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Résumé. Le groupe IFP commercialise des catalyseurs et doit s’engager sur leur per-
formance. Il est donc nécessaire de disposer de modèles prédictifs fiables pour chaque
nouvelle génération de catalyseurs. Ces modèles sont construits à partir de données
expérimentales très couteuses. Afin d’optimiser les coûts, notre ambition est de réduire
le nombre d’expérimentations nécessaires pour estimer un modèle associé à un nouveau
type de catalyseur. De précédents travaux ont montré qu’une approche de transfert
Bayésien permettait d’améliorer la qualité des modèles lorsque le nombre d’observations
est réduit. Dans cet article, les plans d’expériences sont étudiés afin de déterminer com-
ment sélectionner ce nombre réduit d’observations permettant d’obtenir les meilleurs
modèles par transfert Bayésien. Cet article montre que l’algorithme Kennard and Stone
peut, sous certaines conditions, offrir de meilleurs résultats que des plans optimaux.

Mots-clés. Plan d’expérience, Transfer learning, inférence bayésienne

Abstract. IFP group develops catalysts and has to guarantee their performances. It
is therefore crucial to have good predictive models for all new catalysts. These models
are built upon very expensive experimental data. In order to minimize costs, we aim at
reducing the number of new data points to measure to fit a model on the new catalyst.
Previous work has shown that a Bayesian transfer approach can improve the quality of
models when the number of observations is reduced. In this paper, experimental designs
are studied in order to determine how to select this reduced number of observations to
obtain the best models by Bayesian transfer. This article shows that the Kennard and
Stone algorithm can, under certain conditions, offer better results than optimal designs.

Keywords. Design of Experiment, Transfer learning, Bayesian inference

1 The challenge

IFP Group develops and sells catalysts to chemical and biochemical producers. Catalysts
are solids that make the reaction feasible, faster, and/or at a lower temperature and pres-
sure. Performance must be guaranteed and it is therefore crucial to have good predictive

1



models for all new catalysts. These models are built on very expensive experimental data,
therefore the aim is to use a small number of data and select them carefully to build a
good model.

For the modeling of hydrocracking process, previous work has shown that the Bayesian
transfer approach significantly reduces the number of points needed to obtain robust
models (Iapteff et al. 2020). The method consists in estimating a model for a new catalyst
using Bayesian models, whose priors depend on the old catalyst generation, for which
important amounts of data are available. Celse, J.-J. D. Costa, and V. Costa 2016 shows
the effectiveness of D-optimal designs for modeling the hydrocracking process using the
kinetic model.

This paper focuses on hydrocracking modeling using Bayesian linear model (1):

y = βX + ϵ, (1)

ϵ ∼ N (0, σ2I),

β ∼ π(·),

where β = (β0, β1, . . . , βp)
T is the vector of model parameters, assumed to be a random

variable of prior density π(·), X is the matrix of observations and y is the variable
of interest. For the experiments, an industrial dataset from hydrocracking facilities is
available. The prior π(·) is built with an old dataset that uses another catalyst.

The goal of this work is to show that when the sample size is not too small, basic
geometric experimental design offer better results than optimal designs. This paper is
composed of two parts: a first section presents the Design of Experiment (DoE) and
a second section shows the results on our industrial dataset, using some of the most
commonly employed DoE approaches. This section also explains why the results are not
necessarily the best when using optimal designs.

2 Design of Experiment

The purpose of the Design of Experiments (DoE) is to organise the experiments carried out
for scientific research or industrial studies in the best possible way. When experiments
are used to study the relation between a quantity of interest and other features, DoE
aims to maximise the information on this quantity from a reduced amount of data. The
benefits of DoE are multiple, for instance it allows to control bias, to reduce random
variation, to increase the precision of parameter estimates, to improve predictions of
future observations, or to make a choice between competing models. In this section, we
focus on most common DoE approaches for linear models.
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2.1 Model independent approaches

The Kennard and Stone algorithm (Kennard and Stone 1969) is an iterative algorithm
for selecting the best observations regardless of the type of model. This algorithm is a
sequential construction for a minimax space-filling design and is based on a set of possible
observations in order to extract the optimal points. It is initialized with a training dataset
composed of the two most distant points of the complete dataset and a candidate set
composed of the remaining points. Then, at each iteration, one observation xi is moved
from the candidate set to the training set such as xi = argmax

xi∈Candidate
( min
xi′∈Training

dist(xi,xi′))

until the training dataset reaches a predefined size. Notice that in the original Kennard
and Stone algorithm, the euclidean distance is considered. With such an approach, we
try to obtain an uniform distribution over the features space for the training set.

Other DoE model-independent approaches are well studied, such as modified Kennard
and Stone algorithm, Latin hypercube sampling or full factorial designs but are not de-
velopped in this paper. The model independent DoE approaches are also often used to
initialise algorithms for obtaining optimal designs, allowing faster convergence.

2.2 Optimal DoE for Linear Model

In this section, DoE approaches for the linear model (1) is considered. For this model,
the most commonly used criteria are the D/A/E/G-optimal designs (Fedorov 1972, De
Aguiar et al. 1995, Wong 1994). When the objective is to improve the prediction’s quality
of the model, a popular criterion is the G-optimal criterion, which aims to minimize the
maximum prediction uncertainty: the design must minimize max

xi

(xT
i (X

TX)−1)xi). The

D, A and E optimal criteria use the dispersion matrix (XTX)−1 which is proportional to
the covariance matrix of parameters. The idea is that minimizing the uncertainty in the
parameters helps to minimize the uncertainty in prediction.

The D-optimal design is the design that minimizes det((XTX)−1). It is the most
widely used criterion due to its efficiency and ease of implementation. The Fedorov’s
algorithm (Fedorov 1972) gives an exact D-optimal design with an easy implementation.
This algorithm ensures convergence to a local minimum, so different initializations can
be considered. An usual initialization is to take a design obtained via the Kennard and
Stone algorithm.

The A-optimal design and E-optimal design minimize the trace of (XTX)−1 and the
largest eigenvalue of (XTX)−1, respectively.

2.3 Bayesian Experimental Design

Since the objective of DoE is often to correctly estimate the model parameters, it can be
interesting to provide a prior information on the value of these parameters. This approach
is called Bayesian Experimental Design (Chaloner and Verdinelli 1995) and also has the
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advantage that a single observation can be sufficient to build the model, the information
matrix being always non-singular with a proper prior. Bayesian Experimental Design
is commonly based on an utility function U(d,θ,y), defining the contribution of the
choice of design d, yielding the y-values for the dependent variable and with the model’s
parameters θ. The optimal design dopt is thus obtained by maximizing the maximum
expected utility:

dopt = argmax
d

∫
Y

∫
Θ

U(d,θ,y)p(y|θ,d)p(θ)dθdy, (2)

where p(y|θ,d) is the likelihood of the model and p(θ) the prior information, which is
assumed not to be affected by the choice of the design.

In the Bayesian linear regression case, with a Gaussian prior for parameters β ∼
N (µ,Σ) and σ fixed, the posterior distribution of the parameters is known:

β|y,X ∼ N ((XTX + σ2Σ−1)−1(XTy + σ2Σ−1µ), σ2(XTX + σ2Σ−1)−1).

In our case of study, the parameters β are considered uncertain and σ is assumed to be
known and identical to the parameter of the source model since we seek to model similar
phenomena with identical tolerance.

Equivalently to the classical DoE framework, Bayesian alphabetical criteria are devel-
oped and use the matrix (XTX+σ2Σ−1)−1, proportional to the covariance of the Bayesian
linear model parameters, instead of the matrix (XTX)−1. Then, BayesD/A/E/G-optimal
designs minimize respectively det((XTX + σ2Σ−1)−1), the trace of (XTX + σ2Σ−1)−1,
the largest eigenvalue of (XTX + σ2Σ−1)−1 and max

xi

(xT
i (X

TX + σ2Σ−1)−1xi).

The Bayesian D-optimal design can be derived from the mutual information for the
Gaussian linear model while the Bayesian A-optimal design can be obtained with the
quadratic loss. Concerning the E-optimal design and G-optimal design, no utility function
has yet been found whose maximisation leads to the construction of such a model.

Notice that Bayesian DoE is not only used if one wishes to build a Bayesian predictive
model but can also be used in a non-Bayesian framework.

3 Use case: hydrocraking dataset

The dataset used for this experiment is obtained from two refineries using a new generation
catalyst and is composed of 1004 observations described with 12 features. Let X be
the matrix of observations and y the vector of the actual value of Diesel density to be
predicted. In this experiment, different DoE are tested for a varying size of sample n.
The aim is to build a design that allows to obtain the most efficient models with the
fewest possible points for learning. The objective is to combined the DoE approach
with the Bayesian transfer method (Iapteff et al. 2020), which has proven its efficiency in
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Figure 1: Comparison of the different designs for the Linear model. The red lines give
the best possible design obtained by taking for each sample size n the best RMSE score
among the thousand random samples.

improving the quality of the model. The model fitted with the Bayesian transfer approach
is compared to a classical “non-transfer” model, for which β is assumed to be no longer
random and estimated by maximum likelihood. The “Bayesian transfer model” is the
model learned with prior on β: β ∼ N (βprior,Σprior). As a reminder, for the Bayesian
approach, the prior is built from a dataset from refineries using an old generation catalyst.
To compare different methods, the target dataset is split: 600 observations are used as
candidate for the design and the 404 remaining observations are used for testing the
model. The RMSE score is thus always evaluated only on these 404 points whatever the
size n of the sample.

For both models with and without transfer, three different designs are considered:

• Mean of random designs: samples are randomly selected from the candidates dataset,
a thousand times, and scores are then averaged.

• Kennard and Stone,

• D-optimal design: the Fedorov’s algorithm is used in order to build the D-optimal
design for each sample size. For the model without transfer, classical D-optimal
design is considered while Bayesian D-optimal design is considered for the model fit
with Bayesian transfer.

Note that other alphabetical criteria have been tested and offer less good results than
the D-optimal criterion for our prediction task and are therefore not presented here. The
results are plotted in Figure 1.

For all designs, the Bayesian transfer approach improves the results compared to a
non-transfer approach. Nevertheless, the non-transfer approach with a D-optimal design
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provides very good results fairly quickly . The best results with a reduced number of points
are obtained with a D-optimal design coupled with the Bayesian transfer approach. As
the number of points increases, above 15, the Bayesian transfer approach coupled with
the design obtained via Kennard and Stone is better.

In the present case study, the good performance of the Kennard and Stone method
in comparison with the D-optimal approach can be explained by the fact that data came
from two refineries. Indeed, the dataset is then not exactly homogeneous, and the discrete
D-optimal design may be far from the theoretical optimum. Additional experiments on
simulated dataset confirmed this behavior.

Another important point is that the design obtained with Kennard and Stone algo-
rithm allows to reach the best possible score when number of observation is sufficient,
around 25 observations for our application with 12 features.

4 Conclusion

This study shows that in some practical cases, building optimal designs is not the best
solution. It is the case when the features space distribution is not homogeneous and the
chosen model does not perfectly describes the phenomenon. Then, the Kennard and Stone
algorithm allows to keep the important information when the number of observation is
sufficient, and become more effective than optimal design. However, when the number of
observations is low, D-optimality remains the most efficient.
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