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Abstract

In this paper, we consider the problem of learning a graph structure from multivariate
signals, known as graph signals. Such signals are multivariate observations carrying mea-
surements corresponding to the nodes of an unknown graph, which we desire to infer. They
are assumed to enjoy a sparse representation in the graph spectral domain, a feature which
is known to carry information related to the cluster structure of a graph. The signals are
also assumed to behave smoothly with respect to the underlying graph structure. For the
graph learning problem, we propose a new optimization program to learn the Laplacian of
this graph and provide two algorithms to solve it, called IGL-3SR and FGL-3SR. Based
on a 3-step alternating procedure, both algorithms rely on standard minimization meth-
ods –such as manifold gradient descent or linear programming– and have lower complexity
compared to state-of-the-art algorithms. While IGL-3SR ensures convergence, FGL-3SR
acts as a relaxation and is significantly faster since its alternating process relies on multiple
closed-form solutions. Both algorithms are evaluated on synthetic and real data. They are
shown to perform as good or better than their competitors in terms of both numerical per-
formance and scalability. Finally, we present a probabilistic interpretation of the proposed
optimization program as a Factor Analysis Model.

Keywords: Graph learning, graph Laplacian, non-convex optimization, graph signal
processing, sparse coding, clustering

1. Introduction

Hidden structures in multivariate or multimodal signals can be captured through the notion
of graph. The availability of such a graph is a core assumption in many computational tasks
such as spectral clustering, semi-supervised learning, graph signal processing, etc. However,
in most situations no natural graph can be derived or defined, therefore the underlying graph
must be inferred from available data. This task, often referred to as graph learning, has
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received significant attention in fields such as machine learning, signal processing, biology,
meteorology, and others (Friedman et al., 2008; Hecker et al., 2009; William et al., 2017).

Learning a graph is an ill-posed problem as several graphs can explain the same set of
observations. Previous works have been devoted to introducing models or constraints that
would narrow down the range of possible solutions. For instance, physical constraints can
be imposed to suggest epidemic models or other information propagation and interaction
models (Rodriguez et al., 2011; Du et al., 2012; Gomez-Rodriguez et al., 2016). From
a statistical perspective, the graph learning task is seen as the estimation of a certain
probability distribution parametrized by the graph itself. Generally, the assumed class of
distributions is either a Bayesian Network in the case of directed graphs, or a Markov
Random Field for undirected graphs (Koller et al., 2009; Yang et al., 2015; Wang and
Kolar, 2016; Tarzanagh and Michailidis, 2018; Le Bars et al., 2020). Hence, the graph
structure encompasses the conditional dependencies between variables. Two variables will
be connected in the graph if they are dependent conditionally on all the other variables.
In the particular case of Gaussian Random Fields, the graph estimation consists in the
estimation of the inverse covariance matrix, known as the precision matrix (Banerjee et al.,
2008; Friedman et al., 2008). In Friedman et al. (2008), the proposed estimation method
corresponds to the well-known Graph-Lasso algorithm, which relies on the assumption that
the precision matrix is subject to a sparsity constraint.

More recently, Graph Signal Processing (GSP) (Shuman et al., 2013; Djuric and Richard,
2018), has generalized the standard concepts and tools of signal processing to multivariate
signals recorded over graph structures. Notions such as smoothness, sampling, filtering, etc.,
have been adapted to this framework, opening a new field that paves the way to further
developments in graph learning (Pasdeloup et al., 2017; Thanou et al., 2017). In this
framework, the smoothness of the observations with respect to the true underlying graph
is a common assumption (Dong et al., 2018; Daitch et al., 2009; Kalofolias, 2016; Egilmez
et al., 2016; Chepuri et al., 2017), which asks for graphs on which the signals have small local
variations among adjacent nodes. Another naturally arising property of real-world problems
is the sparsity of the observations in the graph spectral basis (Valsesia et al., 2018; Sardellitti
et al., 2019). In data clustering, for instance, the vector of labels seen as a signal over the
vertices of a graph, exhibits a sparse spectral representation. It is smooth within each
cluster and varies across different clusters (Figure 1). Hence, building this kind of graph
is relevant for graph-based clustering approaches such as spectral clustering. Furthermore,
the sparsity assumption is also relevant for the sampling task. Indeed, by making use of
this property, it is possible under mild conditions to reconstruct the dimensions of the
multivariate observations corresponding to nodes that have not been sampled (Chen et al.,
2015). These properties, all borrowed from the GSP field, can be seen as constraints that
can be used as regularizations to the graph learning task, and offer a new perspective on
the topic.

Aim and main contribution. In the present paper, we introduce an optimization prob-
lem to learn a graph from signals that are assumed to be smooth and admitting a sparse
representation in the spectral domain of the graph. The main axes of our contribution can
be summarized as follows:

2



Learning a Graph from Signals with Sparse Spectral Representation

• The graph learning task problem is cast as the optimization of a smooth nonconvex
objective function over a nonconvex set (Section 2). This problem is efficiently solved
by introducing a framework that combines in an innovative way barrier methods,
alternating minimization, and manifold optimization (Section 3). A relaxed algorithm
is also proposed, which is scalable with respect to the graph dimensions (Section 4).

• A factor analysis model for smooth graph signals with sparse spectral representation
is introduced (Section 5). This model provides a probabilistic interpretation of our
optimization program and links its objective function to a maximum a posteriori
estimation.

• The proposed algorithms are tested and compared to state-of-the-art approaches using
several synthetic and real datasets (Section 7). The experimental results show that
our approach achieves similar or better performance than existing methods, while
reducing significantly the need of computing resources.

Background and notations. Throughout the paper, we consider an undirected and
weighted graph G with no self-loops. It is defined as a pair G = (V, E) with vertices (or
nodes) V = {1, ..., N} and set of edges E = {(i, j, wij), i, j ∈ V} with weights wij ∈ R+

arranged in a weight matrix W ∈ RN×N+ . More particularly, we focus on its combinatorial
graph Laplacian matrix that describes entirely the graph and is given by L = D − W ,
where D is the diagonal degree matrix and W the weight matrix. As G is undirected,
L is a symmetric positive semi-definite matrix. Its eigenvalue decomposition can be writ-
ten as L = XΛXT, with Λ = diag(λ1, ..., λN ) a diagonal matrix with the eigenvalues and
X = (x1, ..., xN ) a matrix with the eigenvectors as columns. We also consider graph signals
(or graph functions) on this graph. A graph signal is defined as a function y : V → RN that
assigns a scalar value to each vertex. This function can be represented as a vector y ∈ RN ,
with yi the function value at the i-th vertex. Also, with 1N we denote the constant uni-
tary vector of size N , and with 0N the vector containing only zeros. Additional notations
are given when needed in the text, while all our notations are collected in Table 3 (Section 9).

Next, we give important definitions for two graph signal properties: first the smoothness,
and then the spectral sparsity that allows us to create a spectral representation of a graph
signal y adapted to a graph, using the Graph Fourier Transform (GFT).

Definition 1 (Smoothness) – Let G = (V, E) be a graph, L be its Laplacian matrix, and
y ∈ RN be a graph signal seen as vector. Given a smoothness level s ≥ 0, then a graph
signal y is said to be s-smooth with respect to the graph G if

yTLy =
1

2

∑
i,j

wij (yi − yj)2 ≤ s . (1)

Intuitively, a graph signal y is s-smooth with respect to G if adjacent nodes of the graph
carry sufficiently similar signal values.
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(a) (b) (c)

Figure 1: Three smooth graph signals (N = 300) with decreasing bandlimitedness, each of them
admitting a spectral representation that is: (a) a 150-sparse, (b) 6-sparse, and (c) 3-sparse.

Definition 2 (Graph Fourier Transform) – Let G = (V, E) be an undirected graph with
no self-loops, and L = XΛXT be the eigenvalue decomposition of its Laplacian matrix.
Then, the GFT of a graph signal y ∈ RN is given by h = XTy, where the components of
h are interpreted as Fourier coefficients, the eigenvalues Λ as distinct frequencies, and the
eigenvectors X as decomposition basis.

Definition 3 (Spectral sparsity) – Consider the notations of Definition 2. Given k ∈ N+,
we say that a graph signal y admits a k-sparse spectral representation with respect to a graph
G, if for h = XTy, then

‖h‖0 ≤ k , (2)

where ‖h‖0 stands for the number of non-zero elements of h.

Regarding this definition, y admits k-sparse spectral representation if the number of non-
zero elements in its Fourier coefficients vector is less or equal to k. In the following, we also
use the term k-bandlimited when referring to a k-sparse signal.

2. Problem Statement

2.1 Setup and working assumptions

The general task of graph learning aims at inferring a graph G that best explains the
n observed graph signals {y(i)}ni=1 of size N , composing a matrix Y = [y(1), · · · , y(n)] ∈
RN×n. The proposed graph learning framework takes as input the matrix Y and outputs
the Laplacian matrix L associated to the inferred graph G (note that both notions are
equivalent). Our learning process is based on the following assumptions:

Assumption 1 (Assumption on the graph G) – G is undirected, with no self-loops.

With Assumption 1, L is a symmetric positive semi-definite matrix with eigenvalue decom-
position L = XΛXT, where λ1 = 0 and x1 = 1√

N
1N (Chung and Graham, 1997).
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Assumption 2 (Assumption on the signals Y ) – Graph signals Y defined over the true
underlying graph G are assumed s-smooth and admit a k-sparse spectral representation,
with unknown values for s and k.

On the smoothness assumption . According to Equation (1), low s values tend to favor
smooth signals for which adjacent nodes carry similar signal values. This natural property
has been widely considered in graph learning (Daitch et al., 2009; Dong et al., 2016).
On the spectral sparsity assumption . This property is known as bandlimitedness in
the GSP field and assumes that the null components of h are those associated to the largest
eigenvalues (frequencies). Essentially, this additional hypothesis expresses a fundamental
principle of signal processing that suggests filtering-out the high-frequency band of a signal,
as it carries mainly noise and little or no information. This assumption is very common for
graph signals, especially in GSP where it is the main hypothesis of several graph sampling
methods (Anis et al., 2014; Narang et al., 2013; Chen et al., 2015; Marques et al., 2016).
This property is also related to the cluster structure of a graph. Indeed, in a graph of k
clusters, a signal that is smooth within each cluster and vary arbitrarily across clusters,
will admit a k-sparse spectral representation. In this context, the non-null weights of h will
be necessarily associated to the k first eigenvectors of the corresponding Laplacian matrix,
as these eigenvectors are also smooth within the clusters (Von Luxburg, 2007). To enforce
such behavior in the graph learning process, i.e. make sure that only the first coefficients of
h are non-zero, the bandlimitness property must be combined with the smoothness prop-
erty. Figure 1 shows three smooth graph signals to illustrate the intuition behind these
assumptions.

2.2 Graph Learning for Smooth and Sparse Spectral Representation

A general graph learning scheme consists in learning the adjacency or the Laplacian matrix.
However, since the constraint of Assumption 2 (sparsity of the graph signals over the eigen-
basis of the Laplacian matrix) is easier to be expressed in the spectral domain, in this
article we focus on learning the eigendecomposition of the Laplacian matrix L = XΛXT.
The optimization problem incorporates a linear least square regression term depending of
Y , X, and H, which controls the distance of the new representation XH to the observations
Y . In addition, due to Assumption 2, we add two penalization terms: One to control the
smoothness of the new representation, depending on Λ and H; the other one to control it’s
sparsity on the spectral domain, which only depends on H. Finally, as we want to learn
a Laplacian matrix satisfying Assumption 1, equality and inequality constraints relative to
X and Λ are necessary. To that end, we introduce the following optimization problem:

min
H,X,Λ

‖Y −XH‖2F + α‖Λ1/2H‖2F + β‖H‖S , (3)

s.t.


XTX = IN , x1 = 1√

N
1N , (a)

(XΛXT)k,` ≤ 0 k 6= ` , (b)
Λ = diag(0, λ2, ..., λN ) � 0 , (c)
tr(Λ) = N ∈ R+

∗ , (d)

where ‖ · ‖S is defined bellow, IN is the identity matrix of size N , tr(·) denotes the trace of
an input matrix, and Λ � 0 indicates that the matrix Λ is semi-definite positive.
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This problem aims at conjointly learning the Laplacian L (i.e. (X,Λ)) and a smooth
bandlimited approximation XH of the observed signals Y . Here, H has the same size as Y
and corresponds to the spectral representation of the graph signals through the GFT.

Interpretation of the terms. In the objective function (3), the first term corresponds
to the quadratic approximation error of Y by XH, where ‖ · ‖F is the Frobenius norm. The
second term is a smoothness regularization equally imposed to each column of XH. Indeed,
from Equation (1), we have

∑
i y

(i)TLy(i) = tr(YTLY ) = ‖L1/2Y ‖2F . Rewriting this for the
set of graph signals in XH, we obtain:

‖L1/2XH‖2F = ‖XΛ1/2XTXH‖2F = ‖Λ1/2H‖2F =

N∑
i=1

λi‖Hi,:‖22 ,

where Hi,: is the i-th row of the matrix H. This kind of regularization is very common
in graph learning (Kalofolias, 2016; Chepuri et al., 2017). From its definition, we can see
that it tends to be low when high values of {λi}Ni=1 are associated to rows of H with low
`2-norm. This corroborates the idea that the {λi}Ni=1 can be interpreted as frequencies and
the elements of H as Fourier coefficients.

Finally, β‖H‖S , is a sparsity regularization. In this work, we propose to either use the
`2,1 (the sum of the `2-norm of each row of H) or `2,0 (the number of rows with `2-norm

different than 0) that induces a row-sparse solution Ĥ.

Remark on the choice of ‖ · ‖S. In the context of GSP, it is natural to assume that
the graph signals are bandlimited, all at the same dimensions. This property is enforced
by ‖ · ‖S and has two main advantages: it is a key assumption for sampling over a graph
and this particular structure is better for inferring graphs with clusters (Sardellitti et al.,
2019). Therefore, in this article, the use of the classical `0-norm and the `1-norm has not
been investigated since they would impose sparsity at every dimension of the matrix H
‘independently’, which would consequently break the bandlimitedness assumption.

The hyperparameters, α, β > 0 are controlling respectively the smoothness of the ap-
proximated signals and the sparsity of H. A discussion on the influence of these hyper-
parameters and an efficient way to fix them is provided in Section 7.3.1. Finally, the
first three constraints (3a), (3b), (3c) enforce XΛXT to be a Laplacian matrix of an
undirected graph (Assumption 1). More specifically, by definition, L = D − W with
W ∈ RN×N+ , thus we necessary have ∀k 6= `, Lk,` = (XΛXT)k,` ≤ 0 (constraint (3b)).
Furthermore, as XΛXT is the eigendecomposition of the Laplacian matrix of an undirected
graph, XTX = IN , x1 = 1√

N
1N andλ1 = 0 ≤ λ2 ≤ ... ≤ λN (constraints (3a) and (3c)).

The last constraint (3d) was proposed in Dong et al. (2016) as to impose structure in the
learned graph while avoiding that the trivial solution Λ̂ = 0. A discussion about values
other than N is made in Kalofolias (2016).

The objective function (3) is not jointly convex but when ‖·‖S is taken to be the `2,1 norm,
it is convex with respect to each of the block-variables H,X, or Λ, taken independently. A
natural approach to solve this problem is therefore to alternate between the three variables,
minimizing over one while keeping the others fixed. However, due to the equality constraint
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(3a) and inequalities (3b), the feasible set is not convex with respect to X. Hence, this
approach raises several difficulties that will be discussed and handled in the following section.

2.3 Reformulation of the problem

As stated in Section 2.2, Problem (3) is not jointly convex and cannot be solved easily with
constraints (3a) and (3b). In this section, we propose to rewrite constraints (3a) and (3b), in
order to define a new equivalent optimization problem that can be solved with well-known
techniques.

2.3.1 Reformulation of the constraint (3a)

In this section, we show that the constraints (3a) can be reformulated as a constraint over
the space of orthogonal matrices in R(N−1)×(N−1). Although such transformation does not
change the convexity of the feasible set, we will see in Section 3.3 that there exist efficient
algorithms that perform optimization over such manifold.

Definition 4 (Orthogonal group) – The space of orthogonal matrices in RN×N , called
orthogonal group, is the space:

Orth(N) = {X ∈ RN×N | XTX = IN} .

Lemma 5 – Given X,X0 ∈ RN×N two orthogonal matrices, both having their first column
equal to 1√

N
1N (constraint (3a)), we have the following equality

X = X0

[
1 0TN−1

0N−1 [XT
0X]2:,2:

]
,

with [XT
0X]2:,2: denoting the submatrix of XT

0X containing everything but the first row and
column of itself. Furthermore, [XT

0X]2:,2: is in Orth(N − 1).

The above lemma allows us to build an equivalent formulation of Problem (3) given by
the following proposition.

Proposition 6 – Given X0 ∈ RN×N an orthogonal matrix with first column being equal to
1√
N

1N , an equivalent formulation of optimization Problem (3) is given by

min
H,U,Λ

∥∥∥∥∥Y −X0

[
1 0TN−1

0N−1 U

]
H

∥∥∥∥∥
2

F

+ α‖Λ1/2H‖2F + β‖H‖S , f(H,U,Λ) , (4)

s.t.



UTU = IN−1 , (a’)(
X0

[
1 0TN−1

0N−1 U

]
Λ

[
1 0TN−1

0N−1 UT

]
XT

0

)
k,`

≤ 0 k 6= ` , (b’)

Λ = diag(0, λ2, ..., λN ) � 0 , (c)
tr(Λ) = N ∈ R+

∗ . (d)

The latter proposition says that since the first column of X is fixed and known, it is sufficient
to look for an optimal rotation of a valid matrix X0 that preserves the first column. Such
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a rotation matrix is given above and is parametrized by a U in Orth(N − 1). Note that in
practice, to find a matrix X0 satisfying (3a), we build the Laplacian of any graph with a
single connected component and take its eigenvectors.

2.3.2 Log-barrier method for constraint (4b’)

In order to deal with constraint (4b’), we propose to use a log-barrier method. This bar-
rier function allows us to consider an approximation of Problem (4) where the inequality
constraint (4b’) is made implicit in the objective function. Denoting by f(·) the objective
function of (4), we want to solve

min
H,U,Λ

f(H,U,Λ) +
1

t
φ(U,Λ) s.t. (4a’), (4c), (4d) , (5)

where t is a fixed positive constant and φ(·) is the log-barrier function associated to the
constraint (4b’).

Definition 7 (Log-barrier function) – Let the following matrix in RN×N :

h(U,Λ) = X0

[
1 0TN−1

0N−1 U

]
Λ

[
1 0TN−1

0N−1 U

]T
XT

0 ,

involved in the constraint (4b′). The associated log-barrier function φ : R(N−1)×(N−1) ×
RN×N −−→ R is defined by:

φ(U,Λ) = −
N−1∑
k=1

N∑
`>k

log
(
− h(U,Λ)k,`

)
, (6)

with dom(φ) =
{

(U,Λ) ∈ R(N−1)×(N−1) ×RN×N | ∀1 ≤ k < ` ≤ N,h(U,Λ)k,` < 0
}

, i.e. its
domain is the set of points that strictly satisfy the inequality constraints (4b’).

This barrier function allows us to perform block-coordinate descent on three subproblems
that are easier to solve, as we discuss in the next section.

3. Resolution of the problem: the IGL-3SR algorithm

In this section, we describe our method, the Iterative Graph Learning for Smooth and Sparse
Spectral Representation (IGL-3SR), and its different steps to solve Problem (5). Given a
fixed t > 0, we propose to use a block-coordinate descent on H, U , and Λ, which permits
to split the problem in three partial minimizations that we discuss in this section. One of
the main advantages of IGL-3SR is that each subproblem can be solved efficiently and as
the objective function is lower-bounded over the set of constraints, this procedure ensures
convergence. The summary of the method is presented in Algorithm 1.

3.1 Optimization with respect to H

For fixed U and Λ, the minimization Problem (5) with respect to H is:

min
H
‖Y −XH‖2F + α‖Λ1/2H‖2F+β‖H‖S , where X = X0

[
1 0TN−1

0N−1 U

]
. (7)

8



Learning a Graph from Signals with Sparse Spectral Representation

When ‖ · ‖S is set to ‖ · ‖2,0 (resp. ‖ · ‖2,1), this problem is a particular case of what is known
as Sparsify Transform Learning (Ravishankar and Bresler, 2012) (resp. is a particular case
of the Group Lasso (Yuan and Lin, 2006) known as Multi-Task Feature Learning (Argyriou
et al., 2007)). Moreover, as X is orthogonal, we are able to find closed-form solutions
(Proposition 8).

Proposition 8 (Closed-form solution for the `2,0 and `2,1-norms) – The solutions of Prob-
lem (7) when ‖ · ‖S is set to ‖ · ‖2,0 or ‖ · ‖2,1, are given in the following.

• Using the `2,0-norm, the optimal solution of (7) is given by the matrix Ĥ ∈ RN×n
where for 1 ≤ i ≤ N,

Ĥi,: =

{
0 if 1

1+αλi
‖(XTY )i,:‖22 ≤ β ,

1
(1+αλi)

(XTY )i,: else .
(8)

• Using the `2,1-norm, the optimal solution of (7) is given by the matrix Ĥ ∈ RN×n,
where for 1 ≤ i ≤ N,

Ĥi,: =
1

1 + αλi

(
1− β

2

1

‖(XTY )i,:‖2

)
+

(XTY )i,: , (9)

where (t)+ , max{0, t} is the positive part function.

3.2 Optimization with respect to Λ

For fixed H and U , the optimization Problem (5) with respect to Λ is:

min
Λ

α tr(HHTΛ)︸ ︷︷ ︸
‖Λ1/2H‖2F

+
1

t
φ(U,Λ) s.t.

{
Λ = diag(0, λ2, ..., λN ) � 0 , (c)
tr(Λ) = N ∈ R+

∗ . (d)
(10)

This objective function is differentiable and convex with respect to Λ, and the constraints
define a Simplex. Thus, several convex optimization solvers can be employed, such as those
implemented in CVXPY (Diamond and Boyd, 2016). Popular algorithms are interior-point
methods or projected gradient descent methods (Maingé, 2008). Using one algorithm of the
latter type, we compute the gradient of (10) and project each iteration onto the Simplex
(Duchi et al., 2008).

3.3 Optimization with respect to U

For fixed H and Λ, the optimization Problem (5) with respect to U is:

min
U

∥∥∥∥∥Y −X0

[
1 0TN−1

0N−1 U

]
H

∥∥∥∥∥
2

F

+
1

t
φ(U,Λ) s.t. UTU = I(N−1) . (a’) (11)

The objective function is not convex but twice differentiable and the constraint (a’) involves
the set of orthogonal matrices Orth(N − 1) which is not convex. Orthogonality constraint
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Figure 2: The principle of the manifold gradient descend given schematically. TXOrth(N) is the
tangent space of Orth(N) at X. The red line corresponds to a curve in Orth(N) passing through
the point X in the direction of the arrow. At each iteration, considering that X is the point of
the current solution, a search direction belonging to TXOrth(N) is first defined, and then a descent
along a curve of the manifold is performed (at the direction of the black arrow along the red line).

is central to many machine learning optimization problems including Principal Component
Analysis (PCA), Sparse PCA, and Independent Component Analysis (ICA) (Hyvärinen
and Oja, 2000; Zou et al., 2006; Shalit and Chechik, 2014). Unfortunately, optimizing over
this constraint is a major challenge since simple updates such as matrix addition usually
break orthonormality. One class of algorithms tackles this issue by taking into account that
the orthogonal group Orth(N) is a Riemannian submanifold embedded in RN×N . In this
article, we focus on manifold adaptation of descent algorithms to solve Problem (11).

The generalization of gradient descent methods to a manifold consists in selecting, at
each iteration, a search direction belonging to the tangent space of the manifold defined at
the current point X, and then performing a descent along a curve of the manifold. Figure
2 pictures this principle.

Definition 9 (Tangent space at a point of Orth(N)) – Let X ∈ Orth(N). The tangent
space of Orth(N) at point X, denoted by TXOrth(N) is a 1

2N(N − 1) dimensional vector
space defined by:

TXOrth(N) =
{
XΩ | Ω ∈ RN×N is skew-symmetric

}
.

When we endow each tangent space with the standard inner product, we are able to define
a notion of Riemannian gradient that allows us to find the best direction for the descent.
For an objective function f̄ : RN×N→ R, the Riemannian gradient defined over Orth(N)
is given by:

gradf̄(X) = PX(∇X f̄(X)) , (12)

where PX is the projection onto the tangent space at X, which is equal to PX(ξ) =
1
2X(XTξ− ξTX), and ∇X is the standard Euclidean gradient. At each iteration, the mani-
fold gradient descent computes the Riemannian gradient (12) that gives a direction in the
tangent space. Then the update is given by applying a retraction onto this direction, up
to a step-size. A retraction consists in an update mapping from the tangent space to the
manifold, and there are many possible ways to perform that (Edelman et al., 1998; Absil
et al., 2009; Arora, 2009; Meyer, 2011). From the last equation, we see that in order to solve

10
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Problem (11) with this method, we need the Euclidean gradient of the objective function,
namely those of f(·) and φ(·). These are given in the following proposition.

Proposition 10 (Euclidean gradient with respect to U) – The Euclidean gradient of f(·)
and φ(·) with respect to U are:

∇Uf(H,U,Λ) = −2
[
(HYTX0)2:,2:

]T
+ 2U(HHT)2:,2: ,

∇Uφ(U,Λ) = −
N−1∑
k=1

N∑
`>k

(
Bk,` +BT

k,`

)
UΛ2:,2:

h(U,Λ)k,`
,

with ∀1 ≤ k, ` ≤ N,Bk,` =
(
XT

0 eke
T
`X0

)
2:,2:

, and h(·) from Definition 7.

3.4 Log-barrier method and initialization

Choice of the t parameter. The quality of the approximation of Problem (4) by
Problem (5) improves as t > 0 grows. However, taking a too large t at the beginning may
lead to numerical issues. As a solution, we use the path-following method, which computes
the solution for a sequence of increasing values of t until the desired accuracy. This method
requires an initial value for t, denoted t(0), and a parameter µ such that t(`+1) = µt(`). For
an in-depth discussion we refer to Boyd and Vandenberghe (2004).

Initialization. At the beginning, our IGL-3SR method requires a feasible solution to
initialize the algorithm. One possible choice is to take U as the identity matrix IN−1 and
to replace (X0,Λ) by the eigenvalue decomposition of the complete graph with trace equals
to N . Indeed, its eigenvalue decomposition will always satisfy the constraints and belong
to the domain of the barrier function. The initialization of H is not needed as we start
directly with the H-step.

IGL-3SR is summarized in Algorithm 1.

3.5 Theoretical analysis of IGL-3SR

3.5.1 Computational complexity of IGL-3SR

Considering a graph with N nodes and n > N graph signals:

• H-step (non-iterative) – The closed-form solution requires to compute the matrix
product XTY , which is of complexity O(nN2).

• Λ-step (iterative) – When using a projected gradient descent method, the complexity
of each iteration is O(nN2) to compute the gradient and O(N log(N)) for the pro-
jection (Duchi et al., 2008). Hence, denoting by τΛ the number of iterations in each
Λ-step, the complexity is O(τΛ · nN2).

• X-step (iterative) – The complexity of each iteration is O(nN2) to compute the Rie-
mannian gradient and O(N3) when we use the QR factorization as retraction (Boyd
and Vandenberghe, 2018). Hence, denoting by τX the number of iterations in each
X-step, the complexity is O(τX · nN2).

11



Humbert, Le Bars, Oudre, Kalogeratos, and Vayatis

Algorithm 1 The IGL-3SR algorithm with `2,1-norm

Input: Y ∈ RN×n, α, β
Input of the barrier method: t(0), tmax, µ – see Section 3.4
Output: Ĥ, X̂, Λ̂
Initialization: L0 (e.g. with a complete graph) – see Section 3.4

t← t(0)

(X0,Λ)← SVD(L0)
U ← IN−1

while t ≤ tmax do
while not convergence do

B H-step: Compute the closed-form solution of Proposition (8)

for 1 = 1, ..., N do

Hi,: ←
1

1 + αλi

(
1− β

2

1

‖(XTY )i,:‖2

)
+

(XTY )i,:

end for

B Λ-step: Solve Problem (10)

Λ← arg min
Λ
α tr(HHTΛ) +

1

t
φ(U,Λ) s.t.

{
Λ = diag(0, λ2, ..., λN ) � 0 ,
tr(Λ) = N ∈ R+

∗

B U-step: Solve Problem (11)

while not convergence do

U ← retraction(U(
[
(HY TX0)2:,2:

]
U − UT

[
(HY TX0)2:,2:

]T
))

end while

end while
t← µt

end while

Overall – The complexity to go through the big loop of IGL-3SR once (i.e. once through
each of the H, Λ, and X steps) is of order O(max(τΛ , τX ) · nN2). However, recall that τΛ

and τX can be large in practice for reaching a good solution. In the following, we propose
a relaxation for a faster resolution that relies on closed-form solutions.

3.5.2 Convergence properties of IGL-3SR

We now present a convergence result for IGL-3SR (Algorithm 1). Although the problem 5
that is solved is not convex, the following Lemma gives necessary conditions for a solution
to be optimal.

Lemma 11 (Optimality conditions) – Karush-Khun-Tucker (KKT) conditions are neces-
sary conditions for any optimal solution (H∗, U∗,Λ∗) of Problem 5.

The proof is given in Section 9 and relies on the fact that the orthogonality constraint verify
the Linear Independence Constraint Qualification (LICQ).

The following result states that IGL-RSR converges and that any limit point of the iterates
belongs to the set of KKT solutions.

12
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Theorem 12 (Convergence of IGL-3SR) – The sequence {(H(`), U (`), λ(`))}`≥0 generated
by Algorithm 1 admits at least one converging subsequence. If we also assume that each
sub-problem is effectively minimized at each iteration, then, any accumulation point of the
sequence satisfies the KKT conditions of Problem 5.

4. A relaxation for a faster resolution: the FGL-3SR algorithm

In this section, we propose another algorithm, first introduced in Le Bars et al. (2019),
called Fast Graph Learning for Smooth and Sparse Spectral Representation (FGL-3SR) to
approximately solve the initial Problem (3). FGL-3SR has a significantly reduced com-
putational complexity due to a well-chosen relaxation. As in the previous section, we use
a block-coordinate descent on H, X, and Λ, which permits to decompose the problem in
three partial minimizations. FGL-3SR relies on a simplification of the minimization step in
X by removing the constraint (3b). This simplification allows us to compute a closed-form
on this step which greatly accelerates the minimization. However, the constraints (3a) and
(3b) are equally important to obtain a valid Laplacian matrix at the end, and reducing the
problem does not ensure that the constraint (3b) will be satisfied. The following proposition
explains why we can get rid of constraint (3b) at the X-step, while still being able to ensure
that the matrix will be a proper Laplacian at the end of the algorithm.

Proposition 13 (Feasible eigenvalues) – Given any X ∈ RN×N being an orthogonal matrix
with first column being equal to 1√

N
1N (constraint (3a)), there always exists a matrix Λ ∈

RN×N such that the following constraints are satisfied:
(XΛXT)i,j ≤ 0 i 6= j , (3b)
Λ = diag(0, λ2, ..., λN ) � 0 , (3c)
tr(Λ) = c ∈ R+

∗ . (3d)

In Proposition 14 of the next section, we will see that, by ignoring constraint (3b) at
the X-step, we can compute a closed-form solution to the optimization problem. For this
reason, we propose to use the closed-form solution that we derive to learn X, and right
after always optimize with respect to Λ. Hence, we are sure that we will obtain a proper
Laplacian at the end of the process (Proposition 13). The initialization and the optimization
with respect to H are not concerned by this relaxation and can therefore be performed as
in IGL-3SR (see Sections 3.1 and 3.4).

4.1 Optimization with respect to X

As already explained, during the X-step, we solve the program

min
X
‖Y −XH‖2F s.t. XTX = IN , x1 =

1√
N

1N , (3a) (13)

where the constraint (3b) is missing. The closed-form solution is given next.

Proposition 14 (Closed-form solution of Problem (13)) – Let X0 be any matrix that be-
longs to the constraints set (3a), and M = (XT

0 Y H
T)2:,2: the submatrix containing every-

thing but the input’s first row and first column. Finally, let PDQT be the SVD of M . Then,

13
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Algorithm 2 The FGL-3SR algorithm with `2,1-norm

Input : Y ∈ RN×n, α, β
Output : Ĥ, X̂, Λ̂
Initialization: L0 (e.g. with a complete graph) – see Section 3.4

(X,Λ)← SVD(L0)
for t = 1, 2, ... do

B H-step: Compute the closed-form solution of Proposition (8)

for 1 = 1, ..., N do

Hi,: ←
1

1 + αλi

(
1− β

2

1

‖(XTY )i,:‖2

)
+

(XTY )i,:

end for

B X-step: Compute the closed-form solution of Proposition (14)

M ← (XTY HT)2:,2:

(P,D,QT)← SVD(M)

X ← X

[
1 0TN−1

0N−1 PQT

]
B Λ-step: Solve the linear Program (15)

Λ← arg min
Λ
α tr(HHTΛ) s.t.

 (XΛXT)i,j ≤ 0 i 6= j
Λ = diag(0, λ2, ..., λN ) � 0
tr(Λ) = N ∈ R+

∗

end for

the problem admits the following closed form solution:

X̂ = X0

[
1 0TN−1

0N−1 PQT

]
. (14)

In practice, X0 can be fixed to the current value of X.

4.2 Optimization with respect to Λ

With respect to Λ, the optimization Problem (3) becomes:

min
Λ

α tr(HHTΛ)︸ ︷︷ ︸
‖Λ1/2H‖2F

s.t.


(XΛXT)i,j ≤ 0 i 6= j , (b)
Λ = diag(0, λ2, ..., λN ) � 0 , (c)
tr(Λ) = N ∈ R+

∗ , (d)
(15)

FGL-3SR is summarized in Algorithm 2.

4.3 Computational complexity of FGL-3SR

Considering a graph with N nodes and n graph signals:

• H-step – The closed-form solution requires to compute the matrix product XTY ,
which is of complexity O(nN2).

14
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• X-step – The closed-form solution requires to compute the SVD of (XT
0 Y H

T)2:,2: ∈
R(N−1)×(N−1), which is of complexity O(N3) (Cline and Dhillon, 2006).

• Λ-step – Solving the LP can be done with interior-point methods or with the ellipsoid
method (Vandenberghe, 2010). For accuracy ε, the ellipsoid method yields a complex-
ity of O(max(m,N) ·N3 log (1/ε)), where m = 1

2N(N − 1) +N + 1 is the number of
constraints (Bubeck, 2015).

Overall – As m > N , the complexity for FGL-3SR is of order O(N5) when using the
ellipsoid method. In contrast, the most competitive related algorithm of the literature
(ESA-GL (Sardellitti et al., 2019)) relies on a semi-definite program and is of order at
least O(N8) (see Section 6). As will be clearly demonstrated in Section 7, in practice the
empirical execution time of FGL-3SR is lower than IGL-3SR and ESA-GL.

4.4 Differences between IGL-3SR and FGL-3SR

The two proposed algorithms are based on a modification of the initial optimization Problem
(3). Indeed, both of them relax the constraint (3b), ∀k 6= `, (XΛXT)k,` ≤ 0, but using
two different approaches. IGL-3SR approximates the initial optimization problem through
the use of a log-barrier function. The advantage of the barrier is twofold: first, it allows
to overcome the technical constraint (3b) and solve the program using a block-coordinate
descent algorithm; second, the use of the barrier makes the block-variables separable over the
constraint set, allowing the convergence of the objective function of IGL-3SR. In addition,
IGL-3SR always keeps the set of variables in the initial set of constraints, essential for the
matrix XΛXT to be a proper Laplacian.

On the other hand, FGL-3SR, instead of using a log-barrier function to relax the con-
straint (3b), it removes it from the X-step. Recall that we are perfectly able to do that
as we know from Lemma 13 that for any X returned by the X-step (4.1), there exist a Λ
making XΛXT a Laplacian. This relaxation speeds-up drastically the X-step while loosing
the convergence property and the decreasing over the initial constraints set.

5. A probabilistic interpretation for the optimization problem

In this section, we introduce a new representation model adapted to smooth graph signals
with sparse spectral representation. The goal of this model is to provide a probabilistic
interpretation of Problem (3) and link its objective function to a maximum a posteriori
estimation (Proposition 18).

Given a Laplacian matrix L = XΛXT, we propose the following Factor Analysis Frame-
work to model a graph signal y:

y = Xh+my + ε , (16)

where my ∈ RN is the mean of the graph signal y and ε is a Gaussian noise with zero
mean and covariance σ2IN . Here, the latent variable h = (h1, ..., hN ) controls y through
the eigenvector matrix X of L. The choice of the representation matrix X is particularly
adapted since it reflects the topology of the graph and provides a spectral embedding of
its vertices. Moreover, as seen in Section 2, X can be interpreted as a graph Fourier basis,

15



Humbert, Le Bars, Oudre, Kalogeratos, and Vayatis

which makes it an intuitive choice for the representation matrix. In a noiseless scenario
with my = 0, h actually corresponds to the GFT of y.

To comply with the spectral sparsity assumption (Assumption 2), we now propose a
distribution that allows h to admit zero-valued components. To this end, we introduce
independent latent Bernoulli variables γi with success probability pi ∈ [0, 1]. Knowing
γ1, ..., γN , the conditional distribution for h is:

h|γ ∼ N (0, Λ̃†) , (17)

where Λ̃† is the Moore-Penrose pseudo-inverse of the diagonal matrix containing the values
{λi1{γi = 1}}Ni=1. In this model, γi controls the sparsity of the i-th element of h. Indeed,
if γi = 0, then hi = 0 almost surely. In the other hand, if γi = 1 then hi follows a Gaussian
distribution with zero-mean and variance equal to 1/λi. This is adapted to the smoothness
hypothesis as for high value of λi (high frequency), the distribution of hi concentrates more
around 0, leading to small value of λih

2
i . The associated probability of success pi can be

chosen a priori. One way to chose it is to take pi inversely proportional to λi. Indeed, this
would increase the probability to be sparse at dimensions where the associated eigenvalue
is high. Note that, since λ1 = 0, h1 follows a centered degenerate Gaussian, i.e h1 is equal
to 0 almost surely. Furthermore, if pi = 1 for all i, our model reduces to the one proposed
by Dong et al. (2016), which was only focused on the smoothness assumption.

Definition 15 (Prior and conditional distributions) – The following equations summarize
the prior and important conditional distributions of our model:

p(hi|γi, λi) ∝ exp(−λih2
i )1{γi = 1}+ 1{hi = 0, γi = 0} , (18)

p(y|h,X) ∝ exp(− 1

σ2
‖y −Xh−my‖22) , (19)

p(γi) ∝ pγii (1− pi)1−γi . (20)

For simplicity, in the following we consider that my = 0 and p1 = 0.

Lemma 16 – Assume the proposed Model (16). If p1 = 0 and pi ∈ (0, 1), ∀i ≥ 2, then:

− log(p(h|y,X,Λ)) ∝ 1

σ2
‖y −Xh‖22 +

1

2
hTΛh

+
N∑
i=1

1{hi 6= 0}
(
pi log(

λi√
2π

)− log(pi)− log(
λi√
2π

)

)
.

Definition 17 (Lambert W-Function) – The Lambert W -Function, denoted by W (·), is
the inverse function of f : W 7→ WeW . In particular, we consider W to be the principal
branch of the Lambert function, defined over [−1/e,∞).

Proposition 18 (A posteriori distribution of h) – Let C > 0, and assume for all i ≥ 2 that

pi = e−C if λi =
√

2π, whereas pi = −W
(
− e−C log(λi/

√
2π)

λi/
√

2π

)
1

log(λi/
√

2π)
otherwise. Then,

pi ∈ (0, 1) and there exist constants α, β > 0 such that:

− log(p(h|y,X,Λ)) ∝ ‖y −Xh‖22 + αhTΛh+ β‖h‖0 .

This proposition tells us that: for a given Laplacian matrix, the maximum a posteriori
estimate of h would corresponds to the minimum of Problem (3).
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6. Related work on GSP-based graph learning methods

Here we detail the two state-of-the-art methods for graph learning in the GSP context that
are closer to our work and that will be used for our experimental comparison in Section 7.

GL-SigRep (Dong et al., 2016). This method supposes that the observed graph signals
are smooth with respect to the underlying graph, but do not consider the spectral sparsity
assumption. To learn the graph, they propose to solve the optimization problem:

min
L,Ỹ
‖Y − Ỹ ‖2F + α‖L1/2Ỹ ‖2F + β‖L‖2F s.t.


Lk,` = L`,k ≤ 0 k 6= ` ,
L1 = 0 ,
tr(L) = N ∈ R+

∗ .
(21)

Remark that since no constraints are imposed on the spectral representation of the signals,
the Laplacian matrix is directly learned. The optimization procedure to solve (21) con-
sists in an alternating minimization over L and Ỹ . With respect to Ỹ the problem has a
closed-form solution whereas for L, the authors propose to use a Quadratic Program solver
involving 1

2N(N − 1) parameters and 1
2N(N − 1) +N + 1 constraints.

ESA-GL (Sardellitti et al., 2019). This is a two-step algorithm where the signals are
supposed to admit a sparse representation with respect to the learned graph. The difference
to our paper is two-fold. First, ESA-GL does not include the smoothness assumption while
learning the Fourier basisX. This brings a different two-step optimization program. Second,
the complexity of the ESA-GL algorithm (at least O(N8)) is much higher than ours (O(N5)
for FGL-3SR - see Section 4.3), and hence is prohibitive for large graphs. The first step
consists in fitting an orthonormal basis such that the observed graph signals Y admit a
sparse representation with respect to this basis. They consider the problem:

min
H,X
‖Y −XH‖2F s.t.

{
XTX = IN , x1 = 1√

N
1N ,

‖H‖2,0 ≤ K ∈ N ,
(22)

which is solved using an alternating minimization. Once estimates for H and X have been
computed, they solve a second optimization problem in order to learn the Laplacian L
associated to the learned basis X̂. This is done by minimizing:

min
L∈RN×N , CK∈RK×K

tr(ĤT
KCKĤK) + µ‖L‖2F s.t.


Lk,` = L`,k ≤ 0 k 6= ` ,
L1N = 0N ,

LX̂K = X̂KCK , CK � 0 ,
tr(L) = N ∈ R+

∗ ,

(23)

where CK ∈ RK×K and X̂K corresponds to the columns of X̂ associated to the non-zero rows
of Ĥ denoted ĤK . Thus, the second step aims at estimating a Laplacian that enforces the
smoothness of the learned signal representation X̂Ĥ. This semi-definite program requires
the computation of over 1

2N(N − 1) + 1
2K(K − 1) parameters that, as we show empirically

in the next section, can be difficult to compute for graphs with large number of nodes. For
more details on the optimization program and the additional matrix CK , the readers shall
refer to the aforementioned paper.
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7. Experimental evaluation

The two proposed algorithms, IGL-3SR and FGL-3SR, are now evaluated and compared
with the two state-of-the-art methods presented earlier, GL-SigRep and ESA-GL. The
results of our empirical evaluation are organized in three subsections: Section 7.2 and 7.3
use synthetic data for first comparing the different methods and then for studying the
influence of the hyperparameters; Section 7.4 displays several examples on real-world data.

All experiments were conducted on a single personal computer: a personal laptop with
with 4-core 2.5GHz Intel CPUs and Linux/Ubuntu OS. For the Λ-step of both algorithms,
we use the Python’s CVXPY package (Diamond and Boyd, 2016). For the X-step of IGL-3SR,
we use the conjugate gradient descent solver combined with an adaptive line search, both
provided by Pymanopt (Townsend et al., 2016), a Python toolbox for optimization on man-
ifolds. Note that this package only requires the gradients, which in this case are given in
Proposition 10. Graphs are generated with NetworkX (Hagberg et al., 2008), NetworKit
(Staudt et al., 2016), and SNAP (Leskovec and Sosič, 2016). The source code of our imple-
mentations is available at https://github.com/pierreHmbt/GL-3SR.

7.1 Evaluation metrics

We provide visual and quantitative comparisons of the learned Laplacian L̂ and its weight
matrix Ŵ using the performance measures: Recall, Precision, and F1-measure, which are
standard for this type of evaluation (Pasdeloup et al., 2017). The F1-measure evaluates the
quality of the estimated support – the non-zero entries – of the graph and is given by:

F1 =
2× precision× recall
precision+ recall

.

As in Pasdeloup et al. (2017), the F1-measure is computed on a thresholded version of the

estimated weight matrix Ŵ . This threshold is equal to the average value of the off-diagonal
entries of Ŵ (same process as in (Sardellitti et al., 2019)).

In addition, we compute the correlation coefficient ρ(L, L̂) between the true Laplacian
entries Li,j and their estimates L̂i,j :

ρ(L, L̂) =

∑
ij(Lij − Lm)(L̂ij − L̂m)√∑

ij(Lij − Lm)2
√∑

ij(L̂ij − L̂m)2
, (24)

where Lm and L̂m are the average values of the entries of the true and estimated Laplacian
matrices, respectively. This ρ coefficient evaluates the quality of the weights distribution
over the edges.

7.2 Experiments on synthetic data

We now evaluate and compare all algorithms on several types of synthetic data. Details
about graphs, associated graph signals, and evaluation protocol used for the experiments,
are detailed in the sequel. Regarding the the computational times reported, these were
measured on a personal laptop with 4-core 2.5GHz Intel CPUs and Linux/Ubuntu OS.

18



Learning a Graph from Signals with Sparse Spectral Representation

Random Geometric graphs (RG) Erdős-Rényi graphs (ER)

N Metrics IGL-3SR FGL-3SR ESA-GL GL-SigRep IGL-3SR FGL-3SR ESA-GL GL-SigRep

20

Precision 0.973 (±0.042) 0.952 (±0.042) 0.899 (±0.054) 0.929 (±0.068) 0.952 (±0.045) 0.819 (±0.080) 0.931 (±0.045) 0.704 (±0.125)

Recall 0.974 (±0.018) 0.985 (±0.023) 0.968 (±0.052) 0.967 (±0.028) 0.927 (±0.046) 0.824 (±0.105) 0.951 (±0.041) 0.899 (±0.075)

F1-measure 0.974 (±0.028) 0.968 (±0.027) 0.929 (±0.032) 0.947 (±0.040) 0.938 (±0.028) 0.816 (±0.068) 0.941 (±0.038) 0.779 (±0.071)

ρ(L,L) 0.938 (±0.052) 0.903 (±0.029) 0.925 (±0.050) 0.786 (±0.037) 0.917 (±0.035) 0.730 (±0.063) 0.897 (±0.045) 0.599 (±0.074)

Time < 1min < 10s < 5s < 5s < 1min < 10s < 5s < 5s

50

Precision 0.901 (±0.022) 0.817 (±0.041) 0.845 (±0.088) 0.791 (±0.055) 0.820 (±0.027) 0.791 (±0.047) 0.854 (±0.038) 0.476 (±0.037)

Recall 0.902 (±0.018) 0.807 (±0.036) 0.910 (±0.040) 0.720 (±0.059) 0.812 (±0.042) 0.740 (±0.049) 0.830 (±0.051) 0.856 (±0.023)

F1-measure 0.901 (±0.014) 0.812 (±0.017) 0.868 (±0.036) 0.750 (±0.001) 0.815 (±0.021) 0.761 (±0.031) 0.841 (±0.021) 0.610 (±0.026)

ρ(L,L) 0.863 (±0.020) 0.743 (±0.031) 0.832 (±0.033) 0.549 (±0.022) 0.783 (±0.026) 0.728 (±0.020) 0.816 (±0.058) 0.480 (±0.002)

Time < 17mins < 40s < 60s < 40s < 17mins < 40s < 60s < 40s

100

Precision 0.713 (±0.012) 0.711 (±0.029) 0.667 (±0.022) – 0.677 (±0.044) 0.640 (±0.033) 0.654 (±0.038) –

Recall 0.751 (±0.067) 0.584 (±0.011) 0.743 (±0.017) – 0.580 (±0.021) 0.543 (±0.027) 0.637 (±0.023) –

F1-measure 0.732 (±0.034) 0.641 (±0.010) 0.703 (±0.012) – 0.623 (±0.009) 0.586 (±0.016) 0.589 (±0.019) –

ρ(L,L) 0.612 (±0.045) 0.483 (±0.015) 0.596 (±0.033) – 0.551 (±0.016) 0.512 (±0.0223) 0.644 (±0.023) –

Time < 50mins < 2mins < 4mins – < 50mins < 2mins < 4mins –

Table 1: Comparison of the four methods on five quality metrics (avg ± std) for graphs of N =
{20, 50, 100} nodes, and for fixed number of n = 1000 graph signals.

Graphs and signals. We carried out experiments on four graphs with 20, 50, and 100
vertices, following: i) a Random Geometric (RG) graph model with a 2-D uniform distri-
bution for the coordinates of the nodes and a truncated Gaussian kernel of width size 0.5
for the edges, where weights smaller than 0.75 were set to 0; ii) an Erdős-Rényi (ER) model
with edge probability 0.2; iii) a Forest Fire (FF) model with forest fire forward/backward
burning probability equal to 0.3 (Leskovec et al., 2005, 2007; Leshakov, 2017); iv) a Stochas-
tic Kronecker (SK) graph model with an initiator graph of size 3 × 3 where weights are
[0.75, 0.65, 0.55] (Leskovec et al., 2010). As we consider undirected graphs in this paper, we
symmetrize the directed graphs returned by the SK model. In this model, the generated
graphs are of size 33 = 27, 34 = 81, and 35 = 243.

Given a graph, the sampling process was made according to Model (18) that we presented
in Section 5. The mean value of each signal was set to 0, the variance of the noise was set to
0.5, and the sparsity was chosen to obtain observations with k-sparse spectral representation,
where k is equal to half the number of nodes (i.e 10, 20, 50).

For each type of graph, we ran 10 experiments with 1000 graph signals generated as
explained above. For all the methods, the hyperparameters α and β are set by maximizing
the F1-measure on the thresholded Ŵ , as explained in Section 7.1.

Choice of ‖ · ‖S. In the following we make all experiments for IGL-3SR and FGL-3SR
with the `2,1-norm. This is motivated by an important fact brought by the closed-form

solutions given in Proposition 8. Indeed, for `2,1-norm, the sparsity of Ĥ is only controlled
by β (Equation (9)). On the contrary, when using the `2,0-norm, the value of α also
influences the sparsity (Equation (8)). This is an important behavior, as the tuning of β
and α becomes independent – at least with respect to the H-step – and therefore, as we
will see in Section 7.3.1, easier to tune.

Quantitative results. Average evaluation metrics and their standard deviation are col-
lected in Tables 1 and 2. The results show that the use of the sparsity constraint im-
proves the quality of the learned graphs. Indeed, the two proposed methods IGL-3SR
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Forest Fire graphs (FF) Kronecker graphs (SK)

N Metrics IGL-3SR FGL-3SR ESA-GL GL-SigRep N IGL-3SR FGL-3SR ESA-GL GL-SigRep

20

Precision 0.910 (±0.052) 0.870 (±0.052) 0.935 (±0.062) 0.898 (±0.068)

27

0.947 (±0.022) 0.916 (±0.040) 0.955 (±0.031) 0.802 (±0.115)

Recall 0.988 (±0.017) 0.876 (±0.017) 0.925 (±0.042) 0.895 (±0.073) 0.974 (±0.026) 0.927 (±0.030) 0.963 (±0.036) 0.945 (±0.051)

F1-measure 0.947 (±0.030) 0.872 (±0.030) 0.929 (±0.038) 0.893 (±0.046) 0.960 (±0.013) 0.921 (±0.020) 0.959 (±0.025) 0.862 (±0.074)

ρ(L,L) 0.915 (±0.038) 0.796 (±0.038) 0.850 (±0.039) 0.773 (±0.040) 0.975 (±0.006) 0.939 (±0.013) 0.974 (±0.010) 0.825 (±0.067)

Time < 1min < 10s < 5s < 5s < 1min < 10s < 5s < 5s

50

Precision 0.731 (±0.072) 0.664 (±0.072) 0.812 (±0.076) 0.754 (±0.050)

81

0.894 (±0.020) 0.824 (±0.105) 0.951 (±0.041) 0.894 (±0.028)

Recall 0.896 (±0.122) 0.745 (±0.122) 0.743 (±0.079) 0.828 (±0.039) 0.852 (±0.035) 0.819 (±0.080) 0.931 (±0.045) 0.810 (±0.026)

F1-measure 0.803 (±0.087) 0.701 (±0.087) 0.774 (±0.071) 0.787 (±0.021) 0.872 (±0.023) 0.816 (±0.068) 0.941 (±0.038) 0.849 (±0.009)

ρ(L,L) 0.763 (±0.096) 0.655 (±0.096) 0.700 (±0.078) 0.671 (±0.034) 0.868 (±0.021) 0.730 (±0.063) 0.897 (±0.045) 0.804 (±0.019)

Time < 17mins < 40s < 60s < 40s < 17mins < 40s < 60s < 6mins

100

Precision 0.794 (±0.108) 0.788 (±0.096) 0.669 (±0.047) –

243

0.884 (±0.014) 0.841 (±0.014) – –

Recall 0.719 (±0.061) 0.683 (±0.066) 0.749 (±0.037) – 0.800 (±0.015) 0.705 (±0.028) – –

F1-measure 0.748 (±0.039) 0.727 (±0.034) 0.705 (±0.021) – 0.828 (±0.015) 0.767 (±0.012) – –

ρ(L,L) 0.743 (±0.029) 0.726 (±0.026) 0.689 (±0.022) – 0.829 (±0.011) 0.819 (±0.013) – –

Time < 50mins < 2mins < 4mins – < 80mins < 3mins – –

Table 2: Comparison of the four methods on five quality metrics (avg ± std) for graphs of N =
{20, 50, 100} and N = {27, 81, 243} nodes, and for fixed number of n = 1000 graph signals.

and FGL-3SR, as well as ESA-GL, have better overall performance in all the metrics than
GL-SigRep that only considers the smoothness aspect. This had to be expected as our
methods match perfectly to the sparse (bandlimited) condition.

Comparing the results across the different types of synthetic graphs, our methods are
robust, while being more efficient on RG and FF graphs. In general, IGL-3SR and FGL-3SR
present similar performance to ESA-GL but IGL-3SR seems preferable in the case of RG and
FF graphs. When more than 100, respectively 200, nodes are considered, the computational
resources necessary for GL-SigRep, respectively ESA-GL, are too demanding and render the
problems intractable. We can see that, while IGL-3SR has better results than FGL-3SR,
the time necessary to estimate the graph is much longer. In addition, examples of learned
graphs are displayed in Figure 3 with the ground-truth on the left and the learned weighted
adjacency matrices (after thresholding). The evolution of the F1-measure regarding the
value of the threshold is also displayed and shows that a large range of threshold could have
been used to obtain similar performance. All these results, combined with those of Tables
1 and 2, indicate that in this sampling process the proposed FGL-3SR method managed
to infer accurate graphs despite the relaxation.

Speed performance. Figure 4 displays the evolution of the empirical computation time
as the number of nodes increases. For each algorithm, time per iteration is: i) for IGL-3SR
and FGL-3SR, the time needed for the computation of the 3 steps one time; ii) for ESA-
3SR,the time needed for the computation of the quadratic program; iii) for GL-SigRep, the
time needed for the computation of its two steps one time. FGL-3SR appears to be much
faster than the other methods. Furthermore, we observe that our methods are scalable over
a wider range of graph sizes than the competitors. Indeed, even quite small graphs of 100
and 150 nodes, respectively, were already too ‘large’ for the two competitors to be able to
produce results, and they even led to memory allocation errors.

IGL-3SR v.s. FGL-3SR. In terms of numerical performance, IGL-3SR is better than
FGL-3SR (Table 1). Indeed, except for graphs of size 20, the metrics related to the recovery
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(a) Graph learning on RG synthetic graphs.
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(b) Graph learning on ER synthetic graphs.
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Figure 3: Graph learning results on random synthetic graphs of 20 nodes: (a) for a RG graph,
and (b) for an ER graph. Each of the two subfigures presents: (top row) the evolution of the F1-
measure with respect to different threshold values and the dashed line indicates the chosen threshold
value; (bottom row) shows as leftmost the ground truth adjacency matrix, followed by the respective
learned adjacency matrices (thresholded) by the compared methods.

of the true graph do give better results. On the contrary, in terms of computational cost,
FGL-3SR is better than IGL-3SR (see Figure 4). Indeed, no matter the size of the graph,
FGL-3SR has lower time per iteration than IGL-3SR. This is due to the fact that, contrary
to IGL-3SR which solves two out of three sub-problems with iterative methods, FGL-3SR
solves two sub-problems via closed-form solutions that can be computed efficiently. In
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(a) Standard scale.

FGL-3SR
ESA-GL
GL-SigRep

(b) Semi-log scale.

Figure 4: Average and standard deviation of the computation time over 10 trials for IGL-3SR,
FGL-3SR, ESA-GL, and GL-SigRep, as the number of nodes increases. GL-SigRep and ESA-GL
failed to produce a result for graphs with more than 100 and 150 nodes, respectively. (a) The total
computation times, and (b) the time needed for a single iteration of each algorithm.

conclusion, when the number of nodes is small, IGL-3SR is preferred. If not, one should
use FGL-3SR.

7.3 Influence of the hyperparameters

We now study how hyperparameters of IGL-3SR and FGL-3SR influence their overall per-
formance, with respect to the F1-measure. This study is made on a RG graph with N = 20
nodes and 10-bandlimited signals Y in R20×1000.

7.3.1 Influence of α and β

We first highlight the influence of α and β on FGL-3SR. We run and collect the F1-measure
for 20 values of α (resp. β) in [10−5, 100] (resp. [10−5, 60]). The resulting heatmaps are
displayed in Figure 5. The most important observation is that the value of α does not
seem to impact a lot the structure of the resulted graphs. Indeed, for a fixed value of β,
the F1-measure is stable when α varies. However, it is interesting that the convergence
curve of FGL-3SR (Figure 6) is directly impacted by α: large values for α tend to produce
oscillations on the convergence curves. Thus, setting to a small value α > 0 is suggested.
Contrary to α, tuning the parameter β is critical since high β values cause a drastic decrease
in F1-measure. This sharp decrease appears when the chosen β imposes too much sparsity
for the learned Ĥ. One may note that the best β corresponds to the value just before
the sharp decrease, and this is the value that should be chosen. Although the previous
analysis has been done on FGL-3SR, during our experimental studies, α and β influenced
the F1-measure similarly when using IGL-3SR.

7.3.2 Influence of t

We now highlight the influence of t on IGL-3SR. Figure 7 shows the learned graphs for
several values of t ∈ [10, 104]. This experiment brings two main messages: first, when t is
too low, the learned graph is very close to the complete graph, whereas when t increases the
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Figure 5: Evolution of the average (a)(c) and standard deviation (b)(d) of the F1-measure over
10 runs of FGL-3SR on RG graphs with 20 nodes. At the top figure row β ∈ [0, 100], and at the
bottom row β ∈ [20, 70].

learned graph becomes more structured and tends to be sparse. This result was expected
since a larger t brings the barrier closer to the true constraint, i.e. we allow elements of
the resulting Laplacian matrix to be closer to 0. Second, it appears that α also influences
the final results in a similar way to t. Again, this was expected as the minimization of the
objective function during the Λ-step of Problem (5) is equivalent to the minimization of
tr(HHTΛ) + 1

α tφ(U,Λ).

For a discussion on the initial value of t, t(0), and the step size µ such that t(`+1) = µt(`),
both relative to the barrier method, we refer the reader to (Boyd and Vandenberghe, 2004).
However, recall that t is not a hyperparameter to tune in practice, and should be taken as
large as possible. The mere goal is to prevent numerical issues. Fortunately, a wide range
of values for t(0) and µ achieves that goal (Boyd and Vandenberghe, 2004).

Tuning the hyperparameters. The hyperparameter α does not seems to have a sub-
stantial impact on the F1-measure. However, a low value of it may be preferred in FGL-3SR
for convergence purpose (Figure 6). The parameter t always needs to be maximal provided
that it does not cause numerical issues. Classical heuristics and methods, like the one
presented in Section 3.4, can be used to tune t (Boyd and Vandenberghe, 2004). Hence,
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(a) Low α value: α = 10−5. (b) Medium α value: α = 10−1. (c) High α value: α = 1.

Figure 6: Convergence curves of the objective function as the number of iterations increases, when
using FGL-3SR with different α values.
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Figure 7: Learned graphs with increasing t values: (top row) α = 10−4, (bottom row) α = 10−3.

according to our experiments, it remains only β as a critical hyperparameter to tune for
both these methods. Based on Figure 5, one way to fix it is to find the largest β value
that leads to satisfying results in terms of signal reconstruction. Alternatively, if we have
an idea about the number of clusters k that resides on the graph, we could select a β value
that produces a k-sparse spectral representation. Bearing in mind that other related works
require the tuning of two hyperparameters, our approach turns out to be of higher value for
practical application on real data where these parameters are unknown and must be tuned.

7.4 Temperature data

We used hourly temperature (C◦) measurements on 32 weather stations in Brittany, France,
during a period of 31 days (Chepuri et al., 2017). The dataset contains 24 × 31 = 744
multivariate observations, i.e. Y ∈ R32×744, that are assumed to correspond to an unknown
graph, which is our objective to infer. For our two algorithms, we set α = 10−4, and β is
chosen so that we obtain a 2-sparse spectral representation, which this last assumes that
there are two clusters of weather stations.
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(a) Learned graph by IGL-3SR. (b) Learned graph by FGL-3SR.

(c) Graph clustering on IGL-3SR’s result. (d) Graph clustering on FGL-3SR’s result.

Figure 8: (Top row) Learned graph with (a) IGL-3SR and (b) FGL-3SR. The node color corre-
sponds to the average temperature in C◦ during all the period of observation. (Bottom row) Graph
segmentation in two parts (red vs. green nodes) with spectral clustering using the Laplacian matrix
learned by (c) IGL-3SR and (d) FGL-3SR.

The graphs obtained with each of the method are displayed in Figure 8 (a-b). They are
in accordance with the one found in Chepuri et al. (2017) on the same dataset. Both the
proposed methods provide similar results, which shows that the relaxation used in FGL-3SR
has a moderate influence in practice in this real-world problem. Although ground-truth is
not available for this use-case, the quality of the learned graph can be assessed when using it
as input in standard tasks such as graph clustering or sampling. For instance, when applying
spectral clustering (Ng et al., 2001) with two clusters on the resulting Laplacian matrices,
it can be seen that both methods split the learned graph in two parts corresponding to the
north and the south of the region of Britanny (Figure 8 (c-d)), which is an expected natural
segmentation.

The learned graphs can be also employed in the graph sampling task. Indeed, due to
the constraints used in the optimization problem, the graph signals are bandlimited with
respect to learned graphs. For instance, in this example the graph signals are 2-bandlimited.
This property means that it is possible to select only 2 nodes and to reconstruct the graph
signal values of the 30 remaining nodes using linear interpolation. Figure 9 displays an
example of such reconstruction: thanks to the learned graph structure, the use of only 2
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Figure 9: (a) Two nodes (black) used for signal interpolation to infer the signal at a target node
(red). (b) The true signal at the target node and its reconstruction from only the two selected nodes.

nodes allows to reconstruct sufficiently well the whole data matrix with a mean absolute
error of 0.614. Again, this is a very interesting result that indirectly shows the quality of
the learned graph.

7.5 Cancer genome data

In this second experiment, we consider the RNA-Seq Cancer Genome Atlas Research Net-
work data (Weinstein et al., 2013). The dataset contains the information of 801 individuals,
each of them is characterized by 20, 531 genetic features and labeled by one out of 5 types of
cancer: breast carcinoma (BRCA), colon adenocarcinoma (COAD), kidney renal clear-cell
carcinoma (KIRC), lung adenocarcinoma (LUAD), and prostate adenocarcinoma (PRAD).

The goal of the task is to learn a graph of the N = 801 individuals (nodes) using the
n = 20531 genetic features (samples seen here as graph signals), and determine if this graph
is able to group the individuals according to their tumor type. Since the number of nodes is
large, we propose to use FGL-3SR and, as previously, spectral clustering (Ng et al., 2001)
on the learned graph to find the cluster mapping.

As the number of nodes of the graph is too large, ESA-GL and GL-SigRep are not able
to run in reasonable time. Therefore, we compare FGL-3SR to two other state-of-the-art
methods, which are however not GSP-oriented but rather specialized to obtain a graph
that facilitates data clustering. The two competitors are namely the Constrained Laplacian
Rank (CLR) algorithm (Nie et al., 2016) that builds a special graph from the available
data, and the Structured Graph Learning (SGL) algorithm (Kumar et al., 2019) that take
as input the sample covariance matrix of the data. As quality measure we use the clustering
accuracy, which has also been used in the associated papers of the competitors from where
we obtain their reported results. The results for the three methods are respectively:

FGL-3SR: 0.9887, CLR: 0.9862, SGL: 0.9987.

The first interesting result is that FGL-3SR presents similar accuracy to CLR and SGL,
even though it is not a graph learning method specially designed for clustering like the
competitors. Secondly, while FGL-3SR comes second in terms of accuracy after SGL, two
important remarks need to be made about the SGL method: 1) it must fix the right number
of clusters of the learned graph a priori to obtain such result; 2) it has an additional
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Figure 10: Schematic inference of functional connectivity between different regions of the brain.
Left: time series recorded at different regions of the brain. Each signal corresponds to a local
aggregation of the fMRI recorded in the corresponding ROI (node). Right: a functional connectivity
graph where the nodes represent the brain regions and the edges represent the strength of functional
connections between these regions.

hyperparameter to tune compared to FGL-3SR. Therefore comparably, bearing in mind the
above results, the fact that SGL is fine-tailored for the undertaken clustering tasks and
that it has higher tuning complexity, and finally the limitations of ESA-GL and Sig-Rep
that prevent them from being applied in this scenario, FGL-3SR seems to be a promising
alternative for large-scale graph-based learning applications.

7.6 Results on the ADHD dataset

In this third experiment, we consider the Attention Deficit Hyperactivity Disorder (ADHD)
dataset (Bellec et al., 2017) composed of functional Magnetic Resonance Imaging (fMRI)
data. ADHD is a mental pathophysiology characterized by an excessive activity (Boyle
et al., 2011). We study the resting-state fMRI of 20 subjects with ADHD and 20 healthy
subjects available from Nilearn (Abraham et al., 2014). Each of the 40 fMRIs consists
in a series of images measuring the brain activity. These images are processed as follows.
The brain is first segmented into N = 39 Regions Of Interest (ROIs) via the Multi-Subject
Dictionary Learning atlas (Varoquaux et al., 2011) (see Figure 11a). Each ROI is considered
to define a graph node whose signal value is the aggregation of the ROI’s pixel values. This
way, each fMRI image is transformed into a graph signal. For each of the 40 subjects, we
therefore have access to a matrix in Rn×39, where n is the number of images in the fMRI
of the subject (i.e. the number of graph signals).

The considered task is to estimate a graph independently for each subject. A schematic
illustration of the learning process is displayed in Figure 10. Examples of learned graphs
with FGL-3SR for an ADHD subject, and a healthy subject, are displayed in Figure 11.
Visually, they reveal strong symmetric links between the right and left hemisphere of the
brain. This phenomenon is common in resting-state fMRI where one hemisphere tends
to correlate highly with the homologous anatomical location in the opposite hemisphere
(Damoiseaux et al., 2006; Smith et al., 2009). Pointing out differences, though, the graph
from the ADHD subject seems less structured and contains several spurious links (diagonal
and north-south connections).
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(a) Indicative Regions of Interest (ROIs) from Varoquaux et al. (2011).
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Figure 11: (a) Indicative ROIs from the Multi-Subject Dictionary Learning atlas extracted in
Varoquaux et al. (2011) with sparse dictionary learning. Results: Graphs returned by FGL-3SR,
separately for (b) an ADHD patient and (c) a healthy subject, where darker edges indicate larger
weights of connection.

Aiming to better highlight the potential value of quality learned graphs for such studies,
we proceed and use the Laplacian matrices of the brain graphs to classify the subjects, as
proposed in several resting-state fMRI studies (Abraham et al., 2017; Dadi et al., 2019).
First, we subtract the average graph for all subjects, which in fact removes the symmetrical
connections common to all subjects), and then we use a 3-Nearest Neighbors classification
algorithm. We use the correlation coefficient of Equation (24) as distance metric between
Laplacian matrices, and a leave-one-out cross-validation strategy. The classification ac-
curacy of the described approach reaches 65%. This level shall be compared with the
performance obtained using simple correlation graphs (Abraham et al., 2017) that, on these
40 subjects, leads to an accuracy of 52.5%. It appears that in this context the use of a more
sophisticated graph learning process allows a subject characterization that goes beyond
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considering basic statistical correlation effects. Interestingly, this score is also comparable
with state-of-the-art results reported in Sen et al. (2018) for the same task, but on a larger
database (67.3% of accuracy), using more sophisticated and specially-tailored processing
steps, as well as carefully chosen classifiers.

At this point, we should make absolutely clear that with this case study we only illustrate
the general usefulness and potential of the graphs learned using our approach. Besides the
lack of deeper clinical evaluation of the findings, there are two more technical reasons that
would limit the value of any further comparison or conclusion. First, we do not know
whether our assumptions (sparsity and bandlimitedness) are the best or even perfectly
valid for the specific problem. Second, the small size of the data set limits the statistical
importance of any comparative results on the basis of common evaluation metrics, such
as the accuracy. Nevertheless, we believe that the reported result motivates future work
on ADHD or other related disorders on the direction of exploring further the potential of
sophisticated graph learning techniques.

8. Conclusions

This article presented a data-driven graph learning approach by employing a combination of
two assumptions. The first is standard in the related literature and concerns the smoothness
of graph signals with respect to the underlying graph structure. The second is the spectral
sparsity assumption, a consequence of the presence of clusters in real-world graphs. We
proposed two algorithms to solve the corresponding optimization problem. The first one,
IGL-3SR, has the advantage to decrease the objective function at each iteration. To address
its low speed of convergence, we propose FGL-3SR that is a fast and scalable alternative.
The findings of our empirical evaluation on synthetic data showed that the proposed ap-
proaches are as good or better performing than the reference state-of-the-art algorithms in
term of reconstructing the unknown underlying graph and of computational cost (running
time). Experiments on real-world benchmark use-cases suggest that our algorithms learn
graphs that are useful and promising for any graph-based machine learning methodology,
such as graph clustering and subsampling, etc. Finally, by including the two assumptions
in a probabilistic model, we link our optimization problem to a maximum a posteriori
estimation and pave the way for further statistical understanding.

9. Technical proofs

This section provides the technical proofs of the different propositions exposed in the paper.
Recall that lower case variables refer vectors/scalars while upper case variable denote ma-
trices. The table below provides the main notations used in the technical discussion that
that follows.

Lemma 5 – Given X,X0 ∈ RN×N two orthogonal matrices with first column equals to
1√
N

1N (constraint (3a)), we have the following equality:

X = X0

[
1 0TN−1

0N−1 [XT
0X]2:,2:

]
,
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xT ,MT Transpose of vector x, matrix M .
tr(M) Trace of matrix M .
diag(x) Diagonal matrix containing the vector x.
Mk,l (k, l)-th element of the matrix M .
Mk,: k-th row of M .
M:,l l-th column of M .
Mk:,l: Submatrix containing the elements of M from the k-th row to the

last row, and from the l-th column to the last column.
M � 0 M is a positive semi-definite matrix.
M† The Moore-Penrose pseudoinverse of M .
ek Vector containing zeros except a 1 at position k.
In Identity matrix of size n.
0n Vector of size n containing only zeros.
1n Vector of size n containing only ones.
1A(·) The indicator function over the set A.
‖x‖0 The number of non-zero elements of a vector x.
‖ · ‖F The Frobenius norm.
‖ · ‖2,0 The `2,0-norm, with ‖M‖2,0 =

∑
i=1 1{‖Hi,:‖2 6=0}.

‖ · ‖2,1 The `2,1-norm, with ‖M‖2,1 =
∑

i=1‖Hi,:‖2.
∇f Gradient of the function f .
〈·, ·〉 Inner product function.
Orth(N) The set of all orthogonal matrices of size N ×N .
O( · ) Order of magnitude (e.g. of computational complexity).
τ Number of iterations needed for an optimization procedure.

Table 3: Table of notations used throughout the article.

with [XT
0X]2:,2: denoting the submatrix of XT

0X containing everything but the first row and
column of itself. Furthermore, remark that [XT

0X]2:,2: is in Orth(N − 1).

Proof Let consider X,X0 ∈ RN×N two orthogonal matrix with first column equals to
1√
N

1N . We have the following equalities:

X0

[
1 0TN−1

0N−1 [XT
0X]2:,2:

]
=


...

...
X0(:,1) X0(:,2:)[X

T
0X]2:,2:

...
...

 =


...

...
1√
N

1N X:,2:

...
...

 = X .

Furthermore, thanks to the orthogonality of X and X0, we have

[XT
0X]2:,2:

[
[XT

0X]2:,2:

]T
= XT

0,(2:,:)X:,2:

[
XT

0,(2:,:)X:,2:

]T
= XT

0,(2:,:)X:,2:X
T
:,2:[X

T
0,(2:,:)]

T = IN−1.

By symmetry we conclude that [XT
0X]2:,2: ∈ Orth(N − 1).
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Proposition 6 – Given X0 ∈ RN×N an orthogonal matrix with first column equals to
1√
N

1N , an equivalent formulation of optimization Problem (3) is given by:

min
H,U,Λ

∥∥∥∥∥Y −X0

[
1 0TN−1

0N−1 U

]
H

∥∥∥∥∥
2

F

+ α‖Λ1/2H‖2F + β‖H‖S , f(H,U,Λ) ,

s.t.



UTU = IN−1 , (a’)(
X0

[
1 0TN−1

0N−1 U

]
Λ

[
1 0TN−1

0N−1 UT

]
XT

0

)
k,`

≤ 0 k 6= ` , (b’)

Λ = diag(0, λ2, ..., λN ) � 0 , (c)
tr(Λ) = N ∈ R+

∗ . (d)

Proof From the previous lemma, we know that X can be decompose into two orthogonal
matrices X0 and U = [XT

0X]2:,2:. Hence, we can optimize with respect to U instead of X
and the second part of the constraint (3a) is automatically satisfied. To make the equiva-

lence, we just replace X from the main optimization problem to X0

[
1 0TN−1

0N−1 U

]
where

U is now imposed to be orthogonal.

Proposition 8 (Closed-form solution for the `2,0 and `2,1-norms) – The solutions of Prob-
lem (7) when ‖ · ‖S is set to ‖ · ‖2,0 or ‖ · ‖2,1 are given in the following.

• Using the `2,0-norm, the optimal solution of (7) is given by the matrix Ĥ ∈ RN×n
where for 1 ≤ i ≤ N,

Ĥi,: =

{
0 if ‖(XTY )i,:‖22/(1 + αλi) ≤ β ,
(XTY )i,:/(1 + αλi) else .

• Using the `2,1-norm, the optimal solution of (7) is given by the matrix Ĥ ∈ RN×n
where for 1 ≤ i ≤ N,

Ĥi,: =
1

1 + αλi

(
1− β

2

1

‖(XTY )i,:‖2

)
+

(XTY )i,: ,

where (t)+ , max{0, t} is the positive part function.

Proof In the following, we suppose that Y 6= 0 since in this trivial case, the solution is
simply given by Ĥ = 0.
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Closed-form solution for the `2,0. Recall that ‖H‖2,0 =
∑

i=1 1{‖Hi,:‖2 6=0}, the objective
function can be written as:

f(X,Λ, H) = ‖XTY −H‖2F + α‖Λ1/2H‖2F + β‖H‖2,0

= ‖Y ‖2F +
N∑
i=1

(
n∑
j=1

(
H2
i,j − 2(XTY )i,jHi,j + αλiH

2
i,j

)
+ β1{‖Hi,:‖2 6=0}

)

= ‖Y ‖2F +

N∑
i=1

(
‖Hi,:‖22 − 2〈(XTY )i,:, Hi,:〉+ αλi‖Hi,:‖22 + β1{‖Hi,:‖2 6=0}

)

= ‖Y ‖2F +
N∑
i=1

(
(1 + αλi)‖Hi,:‖22 − 2〈(XTY )i,:, Hi,:〉+ β1{‖Hi,:‖2 6=0}

)

= ‖Y ‖2F +

N∑
i=1

f̃i(X,Λ, Hi,:) .

Our objective function is written as a sum of independent objective functions, each associ-
ated with a different Hi,:. Hence, we can optimize the problem for each i. Our problem for
a given i is:

min
Hi,:∈Rn

(1 + αλi)‖Hi,:‖22 − 2〈(XTY )i,:, Hi,:〉+ β1{‖Hi,:‖2 6=0} .

When we restrict the minimization to ‖Hi,:‖2 = 0, the unique solution is Ĥi,: = 0n and

f̃i(X,Λ, Ĥi,:) = 0.

When ‖Hi,:‖2 6= 0, the objective function is convex and differentiable, thus it suffice to take
the following derivative equal to 0:

∂

∂Hi,:
f̃i(Hi,:) = 2(1 + αλi)Hi,: − 2(XTY )i,: = 0 ,

Ĥi,: = (XTY )i,:/(1 + αλi) .

With this solution, the objective function f̃i is equal to:

f̃(X,Λ, Ĥi,:) = (1 + αλi)‖(XTY )i,:/(1 + αλi)‖22 − 2〈(XTY )i,:, (X
TY )i,:/(1 + αλi)〉+ β

=
1

1 + αλi
‖(XTY )i,:‖22 −

2

1 + αλi
‖(XTY )i,:‖22 + β

= β − 1

1 + αλi
‖(XTY )i,:‖22 .

Hence, whenever
1

1 + αλi
‖(XTY )i,:‖22 ≤ β, the objective function is positive, making Ĥi,: =

0 a better choice for the minimization and conversely. In conclusion, for all 1 ≤ i ≤ N, the
solution is:

Ĥi,: =

{
0 if ‖(XTY )i,:‖22/(1 + αλi) ≤ β ,
(XTY )i,:/(1 + αλi) else .
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Closed-form solution for the `2,1. Similarly to the `2,0 case, the objective function can be
decomposed by a sum of independent objectives functions.

f(X,Λ, H) = ‖XTY −H‖2F + α‖Λ1/2H‖2F + β‖H‖2,1

= ‖Y ‖2F +

N∑
i=1

(
n∑
j=1

(
H2
i,j − 2(XTY )i,jHi,j + αλiH

2
i,j

)
+ β

√∑
j=1

H2
i,j

)

= ‖Y ‖2F +
N∑
i=1

(
‖Hi,:‖22 − 2〈(XTY )i,:, Hi,:〉+ αλi‖Hi,:‖22 + β‖Hi,:‖2

)

= ‖Y ‖2F +
N∑
i=1

(
(1 + αλi)‖Hi,:‖22 − 2〈(XTY )i,:, Hi,:〉+ β‖Hi,:‖2

)

= ‖Y ‖2F +

N∑
i=1

f̃i(X,Λ, Hi,:) .

Again, we can optimize the problem for each row i of H independently. Our problem for a
given i is:

min
Hi,:∈Rn

(1 + αλi)‖Hi,:‖22 − 2〈(XTY )i,:, Hi,:〉+ β‖Hi,:‖2 . (25)

Although non-differentiable at Hi,: = 0n, this function is convex and we need to find Hi,:

such that the vector 0n belongs to the subdifferential of f̃i denoted by ∂f̃i(Hi,:) and is equal
to:

∂f̃i(Hi,:) =

 B2

(
− 2(XTY )i,:, β

)
if Hi,: = 0n ,

2
(
1 + αλi +

β

2

1

‖Hi,:‖2
)
Hi,: − 2(XTY )i,: otherwise .

Where B2 stand for the `2-norm bowl.

Remark that when ‖(XTY )i,:‖2 ≤ β
2 , 0n ∈ B2

(
− 2(XTY )i,:, β

)
and thus in this case

Ĥi,: = 0n.

On the contrary, when ‖(XTY )i,:‖2 > β
2 , we must find Hi,: such that:(

1 + αλi +
β

2

1

‖Hi,:‖2
)
Hi,: = (XTY )i,: .

By tacking the norm of the previous equation, we obtain(
1 + αλi +

β

2

1

‖Hi,:‖2
)
‖Hi,:‖2 = ‖(XTY )i,:‖2

⇐⇒(1 + αλi)‖Hi,:‖2 +
β

2
= ‖(XTY )i,:‖2

⇐⇒‖Hi,:‖2 =
(
‖(XTY )i,:‖2 −

β

2

)
/(1 + αλi) > 0 .
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We can now replace ‖Hi,:‖2 in the initial equation and get Hi,:.(
1 + αλi +

β(1 + αλi)

2‖(XTY )i,:‖2 − β
)
Hi,: =

(1 + αλi)‖(XTY )i,:‖2
‖(XTY )i,:‖2 − β/2

Hi,: = (XTY )i,:

⇐⇒Hi,: =
‖(XTY )i,:‖2 − β/2

(1 + αλi)‖(XTY )i,:‖2
(XTY )i,: =

1

1 + αλi

(
1− β

2

1

‖(XTY )i,:‖2

)
(XTY )i,: ,

which concludes the proof.

Proposition 10 (Euclidean gradient with respect to U) – The Euclidean gradient of f
and φ with respect to U are

∇Uf(H,U,Λ) = −2
[
(HYTX0)2:,2:

]T
+ 2U(HHT)2:,2: ,

∇Uφ(U,Λ) = −
N−1∑
k=1

N∑
`>k

(
Bk,` +BT

k,`

)
UΛ2:,2:

h(U,Λ)k,`
.

with ∀1 ≤ k, ` ≤ N,Bk,` =
(
XT

0 eke
T
`X0

)
2:,2:

, and h(·) from Definition 7.

Proof We begin by computing the gradient of the main objective, with respect to U .
Recall the objective function with respect to U :

f(H,U,Λ) = −2tr(YTX0

[
1 0TN−1

0N−1 U

]
H) + tr(HT

[
1 0TN−1

0N−1 UTU

]
H) .

The corresponding gradient is the following.

∇Uf(H,U,Λ) = −2∇U tr(YTX0

[
1 0TN−1

0N−1 U

]
H) +∇U tr(HT

[
1 0TN−1

0N−1 UTU

]
H)

= −2∇U tr

(
HYTX0

[
1 0TN−1

0N−1 U

])
+∇U tr

(
HHT

[
1 0TN−1

0N−1 UTU

])

= −2∇U

(
(HYTX0)1,1 · 1 + tr

(
(HYTX0)2:,2:U

))

+∇U

(
(HHT)1,1 · 1 + tr

(
(HHT)2:,2:U

TU
))

= −2
[
(HYTX0)2:,2:

]T
+ 2U(HHT)2:,2: .

We now derive the gradient of the barrier function φ(U,Λ) with respect to U :

∇Uφ(U,Λ) = −
N−1∑
k=1

N∑
`>k

∇U log
(
− h(U,Λ)k,`

)

= −
N−1∑
k=1

N∑
`>k

1

h(U,Λ)k,`
∇Uh(U,Λ)k,` .
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We can write the h function as:

h(U,Λ)k,` =
〈
eke

T
` , h(U,Λ)

〉
=
〈
XT

0 eke
T
`X0,

[
1 0TN−1

0N−1 U

]
Λ

[
1 0TN−1

0N−1 U

]T 〉
=
〈
XT

0 eke
T
`X0,

[
λ1 0TN−1

0N−1 UΛ2:,2:U
T

]〉
= tr

(
XT

0 e`e
T
kX0

[
0 0TN−1

0N−1 UΛ2:,2:U
T

])
=
(
XT

0 e`e
T
kX0

)
1,1
· 0 + tr

((
XT

0 e`e
T
kX0

)
2:,2:

UΛ2:,2:U
T
)

= tr
(
BT
k,`UΛ2:,2:U

T
)
.

In conclusion we have ∇Uh(U,Λ)k,` =
(
Bk,` +BT

k,`

)
UΛ2:,2:, which finishes the proof.

Before proving Lemma 11 and Theorem 12, let us prove the two following important
Lemmas.

Lemma 19 – Linear Independence Constraint Qualification (LICQ) holds for any U ∈
Orth(N − 1).

Proof Let define the function relative to the orthogonality constraint ϕ(·):

∀1 ≤ i ≤ j ≤ N, ϕi,j(U) =

N−1∑
k=1

Uk,iUk,j − Ii,j . (26)

If i = j, ϕi,i(U) =
∑N−1

k=1 U2
k,i− 1. Otherwise, ϕi,j(U) =

∑N−1
k=1 Uk,iUk,j . Therefore, we have

that:

∇Uϕi,j(U) =

{
[0N−1×(i−1); 2U:,i; 0(N−1)×(N−1−i)], if i = j;

[0(N−1)×(i−1);U:,j ; 0(N−1)×(j−i−1);U:,i; 0(N−1)×(N−1−j)], otherwise.
(27)

We can see that U:,i from ∇ϕi,i(U) will only appear in the i-th column, but U:,i from
∇ϕi,j(U) with i 6= j will not appear in the i-th column. Hence, each ∇ϕi,j(U) cannot
be expressed as a linear combination of the others. Thus, the {∇ϕi,j(U)}i,j are linearly
independent.

Lemma 11 (Optimality conditions) – Karush-Khun-Tucker (KKT) conditions are neces-
sary conditions for any optimal solution (H∗, U∗,Λ∗) of Problem 5.

Proof The objective function and the constraint functions of Problem 5 are continuous
and (sub-)differentiable. Constraints on Λ are affine i.e. the Linearity Constraint Quali-
fication (LCQ) holds. Furthermore, from Lemma 19, the constraint on U verifies LICQ.
This implies that any optimal solution (H∗, U∗,Λ∗) of Problem 5 has to satisfy the KKT
conditions.
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Lemma 20 – KKT conditions are necessary conditions for any optimal solution H
′

(resp.
U
′

and Λ
′
) of the sub-problem in H (resp. U and Λ).

Proof Same arguments used in the previous Lemma.

Theorem 12 (Convergence of IGL-3SR) – The sequence {(H(`), U (`), λ(`))}`≥0 generated
by Algorithm 1 admits at least one converging subsequence. If we also assume that each
sub-problem is effectively minimized at each iteration, then, any accumulation point of the
sequence satisfies the KKT conditions of Problem 5.

Proof We begin the proof by showing that at least one sub-sequence of the sequence of
iterates produces by the block coordinate descent of IGL-3SR {(H(`), U (`),Λ(`))}`≥0 is con-
vergent.

We first observe that the objective function of Problem 5, denoted ψ(·), is lower-bounded
over the set of constraints. Indeed, f(H,U,Λ) ≥ 0 as a sum of norms and over the constraints
set we also have

|h(U,Λ)kl| ≤ ||h(U,Λ)||F ≤ tr(Λ) = N ,

which implies that φ(U, λ) ≥ −1
2N(N − 1) log(N). The objective function value being non-

increasing at each iteration `, i.e. ψ(H(`), U (`),Λ(`)) ≤ ψ(H(`−1), U (`−1),Λ(`−1)), the iterates
of the objective function value, denoted {ψ(`)}`≥0 are ensured to converge to a limit point
ψ∞.

Let us now observe that given an initial point (H(0), U (0),Λ(0)), the set of feasible points
(H,U,Λ) satisfying ψ(H,U,Λ) ≤ ψ(H(0), U (0),Λ(0)) is compact. Furthermore, as ∀` ≥ 0,
ψ(`) ≤ ψ(`−1), the sequence {(H(`), U (`),Λ(`))}`≥0 belong to this set and by Bolzano-
Weierstrass this implies that the sequence of iterates {(H(`), U (`),Λ(`))}`≥0 admits at least
one converging subsequence. Note that since the objective function is continuous, the value
of the objective at this limit point corresponds to ψ∞ (De Leeuw, 1994).

It remains now to show that any accumulation point (H∞, U∞,Λ∞) of the sequence
{(H(`), U (`),Λ(`))}`≥0 satisfies the KKT conditions of Problem 5. The Lagrangian of Prob-
lem 5 is:

L(H,U,Λ,M, a, µ) = f(H,U,Λ) +
1

t
φ(U,Λ) + tr(M(UTU − IN−1)) + a(

N∑
i=2

λi −N)−
N∑
i=2

µiλi ,
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where M ∈ R(N−1)×(N−1), a ∈ R and µ ∈ RN−1 are KKT multipliers. The KKT conditions
are then given by:

∂H,U,ΛL(H,U,Λ,M, a, µ) 3 0;

UTU = IN−1 ,
N∑
i=2

λi = N , λi ≥ 0 ∀i;

µi ≥ 0 ∀i;
N∑
i=2

µiλi = 0;

Let first introduce z
(`)
1 = (H(`+1), U (`),Λ(`)), z

(`)
2 = (H(`+1), U (`+1),Λ(`)), and z

(`)
3 =

(H(`+1), U (`+1),Λ(`+1)). Let {(H(`j), U (`j),Λ(`j))}j≥0 be a subsequence of {(H(`), U (`),Λ(`))}`≥0

converging to (H∞, U∞,Λ∞). As the objective functions of the H-block and the Λ-block
are uniquely minimize, from arguments of Tseng (2001) and Theorem 2 of Razaviyayn et al.

(2013), we have z
(`j)
1 → (H∞, U∞,Λ∞), z

(`j)
2 → (H∞, U∞,Λ∞), and z

(`j)
3 → (H∞, U∞,Λ∞).

From Lemma 20, and because z
(`j)
1 , z

(`j)
2 , and z

(`j)
3 converge to the same point (H∞, U∞,Λ∞),

we have that:
1) The matrix H∞ satisfies the following KKT conditions of the H sub-problem (7):

∂HL(H,U∞,Λ∞,M, a, µ) = ∂Hf(H,U∞,Λ∞) 3 0 .

2) There exist M∞ such that the matrix U∞ satisfies the following KKT conditions of the
U sub-problem (11):

∇UL(H∞, U,Λ∞,M∞, a, µ) = ∇Uf(H∞, U,Λ∞) +
1

t
∇Uφ(U,Λ∞) + U(M∞ +M∞T) = 0

UTU = IN−1 .

3) There exist Lagrange multipliers µ∞, a∞ ∈ R such that the matrix Λ∞ satisfies the
following KKT conditions of the Λ sub-problem (10):

∇ΛL(H∞, U∞,Λ, a∞, µ∞) = ∇Λf(H∞, U∞,Λ) +
1

t
∇Λφ(U∞,Λ) + diag(a∞1N−1 − µ∞) = 0

N∑
i=2

λ∞i = N , λ∞i ≥ 0 ∀i

µ∞i ≥ 0 ∀i
N∑
i=2

µ∞i λ
∞
i = 0 .

Combining 1), 2) and 3) we can conclude that (H∞, U∞,Λ∞) is a KKT solution of Problem
5 with Langrange multipliers M∞, a∞ and µ∞.
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Proposition 13 (Feasible eigenvalues) – Given any X ∈ RN×N being an orthogonal
matrix with first column equals to 1/

√
N (constraint (3a)), there always exist a matrix

Λ ∈ RN×N such that the following constraints are satisfied:
(XΛXT)i,j ≤ 0 i 6= j , (3b)
Λ = diag(0, λ2, ..., λN ) � 0 , (3c)
tr(Λ) = c ∈ R+

∗ . (3d)

Proof Let us consider a positive real value c > 0. Taking Λ = diag(0, c, ..., c)/(N−1) leads
to tr(Λ) = c and ∀i 6= j, (XΛXT)i,j = −c/N < 0. However, this solution with constant
eigenvalues actually corresponds to the complete graph. For our purpose, it is the worst
case scenario as it contains no structural information between the nodes.

Proposition 14 (Closed-form solution of Problem (13)) – Consider the optimization
Problem (13). Let X0 be any matrix that belongs to the constraints set (a), and M =
(XT

0 Y H
T)2:,2: the submatrix containing everything but the input’s first row and first column.

Finally, let PDQT be the SVD of M . Then, the problem admits the following closed form
solution

X̂ = X0

[
1 0TN−1

0N−1 PQT

]
.

Proof One can observe that the relaxed optimization problem is equivalent to finding:

Ĝ = argmin
G

∥∥∥∥∥Y −X0

[
1 0TN−1

0N−1 G

]
︸ ︷︷ ︸

, G̃

H

∥∥∥∥∥
2

F

, (28)

s.t. GTG = IN−1. This is obtained by replacing X with X0G̃.

Solving the above Equation (28) is equivalent to finding:

Ĝ = arg max
G

tr
(
HYTX0G̃

)
= arg max

G
tr
(
MTG

)
,

s.t. GTĜ = IN−1. Then, as proved in Zou et al. (2006), we finally have G∗ = PQT, which
completes the proof.

Lemma 16 – Assume the proposed Model (16). If p1 = 0 and pi ∈ (0, 1), ∀i ≥ 2, then,

− log(p(h|y,X,Λ)) ∝ 1

σ2
‖y −Xh‖22 +

1

2
hTΛh

+

N∑
i=1

1{hi 6=0}

(
pi log(

λi√
2π

)− log(pi)− log(
λi√
2π

)

)
.
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Proof Based on the Factor Analysis model and the independence of hi’s,

log(p(h|y,X,Λ)) ∝ log (p(y|h,X,Λ)) + log (p(h|X,Λ))

∝ − 1

2σ2
‖y −Xh‖22 +

N∑
i=1

log (p(hi|λi)) . (29)

Let us now focus on log (p(hi|λi)), for which we have:

log (p(hi|λi)) = log

 ∑
γi={0,1}

p(hi, γi|λi)


= log

 ∑
γi={0,1}

p(hi, γi|λi)
p(γi|hi, λi)
p(γi|hi, λi)


≥
(=)

∑
γi={0,1}

p(γi|hi, λi) log

(
p(hi, γi|λi)
p(γi|hi, λi)

)
.

The last equality is obtain using the concavity of the logarithm and Jensen inequality. For
this particular case, it correspond to an equality. Then we have:

log (p(hi|λi)) =
∑

γi={0,1}

p(γi|hi, λi) log (p(hi, γi|λi)) (?)

−
∑

γi={0,1}

p(γi|hi, λi) log (p(γi|hi, λi)) . (??)

Before computing the previous two sums, we need to observe that:

p(γi = 1|hi) =

{
1 if hi 6= 0 ,
pi if hi = 0 .

We can now compute (?) and (??) as follows:

(?) =
∑

γi={0,1}

p(γi|hi, λi) [log (p(hi|γi, λi)) + log (p(γi|λi))]

=
(
1{hi 6=0} + pi1{hi=0}

) [
log

(
λi√
2π

)
− 1

2
λih

2
i + log (pi)

]
+
(
(1− pi)1{hi=0}

) [
log
(
1{hi=0}

)
+ log (1− pi)

]
(??) = [pi log(pi) + (1− pi) log(1− pi)]1{hi=0} .
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Finally we can compute log (p(hi|λi)):

log (p(hi|λi)) = (?)− (??)

= 1{hi 6=0}

(
log

(
λi√
2π

)
− 1

2
λih

2
i + log (pi)

)
+ pi log

(
λi√
2π

)
1{hi=0}

= 1{hi 6=0}

(
log

(
λi√
2π

)
+ log (pi)− pi log

(
λi√
2π

))
+ pi log

(
λi√
2π

)
+−1

2
λih

2
i

∝ 1{hi 6=0}

(
log

(
λi√
2π

)
+ log (pi)− pi log

(
λi√
2π

))
+−1

2
λih

2
i .

Note that with our parametrization, the particular case i = 1 leads to log (p(h1|λ1)) = 0.
Now plugging our result in Equation (29) and multiplying on both side by −1, we get our
final result.

Proposition 18 (A posteriori distribution of h) – Let C > 0, and assume for all i ≥ 2

that pi = e−C if λi =
√

2π and pi = −W
(
− e−C log(λi/

√
2π)

λi/
√

2π

)
/ log(λi/

√
2π) if not. Then,

pi ∈ (0, 1) and there exist constants α, β > 0 such that:

− log(p(h|y,X,Λ)) ∝ ‖y −Xh‖22 + αhTΛh+ β‖h‖0 .

Proof To show that the pi’s are well-defined and belongs to (0, 1), it suffices to apply
Lemma 21 with x = λi/

√
2π.

We now proof the main result of the proposition. If λi =
√

2π, then pi = e−C < 1 and

pi log(
λi√
2π

)− log(pi)− log(
λi√
2π

) = − log(pi) = C .

If λi 6=
√

2π, then −pi log(λi/
√

2π) = W
(
− e−C log(λi/

√
2π)

λi/
√

2π

)
. Since W corresponds to the

inverse function of f(W ) = WeW , we have:

− pi log(λi/
√

2π)e−pi log(λi/
√

2π) = −e
−C log(λi/

√
2π)

λi/
√

2π

⇐⇒
∣∣∣−pi log(λi/

√
2π)e−pi log(λi/

√
2π)
∣∣∣ =

∣∣∣∣∣−e−C log(λi/
√

2π)

λi/
√

2π

∣∣∣∣∣
⇐⇒ log

(
pi

∣∣∣log(λi/
√

2π)
∣∣∣ e−pi log(λi/

√
2π)
)

= log

(
e−C

∣∣log(λi/
√

2π)
∣∣

λi/
√

2π

)
⇐⇒ log(pi) + log

(∣∣∣log(λi/
√

2π)
∣∣∣)− pi log(λi/

√
2π)

= −C + log
(∣∣∣log(λi/

√
2π)
∣∣∣)− log(λi/

√
2π) .
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Same as the case where λi =
√

2π, the final equality gives us:

pi log(
λi√
2π

)− log(pi)− log(
λi√
2π

) = C . (30)

Plugging the Equation (30) into the final result of proposition 1, we obtain:

− log(p(h|y,X,Λ)) ∝ 1

2σ2
‖y −Xh‖22 +

1

2
hTΛh+ C‖h‖0

∝ ‖y −Xh‖22 + αhTΛh+ β‖h‖0 ,

taking α = σ2 and β = 2Cσ2. This concludes the proof.

Lemma 21 Let C > 0. For any x > 0,

0 ≤ −W
(
−e
−C log(x)

x

)
/ log(x) ≤ 1 . (31)

Proof First, we show that this function is decreasing for x > 0. The derivative of the
function is given by

∂

∂x
−W

(
−e
−C log(x)

x

)
/ log(x) =

W
(
− e−C log(x)

x

)(
W
(
− e−C log(x)

x

)
+ log(x)

)
x log2(x)

(
W
(
− e−C log(x)

x

)
+ 1
) . (32)

For x > 0 and C > 0,

−1/e < −e−(C+1) = min
x>0
−e
−C log(x)

x
≤ −e

−C log(x)

x
. (33)

As W (·) is strictly increasing for x > −1/e, we have W
(
− e−C log(x)

x

)
> W (−1/e) = −1.

Hence, the bottom part of the previous equation is always positive.

For 0 < x ≤ 1, W
(
− e−C log(x)

x

)
is positive. Furthermore,

−e−C log(x)

x
< − log(x)

x
⇐⇒W

(
−e−C log(x)

x

)
< W

(
− log(x)

x

)
= − log(x) (34)

⇐⇒W

(
−e−C log(x)

x

)
+ log(x) < 0 . (35)

Hence, when 0 < x ≤ 1, the upper part of the previous equation is negative.

For 1 < x ≤ e, W
(
− e−C log(x)

x

)
is negative. Furthermore,

−1

e
≤ − log(x)

x
< −e−C log(x)

x
⇐⇒W

(
− log(x)

x

)
= − log(x) < W

(
−e−C log(x)

x

)
(36)

⇐⇒W

(
−e−C log(x)

x

)
+ log(x) > 0 . (37)
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Hence, when 1 < x ≤ e, the upper part of the previous equation is negative again.

For x > e, W
(
− e−C log(x)

x

)
is negative. Furthermore, W

(
− e−C log(x)

x

)
> −1 and log(x) > 1.

Hence, the addition is positive and the upper part of the previous equation is negative again.

We just have shown that the derivative is negative for x > 0. Hence, the initial function
is decreasing on this interval. We now go back to the initial inequality (31). The left part
of the inequality is straightforward as for x large enough, the function corresponds to the
product of two positive functions. The function being decreasing, the lower bound follows.
For the upper bound, let us remind that for y > e, we have the inequality W (y) < log(y)

(Hoorfar and Hassani, 2007). Let f(x) = − e−C log(x)
x , for x small enough we have:

W (f(x)) < log(f(x)) ⇔ −W (f(x)) > − log(f(x))

⇔−W (f(x)) / log(x) < − log(f(x))/ log(x) .

Tacking the limit when x→ 0+ conclude the proof,

lim
x→0+

− log(f(x))/ log(x) = lim
x→0+

− log(−e
−C log(x)

x
)/ log(x)

= lim
x→0+

−
(

log(e−C) + log(− log(x))− log(x)
)
/ log(x)

= lim
x→0+

C

log(x)
+

log(log(1/x))

log(1/x)
+ 1 = 1 .
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