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1 General description of the solver

Our solver consists in a branch and bound (BB) algorithm. It first starts with a preprocessing
phase that we describe below in this section. The algorithm then constructs solutions starting
from the initial clustering where all the vertices are in their own clusters of size 1. At each
branching step, it either merges two clusters or definitively separate them. We then apply
rules to enforce pairs of vertices to be either on the same cluster, or to be in separated
clusters. We denote these rules as enforcing rules. The branching phase and enforcing rules
are described with more details in Section 3.

Overview of the preprocessing phase

We first partition the graph into connected components that will be solved independently
one after the other. Indeed, it is not hard to check that no two vertices that belong to
separate connected components are in the same cluster of any optimal solution (see for
instance [2]). We then compute an upper bound with an heuristic (the reader is referred
to [1] for the description of the heuristic). We then label some pairs of vertices as “edges”
if they necessarily belong to any optimal solution or “non edges” if they do not belong to
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an optimal solution. This labeling phase permits to avoid unnecessary branchings in the
branching phase of the algorithm. We describe this labeling phase of the preprocessing in
the next section.

2 Description of the labeling phase

Let us begin with some definitions. The twinness of two vertices u, v is the size of the
symmetric difference of their neighborhoods. Two adjacent vertices u, v are i-twins if their
twinness is at most i. Note that 0-twins are what is usually called in the literature true twins.
One can easily prove that two 0-twins are always in the same cluster of an optimal solution.

On the other hand, two false twins are not necessarily in the same cluster of an optimal
solution (consider e.g. a P3). However, we can prove that if two false twins u, v are not in
the same cluster, we can move any of them to the cluster of the other without increasing the
cost of an optimal solution. So we can assume that all the false twins are in the same cluster
and then we can label as edges pairs of false twins. Similarly, we can label as edge any pair
of 1-twins.

One can wonder what can happen when i is increasing. If there is a triangle of 2-twins
then we can prove that there exists an optimal solution where there are in the same cluster.
Unfortunately, it is not enough to force all these edges. Indeed for the butterfly (two triangles
sharing one vertex), there are two triangles of 2-twins but we cannot force all the edges of
all the triangles of 2-twins to be in an optimal solution since the optimal solution contains
two clusters. We can however prove that if there is a K4 of 2-twins, these vertices are in the
same cluster in any optimal solution.

Generalizing to any i becomes harder and harder since the size of the clique is increasing.
Instead we use the following fact, easier to prove: for every i ≤ 8, if a vertex u has at least 4i−1
i-twins X then u∪X are in the same cluster in any possible optimal solution. Note that we do
not make any assumption on the twinness of pairs in X nor on the existence of the edges in X.
Our proof is computer assisted (the program runs in a few minutes for i = 8). We conjecture
that this statements holds for any i. However, the lower bound on the number of i-twins
might not be tight. For instance, it only gives 7 for i = 2 but it might be true that 5 is enough.

Let us summarize this labeling phase:
For every pair of vertices u, v that are either true twins, false twins, or 1-twins, label
(u, v) as an edge.
For every subset of 4 vertices that forms a K4 of 2-twins, label the pairs of the K4 as
edges.
For every i ≤ 7 and every vertex u such that u has a set X of at least 4i − 1 i-twins, label
the pairs of u ∪ X as edges.

3 Description of the branching phase

Let G be the input graph. A cluster graph is a partition of the vertices of G into disjoint
cliques. The cost of graph is the number of edge editions that has to be made to transform
G into this solution. We start with a solution where each vertex of the input graph G is in
its own cluster (and thus has a cost equal to |E(G)|). Furthermore, all along the algorithm
we maintain a current graph, which is the graph obtained from G by performing the edge
editions corresponding to the branchings. The main routine on the branching step is the



Bartier et al. 29:3

following: at each step we choose a pair of clusters C1 and C2 to branch on and either
merge them (we add all the edges between vertices of C1 and C2, and these edges will never
be removed in the current branch), or definitively separate them (we remove all the edges
between vertices of C1 and C2, and no edges between vertices of C1 and C2 can be added
back in the current branch). We denote edges (resp. non-edges) which cannot be removed
(resp. added) in the current branch as fixed.

After each branching step we try to:

cut the branch if possible, or
merge or separate clusters according to enforcing rules.

Both the cutting of branches and the enforcing rules heavily rely on the computation
of an upper bound (that we obtain through an heuristic) and the computation of a lower
bound, that we describe below. The rule according to which we cut the branch is rather
simple: we cut the branch if the lower bound on the current graph plus its cost (number of
edges edited so far) is at least equal to the cost of the upped bound.

Computation of the lower bound

To obtain the lower bound, we consider the current graph and compute how many edges (at
least) has to be edited to find a solution. One can note that, for each P3 on the graph, we
have to edit at least one edge. So if we can find a collection of P3 that pairwise intersect on
at most one vertex, the cost of any solution is at least the cost of the current solution plus
the number of P3 in the collection. Unfortunately this rule is too weak since we often need
to edit more than |E|/2 edges in the instances and the lower bound obtained this way is at
most |E|/2. We can improve this rule by noting that, for every star K1,ℓ the number of edits
is at least ℓ − 1. Our algorithm computes greedily a collection of P3 that it extends to stars,
from which we obtain the lower bound.
The collection of stars is then updated after each branching step. Note that we do not
recompute the collection of stars from scratch, but rather only modify the stars that contain
at least one endpoint of a pair edited during the current branching step. This allows us to
always maintain a lower bound that corresponds to the current graph (and not only a lower
bound on the initial graph), while only paying for a reasonable computational cost (since we
only perform local modifications).

Linear Programming. For small instances (up to 120 vertices) we run a linear programming
algorithm to compute a lower bound using fractional stars. We then round the solution to
an integral solution whose size often matches the lower bound (which permits to conclude
without the branching algorithm).

Enforcing rules

There are a few cases where we can ensure, during the branching phase, that an edge will or
will not be in the final solution, without computing twinness of vertices. Suppose that the
current graph contains two clusters C1, C2 such that the number of (non yet fixed) non-edges
between C1 and C2 plus the lower bound on the current graph is greater or equal to the
upper bound. Then merging C1 and C2 cannot lead to a better solution, and thus we can
delete all the C1, C2 edges and mark all the C1, C2 pairs as fixed non-edges. Similarly if the
number of (non yet fixed) edges between the two clusters plus the lower bound is greater or
equal to the upper bound, then we add all the missing C1, C2 edges and mark alll the C1, C2
pairs as fixed edges. We have a total of 5 such rules that we apply after each two branchings.
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