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An Epistemic Logic of Extensive Games

Abstract

The aim of this work is to propose a logical framework for representing inter-
acting agents in the context of extensive form games. Because of the impor-
tance of the temporal dimension provided by such games, we create a modal
epistemic logic that allows to quantify over both strategies and vertices within
the game tree. The first part of the article is devoted to the logic itself with the
definition of its language and its semantics. In order to illustrate the use of this
logic, we define, in the following part, the concept of rationality in the case of
extensive form games and the backward induction concept, as they are defined
by Robert Aumann. Based on these definitions, we then provide a syntactic
proof of Aumann’s theorem that states the following: “for any non degenerate
game of perfect information, common knowledge of rationality implies the
backward induction solution”. We finally propose an in-depth formal analysis
of the hypotheses that are needed to prove such a theorem.

Keywords

epistemic logic, game theory, extensive form games, rationality, backward
induction, Aumann’s theorem
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An Epistemic Logic of Extensive Games

1 Introduction

The aim of this article is to propose a modal logic framework that allows to reason about
epistemic games in extensive form. In this kind of games, players decide what to do
according to some general principles of rationality while being uncertain about several
aspects of the interaction such as other agents’ choices, other agents’ preferences, etc.

While epistemic games have been extensively studied in economics (in the so-called
interactive epistemology area, see e.g. [3, 2, 9, 5, 10, 12]) and while there have been few
modal logic analyses of epistemic games both in strategic form and in extensive form (see,
e.g., [22, 11, 9, 18, 26, 14, 23, 24, 4]), there exists nologic with a correspondingformal
semanticsfor extensive form games which has been showed to be sufficiently general:

• to express in the object language solution concepts like backward induction,

• to derive syntactically the epistemic and rationality conditions on which such solu-
tion concepts are based.

While it is shown in [23] and [24] that reasoning about actions only is sufficient to com-
pute solution concepts like the backward induction, such game logics can not express the
notion of substantive rationality as in Aumann’s definition, which fully considers the tem-
poral aspect of the concept of strategy. Indeed, unlike for strategic games where a strategy
can be simply reduced to a set of actions (see [14]), a strategy in an extensive form game
expresses not only the sequence of actions that will occur next, but also the actions that
would occur in every vertex of the game.In [11] a logic which enables to reason about the
epistemic aspects of extensive games is presented. This logic deals with several game-
theoretic concepts like the concepts of knowledge, rationality and backward induction.
Nevertheless, all these notions are atomic propositions of the logic managed by anad hoc
axiomatization. Moreover, the logical approach to extensive form games proposed in [11]
is purely syntactic: no model-theoretic analysis of extensive form games is proposed.

In this article, we try to fill this gap by proposing both a semantic and a syntactic analy-
sis of extensive form games in modal logic. In particular, we introduce a multi-modal logic
interpreted on a Kripke-style semantics which integrates the concepts of action, strategy,
knowledge and preference and which allows to reason about the properties of extensive
form games. In order to illustrate the expressive power of the logic, we define in its ob-
ject language the well known concepts of rationality and backward induction, as they are
defined according to economic theory. Based on these definitions, we then provide a syn-
tactic proof of Aumann’s theorem that states the following: “for any non degenerate game
of perfect information, common knowledge of rationality implies the backward induc-
tion solution” [1]. While there exist other logics that formalize similar theorems, none of
these is expressive enough to provide syntactic proofs that would emphasize the various
requirements assumed for the theorems. For example, while [4] presents a logic that can
correctly define the statement of Aumann’s theorem, no syntactic proof of it is provided,
and its language does not allow to verify whether the theorem holds when the epistemic
conditions are weakened. Indeed, if one realistically only considers common knowledge
to be bounded to some finite level, then the maximal depth of the game represents an
important variable to the proof of the theorem. By considering the temporal dimension of
such extensive games, we demonstrate its relevance to the proof of some weaker version
of the theorem.
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Our intention, throughout this paper, is not to show that a syntactic derivation of Au-
mann’s theorem is interesting in itself. Instead, we wish to demonstrate that this kind of
analysis is useful to identify specific assumptions about the relationship between players’
knowledge and the game structure that are needed in order to prove the theorem.

The rest of the article is organized as follows. Section 2 is devoted to presenting our
logic of action, strategy, knowledge and preference with the definition of its language
and its semantics. Then, in Section 3, we define the concept of rationality in the case
of extensive form games and the backward induction concept, as they are defined by
Robert Aumann. Section 4 provides a syntactic proof of Aumann’s well-known theorem
as well as a systematic analysis of the hypotheses that are needed to prove it. Finally, in
section 5, we propose some possible revisions to our logic, which lead to a more realistic
interpretation of Aumann’s theorem. Related works on the logic of extensive games are
discussed in Section 6.

The syntactic proof of Aumann’s theorem is given in the Appendix at the end of the
article.

2 A modal logic of actions, strategies, knowledge and
preferences

We present in this section the modal logicELEG (Epistemic Logic of Extensive Games)
integrating the concepts of action, strategy, knowledge and preference. This logic supports
reasoning about games in extensive form in which an agent might be uncertain about the
current choices of the other agents.

2.1 Syntax

The syntactic primitives of the logicELEG are the finite set of agentsAgt , the set
of atomic propositionsAtm, a nonempty finite set of atomic action namesAct =
{α1, α2, . . . , α|Act |}, a non-empty finite set ofn integersI = {0, . . . , n}.

The languageL of the logicELEG is given by the following BNF:

χ ::= p | α | turni | end | ki

ϕ ::= χ | ¬ϕ | ϕ ∨ ϕ | �ϕ | AXϕ | [Ki]ϕ | Xϕ

wherep ranges overAtm, i ranges overAgt , α ranges overAct , andk ranges overI.
Formulasχ are called atomic formulas. The classical Boolean connectives⊥, >, ∧,→
and↔ are defined from∨ and¬ in the usual manner.

The formulaα has to be read “the actionα is performed”, whileturni andki are read
respectively “it is agenti’s turn to play”, and “the current strategy will ensure a payoffk
to agenti”. Finally, end is meant to stand for “the current vertex of the game is an end
vertex”.

The operator� is used to quantify over strategies of the current game.�ϕ has to be
read “ϕ holds for all strategies of the current extensive game”. The operatorAX is used to
quantify over next vertices of the current extensive game.AXϕ has to be read “ϕ is true
at every possible next vertex along the current strategy”.
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The formula[Ki]ϕ is read as usual “agenti knows thatϕ is true”. X is the standard
temporal operator ofnext. The formulaXϕ has to be read “ϕ will be true next”.

Moreover, the following abbreviations are given:

♦ϕ def
= ¬�¬ϕ AX0ϕ

def
= ϕ

EXϕ
def
= ¬AX¬ϕ AXn+1ϕ

def
= AX(AXnϕ)

〈Ki〉ϕ
def
= ¬[Ki]¬ϕ AX≤nϕ

def
=

∧
0≤m≤n AX

mϕ

αi
def
= α ∧ turni EX

nϕ
def
= ¬AXn¬ϕ

X0ϕ
def
= ϕ EX≤nϕ

def
= ¬AX≤n¬ϕ

Xn+1ϕ
def
= XXnϕ

♦ϕ has to be read “ϕ holds for at least one strategy of the current extensive game”,
whereasEXϕ has to read “ϕ is true in at least one possible next vertex along the cur-
rent strategy”.〈Ki〉ϕ has to be read “agenti thinks thatϕ is possible”, whereasαi has to
be read “agenti performs the actionα”. Xn has to be read “ϕ will be truen steps from
now”. OperatorsAXnϕ andAX≤nϕ respectively read “ϕ is true in every vertex that can
be reached in exactlyn step(s) from now, along the current strategy” and “ϕ is true in
every vertex that can be reached withinn step(s) from now, along the current strategy”.
Finally the corresponding dual operatorsEXnϕ andEX≤nϕ can be interpreted as “ϕ is
true in at least one vertex that can be reached in exactlyn step(s) from now, along the
current strategy” and “ϕ is true in at least one vertex that can be reached withinn step(s)
from now, along the current strategy”.

As common in Propositional Dynamic Logic (PDL), we introduce an operator of se-
quential composition “;”. We define the setSeq of action sequences as the smallest set
such that:α ∈ Seq for anyα ∈ Act , and if ε1, ε2 ∈ Seq thenε1;ε2 ∈ Seq . Moreover,
we considerSeqn ⊆ Seq to be the set of action sequences of lengthn. The fact that
a given action sequence will occur andϕ will be true afterwards can be defined in the
object language by means of the following definition:

〈α0; . . . ;αn〉ϕ
def
=
∧

0≤l≤n

Xlαl ∧ X
nϕ

We use[EKC ]ϕ as an abbreviation of
∧
i∈C [Ki]ϕ, i.e. every agent inC knowsϕ (if

C = ∅ then[EKC ]ϕ is equivalent to>). Then we define by induction[EKkC ]ϕ for every
natural numberk ∈ N:

[EK0C ]ϕ
def
= ϕ

and for allk ≥ 1,
[EKkC ]ϕ

def
= [EKC ]([EK

k−1
C ]ϕ)

Similarly, we define for all natural numbersn ∈ N:

[CK0C ]ϕ
def
= ϕ

and for alln ≥ 1,
[CKnC ]ϕ

def
=

∧

1≤k≤n

[EKkC ]ϕ

[CKnC ]ϕ expressesC ’s mutual knowledge thatϕ up to n iterations, i.e. everyone inC
knowsϕ, everyone inC knows that everyone inC knowsϕ, and so on until leveln.
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2.2 Semantics

A strategic structure includes a set of vertices, a set of strategies, a successor function
associating vertices and strategies to vertices, a turn-taking function assigning agents to
vertices. The set of vertices includes end vertices.

Strategic structure A strategic structure is a tupleT = 〈V ,Q, S, next ,EndV 〉 where:

• V is a non-empty set of vertices;

• Q is total functionQ : V −→ Agt mapping vertices to agents;

• S is a nonempty set of strategies onV , and every strategys ∈ S is a total function
s : V −→ Act mapping vertices to actions;

• next is a partial functionnext : V × S −→ V mapping vertices and strategies to
vertices such that:

C1 if s(w) = s′(w) thennext(w, s) = next(w, s′);

• EndV ⊆ V is the set of end vertices such that:

C2 w ∈ EndV if and only if,next(w, s) is undefined for everys.

Q(w) = i means that at vertexw it is agenti’s turn to play, andnext(w, s) = w′ means
thatw′ is the next vertex ofw with respect to the strategys. We call indexa pair(w, s)
with w ∈ V ands ∈ S. We defineH = V × S the set of all indices.

Note that the particular concept of a strategy in Definition 2.2 considers every vertex
of the game and is not restricted to a single player’s moves as usually done in game theory.
However, for everys ∈ S, a single playeri’s strategysi can be defined as the restriction
of s to the vertices in which it is agenti’s turn to play.

According to the Constraint C1, two strategies selecting the same action at a given
vertex lead to the same next vertex. According to the constraint C2, an end vertex is a
vertex which does not have a next vertex.

SuccessorR is a relation on vertices such that:
for everyw, v ∈ V , wRv if and only if there iss ∈ S such thatnext(w, s) = v.

wRv means that vertexv is a successor of vertexw.
An extensive game model is nothing but a strategic structure supplemented with acces-

sibility relations for agents’ knowledge over strategies, agents’ preferences and a valuation
of atomic propositions.

Extensive game modelAn extensive game model is a tuple
M = 〈T, {Ei | i ∈ Agt}, {Pi | i ∈ Agt}, π〉 where:

• T is a strategic structure;

• EveryEi is an equivalence relation onS such that:

C3 if sEis′ andQ(w) = i, thens(w) = s′(w);
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• everyPi is a total functionPi : H −→ I mapping every index to an integer such
that:

C4 if next(w, s) = w′, thenPi(w, s) = k if and only ifPi(w′, s) = k;

C5 if w ∈ EndV ands(w) = s′(w) thenPi(w, s) = Pi(w, s′).

• π : Atm −→ 2H is a valuation function on indices.

sEis′ means that agenti cannot distinguish the strategys from the strategys′.
Pi(w, s) = k means that the strategys played at the vertexw will ensure a payoffk
to agenti.

Constraint C3 is the assumption that every agent knows his choice when it is his turn
to play [1, 5]. Constraint C4 correctly expresses the fact that in an extensive form game,
preferences are built over histories, where a history is nothing but a sequence of indices
(w0, s), . . . , (wn, s), . . . such thatnext(wi, s) = wi+1 for every0 ≤ i. According to the
Constraint C5, two strategies selecting the same action at an end vertex lead to the same
payoff for an agent. In other words, at an end vertex the payoff of an action is uniquely
determined.

Example In order to illustrate the use of our logicELEG to model extensive form
games, let us consider a well known game in economics, namely the trust game [6]. The
binary version of the trust game (BTG) involves two players, the truster and the trustee,
playing sequentially in the following way: first the truster can choose between leaving the
game and divide the amount of $2 equally with the trustee (i.e. $1 for each) or let the
trustee play. In the latter case, the trustee can either divide the amount of$6 equally with
the truster (i.e. $3 for each) or keep the whole amount for himself (i.e.$6 for himself
and$0 for the truster). Consider a version of this game, whose graphical representation is
depicted in Figure 1.

v

w
(1,1)

(0,6)(3,3)

C1 D1

C2 D2

Figure 1: Binary Trust Game (BTG)

In Figure1, let us consider a playeri1, as the truster who plays at vertexv, and a
playeri2, as the trustee who plays at vertexw. At each leaf of the tree, payoffs take the
form (X,Y ), where playeri1 gets$X and playeri2 gets$Y . Moreover, actions named
Cx andDx respectably stand for “playerix cooperates” and “playerix defects” (withx
being either 1 or 2).

Therefore, we supposeAgt = {i1, i2}, Act = {C1, C2, D1, D2}, V = {v, w},
EndV = {w}, andS = {s1, s2, s3, s4};

Let us now represent the extensive game model corresponding to the binary trust game
in ELEG:
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• next(v, s1) = w, next(v, s2) = w;

• Q(v) = i1,Q(w) = i2;

• Ei1(s1) = Ei1(s2) = {s1, s2}; Ei1(s3) = Ei1(s4) = {s3, s4};
Ei2(s1) = Ei2(s3) = {s1, s3}; Ei2(s2) = Ei2(s4) = {s2, s4};

• Pi1(v, s1) = Pi1(w, s1) = Pi1(w, s3) = 3,
Pi2(v, s1) = Pi2(w, s1) = Pi2(w, s3) = 3,
Pi1(v, s2) = Pi1(w, s2) = Pi1(w, s4) = 0,
Pi1(v, s3) = Pi1(v, s4) = Pi2(v, s3) = Pi2(v, s4) = 1,
Pi2(v, s2) = Pi2(w, s2) = Pi2(w, s4) = 6

This model represents the four possible strategiess1, s2, s3 ands4 of the BTG, each of
which includes the same two verticesv andw where various actions occur:

• s1 corresponds to strategy(C1, C2);

• s2 corresponds to strategy(C1, D2);

• s3 corresponds to strategy(D1, C2);

• s4 corresponds to strategy(D1, D2);

Verticesv andw represent the nodes within the game where respectively playeri1 and
player i2 have to play. The epistemic relationsEi1 andEi2 , as they are defined in this
model, represent perfect uncertainty for each player over the strategies. One should note
however that these epistemic relations are only examples and could possibly be defined
differently without modifying the strategic structure of the game.

Truth conditions Truth of a formula in a modelM at a given index(w, s) is defined as
follows:

• M,w, s |= p iff (w, s) ∈ π(p);

• M,w, s |= ¬ϕ iff M,w, s 6|= ϕ;

• M,w, s |= ϕ ∨ ψ iff M,w, s |= ϕ orM,w, s |= ψ;

• M,w, s |= α iff s(w) = α;

• M,w, s |= turni iff Q(w) = i;

• M,w, s |= end iff w ∈ EndV ;

• M,w, s |= ki iff Pi(w, s) = k;

• M,w, s |= Xϕ iff if next(w, s) is defined thenM, next(w, s), s |= ϕ;

• M,w, s |= �ϕ iff M,w, s′ |= ϕ for all s′ ∈ S;

• M,w, s |= AXϕ iff M,w′, s |= ϕ for all w′ ∈ V such thatwRw′;

• M,w, s |= [Ki]ϕ iff M,w, s′ |= ϕ for all s′ such thatsEis′.

A formulaϕ is true in an extensive game modelM iff M,w, s |= ϕ for every vertexw in
V and every strategys in S. ϕ isELEG-valid (noted|= ϕ) iff ϕ is true in all extensive
game models.ϕ isELEG-satisfiableiff ¬ϕ is notELEG-valid.
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All principles of classical propositional logic(CPL)

All S5 principles for�(S5�)

All S5 principles for every[Ki](S5[Ki])

All K principles forX(KX)

All K principles forAX(KAX)

Xϕ ∨ X¬ϕ(DetX)

end↔ �X⊥(EndVert )

�ϕ→ [Ki]ϕ(PerfectInfo)

�AXϕ↔ AX�ϕ(Perm�,AX)

�X�ϕ↔ AX�ϕ(NxtVert )

[Ki]AXϕ↔ AX[Ki]ϕ(Perm[Ki],AX)

turni → �turni(TurnStr )

AXϕ→ Xϕ(TimeVert )

turni → (α→ [Ki]α)(Aware)
∨

k∈I

ki(CompletePref)

ki → ¬hi if k 6= h(SinglePref)
∨

α∈Act

α(OneAct)

α→ ¬β if α 6= β(SingleAct)
∨

i∈Agt

turni(TurnTaking )

turni → ¬turnj if i 6= j(SingleTurn)

¬end→ (ki ↔ Xki)(TimePref)

(end ∧ α ∧ ki)→ �(α→ ki)(EndAct)

(α ∧ X�ϕ)→ �(α→ Xϕ)(StrAct )

Table 1: Some validities ofELEG

2.3 Some validities

Table 1 provides an exhaustive list ofELEG validities that will be sufficient to provide
in Section 4 a syntactic proof of Aumann’s theorem.

Let us prove the validityPerm[Ki],AX as an example. AssumeM,w, s |= [Ki]AXϕ for
an arbitraryELEG modelM . This is equivalent to say thatM,w, s′ |= AXϕ for all s′

such thatsEis′ which, in turn, is equivalent to say thatM,w′, s′ |= ϕ for all (w′, s′) such
thatsEis′ andwRw′. The latter is equivalent to say thatM,w′, s |= [Ki]ϕ for all w′ such
thatwRw′ which, in turn, is equivalent to say thatM,w, s |= AX[Ki]ϕ.

In the sequel, we will writè ELEG ϕ to mean thatϕ can be derived by means of the
list of principles given in Table 1. The study of a complete axiomatization of the logic
ELEG is postponed to future work.

9
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3 Backward induction and rationality

We here define two fundamental concepts in Aumann’s epistemic analysis of extensive
form games: the concept of backward induction and the concept of rationality.

As a matter of simplicity to later prove Aumann’s Theorem, we only provide in this
section simplified formal definitions that only apply to games of uniform depth. One
should note however that more general definitions of both backward induction and ratio-
nality can easily be expressed inELEG.

3.1 Backward induction

The notion of backward induction represents the process of reasoning backwards in time,
starting from each end vertex of the game in order to determine a sequence of optimal
actions. This method is generally used to compute the subgame perfect Nash equilibria in
sequential games. The backward induction (BI) solution in a game of depthn (i.e. where
at mostn steps are necessary to reach an end vertex of the game) can be computed by
iterating the processn times, as the BI solution at one state relies on the BI solution at
every possible successive state. Therefore, the first step BI solution (n = 0) corresponds
to the maximization of preferences for the last player to play at each possible end vertex
of the game. The BI solution aftern (n > 0) steps corresponds to the maximization of
the current player’s preferences, considering only those that satisfy the BI solution after
n− 1 steps at any possible next state.

The recursive formal definition inELEG of the BI solution aftern steps is as follows.
For the casen = 0 we define:

BI0
def
= end ∧

∨

i∈Agt ,k∈I

(turni ∧ ki ∧�(
∨

h∈I:h≤k

hi))

For everyn > 0 we define:

BIn
def
= ¬end ∧

∨

i∈Agt ,k∈I

(turni ∧ ki ∧ AX(BI
n−1 ∧

∨

h∈I:h≤k

hi))

Therefore:M,w, s |= BIn if and only if the current strategys, when starting from
vertexw, corresponds to a backward induction solution that can be computed inn steps.

3.2 Epistemic rationality

The followingELEG definition characterizes a notion of rationality that is supposed in
Aumann’s epistemic analysis of extensive form games:

Ratendi
def
= (end ∧ turni)→

∨

k∈I

(ki ∧�(
∨

h∈I:h≤k

hi))

Ratendi means that an agenti is rational at an end vertex (i.e. at some end vertex of the
game) if and only ifi chooses an action that maximizes his individual payoff. Note that
in this case, rationality does not rely on any epistemic component.

10
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Rat¬endi

def
= (¬end ∧ turni)→

∨

k∈I

〈Ki〉(ki ∧ AX(
∨

h∈I:h≤k

〈Ki〉hi))

Rat¬endi means that an agenti is rational at any intermediate vertex (any node that is
not an end vertex of the game) if and only ifi chooses an action in such a way that what
he considers possible to happen afterwards is not strictly dominated by some alternative
future he would consider, had he chosen any other action. In other words, as every possible
next vertex corresponds to one ofi’s possible actions,i is rational if and only if each of
these vertices is not strictly dominated, according toi’s uncertainty, by the next actual
vertex (corresponding to the actual action chosen byi).

Rati
def
= Ratendi ∧ Rat

¬end
i

Note that introspection on rationality is expressed by the following valid formula of
ELEG (see the syntactic proof of Lemma A.1 in the Appendix for details):

Rati ↔ [Ki]Rati

4 A syntactic proof of Aumann’s theorem

As already stated in the previous section, a fundamental assumption of Aumann’s theorem
is that the game is in “general position”, i.e. every history of the game is associated to a
unique preference value for every agent. This important notion can be defined in the logic
ELEG in the following way:

GenPosn
def
=

∧

0≤h≤n

∧

k∈I,i∈Agt ,ε∈Seqh

AX≤n�((ki ∧ 〈ε〉end)→ �(〈ε〉end↔ ki))

In our syntactic proof of Aumann’s theorem we only consider game structures with
uniform depth, that is, games whose end vertices have the same distance from a given
vertex.

The following constructionDepthn means that “the current game has a uniform depth
of degreen from the current vertex”. In other words, no matter what actions will be
chosen in the future, an end vertex will be reached in exactlyn steps. This concept is thus
captured by the followingELEG formula:

Depthn
def
= (�X)nend

This assumption, which is not stated in Aumann’s original theorem, is used here only
to simplify the formal proof. One should note however that any extensive game can be
represented by an extensive game with uniform depth (i.e. by adding additional non in-
formative actions and preferences).

According to Aumann’s theorem, the following constraints must be satisfied in order
for the current strategy to be a backward induction solution:

• the game is finite;

• the game has a uniform depth of degreen from the current vertex;

11
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• the game is in the general position;

• there is common knowledge up to level at leastn that at every future vertex (up to
depthn) all agents are rational.

Theorem 4.1 For everyn,m ∈ N such thatn ≤ m, we have:

`ELEG ([CK
m
Agt ]AX

≤n(
∧

i∈Agt

Rati) ∧ Depth
n ∧ GenPosn)→ BIn

Note that the proof of Theorem 4.1 only requires to prove the case wherem = n (see
Lemma A.2 for details).

The proof of theorem 4.1 in the Appendix indicates several points that need to be
discussed. A strong assumption made in the theorem is about the type of rationality that
is used. In fact, Aumann’s theorem considers substantive rationality in the hypothesis,
which means that in every vertex of the game, the players will be rational. Such a defini-
tion is criticizable because it requires players to be even rational in vertices that will never
be reached given some expected strategy. According to Stalnaker [19]1, a more realistic
concept of rationality should be considered only on the vertices that are actually reached.
However, the latter definition does not guarantee the backward induction solution. Our
proof of the theorem suggests that this definition of substantive rationality is indeed im-
portant to the derivation of the equilibrium solution. To be even more precise, the use
of Axiom Perm[Ki],AX in the proof of Theorem 4.1 indicates that common knowledge of
substantive rationality must be true not only now but in every future vertex. Obviously
Axiom Perm[Ki],AX is very strong as it assumes that players know at the beginning of the
game what they will do at any reachable state in the future where they have to play. This
simply means that players can not learn anything through the game play. This important
Axiom Perm[Ki],AX reflects the structure of the epistemic relation in our logic that only
considers strategies (i.e. agents have the same uncertainty regarding strategies no matter
which vertex they are in). In order to allow the players to act more realistically and learn
as they advance through the game, one needs to consider vertices along with strategies
in the epistemic relation. In this way, a player who finds out that a possible strategy is
discarded by another’s move at some vertex may then update his/her knowledge, allowing
him/her to later act accordingly.

5 A more convenient characterization of knowledge

Following the previous analysis of the syntactic proof of Aumann’s theorem, we propose
to revise our logic by providing a more realistic interpretation of Aumann’s theorem.

First, one can note from the syntactic proof in the Appendix that Aumann’s theorem
can be weakened through a reinterpretation of the epistemic operator. Indeed, every proof
step from Theorem 4.1 using AxiomT for theS5 knowledge operator[Ki] can still be
proved usingKD45 principles for the belief modal operator. Such an observation implies
that a simple notion of belief (which is not necessarily truthful) is sufficient to prove
Aumann’s theorem. The detailed proof of Theorem 4.1 in the Appendix shows that such

1See also [13] for a discussion.
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a weakening of the epistemic operator is made possible mainly by AxiomAware that
requires agents to have introspection on their own performing action (see specific proofs
of Lemmas A.1 and A.2 in the Appendix for details). In other words, agents always
believe without a doubt what they’ll actually perform.

Moreover, as already stated in the previous section, the epistemic operator still re-
mains unrealistic as it restricts agents to only consider static uncertainty over strategies
and therefore prevents them to learn through the game. Hence in order to be more realis-
tic, we here interpret the epistemic modal operator by means of an equivalence epistemic
relationEwi on strategies for every agenti ∈ Agt and vertexw ∈ W . In this case, agents’
uncertainty over strategies can change through time.

Given this change on the epistemic relation, the truth condition of the knowledge
operator then becomes:

• M,w, s |= [Ki]ϕ iff M,w, s′ |= ϕ for all s′ such thatsEwi s
′.

Considering this new epistemic relationEwi , the previous constraintC3 has to be re-
formulated as follows:

C3∗ if sEwi s
′ andQ(w) = i, thens(w) = s(w)′

Moreover, the following constraints need to be introduced in order to keep Axiom
Perm[Ki],AX as in Table 1:

C6 if sEvi s
′ andwRv thensEwi s

′

C7 if sEwi s
′ andwRv thensEvi s

′

According to constraintC6, agents will never forget their current uncertainty over
strategies in every reachable vertex. In other words,C6 simply means that agents will
always have a perfect recall of their past uncertainty throughout the game. According
to constraintC7, agents are always aware of their future uncertainty over strategies in
every reachable vertex. In other words,C7 means that agents will never be able to discard
strategies and therefore learn as they advance through time.

Let us provide the axiom corresponding to constraintC6:

[Ki]AXϕ→ AX[Ki]ϕ(Perm∗[Ki],AX)

Note that Axiom Perm∗[Ki],AX is simply a weaker version of the initial Axiom
Perm[Ki],AX from Table 1. It is clearly showed in the Appendix that constraintC6 along
with its corresponding AxiomPerm∗[Ki],AX are sufficient to the syntactic proof of Theo-
rem 4.1. Such an observation simply implies that Aumann’s theorem holds even though
agents are learning through the game (i.e. constraintC7, which is not necessary, can be
removed). However, this analysis also indicates that Aumann’s theorem requires agents
to have perfect recall through the game. In other words, for the theorem to be correct,
players should never forget anything as they advance in time.

One should note that such a constraint remains very strong and therefore not so real-
istic. The complete removal of constraintC6 and its corresponding AxiomPerm∗[Ki],AX in
our logic would however require a reinterpretation of the hypothesis of Aumann’s theo-
rem in a way that would take into account the evolution of the players’ uncertainty through
time. We choose not to pursue the analysis here and leave it for future work.

13
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6 Related works

We are not the first to provide a logical analysis of extensive games. Several logical
systems have been proposed which support reasoning about this class of games. We here
discuss some of these systems and compare them with our logicELEG.

In [21], van Benthem analyzes extensive games using different modal languages such
as propositional dynamic logic (PDL), PDL with converse, and a modal forcing language
which allows to express what a player can bring about in a given extensive game, no
matter what the other players do. Moreover, he also studies a variety of notions of game
equivalence based on the notion of bisimulation. Although van Benthem shows how PDL
extended with epistemic operators can represent extensive games with imperfect infor-
mation, he does not consider the concept of rationality which is a fundamental element
of Aumann’s epistemic analysis of extensive games. It is worth noting that, differently
from our logicELEG, standard PDL would fail to define such a concept, because it can
neither identify thecurrent strategy that is going to be played nor express what will be
true at every possible next vertex along the current strategy (which is done through the
operatorAX in ELEG). Moreover, our logicELEG shows that defining strategies ex-
plicitly in the object language — as done in PDL — is not necessary to express interesting
game-theoretic concepts such as rationality and backward induction.

Related to van Benthem’s work is Ramanujan & Simon’s work [17, 16] who have
recently proposed an elegant approach to extensive games based on dynamic logic. How-
ever, Ramanujan & Simon do not deal with epistemic aspects of extensive games, as their
logic does not have operators for representing epistemic states of players. The game logic
presented in [15] also lacks epistemic operators, therefore preventing a formalization of
the concept of epistemic rationality and a logical analysis of Aumann’s theorem. Bo-
nanno’s logical account of extensive games [8, 7] has the same limitation. He proposes
a variant of dynamic logic extended with temporal operators for (branching) future and
(linear) past and shows how his logic can be used to characterize the solution concept
of backward induction.2 But, like Ramanujan & Simon’s logic, Bonanno’s logic does
not have epistemic operators which are required to represent Aumann’s notion of ratio-
nality and the statement of Aumann’s theorem. The same remark also applies to some
recent work [20], which presents a similar logical approach to extensive games without
considering the epistemic aspects.

ATL-based approaches to extensive games presented in [28] and [25] come closer to
our current approach. For instance, in [28] a variant of ATL (Alternating-time temporal
logic) with explicit strategies called ATEL (Alternating-time logic with explicit strategies)
is proposed which allows to define solution concepts such as backward induction. The
interesting aspect of ATEL, compared to ATL, is that one can explicitly reason about
strategies in the object language. However, like Ramanujan & Simon and Bonanno, ATEL
misses epistemic operators necessary to define Aumann’s notion of rationality. Another
important difference between ATEL and our logicELEG is that in ATEL formulas are
interpreted with respect to states, whereas inELEG they are interpreted with respect to

2Bonanno’s logic has four kinds of operators for past and future describing: (1) what is going to be the
case at every future vertex of the game tree, (2) what has always been the case at every past vertex, (3) what
is going to be the case at everypredictedfuture vertex of the game tree, and (4) what has always been the
case at every past vertex at which today waspredicted.
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state/strategy pairs (in this sense,ELEG semantics is bidimensional). The latter is an
advantage because, differently from ATEL, it is possible inELEG to reason about what
will be true at every possible next vertex along thecurrentstrategy. We have shown that
this is fundamental for expressing in the object language Aumann’s notion of rationality
and the statement of Aumann’s theorem.

In [27], the authors propose an alternative way of proving Aumann’s theorem by using
a purely proof-theoretic approach based on type theory. Differently from Vestergaard et
al.’s approach, our approach based on modal logic has the advantage of combining a proof-
theoretic analysis of extensive games — which is what we have done in Section 4 — with
a model-theoretic semantics.

7 Conclusion

In this paper, we have introduced a logical framework that provides an alternative way of
representing extensive form games as compared to their usual specification in economics.

We showed that our logic is sufficiently general for our purpose to reason about dy-
namic epistemic games, as illustrated by the well known concepts of rationality and back-
ward induction. Although these concepts have been extensively studied in economics,
very few logical analyses have been proposed up to now. While several related works
discuss and present some logical approaches to epistemic reasoning in such extensive
games, none of these define a logic expressive enough to represent syntactically both the
epistemic concepts and the equilibrium solutions. By the formal syntactic proof of Au-
mann’s theorem, we demonstrate that our logic is capable to fill this gap and provide
further interesting information about them.

In addition to providing a complete axiomatization of our logic, we intend in future
work to investigate some extensions of the logicELEG. While the language of the logic
presented here is restricted to reason about the future only, the current semantics can be
extended to reason also about the past and every possible counterfactual situation. This
represents another research direction that we also consider to study further.
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A Appendix

We first provide the proof of the following Lemmas that are necessary to later prove
Theorem 4.1.

1. `ELEG Rati ↔ [Ki]Rati

2. `ELEG [CK
n+1
Agt ]AX

nAllRat→ [CKnAgt ]AX
nAllRat

3. `ELEG Depth
n+1 → AXDepthn

4. `ELEG GenPos
n+1 → AXGenPosn

5. `ELEG (Depth
n ∧ GenPosn ∧ ki ∧ hj)→ �(ki ↔ hj)

6. `ELEG (Depth
n ∧ GenPosn ∧ ki ∧ BI

n)→ �(BIn → ki)

To make the proofs of Lemmas and Theorem 4.1 more readable, we use the following
abbreviation:

AllRat
def
=
∧
i∈Agt Rati

A.1 Syntactic proof of lemma A.1

We prove the following:

Lemma A.1
`ELEG Rati ↔ [Ki]Rati

1. `ELEG end ∧ turni
→ �(end ∧ turni)
by AxiomsEndVert andTurnStr ;

2. `ELEG ¬end ∧ turni
→ �(¬end ∧ turni)
by AxiomsEndVert andTurnStr , and Axiom5 for �;

3. `ELEG end ∧ turni ∧ ki
→
∨
α∈Act αi ∧ ki

by AxiomsOneAct;
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4. `ELEG end ∧ turni ∧ ki
→ [Ki]ki
by 3, AxiomsEndAct, PerfectInfo, andAware, and AxiomK for [Ki];

5. `ELEG [Ki]Rati
→ [Ki]Rat

end
i ∧ [Ki]Rat

¬end
i

by the definitions ofRati and boolean principles;

6. `ELEG [Ki]Rat
end
i

→ ((end ∧ turni)→ [Ki]
∨
k∈I(ki ∧�(

∨
h∈I:h≤k hi))

by 1, the definitions ofRatendi , Axiom PerfectInfo, and AxiomsT andK for [Ki]
(or AxiomsD andK if [Ki] isKD45 modal operator), and Axiom5 for �;

7. `ELEG [Ki]Rat
end
i

→ ((end ∧ turni)→
∨
k′∈I k

′
i ∧ [Ki]

∨
k∈I(ki ∧�(

∨
h∈I:h≤k hi))

by 6 and AxiomCompletePref;

8. `ELEG [Ki]Rat
end
i

→ ((end ∧ turni)→
∨
k∈I ki ∧ [Ki](ki ∧�(

∨
h∈I:h≤k hi))

by 7 and 4, and AxiomSinglePref;

9. `ELEG [Ki]Rat
end
i

→ ((end ∧ turni)→
∨
k∈I ki ∧�(

∨
h∈I:h≤k hi)

by 8, Axiom PerfectInfo, Axiom T for [Ki] (or Axiom D if [Ki] is KD45 modal
operator), and Axiom5 for �;

10. `ELEG [Ki]Rat
end
i

→ Ratendi
by 9 and the definition ofRatendi ;

11. `ELEG [Ki]Rat
¬end
i

→ (¬end ∧ turni)→ [Ki]
∨
k∈I〈Ki〉(ki ∧ AX(

∨
h∈I:h≤k〈Ki〉hi))

by 2, the definitions ofRat¬endi , Axiom PerfectInfo, and AxiomsT andK for [Ki]
(or AxiomsD andK if [Ki] isKD45 modal operator), and Axiom5 for �;

12. `ELEG [Ki]Rat
¬end
i

→ (¬end ∧ turni)→
∨
k∈I〈Ki〉〈Ki〉(ki ∧ AX(

∨
h∈I:h≤k〈Ki〉hi))

by 11 and boolean principles;
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13. `ELEG [Ki]Rat
¬end
i

→ (¬end ∧ turni)→
∨
k∈I〈Ki〉(ki ∧ AX(

∨
h∈I:h≤k〈Ki〉hi))

by 12 and Axiom4 for [Ki];

14. `ELEG [Ki]Rat
¬end
i

→ Rat¬endi

by 13 and the definition ofRat¬endi ;

15. `ELEG [Ki]Rati
→ Ratendi ∧ Rat

¬end
i

by 5, 10, and 14;

16. `ELEG [Ki]Rati
→ Rati
by 15 and the definition ofRati;

17. `ELEG Rati
→ Ratendi ∧ Rat

¬end
i

by the definition ofRati;

18. `ELEG Rat
end
i

→ ((end ∧ turni)→
∨
k∈I(ki ∧�(

∨
h∈I:h≤k hi))

by the definition ofRatendi ;

19. `ELEG Rat
end
i

→ ((end ∧ turni)→
∨
k∈I [Ki](ki ∧�(

∨
h∈I:h≤k hi))

by 18 and 4, AxiomPerfectInfo, and Axiom4 for �;

20. `ELEG Rat
end
i

→ [Ki]((end ∧ turni)→
∨
k∈I(ki ∧�(

∨
h∈I:h≤k hi))

by 19 and 1, AxiomPerfectInfo, and AxiomK for [Ki];

21. `ELEG Rat
end
i

→ [Ki]Rat
end
i

by 20 and the definition ofRatendi ;

22. `ELEG Rat
¬end
i

→ ((¬end ∧ turni)→
∨
k∈I〈Ki〉(ki ∧ AX(

∨
h∈I:h≤k〈Ki〉hi)))

by the definition ofRat¬endi ;
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23. `ELEG Rat
¬end
i

→ ((¬end ∧ turni)→ [Ki]
∨
k∈I〈Ki〉(ki ∧ AX(

∨
h∈I:h≤k〈Ki〉hi)))

by 22, Axiom5 for [Ki], and boolean principles;

24. `ELEG Rat
¬end
i

→ [Ki]((¬end ∧ turni)→
∨
k∈I〈Ki〉(ki ∧ AX(

∨
h∈I:h≤k〈Ki〉hi)))

by 23 and 2, AxiomPerfectInfo, and AxiomK for [Ki];

25. `ELEG Rat
¬end
i

→ [Ki]Rat
¬end
i

by 24 and the definition ofRat¬endi ;

26. `ELEG Rati
→ [Ki]Rat

end
i ∧ [Ki]Rat

¬end
i

by 17, 21, and 25;

27. `ELEG Rati
→ [Ki]Rati
by 26 and boolean principles;

28. `ELEG Rati ↔ [Ki]Rati
by 16 and 27;

A.2 Syntactic proof of lemma A.2

We prove the following:

Lemma A.2
`ELEG [CK

n+1
Agt ]AX

nAllRat→ [CKnAgt ]AX
nAllRat

Basic case (n = 0):

1. `ELEG [CK
1
Agt ]AllRat

→ [EKAgt ]AllRat
by the definition of[CK1Agt ];

2. `ELEG [CK
1
Agt ]AllRat

→
∧
i∈Agt [Ki]Rati

by 1 and the definitions of[EK1Agt ] andAllRat;
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3. `ELEG [CK
1
Agt ]AllRat

→
∧
i∈Agt Rati

by 2 and Lemma A.1;

4. `ELEG [CK
1
Agt ]AllRat

→ AllRat
by 3 and the definition ofAllRat (i.e. [CK0Agt ]AllRat);

General case (forn > 0):

1. `ELEG [CK
n+1
Agt ]AX

nAllRat

→
∧
1≤k≤n+1[EK

k
Agt ]AX

nAllRat

by the definition of[CKn+1Agt ];

2. `ELEG [CK
n+1
Agt ]AX

nAllRat

→
∧
1≤k≤n[EK

k
Agt ]AX

nAllRat ∧ [EKn+1Agt ]AX
nAllRat

by 1 and boolean principles;

3. `ELEG [CK
n+1
Agt ]AX

nAllRat
→ [CKnAgt ]AX

nAllRat
by 2 and the definition of[CKnAgt ];

A.3 Syntactic proof of lemma A.3

We prove the following:

Lemma A.3
`ELEG Depth

n+1 → AXDepthn

1. `ELEG Depth
n+1

→ �X(�X)nend
by definition ofDepthn+1;

2. `ELEG Depth
n+1

→ AX(�X)nend
by 1, Axioms4 andT for � and AxiomNxtVert ;

3. `ELEG Depth
n+1

→ AXDepthn

by 2 and definition ofDepthn;
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A.4 Syntactic proof of lemma A.4

We prove the following:

Lemma A.4
`ELEG GenPos

n+1 → AXGenPosn

1. `ELEG GenPos
n+1

→
∧
0≤k≤n+1

∧
k∈I,i∈Agt ,ε∈Seqk AX

≤n+1�((ki ∧ 〈ε〉end)→ �(〈ε〉end↔ ki))
by definition ofGenPosn+1;

2. `ELEG GenPos
n+1

→ AX
∧
0≤k≤n+1

∧
k∈I,i∈Agt ,ε∈Seqk AX

≤n�((ki ∧ 〈ε〉end)→ �(〈ε〉end↔ ki))
by 1, Theorem̀ ELEG AX

n+1ϕ→ AXAX≤nϕ, and boolean principles;

3. `ELEG GenPos
n+1 → AXGenPosn

by 2 and the definition ofGenPosn;

A.5 Syntactic proof of lemma A.5

We prove the following inductively:

Lemma A.5

`ELEG (Depth
n ∧ GenPosn ∧ ki ∧ hj)→ �(ki ↔ hj)

Basic case n=0:

Here, we prove

`ELEG (end ∧ GenPos
0 ∧ ki ∧ hj)→ �(ki ↔ hj)

1. `ELEG end ∧ GenPos
0 ∧ ki ∧ hj

→
∨
α∈Act α ∧�((α ∧ end)↔ ki) ∧�((α ∧ end)↔ hj)

by definition ofGenPos0, Axiom OneAct, and AxiomT for �;

2. `ELEG end ∧ GenPos
0 ∧ ki ∧ hj

→ �(ki ↔ hj)
by 1 and boolean principles;

Inductive case:

Letn ∈ N and let us prove that if the theorem is true for allk ≤ n, then it is true forn+1.

1. `ELEG Depth
n+1 ∧ GenPosn+1 ∧ ki ∧ hj

→ ki ∧ hj ∧ X(ki ∧ hj ∧ Depth
n ∧ GenPosn)

by Axiom TimePref, and Lemmas A.3 and A.4;
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2. `ELEG Depth
n ∧ GenPosn ∧ ki ∧ hj

→ �(ki ↔ hj)
by induction;

3. `ELEG Depth
n+1 ∧ GenPosn+1 ∧ ki ∧ hj

→
∨
α∈Act α ∧ ki ∧ X�(ki ↔ hj)

by 1 and 2, and AxiomOneAct;

4. `ELEG Depth
n+1 ∧ GenPosn+1 ∧ ki ∧ hj

→
∨
α∈Act α ∧ ki ∧�(α→ X(ki ↔ hj))

by 3, and AxiomStrAct ;

5. `ELEG Depth
n+1 ∧ GenPosn+1 ∧ ki ∧ hj

→
∨
α∈Act ,ε∈Seqn α ∧ X〈ε〉end ∧ ki ∧�(α→ (ki ↔ hj))

by 4, AxiomTimePref and the definition ofDepthn+1;

6. `ELEG Depth
n+1 ∧ GenPosn+1 ∧ ki ∧ hj

→
∨
α∈Act ,ε∈Seqn �(ki ↔ (α ∧ X〈ε〉end)) ∧�(α→ (ki ↔ hj))

by 5 and the definition ofGenPosn+1;

7. `ELEG Depth
n+1 ∧ GenPosn+1 ∧ ki ∧ hj

→
∨
α∈Act �(ki → α) ∧�(α→ (ki ↔ hj))

by 6 and boolean principles;

8. `ELEG Depth
n+1 ∧ GenPosn+1 ∧ ki ∧ hj

→
∨
α∈Act �(α↔ (ki ↔ hj))

by 7, and boolean principles;

9. `ELEG Depth
n+1 ∧ GenPosn+1 ∧ ki ∧ hj

→ �(ki ↔ hj)
by 8, and boolean principles;

A.6 Syntactic proof of lemma A.6

We prove the following:

Lemma A.6

`ELEG (Depth
n ∧ GenPosn ∧ kj ∧ BI

n)→ �(BIn → kj)
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Basic case (n = 0):

Here, we prove:

`ELEG (end ∧ GenPos
0 ∧ kj ∧ BI

0)→ �(BI0 → kj)

1. `ELEG (end ∧ GenPos
0 ∧ kj ∧ BI

0)
→
∨
i∈Agt ,k′,k′′∈I turni ∧ k

′
i ∧ BI

0 ∧ ♦(turni ∧ k′′i ∧ BI
0)

by AxiomsTurnTaking , TurnStr andCompletePrefand AxiomT for �;

2. `ELEG (end ∧ GenPos
0 ∧ kj ∧ BI

0)
→
∨
i∈Agt ,k′,k′′∈I turni ∧ k

′
i ∧�(

∨
h∈I:h≤k′ hi) ∧ ♦(turni ∧ k

′′
i ∧�(

∨
h∈I:h≤k′′ hi))

by 1 and the definition ofBI0;

3. `ELEG (end ∧ GenPos
0 ∧ kj ∧ BI

0)
→
∨
i∈Agt ,k′,k′′∈I turni ∧ k

′
i ∧ ♦(turni ∧ k

′′
i ) ∧�(

∨
h∈I:h≤k′,h≤k′′ hi))

by 2, Axiom5 for �, and boolean principles;

4. `ELEG (end ∧ GenPos
0 ∧ kj ∧ BI

0)
→
∨
i∈Agt ,k′,k′′∈I turni ∧ k

′
i ∧
∨
h∈I:h≤k′,h≤k′′ hi ∧ ♦(turni ∧ k

′′
i ∧
∨
h∈I:h≤k′,h≤k′′ hi)

by 5, AxiomK andT for �, and boolean principles;

5. `ELEG (end ∧ GenPos
0 ∧ kj ∧ BI

0)
→
∨
i∈Agt ,k′,k′′∈I:k′≤k′′,k′′≤k′ turni ∧ k

′
i ∧ BI

0 ∧ ♦(turni ∧ k′′i ∧ BI
0)

by 7, AxiomSinglePref, and boolean principles;

6. `ELEG (end ∧ GenPos
0 ∧ kj ∧ BI

0)
→ (

∨
i∈Agt ,k′,k′′∈I:k′ 6=k′′ turni ∧ k

′
i ∧ BI

0 ∧ ♦(turni ∧ k′′i ∧ BI
0))→ ⊥

by 8, and boolean principles;

7. `ELEG (end ∧ GenPos
0 ∧ kj ∧ BI

0)
→
∨
i∈Agt ,k′∈I turni ∧ k

′
i ∧ BI

0 ∧�(BI0 → k′i)
by 9 and boolean principles;

8. `ELEG (end ∧ GenPos
0 ∧ kj ∧ BI

0)
→ �(BI0 → kj)
by 10 and Lemma A.5;

Inductive case:

Letn ∈ N and let us prove that if the theorem is true for allk ≤ n, then it is true forn+1.
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1. `ELEG Depth
n+1 ∧ GenPosn+1 ∧ kj ∧ BI

n+1

→
∨
i∈Agt ,k′,k′′∈I turni ∧ k

′
i ∧ BI

n+1 ∧ ♦(turni ∧ k′′i ∧ BI
n+1)

by AxiomsTurnTaking , TurnStr andCompletePrefand AxiomT for �;

2. `ELEG Depth
n+1 ∧ GenPosn+1 ∧ kj ∧ BI

n+1

→
∨
i∈Agt ,k′,k′′∈I turni ∧ k

′
i ∧ AX(BI

n ∧
∨
h∈I:h≤k′ hi) ∧ ♦(turni ∧ k

′′
i ∧ AX(BI

n ∧∨
h∈I:h≤k′′ hi))

by 1 and the definition ofBIn+1;

3. `ELEG Depth
n ∧ GenPosn ∧ kj ∧ BI

n

→ �(BIn → kj)
by induction;

4. `ELEG Depth
n+1 ∧ GenPosn+1 ∧ kj ∧ BI

n+1

→
∨
i∈Agt ,k′,k′′∈I turni∧k

′
i∧AX�(BI

n →
∨
h∈I:h≤k′ hi)∧♦(turni∧k

′′
i ∧AX�(BI

n →∨
h∈I:h≤k′′ hi))

by 2 and 3, Lemmas A.3 and A.4, AxiomPerm�,AX, and Axiom4 for �;

5. `ELEG Depth
n+1 ∧ GenPosn+1 ∧ kj ∧ BI

n+1

→
∨
i∈Agt ,k′,k′′∈I turni ∧ k

′
i ∧ AXBI

n ∧ ♦(turni ∧ k′′i ∧ AXBI
n) ∧ �AX(BIn →∨

h∈I:h≤k′,h≤k′′ hi))
by 4 and 2, AxiomPerm�,AX, Axiom 5 for �;

6. `ELEG Depth
n+1 ∧ GenPosn+1 ∧ kj ∧ BI

n+1

→
∨
i∈Agt ,k′,k′′∈I turni ∧ k

′
i ∧ AX(

∨
h∈I:h≤k′,h≤k′′ hi) ∧ ♦(turni ∧ k

′′
i ∧

AX(
∨
h∈I:h≤k′,h≤k′′ hi)))

by 5, AxiomT for �, and boolean principles;

7. `ELEG Depth
n+1 ∧ GenPosn+1 ∧ kj ∧ BI

n+1

→
∨
i∈Agt ,k′,k′′∈I turni ∧ k

′
i ∧
∨
h∈I:h≤k′,h≤k′′ hi ∧ ♦(turni ∧ k

′′
i ∧
∨
h∈I:h≤k′,h≤k′′ hi)

by 6, the definition ofDepthn+1, AxiomsTimeVert andTimePref;

8. `ELEG Depth
n+1 ∧ GenPosn+1 ∧ kj ∧ BI

n+1

→
∨
i∈Agt ,k′,k′′∈I:k′≤k′′,k′′≤k′ turni ∧ k

′
i ∧ BI

n+1 ∧ ♦(turni ∧ k′′i ∧ BI
n+1)

by 7, AxiomSinglePref, and boolean principles;

9. `ELEG Depth
n+1 ∧ GenPosn+1 ∧ kj ∧ BI

n+1

→ (
∨
i∈Agt ,k′,k′′∈I:k′ 6=k′′ turni ∧ k

′
i ∧ BI

n+1 ∧ ♦(turni ∧ k′′i ∧ BI
n+1))→ ⊥

by 8, and boolean principles;
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10. `ELEG Depth
n+1 ∧ GenPosn+1 ∧ kj ∧ BI

n+1

→
∨
i∈Agt ,k′∈I turni ∧ k

′
i ∧ BI

n+1 ∧�(BIn+1 → k′i)
by 9 and boolean principles;

11. `ELEG Depth
n+1 ∧ GenPosn+1 ∧ kj ∧ BI

n+1

→ �(BIn+1 → kj)
by 10 and Lemma A.5;

A.7 Syntactic proof of theorem 4.1

We demonstrate Aumann’s theorem, which states the following:

`ELEG ([CK
n
Agt ]AX

≤nAllRat ∧ Depthn ∧ GenPosn)→ BIn

It is straightforward to show through boolean principles that:

`ELEG [CK
n
Agt ]AX

≤nAllRat→
∧

0≤m≤n

[CKmAgt ]AX
mAllRat

We therefore prove the following inductively:

`ELEG (
∧

0≤m≤n

[CKmAgt ]AX
mAllRat ∧ Depthn ∧ GenPosn)→ BIn

Basic case n=0:

Here, we provè ELEG AllRat ∧ end ∧ GenPos
0 → BI0.

1. `ELEG (AllRat ∧ end ∧ GenPos
0)

→
∨
i∈Agt(turni ∧ Rat

end
i )

by the definition ofRati, and AxiomTurnTaking ;

2. `ELEG (AllRat ∧ end ∧ GenPos
0)

→
∨
i∈Agt(end ∧ turni ∧

∨
k∈I ki ∧�(

∨
h∈I:k≥h hi)

by 1, and the definition ofRatendi ;

3. `ELEG (AllRat ∧ end ∧ GenPos
0)→ BI0

by 2 and the definition ofBI0;

Inductive case:

Letn ∈ N and let us prove that if the theorem is true for allk ≤ n, then it is true forn+1.

1. `ELEG (
∧
0≤m≤n+1[CK

m
Agt ]AX

mAllRat ∧ Depthn+1 ∧ GenPosn+1)
→ (

∧
0≤m≤n[CK

m+1
Agt ]AXAX

mAllRat ∧ Depthn+1 ∧ GenPosn+1)
by Theorem̀ ELEG AX

n+1ϕ→ AXAXnϕ;
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2. `ELEG (
∧
0≤m≤n+1[CK

m
Agt ]AX

mAllRat ∧ Depthn+1 ∧ GenPosn+1)
→ AX(

∧
0≤m≤n[CK

m+1
Agt ]AX

mAllRat ∧ Depthn ∧ GenPosn)
by 1, Lemmas A.3 and A.4, and AxiomPerm[Ki],AX (or Perm∗[Ki],AX);

3. `ELEG (
∧
0≤m≤n+1[CK

m
Agt ]AX

mAllRat ∧ Depthn+1 ∧ GenPosn+1)
→ AX(

∧
0≤m≤n[CK

m
Agt ]AX

mAllRat ∧ Depthn ∧ GenPosn)
by 2 and Lemma A.2;

4. `ELEG (
∧
0≤m≤n+1[CK

m
Agt ]AX

mAllRat ∧ Depthn+1 ∧ GenPosn+1)
→ [EK1Agt ]AX(

∧
0≤m≤n[CK

m
Agt ]AX

mAllRat ∧ Depthn ∧ GenPosn)
by 1, Lemmas A.3 and A.4, and AxiomPerm[Ki],AX (or Perm∗[Ki],AX);

5. `ELEG (
∧
0≤m≤n[CK

m
Agt ]AX

mAllRat ∧ Depthn ∧ GenPosn)→ BIn

by induction;

6. `ELEG (
∧
0≤m≤n+1[CK

m
Agt ]AX

mAllRat ∧ Depthn+1 ∧ GenPosn+1)
→ AXBIn ∧ [EK1Agt ]AXBI

n

by 3, 4 and 5;

7. `ELEG GenPos
n → [Kj]GenPos

n

by AxiomsPerm�,AX andPerfectInfo, and Axiom4 for � and[Kj];

8. `ELEG Depth
n → [Kj]Depth

n

by Axiom PerfectInfo, and Axiom4 for �;

9. `ELEG (
∧
0≤m≤n+1[CK

m
Agt ]AX

mAllRat ∧ Depthn+1 ∧ GenPosn+1)
→ AX(

∨
k∈I ki ∧ BI

n ∧ [Kj]BI
n ∧ Depthn ∧ GenPosn) ∧ [Kj]AX(

∨
k∈I ki ∧ BI

n ∧
[Kj]BI

n ∧ Depthn ∧ GenPosn)
by 6, 7, and 8, Lemmas A.3 and A.4, AxiomsCompletePrefandPerm[Ki],AX (or
Perm∗[Ki],AX), and Axiom4 for [Ki];

10. `ELEG (
∧
0≤m≤n+1[CK

m
Agt ]AX

mAllRat ∧ Depthn+1 ∧ GenPosn+1)
→
∨
i∈Agt ,α∈Act turni ∧ αi ∧ [Ki]αi ∧ X

∨
k∈I �(BI

n → ki)
by 9, Lemma A.6, and AxiomsTurnTaking , TimeVert , OneAct, andAware;

11. `ELEG (
∧
0≤m≤n+1[CK

m
Agt ]AX

mAllRat ∧ Depthn+1 ∧ GenPosn+1)
→
∨
i∈Agt ,α∈Act turni ∧ αi ∧ [Ki]αi ∧

∨
k∈I �(αi → X(BI

n → ki))
by 10 and AxiomStrAct ;
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12. `ELEG (
∧
0≤m≤n+1[CK

m
Agt ]AX

mAllRat ∧ Depthn+1 ∧ GenPosn+1)
→
∨
i∈Agt turni ∧ XBI

n ∧ [Ki]XBI
n ∧

∨
k∈I X(BI

n → ki) ∧ [Ki]X(BI
n → ki)

by 11 and 6, AxiomsPerfectInfo andTimeVert , Axiom T for �, Axiom K for
[Ki], and boolean principles;

13. `ELEG (
∧
0≤m≤n+1[CK

m
Agt ]AX

mAllRat ∧ Depthn+1 ∧ GenPosn+1)
→
∨
i∈Agt ,k∈I turni ∧ Xki ∧ [Ki]Xki

by 12 and AxiomK for [Ki] andX;

14. `ELEG (
∧
0≤m≤n+1[CK

m
Agt ]AX

mAllRat ∧ Depthn+1 ∧ GenPosn+1)
→
∨
i∈Agt ,k∈I turni ∧ ki ∧ [Ki]ki

by 13 and AxiomTimePref;

15. `ELEG (
∧
0≤m≤n+1[CK

m
Agt ]AX

mAllRat ∧ Depthn+1 ∧ GenPosn+1)
→ [Kj]AX([Kj]BI

n ∧
∨
k∈I ki ∧�(BI

n → ki))
by 9 and Lemma A.6;

16. `ELEG (
∧
0≤m≤n+1[CK

m
Agt ]AX

mAllRat ∧ Depthn+1 ∧ GenPosn+1)
→ [Kj]AX(

∨
k∈I ki ∧ [Kj]ki)

by 15, AxiomPerfectInfo, and AxiomK for [Kj];

17. `ELEG (
∧
0≤m≤n+1[CK

m
Agt ]AX

mAllRat ∧ Depthn+1 ∧ GenPosn+1)
→
∨
i∈Agt(turni ∧ Rat

¬end
i ∧ [Ki]AX

∨
k∈I(ki ∧ [Ki]ki))

by 6 and 16, the definition ofRati, Axiom TurnTaking , and boolean principles;

18. `ELEG (
∧
0≤m≤n+1[CK

m
Agt ]AX

mAllRat ∧ Depthn+1 ∧ GenPosn+1)
→
∨
i∈Agt(turni ∧

∨
k∈I〈Ki〉(ki ∧ AX

∨
h∈I:h≤k〈Ki〉hi) ∧ [Ki]AX

∨
h∈I(hi ∧ [Ki]hi))

by 17, the definition ofRat¬endi ;

19. `ELEG (
∧
0≤m≤n+1[CK

m
Agt ]AX

mAllRat ∧ Depthn+1 ∧ GenPosn+1)
→
∨
i∈Agt(turni ∧

∨
k∈I〈Ki〉(ki ∧ AX

∨
h∈I:h≤k hi))

by 18, Axiom SinglePref, and AxiomT for [Ki] (or Axiom D if [Ki] is KD45
modal operator);

20. `ELEG (
∧
0≤m≤n+1[CK

m
Agt ]AX

mAllRat ∧ Depthn+1 ∧ GenPosn+1)
→
∨
i∈Agt(turni ∧

∨
k∈I〈Ki〉(ki ∧ AX�(BI

n →
∨
h∈I:h≤k hi)))

by 19 and 9, Lemma A.6, and AxiomT for [Ki] (or Axiom D if [Ki] is KD45
modal operator);
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21. `ELEG (
∧
0≤m≤n+1[CK

m
Agt ]AX

mAllRat ∧ Depthn+1 ∧ GenPosn+1)
→
∨
i∈Agt(turni ∧

∨
k∈I〈Ki〉ki ∧ AX(BI

n →
∨
h∈I:h≤k hi))

by 20, AxiomsPerm�,AX andPerfectInfo, and AxiomsT and5 for �;

22. `ELEG (
∧
0≤m≤n+1[CK

m
Agt ]AX

mAllRat ∧ Depthn+1 ∧ GenPosn+1)
→
∨
i∈Agt(turni ∧

∨
k∈I〈Ki〉ki ∧ AX(BI

n ∧
∨
h∈I:h≤k hi))

by 21 and 6, and AxiomK for AX;

23. `ELEG (
∧
0≤m≤n+1[CK

m
Agt ]AX

mAllRat ∧ Depthn+1 ∧ GenPosn+1)
→ ¬end ∧

∨
i∈Agt(turni ∧

∨
k∈I ki ∧ AX(

∨
h∈I:h≤k hi ∧ BI

n))

by 22 and 14, the definition ofDepthn+1, and boolean principles;

24. `ELEG (
∧
0≤m≤n+1[CK

m
Agt ]AX

mAllRat ∧ Depthn+1 ∧ GenPosn+1)
→ BIn+1

by 23 and the definition ofBIn+1;
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ABSTRACT

The aim of this work is to propose a logical framework for representing inter-
acting agents in the context of extensive form games. Because of the impor-
tance of the temporal dimension provided by such games, we create a modal
epistemic logic that allows to quantify over both strategies and vertices within
the game tree. The first part of the article is devoted to the logic itself with the
definition of its language and its semantics. In order to illustrate the use of this
logic, we define, in the following part, the concept of rationality in the case of
extensive form games and the backward induction concept, as they are defined
by Robert Aumann. Based on these definitions, we then provide a syntactic
proof of Aumann’s theorem that states the following: “for any non degenerate
game of perfect information, common knowledge of rationality implies the
backward induction solution”. We finally propose an in-depth formal analysis
of the hypotheses that are needed to prove such a theorem.


