 (±7.194 · e−6)
#{RMSE(Y) < 2.5e−3} ↑ 84% 84% 84% 88%
#{RMSE(Z) < 2.5e−3} ↑ 96% 98% 84% 90%

4.5dB RMSE(Y) ↓ 5.224 · e−3 (±3.302 · e−4) 4.847 · e−3 (±3.166 · e−4) 8.835 · e−4 (±2.140 · e−5) 9.918 · e−4 (±1.529 · e−5)
RMSE(Z) ↓ 3.147 · e−3 (±2.039 · e−4) 2.894 · e−3 (±1.805 · e−4) 5.187 · e−4 (±1.708 · e−5) 5.828 · e−4 (±1.434 · e−5)
#{RMSE(Y) < 5.e−3} ↑ 41% 52% 84% 88%
#{RMSE(Z) < 4.e−3} ↑ 84% 86% 84% 88%

0.09dB RMSE(Y) ↓ 7.796 · e−2 (±1.156 · e−3) 7.805 · e−2 (±2.893 · e−3) 1.938 · e−2 (±5.476 · e−3) 1.923 · e−2 (±5.212 · e−3)
RMSE(Z) ↓ 4.857 · e−2 (±1.948 · e−3) 4.848 · e−2 (±2.566 · e−3) 1.139 · e−2 (±3.176 · e−3) 1.127 · e−2 (±3.033 · e−3)
#{RMSE(Y) < 2.e−2} ↑ 0% 0% 71% 71%
#{RMSE(Z) < 3.e−2} ↑ 0% 0% 91% 91%

CSC noisy small-scale dataset noisy large-scale dataset
SNR Metrics FCSC-ShM [25] ConvFISTA [31] FCSC-ShM [25] ConvFISTA [31]

25.5dB RMSE(Y) ↓ 2.292 · e−3 (±1.220 · e−5) 2.109 · e−3 (±2.547 · e−4) 1.732 · e−3 (±8.707 · e−6) 1.732 · e−3 (±8.703 · e−6)
RMSE(Z) ↓ 1.454 · e−3 (±7.326 · e−5) 1.311 · e−3 (±2.027 · e−4) 1.050 · e−3 (±2.794 · e−6) 1.050 · e−3 (±2.791 · e−5)
#{RMSE(Y) < 1.e−3} ↑ 0% 0% 0% 0%
#{RMSE(Z) < 1.e−3} ↑ 0% 0% 10% 10%

9.5dB RMSE(Y) ↓ 6.734 · e−3 (±7.117 · e−4) 6.673 · e−3 (±6.847 · e−4) 6.689 · e−3 (±3.344 · e−5) 6.689 · e−3 (±3.344 · e−4)
RMSE(Z) ↓ 4.393 · e−3 (±6.060 · e−4) 4.367 · e−3 (±5.919 · e−4) 4.405 · e−3 (±3.011 · e−4) 4.406 · e−3 (±3.010 · e−4)
#{RMSE(Y) < 2.5e−3} ↑ 0% 0% 0% 0%
#{RMSE(Z) < 2.5e−3} ↑ 0% 0% 0% 0%

4.5dB RMSE(Y) ↓ 1.215 · e−2 (±1.252 · e−3) 1.209 · e−2 (±1.202 · e−3) 1.211 · e−2 (±6.243 · e−4) 1.211 · e−2 (±6.242 · e−4)
RMSE(Z) ↓ 7.800 · e−3 (±1.033 · e−3) 7.774 · e−3 (±1.009 · e−3) 7.812 · e−3 (±5.252 · e−4) 7.813 · e−3 (±5.251 · e−4)
#{RMSE(Y) < 5.e−3} ↑ 0% 0% 0% 0%
#{RMSE(Z) < 4.e−3} ↑ 0% 0% 0% 0%

0.09dB RMSE(Y) ↓ 2.780 · e−1 (±1.622 · e−3) 2.591 · e−1 (±1.650 · e−3) 2.593 · e−1 (±6.895 · e−4) 2.595 · e−1 (±4.980 · e−4)
RMSE(Z) ↓ 1.506 · e−1 (±1.506 · e−3) 1.372 · e−1 (±2.169 · e−3) 1.372 · e−1 (±1.461 · e−3) 1.367 · e−1 (±1.081 · e−4)
#{RMSE(Y) < 2.e−3} ↑ 0% 0% 0% 0%
#{RMSE(Z) < 3.e−3} ↑ 0% 0% 0% 0%

TABLE IV: Results when only the CSC is evaluated on dataset with noise. For T-ConvADMM and T-ConvFISTA, R is set its true value,
R∗ = 2. Mean and standard deviation are reported. For the RMSE the lowest the better. For the other ones, the higher the better.

A. Technical proofs
This section provides the technical proofs of the different propositions exposed in the main paper. To be as complete as possible, we

recall well-known but important definitions and theoretical properties from multidimensional Fourier analysis. We begin with two important
definitions.

Definition 1. (Discrete Fourier Transform (DFT)) – Let consider a function F defined on {0 . . . , N1 − 1} × · · · × {0 . . . , Np − 1} with
period (N1, · · · , Np). The Discrete Fourier Transform (DFT) of F is given by

F̂ [k1, · · · , kp] =
N1−1∑
n1=0

· · ·
Np−1∑
np=0

F [n1, . . . , np] exp

(
−i2π

(
k1n1

N1

, . . . ,
kpnp

Np

))
,

and the Inverse DFT (IDFT) of F̂ is given by

F [n1, · · · , np] =
(

1∏p
i=1Ni

)
·
N1−1∑
k1=0

· · ·
Np−1∑
kp=0

F̂ [k1, . . . , kp] exp

(
i2π

(
k1n1

N1

, . . .
kpnp

Np

))
.

Let now consider the periodization of two discrete function F and G,

F̃ [n1, · · · , np] = F [n1 mod N1, · · · , np mod Np]

G̃[n1, · · · , np] = G[n1 mod N1, · · · , np mod Np] .

The two functions F̃ and G̃ are now two discrete functions with period (N1, · · · , Np) (each of the modes are periodic one-dimensional
signals). The circular convolution is defined as follow.

Definition 2. (Circular discrete convolution) – Let consider two functions F ,G defined on {0 . . . , N1 − 1} × · · · × {0 . . . , Np − 1} with
both a period of (N1, · · · , Np). The circular convolution between F̃ and G̃ is given by

(F̃ ©? G̃)[n1, · · · , np] =

N1−1∑
k1=0

· · ·
Np−1∑
kp=0

F̃ [k1, · · · , kp]G̃[n1 − k1, · · · , np − kp] .
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F̃ ©? G̃ is a signal of period (N1, · · · , Np) and can be decomposed in a Fourier basis like classical periodic signals which give rises to the
following important theorem.

Theorem 1. (Discrete convolution theorem) – If F and G have period (N1, · · · , Np), then the DFT of H = F ©? G is

Ĥ[n1, · · · , np] = F̂ [n1, · · · , np] ∗ Ĝ[n1, · · · , np] , or in tensor notation Ĥ = F̂ ∗ Ĝ ,

where ∗ is the component-wise product or Hadamard product.

We now present a simple lemma showing the important advantage of separable signals (i.e. low-rank signal) over non-separable ones in
term of complexity.

Lemma 4. (Mode-wise DFT) – Given the CP-decomposition of a tensor X = [[X1, · · · ,Xp]], the Discrete Fourier Transform (DFT) can
be performed mode-wise, i.e.

X̂ =

R∑
r=1

x̂r1 ◦ · · · ◦ x̂rp , [[X̂1, · · · , X̂p]] , (18)

where ·̂ denotes the frequency representation of a signal. The complexity of the computation of X̂ using the FFT goes from
O(
∏p
i=1 ni log(

∏p
i=1 ni)) to O(R

∑p
i=1 ni log(ni))). Notice that the DFT is only performed on the second dimension of each factor

matrix, i.e. X̂q = [X̂q(:, 1) | . . . | X̂q(:, R)].

Proof. Using the definition of both the DFT and the CP-decomposition, the proof is straightforward. Furthermore, as we only perform 1-D
FFT, we obtain the given complexity.

To prove the next results, we will extensively used matricization and vectorization techniques. One important formula in tensor algebra
is given by the above proposition.

Proposition 1. (Matricization of the Kruskal operator [7]) – Let X be a tensor in X with CP-decomposition [[X(1), . . . ,X(p)]]. Then,

X(q) = Xq (Xp � · · · �Xq+1 �Xq−1 � · · · �X1)
ᵀ

= Xq

(
←↩
�
p

i=1,i 6=q Xi

)ᵀ

,

where � is the Khatri–Rao product and
←↩
�
p

i=1 denotes the product of p Khatri–Rao products in reverse order. We can also also vectorized
this formula which gives

vec(X(q)) =
(
Xp � · · · �Xq+1 �Xq−1 � · · · �X1 ⊗ Inq

)
vec(Xq) =

(
←↩
�
p

i=1,i 6=q Xi ⊗ Inq

)
vec(Xq) ,

where Inq is an identity matrix of size (nq × nq).

Lemma 5. (Equality in the Fourier domain) – The orthogonality of the Fourier basis implies a Plancherel formula. Therefore the fidelity
term f(·) is equal in the Fourier domain to

f (Zk,q) =
1

2
∏p
i=1 ni

∥∥∥∥∥Ŷ −
K∑
k=1

D̂k ∗ [[Ẑk,1, · · · , Ẑk,p]]

∥∥∥∥∥
2

F

,
1∏p
i=1 ni

f̂
(
Ẑk,q

)
,

where ∗ is the component-wise product and f̂ denotes the fidelity term in the Fourier domain up to the factor 1/
∏p
i=1 ni.

Proof. The proof rests on several equalities and properties.

1

2

∥∥∥∥∥Y −
K∑
k=1

Dk ©?
R∑
r=1

z
(1)
k,r ◦ · · · ◦ z

(p)
k,r

∥∥∥∥∥
2

F

=
1

2
∏p
i=1Ni

∥∥∥∥∥Ŷ −
K∑
k=1

DFT(Dk ©?
R∑
r=1

z
(1)
k,r ◦ · · · ◦ z

(p)
k,r)

∥∥∥∥∥
2

F

(Parseval’s theorem – Plancherel)

=
1

2
∏p
i=1Ni

∥∥∥∥∥Ŷ −
K∑
k=1

D̂k ∗
R∑
r=1

DFT(z
(1)
k,r ◦ · · · ◦ z

(p)
k,r)

∥∥∥∥∥
2

F

(Convolution theorem 1)

=
1

2
∏p
i=1Ni

∥∥∥∥∥Ŷ −
K∑
k=1

D̂k ∗
R∑
r=1

ẑ
(1)
k,r ◦ · · · ◦ ẑ

(p)
k,r

∥∥∥∥∥
2

F

(Lemma 4)

=
1

2
∏p
i=1Ni

∥∥∥∥∥Ŷ −
K∑
k=1

D̂k ∗ [[Ẑ
(1)

k , · · · , Ẑ
(p)

k ]]

∥∥∥∥∥
2

F

(Kruskal operator) .

Lemma 6. (A compact vectorized formulation) – The following equality holds

f̂
(
Ẑk,q

)
=

1

2

∥∥∥ŷ(q) − Γ̂(Â⊗ I)ẑ(q)
∥∥∥2
F
, (19)
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Fig. 8: Visualization of G = (Â
H
⊗ I)Γ̂

H
Γ̂(Â⊗ I) before and after a reordering. The two left matrices correspond to the Gram matrix

without and with reordering. The two right matrices also correspond to the Gram matrix without and with reordering but for a higher
dimension.

where ŷ(q) and is the vectorization of the folding of Ŷ along the dimension q, ẑ(q) = [ẑ
(q)

ᵀ

1 , . . . , ẑ
(q)

ᵀ

K ]
ᵀ where ∀k, ẑ(q)

k is the vectorization

of the matrix Ẑk,q , Γ̂ = [diag(d̂1

(q)
), . . . , diag(d̂K

(q)
)] with d

(q)
k the vectorization of the folding of D̂k along the dimension q, and

Â =

B̂1

. . .
B̂K

 where B̂k = (
←↩
�
p

i=1,i 6=q Ẑk,i) . (20)

Here, Γ̂ ∈ Cn1···np×Kn1···np , Â ∈ CK
∏p

1,i 6=q ni×KR, I ∈ Rnq×nq , and ẑ(q) ∈ CKRnq . Thus, the design matrix Γ̂(Â ⊗ I) is in
Cn1···np×KRnq .

Proof. The proof mainly rests on the Proposition 1 and on the formulation of the previous lemma.∥∥∥∥∥Ŷ −
K∑
k=1

D̂k ∗ [[Ẑk,1, · · · , Ẑk,p]]

∥∥∥∥∥
2

F

=

∥∥∥∥∥Ŷ (q)
−

K∑
k=1

D̂
(q)

k ∗ Ẑk,q

(
←↩
�
p

i=1 Ẑ
(i)

k

)ᵀ
∥∥∥∥∥
2

F

(matricization)

=

∥∥∥∥∥ŷ(q) −
K∑
k=1

d̂
(q)

k ∗
(
←↩
�
p

i=1 Ẑ
(i)

k ⊗ I
)

vec(Ẑk,q)

∥∥∥∥∥
2

F

(vectorization)

=

∥∥∥∥∥ŷ(q) −
K∑
k=1

diag(d̂
(q)

k )

(
←↩
�
p

i=1 Ẑ
(i)

k ⊗ I
)

vec(Ẑk,q)

∥∥∥∥∥
2

F

(x ∗ y = diag(x)y)

=

∥∥∥∥∥ŷ(q) −
K∑
k=1

diag(d̂
(q)

k )Ĉkẑk

∥∥∥∥∥
2

F

,

where the last line is just notations. To obtain the final equality, we stack the matrices {diag(d̂
(q)

k )} and construct a block-diagonal matrix
such that the block are the {Ck}. Finally we obtain the following equality.Ĉ1

. . .
ĈK

 =

B̂1 ⊗ I
. . .

B̂K ⊗ I

 =

B̂1

. . .
B̂K

⊗ I ,

with B̂k = (
←↩
�
p

i=1,i 6=q Ẑk,i). This end the proof.

Proposition 2. (Gradient of f ) – With the notation of Theorem 2, the gradient of f with respect to z(q) = [vec(Z
(q)
1 )

ᵀ
, . . . ,vec(Z

(q)
K )

ᵀ
]
ᵀ

is given by

∇z(q)f
(
{Z(r)

k }
K,p
k=1,r=1

)
= IDFT

[(
(Â

(q)
⊗ I)Γ̂

(q)
)H (

Γ̂
(q)

(Â
(q)
⊗ I)ẑ(q) − ŷ(q)

)]
, (21)

where IDFT[·] stands for the Inverse Discrete Fourier Transform.

Proof. See [62] Section 2.3.2. for a complete and detailed proof.

Proposition 3. The matrix G , (Â
H
⊗ I)Γ̂

H
Γ̂(Â⊗ I) can be obtained by computing K2 blocks Gk,`, 1 ≤ k, ` ≤ K, where

Gk,` =

(
(
←↩
�
p

i=1,i 6=q Ẑk,i)
H ⊗ I

)
diag(d̂k

(q)
)diag(d̂`

(q)
)

(
(
←↩
�
p

i=1,i 6=q Ẑ`,i)⊗ I
)
, (22)

and each of these blocks can be computed in O(R2∏p
i=1,i 6=q ni) operations.
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Proof. The first step of the proof requires to write Γ̂ as the Kronecker product of two specific matrices in order to use the equality
(A⊗B)(C ⊗D) = (AC ⊗BD). Recall that Γ̂ is a block-diagonal matrix, i.e. Γ̂ = [diag(d̂1

(q)
), · · · , diag(d̂K

(q)
)]. We can decompose

each diagonal-block, diag(d̂k
(q)

), into smaller diagonal matrices using the kronecker product as follow

diag(d̂k
(q)

) =

N\q∑
i=1

diag(ei)⊗∆k,i with N\q =

p∏
i=1,i6=q

ni ,

where diag(ei) ∈ RN\q×N\q and ∆k,i ∈ Cnq×nq being the i-th diagonal block of diag(d̂k
(q)

) (i.e. ∆k,i =

diag(d̂k
(q)

)(i·nq :(i+1)·nq),(i·nq :(i+1)·nq)). As (diag(ei) ⊗ ∆k,i) is decomposed into two matrices of the proper dimension, we can used
the equality (A⊗B)(C ⊗D) = (AC ⊗BD) leading to(

(�pi=1,i 6=qẐk,i)
H ⊗ I

)
diag(d̂k

(q)
)diag(d̂`

(q)
)
(

(�pi=1,i 6=qẐ`,i)⊗ I
)

=
(
B̂
H

k ⊗ I
)N\q∑
i=1

(
diag(ei)⊗∆k,i

)N\q∑
j=1

(diag(ej)⊗∆`,j)
(
B̂` ⊗ I

)

=

N\q∑
i=1

N\q∑
j=1

(
B̂
H

k ⊗ I
) (

diag(ei)⊗∆k,i

)
(diag(ej)⊗∆`,j)

(
B̂` ⊗ I

)

=

N\q∑
i=1

N\q∑
j=1

(
B̂
H

k diag(ei)diag(ej)B̂` ⊗∆k,i∆`,j

)

=

N\q∑
i=1

(
B̂
H

k diag(ei)diag(ei)B̂` ⊗∆k,i∆`,i

)

=

N\q∑
i=1

(
(diag(ei)B̂k)Hdiag(ei)B̂` ⊗∆k,i∆`,i

)
=

N\q∑
i=1

(
B̂k(i, :) ◦ B̂`(i, :)⊗∆k,i∆`,i

)
.

The outer product of two vectors in C1×R is of complexity O(R2). This product is made for each 1 ≤ i ≤ N\q and for each K2

blocks. Hence, the overall complexity is O((KR)2
∏p
i=1,i6=q ni). In addition, as this matrix has a particular block structure, i.e. this is a

band-matrix, its product with a vector of size KRnq is of small complexity equals to O((KR)2nq).


