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An Epistemic Logic of Extensive Games

Abstract

The aim of this work is to propose a logical framework for representing inter-
acting agents in the context of extensive form games. Because of the impor-
tance of the temporal dimension provided by such games, we create a modal
epistemic logic that allows to quantify over both strategies and vertices within
the game tree. The first part of the article is devoted to the logic itself with the
definition of its language and its semantics. In order to illustrate the use of this
logic, we define, in the following part, the concept of rationality in the case of
extensive form games and the backward induction concept, as they are defined
by Robert Aumann. Based on these definitions, we then provide a syntactic
proof of Aumann’s theorem that states the following: “for any non degenerate
game of perfect information, common knowledge of rationality implies the
backward induction solution”. We finally propose an in-depth formal analysis
of the hypotheses that are needed to prove such a theorem.

Keywords

epistemic logic, game theory, extensive form games, rationality, backward
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An Epistemic Logic of Extensive Games

1 Introduction

The aim of this article is to propose a modal logic framework that allows to reason about
epistemic games in extensive form. In this kind of games, players decide what to do
according to some general principles of rationality while being uncertain about several
aspects of the interaction such as other agents’ choices, other agents’ preferences, etc.
While epistemic games have been extensively studied in economics (in the so-called
interactive epistemology area, see e.g. [3, 2, 9, 5, 10, 12]) and while there have been few
modal logic analyses of epistemic games both in strategic form and in extensive form (see,
e.g., [22, 11, 9, 18, 26, 14, 23, 24, 4]), there existdagic with a correspondindormal
semanticgor extensive form games which has been showed to be sufficiently general:

e to express in the object language solution concepts like backward induction,

¢ to derive syntactically the epistemic and rationality conditions on which such solu-
tion concepts are based.

While it is shown in [23] and [24] that reasoning about actions only is sufficient to com-
pute solution concepts like the backward induction, such game logics can not express the
notion of substantive rationality as in Aumann’s definition, which fully considers the tem-
poral aspect of the concept of strategy. Indeed, unlike for strategic games where a strategy
can be simply reduced to a set of actions (see [14]), a strategy in an extensive form game
expresses not only the sequence of actions that will occur next, but also the actions that
would occur in every vertex of the game.In [11] a logic which enables to reason about the
epistemic aspects of extensive games is presented. This logic deals with several game-
theoretic concepts like the concepts of knowledge, rationality and backward induction.
Nevertheless, all these notions are atomic propositions of the logic manage@tyao
axiomatization. Moreover, the logical approach to extensive form games proposed in [11]
is purely syntactic: no model-theoretic analysis of extensive form games is proposed.

In this article, we try to fill this gap by proposing both a semantic and a syntactic analy-
sis of extensive form games in modal logic. In particular, we introduce a multi-modal logic
interpreted on a Kripke-style semantics which integrates the concepts of action, strategy,
knowledge and preference and which allows to reason about the properties of extensive
form games. In order to illustrate the expressive power of the logic, we define in its ob-
ject language the well known concepts of rationality and backward induction, as they are
defined according to economic theory. Based on these definitions, we then provide a syn-
tactic proof of Aumann’s theorem that states the following: “for any non degenerate game
of perfect information, common knowledge of rationality implies the backward induc-
tion solution” [1]. While there exist other logics that formalize similar theorems, none of
these is expressive enough to provide syntactic proofs that would emphasize the various
requirements assumed for the theorems. For example, while [4] presents a logic that can
correctly define the statement of Aumann’s theorem, no syntactic proof of it is provided,
and its language does not allow to verify whether the theorem holds when the epistemic
conditions are weakened. Indeed, if one realistically only considers common knowledge
to be bounded to some finite level, then the maximal depth of the game represents an
important variable to the proof of the theorem. By considering the temporal dimension of
such extensive games, we demonstrate its relevance to the proof of some weaker version
of the theorem.
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Our intention, throughout this paper, is not to show that a syntactic derivation of Au-
mann’s theorem is interesting in itself. Instead, we wish to demonstrate that this kind of
analysis is useful to identify specific assumptions about the relationship between players’
knowledge and the game structure that are needed in order to prove the theorem.

The rest of the article is organized as follows. Section 2 is devoted to presenting our
logic of action, strategy, knowledge and preference with the definition of its language
and its semantics. Then, in Section 3, we define the concept of rationality in the case
of extensive form games and the backward induction concept, as they are defined by
Robert Aumann. Section 4 provides a syntactic proof of Aumann’s well-known theorem
as well as a systematic analysis of the hypotheses that are needed to prove it. Finally, in
section 5, we propose some possible revisions to our logic, which lead to a more realistic
interpretation of Aumann’s theorem. Related works on the logic of extensive games are
discussed in Section 6.

The syntactic proof of Aumann’s theorem is given in the Appendix at the end of the
article.

2 A modal logic of actions, strategies, knowledge and
preferences

We present in this section the modal lo@i&.EG (Epistemic Logic of Extensive Games
integrating the concepts of action, strategy, knowledge and preference. This logic supports
reasoning about games in extensive form in which an agent might be uncertain about the
current choices of the other agents.

2.1 Syntax

The syntactic primitives of the logiELEG are the finite set of agentdgt, the set
of atomic propositionsAtm, a nonempty finite set of atomic action namést =
{ou, a2, ..., a4}, @ NnON-empty finite set of integers/ = {0,...,n}.

The languag€ of the logicELEG is given by the following BNF:

X == plalturn; | end |k;

o u= x|2e|eVe|Oe|AXe | [Kie | Xe

wherep ranges overdim, i ranges overdgt, o ranges overdct, andk ranges ovetrl.
Formulasy are called atomic formulas. The classical Boolean connectives, A, —
and«> are defined frony and- in the usual manner.

The formulaa has to be read “the actiamis performed”, whileturn; andk; are read
respectively “it is agent’s turn to play”, and “the current strategy will ensure a payoff
to agenti”. Finally, end is meant to stand for “the current vertex of the game is an end
vertex”.

The operatof] is used to quantify over strategies of the current gaime.has to be
read % holds for all strategies of the current extensive game”. The opekatos used to
guantify over next vertices of the current extensive gafy has to be ready is true
at every possible next vertex along the current strategy”.

4
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The formula[K;]¢ is read as usual “agentknows thaty is true”. X is the standard
temporal operator afiext The formulaXy has to be ready will be true next”.
Moreover, the following abbreviations are given:

Op  E Ome [AX% = g

EXp 2 —AX-p | AXMl ETAX(AXP)
df n df m

Kiyp = =Kilmg [ A0 = Agcpan AX™0

o def a Aturn; | EX"¢ def =AX" =

X0 ::ef 0 EXS"p £ SAXS—p

Xrtlp £ XXrg

Oy has to be ready holds for at least one strategy of the current extensive game”,
whereasEXp has to read ¢ is true in at least one possible next vertex along the cur-
rent strategy”.(K;)¢ has to be read “agenthinks thaty is possible”, whereas; has to

be read “agent performs the actiom”. X™ has to be read/ will be truen steps from
now”. OperatorsAX"y and AX="y respectively ready is true in every vertex that can
be reached in exactly step(s) from now, along the current strategy” andi$ true in
every vertex that can be reached withirstep(s) from now, along the current strategy”.
Finally the corresponding dual operatdX™y and EX="¢ can be interpreted as"is
true in at least one vertex that can be reached in exacsiiep(s) from now, along the
current strategy” and/ is true in at least one vertex that can be reached withétep(s)
from now, along the current strategy”.

As common in Propositional Dynamic Logic (PDL), we introduce an operator of se-
guential composition;”. We define the sefeq of action sequences as the smallest set
such that:a € Seq for anya € Act, and ife;,e; € Seq thenej;e, € Seq. Moreover,
we considerSeq” C Seq to be the set of action sequences of lengthThe fact that
a given action sequence will occur apdwill be true afterwards can be defined in the
object language by means of the following definition:

def /\ Xlag A X"

0<I<n

(ag; .- ;0

We use[EK ¢ as an abbreviation of\,_[K;|y, i.e. every agent ir€’ knows o (if
C = () then[EK ]y is equivalent toT). Then we define by inductiofEKE |y for every
natural numbek € N:
[EK2)e £

and for allk > 1,

[EKE]p E' [EK ) ([EKE )

Similarly, we define for all natural numbense N:

[CKep £y

and for alln > 1,
[CK2lp = A [EKE]p

1<k<n
[CKG ] expresse€’s mutual knowledge thap up ton iterations, i.e. everyone it
knowsp, everyone inC' knows that everyone i@ knowsp, and so on until leveh.

5
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2.2 Semantics

A strategic structure includes a set of vertices, a set of strategies, a successor function
associating vertices and strategies to vertices, a turn-taking function assigning agents to
vertices. The set of vertices includes end vertices.

Strategic structure A strategic structure is a tuplé = (V, Q, S, next, EndV') where:

e 1/ is a non-empty set of vertices;

Q is total functionQ : V' — Agt mapping vertices to agents;

S is a nonempty set of strategies &h and every strategy € S is a total function
s: V — Act mapping vertices to actions;

e nezxt is a partial functiomezt : V x S — V mapping vertices and strategies to
vertices such that:

C1l if s(w) = §'(w) thennezt(w, s) = next(w, s');
e EndV C V isthe set of end vertices such that:
C2 w € EndV ifand only if, nezt(w, s) is undefined for every.

Q(w) = i means that at vertex it is agent:'s turn to play, anthezt(w, s) = w' means
thatw'’ is the next vertex ofv with respect to the strategy We callindexa pair (w, s)
with w € V ands € S. We defineH = V' x S the set of all indices.

Note that the particular concept of a strategy in Definition 2.2 considers every vertex
of the game and is not restricted to a single player’s moves as usually done in game theory.
However, for every € S, a single playei’s strategys; can be defined as the restriction
of s to the vertices in which it is agens turn to play.

According to the Constraint C1, two strategies selecting the same action at a given
vertex lead to the same next vertex. According to the constraint C2, an end vertex is a
vertex which does not have a next vertex.

SuccessorR is a relation on vertices such that:
for everyw,v € V, wRv if and only if there iss € S such thatext(w, s) = v.

wRv means that vertex is a successor of vertex.

An extensive game model is nothing but a strategic structure supplemented with acces-
sibility relations for agents’ knowledge over strategies, agents’ preferences and a valuation
of atomic propositions.

Extensive game modelAn extensive game model is a tuple
M =(T,{&|ie€ Agt},{P; |i e Agt}, ) where:

e T'is a strategic structure;
e Every¢, is an equivalence relation ghsuch that:

C3 if s&s andQ(w) = i, thens(w) = '(w);

6
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e everyP; is a total functionP; : H — [ mapping every index to an integer such
that:

C4 if next(w, s) = w', thenP;(w, s) = k if and only if P;(vw', s) = k;
C5 if w € EndV ands(w) = §'(w) thenP;(w, s) = P;(w, §').

e 1 : Atm — 2 is a valuation function on indices.

s&;s’ means that agent cannot distinguish the strategy from the strategys’.
Pi(w,s) = k means that the strategyplayed at the vertexo will ensure a payofk
to agent.

Constraint C3 is the assumption that every agent knows his choice when it is his turn
to play [1, 5]. Constraint C4 correctly expresses the fact that in an extensive form game,
preferences are built over histories, where a history is nothing but a sequence of indices
(wo, ), ..., (wn,s),...such thatnezt(w;, s) = w;,; for every0 < i. According to the
Constraint C5, two strategies selecting the same action at an end vertex lead to the same
payoff for an agent. In other words, at an end vertex the payoff of an action is uniquely
determined.

Example In order to illustrate the use of our logELEG to model extensive form
games, let us consider a well known game in economics, namely the trust game [6]. The
binary version of the trust game (BTG) involves two players, the truster and the trustee,
playing sequentially in the following way: first the truster can choose between leaving the
game and divide the amount of $2 equally with the trustee (i.e. $1 for each) or let the
trustee play. In the latter case, the trustee can either divide the amditeqbially with

the truster (i.e. $3 for each) or keep the whole amount for himself §6efor himself

and$0 for the truster). Consider a version of this game, whose graphical representation is
depicted in Figure 1.

(3,3) (0,6)

Figure 1. Binary Trust Game (BTG)

In Figure 1, let us consider a playes, as the truster who plays at vertexand a
playeri,, as the trustee who plays at vertex At each leaf of the tree, payoffs take the
form (X,Y’), where player; gets$.X and playeri, gets$§Y. Moreover, actions named
C, and D, respectably stand for “playeéy cooperates” and “player, defects” (withx
being either 1 or 2).

Therefore, we supposdgt = {iy,iz}, Act = {C1,C2, Dy, Do}, V = {v,w},

EndV = {w}, andS = {s, s, 3, 84 };

Let us now represent the extensive game model corresponding to the binary trust game

in ELEG:
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next(v, s1) = w, next(v, sg) = w;

Eiy(51) = &, (s2) = {51, 52}; i, (53) = &y (84) = {53, 54
52'2(81) = 5i2(53) = {51,83}7512(82) = 51‘2(54) = {52, 54};
Piy(v,81) = Py (w, s1) = Py, (w, s3) = 3,

Pi, (v, 81) = Piy(w, s1) = Piy(w, s3) = 3,

Pil (U, 82) = Pil (w, 82) = Pil (w, 84) = 0,

Pi, (v,83) = Py, (v, 84) = Pi,(v,83) = Py, (v,84) = 1,

Pi, (v, 82) = Piy(w, $2) = Piy(w, s4) =6

This model represents the four possible strategies,, s; ands, of the BTG, each of
which includes the same two verticesindw where various actions occur:

s corresponds to stratedy’, Cs);

sy corresponds to strated¢’;, D

)
s corresponds to strated@y),, C»);
)

s4 corresponds to strated@y);, D,

Verticesv andw represent the nodes within the game where respectively playerd
playeri, have to play. The epistemic relatiofg and¢&;,, as they are defined in this
model, represent perfect uncertainty for each player over the strategies. One should note
however that these epistemic relations are only examples and could possibly be defined
differently without modifying the strategic structure of the game.

Truth conditions Truth of a formula in a model! at a given indeXw, s) is defined as
follows:

M,w,s =p iff (w,s) € n(p);

M,w,s E—p iff M w,s = ¢;

M,w,s E oV iff M,w,skEporMw,s = ;

M,w,s Fa iff s(w)=q;

M,w,s | turn; iff Q(w) =73;

M,w,s Eend iff we EndV,

M,w,s =k; iff Pi(w,s)=k;

M,w,s | X iff if next(w,s) is defined therV/, next(w, s), s = ¢;
M,w,s EOp iff Mw,s Epforalls €S,

M,w,s EAXp iff M,w' s = ¢forallw € V such thatvRw';
M,w,s = [Kilg iff M,w,s |= ¢ forall s’ such that€&;s'.

A formula ¢ is true in an extensive game model iff M, w, s = ¢ for every vertexw in
V and every strategyin S. ¢ is ELEG-valid (noted= ¢) iff ¢ is true in all extensive
game modelsy is ELEG-satisfiableiff —¢ is notELEG-valid.

8
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(CPL) All principles of classical propositional logic
(S%) All S5 principles for(]
(S5k.)) All S5 principles for everyK;]
(Kx) All K principles for X
(Kax) All K principles for AX
(Dety) Xo V X=p
(EndVert) end < OOX L
(Perfectinfo) Op — [Kilp
(Permg ax) OAXp < AXOep
(NxtVert) OXOgp < AXOgp
(Permg;),ax) [Ki]AXyp ¢ AX[K;]e
(TurnStr) turn; — Oturn;
(TimeVert) AXp — X
(Aware) turn; — (o — [Ki]e)
(CompletePref \/ ki

kel
(SinglePref k; — —h;if k #h
(OneAct) \V o

aEAct
(SingleAct) a—Bifa#p
(TurnTaking ) \/ tum;

i€ Agt
(SingleTurn) turn; — —turn; if ¢ # j
(TimePref) —end — (k; <> Xk;)
(EndAct) (end AaAk;) = O(a — k)
(StrAct) (a A XOp) = O(a — Xe)

Table 1: Some validities dELEG

2.3 Some validities

Table 1 provides an exhaustive listBLEG validities that will be sufficient to provide
in Section 4 a syntactic proof of Aumann’s theorem.

Let us prove the validitfPermy,; ax as an example. Assuné, w, s = [K;|AXy for
an arbitraryELEG model M. This is equivalent to say that/, w, s’ = AXe for all s’
such thats&;s” which, in turn, is equivalent to say thaf, w’, s’ = ¢ for all (v’, s’) such
thats&;s" andwRw'. The latter is equivalent to say thaf, w’, s = [K;]¢ for all w’ such
thatwRw’ which, in turn, is equivalent to say thaf, w, s = AX[K;]¢.

In the sequel, we will write-g.gq ¢ to mean thatp can be derived by means of the
list of principles given in Table 1. The study of a complete axiomatization of the logic
ELEG is postponed to future work.
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3 Backward induction and rationality

We here define two fundamental concepts in Aumann’s epistemic analysis of extensive
form games: the concept of backward induction and the concept of rationality.

As a matter of simplicity to later prove Aumann’s Theorem, we only provide in this
section simplified formal definitions that only apply to games of uniform depth. One
should note however that more general definitions of both backward induction and ratio-
nality can easily be expressediiLEG.

3.1 Backward induction

The notion of backward induction represents the process of reasoning backwards in time,
starting from each end vertex of the game in order to determine a sequence of optimal
actions. This method is generally used to compute the subgame perfect Nash equilibria in
sequential games. The backward induction (BI) solution in a game of defpt where
at mostn steps are necessary to reach an end vertex of the game) can be computed by
iterating the process times, as the Bl solution at one state relies on the BI solution at
every possible successive state. Therefore, the first step Bl solutien0j corresponds
to the maximization of preferences for the last player to play at each possible end vertex
of the game. The BI solution after (n > 0) steps corresponds to the maximization of
the current player’s preferences, considering only those that satisfy the Bl solution after
n — 1 steps at any possible next state.

The recursive formal definition IRLEG of the Bl solution after steps is as follows.
For the case = 0 we define:

B ='endA \/ (tumiAkiAO( \/ k)

i€ Agt,kel hel:h<k

For everyn > (0 we define:

BI" ©" —end A \/ (turn; A k; A AX(BI" 1 A \/ h;))

1€ Agt, kel hel:h<k

Therefore: M, w, s = BI" if and only if the current strategy, when starting from
vertexw, corresponds to a backward induction solution that can be computesteps.

3.2 Epistemic rationality
The following ELEG definition characterizes a notion of rationality that is supposed in
Aumann’s epistemic analysis of extensive form games:
Rate™ = (end A turn;) — \/(k; AO( \/ hy))
kel hel:h<k

Rat®"! means that an agents rational at an end vertex (i.e. at some end vertex of the
game) if and only ifi chooses an action that maximizes his individual payoff. Note that
in this case, rationality does not rely on any epistemic component.

10
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Rat;*™ €' (—end A turn;) — \/(Ki) (ki AAX( \/ (Ki)hy)

(A
kel hel:h<k

Rat;*™ means that an agenis rational at any intermediate vertex (any node that is
not an end vertex of the game) if and only iEhooses an action in such a way that what
he considers possible to happen afterwards is not strictly dominated by some alternative
future he would consider, had he chosen any other action. In other words, as every possible
next vertex corresponds to oneits possible actions; is rational if and only if each of
these vertices is not strictly dominated, according’soauncertainty, by the next actual
vertex (corresponding to the actual action choser) by

Rat; & Rat®" A Rat; ™
Note that introspection on rationality is expressed by the following valid formula of
ELEG (see the syntactic proof of Lemma A.1 in the Appendix for details):

Rati e [Kz] Rati

4 A syntactic proof of Aumann’s theorem

As already stated in the previous section, a fundamental assumption of Aumann’s theorem
is that the game is in “general position”, i.e. every history of the game is associated to a
unique preference value for every agent. This important notion can be defined in the logic
ELEG in the following way:

GenPos” %' A A AX="0((k; A (€)end) — C((e)end < k;))

0<h<nkel,ic Agt,ecSeq"

In our syntactic proof of Aumann’s theorem we only consider game structures with
uniform depth, that is, games whose end vertices have the same distance from a given
vertex.

The following constructiomepth™ means that “the current game has a uniform depth
of degreen from the current vertex”. In other words, no matter what actions will be
chosen in the future, an end vertex will be reached in exacsieps. This concept is thus
captured by the followin@®LEG formula:

Depth™ %' (OX)"end

This assumption, which is not stated in Aumann’s original theorem, is used here only
to simplify the formal proof. One should note however that any extensive game can be
represented by an extensive game with uniform depth (i.e. by adding additional non in-
formative actions and preferences).

According to Aumann’s theorem, the following constraints must be satisfied in order
for the current strategy to be a backward induction solution:

e the game is finite;

¢ the game has a uniform depth of degreieom the current vertex;

11
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e the game is in the general position;

e there is common knowledge up to level at leaghat at every future vertex (up to
depthn) all agents are rational.

Theorem 4.1 For everyn, m € N such thathn < m, we have:

FeLee ([CK7,JAX="( /\ Rat;) A Depth” A GenPos™) — BI"

1€Agt

Note that the proof of Theorem 4.1 only requires to prove the case where: (see
Lemma A.2 for details).

The proof of theorem 4.1 in the Appendix indicates several points that need to be
discussed. A strong assumption made in the theorem is about the type of rationality that
is used. In fact, Aumann’s theorem considers substantive rationality in the hypothesis,
which means that in every vertex of the game, the players will be rational. Such a defini-
tion is criticizable because it requires players to be even rational in vertices that will never
be reached given some expected strategy. According to Stalnakérdl®pre realistic
concept of rationality should be considered only on the vertices that are actually reached.
However, the latter definition does not guarantee the backward induction solution. Our
proof of the theorem suggests that this definition of substantive rationality is indeed im-
portant to the derivation of the equilibrium solution. To be even more precise, the use
of Axiom Permyj ax in the proof of Theorem 4.1 indicates that common knowledge of
substantive rationality must be true not only now but in every future vertex. Obviously
Axiom Permy, ax iS very strong as it assumes that players know at the beginning of the
game what they will do at any reachable state in the future where they have to play. This
simply means that players can not learn anything through the game play. This important
Axiom Permy, ax reflects the structure of the epistemic relation in our logic that only
considers strategies (i.e. agents have the same uncertainty regarding strategies no matter
which vertex they are in). In order to allow the players to act more realistically and learn
as they advance through the game, one needs to consider vertices along with strategies
in the epistemic relation. In this way, a player who finds out that a possible strategy is
discarded by another’s move at some vertex may then update his/her knowledge, allowing
him/her to later act accordingly.

5 A more convenient characterization of knowledge

Following the previous analysis of the syntactic proof of Aumann’s theorem, we propose
to revise our logic by providing a more realistic interpretation of Aumann’s theorem.

First, one can note from the syntactic proof in the Appendix that Aumann’s theorem
can be weakened through a reinterpretation of the epistemic operator. Indeed, every proof
step from Theorem 4.1 using Axioffi for the S5 knowledge operatofK;| can still be
proved usingk D45 principles for the belief modal operator. Such an observation implies
that a simple notion of belief (which is not necessarily truthful) is sufficient to prove
Aumann’s theorem. The detailed proof of Theorem 4.1 in the Appendix shows that such

1See also [13] for a discussion.

12
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a weakening of the epistemic operator is made possible mainly by Aware that
requires agents to have introspection on their own performing action (see specific proofs
of Lemmas A.1 and A.2 in the Appendix for details). In other words, agents always
believe without a doubt what they’ll actually perform.

Moreover, as already stated in the previous section, the epistemic operator still re-
mains unrealistic as it restricts agents to only consider static uncertainty over strategies
and therefore prevents them to learn through the game. Hence in order to be more realis-
tic, we here interpret the epistemic modal operator by means of an equivalence epistemic
relation&” on strategies for every agent Agt and vertexv € W. In this case, agents’
uncertainty over strategies can change through time.

Given this change on the epistemic relation, the truth condition of the knowledge
operator then becomes:

o M,w,s = [KiJp iff M,w,s" = ¢forall s’ such that&"s'.

Considering this new epistemic relatiéff, the previous constrair@3 has to be re-
formulated as follows:

C3 if s€s" andQ(w) = i, thens(w) = s(w)’

Moreover, the following constraints need to be introduced in order to keep Axiom
Permy,  ax as in Table 1:

C6 if s&€'s" andwRv thens&”s’
c7 if s€s" andwRwv thens&;s’

According to constrainC6, agents will never forget their current uncertainty over
strategies in every reachable vertex. In other wo@B simply means that agents will
always have a perfect recall of their past uncertainty throughout the game. According
to constraintC7, agents are always aware of their future uncertainty over strategies in
every reachable vertex. In other wor@s, means that agents will never be able to discard
strategies and therefore learn as they advance through time.

Let us provide the axiom corresponding to constraiéit

(Perm{m Ax) [K;]AX¢p — AX[K;]p

Note that Axiom Permi, ., is simply a weaker version of the initial Axiom
Permy, ax from Table 1. It is clearly showed in the Appendix that constré@ltalong
with its corresponding AxionPermy, , , are sufficient to the syntactic proof of Theo-
rem 4.1. Such an observation simply implies that Aumann’s theorem holds even though
agents are learning through the game (i.e. const@rtwhich is not necessary, can be
removed). However, this analysis also indicates that Aumann’s theorem requires agents
to have perfect recall through the game. In other words, for the theorem to be correct,
players should never forget anything as they advance in time.

One should note that such a constraint remains very strong and therefore not so real-
istic. The complete removal of constral@6 and its corresponding AxiofRermy, , in
our logic would however require a reinterpretation of the hypothesis of Aumann’s theo-
rem in a way that would take into account the evolution of the players’ uncertainty through
time. We choose not to pursue the analysis here and leave it for future work.
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6 Related works

We are not the first to provide a logical analysis of extensive games. Several logical
systems have been proposed which support reasoning about this class of games. We here
discuss some of these systems and compare them with ourBadix.

In [21], van Benthem analyzes extensive games using different modal languages such
as propositional dynamic logic (PDL), PDL with converse, and a modal forcing language
which allows to express what a player can bring about in a given extensive game, no
matter what the other players do. Moreover, he also studies a variety of notions of game
equivalence based on the notion of bisimulation. Although van Benthem shows how PDL
extended with epistemic operators can represent extensive games with imperfect infor-
mation, he does not consider the concept of rationality which is a fundamental element
of Aumann’s epistemic analysis of extensive games. It is worth noting that, differently
from our logicELEG, standard PDL would fail to define such a concept, because it can
neither identify thecurrent strategy that is going to be played nor express what will be
true at every possible next vertex along the current strategy (which is done through the
operatorAX in ELEG). Moreover, our logidELEG shows that defining strategies ex-
plicitly in the object language — as done in PDL — is not necessary to express interesting
game-theoretic concepts such as rationality and backward induction.

Related to van Benthem’s work is Ramanujan & Simon’s work [17, 16] who have
recently proposed an elegant approach to extensive games based on dynamic logic. How-
ever, Ramanujan & Simon do not deal with epistemic aspects of extensive games, as their
logic does not have operators for representing epistemic states of players. The game logic
presented in [15] also lacks epistemic operators, therefore preventing a formalization of
the concept of epistemic rationality and a logical analysis of Aumann’s theorem. Bo-
nanno’s logical account of extensive games [8, 7] has the same limitation. He proposes
a variant of dynamic logic extended with temporal operators for (branching) future and
(linear) past and shows how his logic can be used to characterize the solution concept
of backward inductios. But, like Ramanujan & Simon’s logic, Bonanno’s logic does
not have epistemic operators which are required to represent Aumann’s notion of ratio-
nality and the statement of Aumann’s theorem. The same remark also applies to some
recent work [20], which presents a similar logical approach to extensive games without
considering the epistemic aspects.

ATL-based approaches to extensive games presented in [28] and [25] come closer to
our current approach. For instance, in [28] a variant of ARlt€rnating-time temporal
logic) with explicit strategies called ATELA(ternating-time logic with explicit strategigs
is proposed which allows to define solution concepts such as backward induction. The
interesting aspect of ATEL, compared to ATL, is that one can explicitly reason about
strategies in the object language. However, like Ramanujan & Simon and Bonanno, ATEL
misses epistemic operators necessary to define Aumann’s notion of rationality. Another
important difference between ATEL and our lo@d.EG is that in ATEL formulas are
interpreted with respect to states, whereaRIfEG they are interpreted with respect to

2Bonanno’s logic has four kinds of operators for past and future describing: (1) what is going to be the
case at every future vertex of the game tree, (2) what has always been the case at every past vertex, (3) what
is going to be the case at evamedictedfuture vertex of the game tree, and (4) what has always been the
case at every past vertex at which today yweelicted
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state/strategy pairs (in this sendd.EG semantics is bidimensional). The latter is an
advantage because, differently from ATEL, it is possibl&IEG to reason about what
will be true at every possible next vertex along therentstrategy. We have shown that
this is fundamental for expressing in the object language Aumann’s notion of rationality
and the statement of Aumann’s theorem.

In [27], the authors propose an alternative way of proving Aumann’s theorem by using
a purely proof-theoretic approach based on type theory. Differently from Vestergaard et
al.'s approach, our approach based on modal logic has the advantage of combining a proof-
theoretic analysis of extensive games — which is what we have done in Section 4 — with
a model-theoretic semantics.

7 Conclusion

In this paper, we have introduced a logical framework that provides an alternative way of
representing extensive form games as compared to their usual specification in economics.

We showed that our logic is sufficiently general for our purpose to reason about dy-
namic epistemic games, as illustrated by the well known concepts of rationality and back-
ward induction. Although these concepts have been extensively studied in economics,
very few logical analyses have been proposed up to now. While several related works
discuss and present some logical approaches to epistemic reasoning in such extensive
games, none of these define a logic expressive enough to represent syntactically both the
epistemic concepts and the equilibrium solutions. By the formal syntactic proof of Au-
mann’s theorem, we demonstrate that our logic is capable to fill this gap and provide
further interesting information about them.

In addition to providing a complete axiomatization of our logic, we intend in future
work to investigate some extensions of the IoBIGEG. While the language of the logic
presented here is restricted to reason about the future only, the current semantics can be
extended to reason also about the past and every possible counterfactual situation. This
represents another research direction that we also consider to study further.
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A Appendix

We first provide the proof of the following Lemmas that are necessary to later prove
Theorem 4.1.

1. Feieg Rat; < [KiRat;

2. Ferea [CKH]AXAlRat — [CK?; ]JAX"AllRat

3. Ferec Depth™™ — AXDepth™

4. FeLec GenPos™™ — AXGenPos™

5. FeLiEc (Depth™ A GenPos™ A k; A h;) — O(k; <> h;)
6. FeLeG (Depth™ A GenPos™ A k; A BI") — O(BI" — k;)

To make the proofs of Lemmas and Theorem 4.1 more readable, we use the following
abbreviation:

def

AllRat £ A, Rat;

i€ Agt

A.1 Syntactic proof of lemma A.1

We prove the following:

LemmaA.l
l_ELEG Rati <> [Kl] Rati

1. FrLEg end A turn;
— O(end A turn;)
by AxiomsEndVert andTurnStr ;

2. l_ELEG —-end A turn;
— O(—end A turn;)
by AxiomsEndVert andTurnStr , and Axiom5 for [J;

3. l_ELEG end A turn; A kz

— VaEAct Q; N kl
by AxiomsOneAct;
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. l_ELEG end A turn; A kZ

— [Kilk;
by 3, AxiomsEndAct, Perfectinfo, andAware, and AxiomK for [K;];

. l_ELEG [Kz] Rati

— [Ki]Rat™ A [K,]Rat; ™
by the definitions oRat; and boolean principles;

. l_ELEG [Kl] Ratf”d

— ((end Aturn;) — [Ki] Vo p(ki A D(vhelzhgk h;))
by 1, the definitions oRat®™, Axiom Perfectinfo, and AxiomsT and K for [K;]
(or Axioms D and K if [K;] is K D45 modal operator), and Axiors for [J;

. l_ELEG [Kz] Rat?"d

— ((end Aturn;) = Ve ki A K] Vg (ki A D(th[;hgk hi))
by 6 and AxiomCompletePref

. l_ELEG [Kz] Ratf"d

— ((end Aturn;) = /i o ki A [K] (ki A D(th[:hgk hi))
by 7 and 4, and Axion®inglePref,

. l_ELEG [KZ] Ratf"d

— ((end Aturn;) — Vo ki A D(Vhelzhgk h;)
by 8, Axiom Perfectinfo, Axiom T for [K;] (or Axiom D if [K;] is K D45 modal
operator), and Axiond for [J;

l_ELEG [Ki]Ratfnd
— Rat$"™
by 9 and the definition oRat®";

Ferec [KiRat;®™

— (—\end N turni) — [Kl] Vk€I<Kl>(kl AN AX(VhEI:h§k<Ki>hi))

by 2, the definitions oRat;*™, Axiom Perfectinfo, and AxiomsT and K for [K;]
(or Axioms D and K if [K;] is K D45 modal operator), and Axiors for [J;

FeLec [Ki] Rat;end

— (mend A turn;) — Vo, (Ki) (Ki) (ki A AX(V e i (Ki) i)
by 11 and boolean principles;
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13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

FeLec [Ki|Rat;*™
— (—|end A turni) — \/kEI<Kl>(kl VAN AX(VhEI:h§k<Ki>hi>)
by 12 and Axiomd for [K,];

FeLec [Ki]Rat;*™
— Rat;*™
by 13 and the definition dRat;**";

FeLec [Ki]Rat;
— Rat®™" A Rat;*™
by 5, 10, and 14;

FeLec [Ki]Rat;
— Rati
by 15 and the definition dRat;;

FeLEG Rat;
— Rat®™ A Rat; "
by the definition ofRat;;

end
l_ELEG Rati

— ((end Aturn;) = Vo1 (ki A DV crne i)
by the definition ofRate";

end

l_ELEG Rati

— ((end Aturn;) =V, o/ [Ki] (ki AD(V e rnek hi)
by 18 and 4, AxionPerfectinfo, and Axiom4 for [J;

end

l_ELEG Rati

— [Ki]((end A turn;) — \/, (ks A D(\/hd:hSk h;))
by 19 and 1, AxionPerfectinfo, and AxiomK for [K;];

end
l_ELEG Rati

— [K;]Rats™
by 20 and the definition dRat®"?;

—end

l_ELEG Rati

> ((mend A turn;) = Vieey (Kid (ki A AX(V e i (Ki) i)
by the definition oRat;*";
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23. l_ELEG Ratﬁend

— ((mend Aturn;) — [Ki] Ve 1 (Ki) (ki A AX(V e ppaic (Kidhe)))
by 22, Axiom5 for [K;], and boolean principles;

24. l_ELEG Ratﬂend

— [KiJ((end Aturni) = Ve (Ko (ki A AX(V e ppai (Kidhi)))
by 23 and 2, AxionPerfectinfo, and AxiomK for [K;];

25. FgLeg Rat;®™

— [K;]Rat;*™
by 24 and the definition dRat;*";

26. l_ELEG Rati
— [K;JRat®™ A [K,]Rat; "™
by 17, 21, and 25;

27. l_ELEG Rati
— [K,]Rat,
by 26 and boolean principles;

28. l_ELEG Rati — [Kl] Rati
by 16 and 27;

A.2 Syntactic proof of lemma A.2

We prove the following:

LemmaA.2
FELEG [CKE}]AX”AIIRat — [CK’;gt]AX"AIIRat

Basic case® = 0):

1. FeLee [CK},]AlIRat
— [EK 1] AllRat
by the definition of CK}, ,J;

2. Feree [CK),]AlRat
— Nicag[KilRat;
by 1 and the definitions dEK, ,] andAllRat;
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3. l_ELEG [Ctht}A”Rat

— /\iGAgt Rati
by 2 and Lemma A.1;

4. FpLec [CK},JAlIRat
— AllIRat
by 3 and the definition oAlIRat (i.e. [CKY, ,]AllRat);

General case (forn > 0):

1. Feree [CKYJAX"AllRat
- /\1§k§n+1[EKﬁgt]AX"A|IRat
by the definition of CK’}//'];

2. Feree [CKYHJAX AllRat
— Ar<pen EKG, JAX"AlIRat A [EKHJAX"AlIRat
by 1 and boolean principles;

3. FeLee [CKY 1 ]AX" AllRat
— [CK';,,JAX"AllRat
by 2 and the definition ofCK’; ,];

A.3 Syntactic proof of lemma A.3

We prove the following:

Lemma A.3
FeLec Depth™™ — AXDepth™

1. l_ELEG Depth”“

— OX(EX)"end
by definition ofDepth”**;

2. l_ELEG Depth"“

— AX(OX)™end
by 1, Axioms4 and7 for [J and AxiomNXxtVert;

3. l_ELEG DepthnH

— AXDepth™
by 2 and definition oDepth™;
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A.4 Syntactic proof of lemma A.4
We prove the following:

LemmaA.4
FeLee GenPos™™ — AXGenPos™

1. l_ELEG Gen POSn—"_1

- /\OSkSH—H /\kEI,ieAgt,eESeqk AXSN-HD((ki A <€>end) — D(<6>end « kl))
by definition ofGenPos™"*;

2. FerLeg GenPos™t!

— AX /\0§k§n+l /\kEI,iEAgt,eESeqk AXSRD((kl A <e)end) - D(<€>end A kl))
by 1, Theorentgrec AX" o — AXAX="¢, and boolean principles;

3. FeLec GenPos™™! — AXGenPos™
by 2 and the definition oGenPos”;

A.5 Syntactic proof of lemma A.5
We prove the following inductively:

Lemma A.5

FeLec (Depth™ A GenPos™ A k; A h;) — O(k; <+ h;)

Basic case n=0:
Here, we prove
FeELEG (end A GenPosO Ak; A h]) — D(kz — h])

1. l_ELEG end A GenPosO VAN kl VAN hj
= Vaeaee @ ANO((a Aend) < ki) AO((aw Aend) < hy)
by definition ofGenPos’, Axiom OneAct, and AxiomT for [J;

2. Ferea end A GenPos® A k; A h;
by 1 and boolean principles;
Inductive case:

Letn € N and let us prove that if the theorem is true forfakl n, then it is true fom + 1.

1. FeLec Depth™™ A GenPos™™! A k; A h;
— k; A hj AX(k; A h; A Depth™ A GenPos™)
by Axiom TimePref, and Lemmas A.3 and A.4;
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2. l_ELEG Depth” A GenPos™ A kl VAN hj
by induction;

3. Ferec Depth™™' A GenPos™"! A k; A h;
— \/aeAct a A\ kl A XD(kl < h])
by 1 and 2, and Axion©neAct;

4. Frreg Depth”*! A GenPos™! A k; A h;
— \/aeAct a A kl A D(Of — X(kl g hj))
by 3, and AxiomStrAct;

5. Ferec Depth™™' A GenPos™"! A k; A h;
— VaeAct,eESeq” a A X{e)end A k; ADO(a — (k; <> hj))
by 4, Axiom TimePref and the definition oDepth™";

6. Ferec Depth™™ A GenPos™™ A k; A h;
= Vet ceseg D(ki <> (a A X(e)end)) A D(a — (ki <> hy))
by 5 and the definition oGenPos™"*;

7. l_ELEG Depth”“ VAN GenPoan A kl A hj
= Vaean ki = a) AO(a = (k; < hy))
by 6 and boolean principles;

8. Ferec Depth™™' A GenPos™"! A k; A h;
— \/aeAct D(a « (kl A h]))
by 7, and boolean principles;

9. FeLeg Depth™' A GenPos™! A k; A h;
by 8, and boolean principles;

A.6 Syntactic proof of lemma A.6

We prove the following:
Lemma A.6
FeLec (Depth™ A GenPos™ A k; A BI") — O(BI" — k)
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Basic case® = 0):

Here, we prove:

FeLeg (end A GenPos’ A k; A BIO) — D(BI0 — k;)

1. FeLec (end A GenPos® A k; A BI?)
= Vg wrer tum; A ki ABI® A O(turn; A ki A BI°)
by AxiomsTurnTaking , TurnStr andCompletePrefand AxiomT for [J;

2. FeLEG (end A GenPos® A k; A BIO)

= Vieagri wrer turmi Ak A DNV crpeie i) A O(turn Ak A DV crp<ier hi))
by 1 and the definition oBI’;

3. Ferec (end A GenPos® A k; A BI?)

= Vicagry wrer turns A ki A O(turn; AkY) A DV pern<ie neier hi))
by 2, Axiom5 for [J, and boolean principles;

4. Ferrc (end A GenPos’ A k; A BI?)

- VieAg_t,k’,k”eI turn; A ki A Vhe]:hgk',hgk" h; /\ Q(turni A kYN Vhelzhgk',hgk" h:)
by 5, Axiom K andT for [, and boolean principles;

5. Ferec (end A GenPos® A k; A BI?)
= Vieagti ke ri<ier <k turmg A kg ABIY A O(turn; A kY A BI?)
by 7, Axiom SinglePref and boolean principles;

6. FerLec (end A GenPos® A k; A BI?)
= (Vieagti ket turmi A ki ABI A O(turn; Ak ABI%)) — L
by 8, and boolean principles;

7. Ferec (end A GenPos® A k; A BI?)
— Vieagwer turn; A ki ABIC ATI(BI — k)
by 9 and boolean principles;

8. Ferec (end A GenPos’ A k; A BI?)
— O(BI° = k)
by 10 and Lemma A.5;

Inductive case:

Letn € N and let us prove that if the theorem is true forfakl n, then it is true fom + 1.
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1. l_ELEG Depth”“ A\ GenPos"H A k]’ N B|n+1
— \/ieA%k/’k//E[ turn; A K, A BI"TL A O(turn; A kI A BI”H)
by AxiomsTurnTaking , TurnStr andCompletePrefand AxiomT for [J;

2. FrLeg Depth”™' A GenPos™ ™' A k; A BI™*!
= Vieaguw wrer turni Ak A AXBI™ AV, e hi) A O(turng A K A AX(BI™ A

Vhe]:hgk“ hi))
by 1 and the definition oBI"*;

3. FeLeg Depth™ A GenPos™ A k; A BI"
— O(BI" — k;)
by induction;

4, l_ELEG Depth”“ A GenPos"H A\ k]’ A B|n+1
— \/z‘eAgt,k’,k"eI turn; Ak, AAXO(BI™ — Vhelzhgk’ h;) AO(turn; Ak AAXDO(BI" —

Vhe[:hgk” h,))
by 2 and 3, Lemmas A.3 and A.4, AxioRermg ax, and Axiom4 for [J;

5. Ferec Depth™™! A GenPos™*! A k; A BI™
= Vieagruosrer turng A kA AXBI® A O(turn; A KY A AXBI™) A OAX(BI* —

Vhe[:hgk',hgk” h?)) )
by 4 and 2, AxiomPermg ax, Axiom 5 for [J;

6. FerLec Depth™™' A GenPos™™ A k; A BI™™
— \/ieAgtyk,,k,,E]turni A kA AX(VheI:hgk/,hgk” h;) A O(turn; A K A

AX(\/hEI:hgk’,hgk” hl)))
by 5, AxiomT for [, and boolean principles;

7. Ferec Depth™™' A GenPos™™ A k; A BI™™

— VieAgt,k’,k”eI turn; A ki A Vhelzhgk’,hgk” hi A Q(turn; A ki A \/helzhgk’,hgk” h;)
by 6, the definition oDepth™™, Axioms TimeVert andTimePref;

8. Ferec Depth™™' A GenPos™*! A k; A BI™
_> \/iEAgt k/ k”EIZk/<k// k//<k/ tUrnz /\ k’/L /\ BITL+1 /\ <>(turnl /\ k;/ /\ BI’I’L+1)
by 7, Axiom SinglePref and boolean principles;

9. FeLeg Depth™™' A GenPos™* A k; A BI"t!
= (Vi gt e riepier EUM; AKGA BI"™ A O(turn; AKY ABI")) — L
by 8, and boolean principles;
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10. l_ELEG Depth”“ A\ GenPos"H A k]’ N B|n+1
= Vieager turns Akp ABIMFEATI(BIM — k)
by 9 and boolean principles;

11. FeLec Depth™*! A GenPos™™ A k; A BI™t!
— OBI"™ — k)
by 10 and Lemma A.5;
A.7 Syntactic proof of theorem 4.1
We demonstrate Aumann’s theorem, which states the following:

FeLee ([CK,JAX="AlIRat A Depth™ A GenPos™) — BI"

It is straightforward to show through boolean principles that:

FeLee [CKl,JAX="AlRat —  /\ [CK7, JAX™AlIRat

0<m<n

We therefore prove the following inductively:

FeLEG ( /\ [CK},:/AX"" AlIRat A Depth™ A GenPos™) — BI"
0<m<n
Basic case n=0:

Here, we prové-grec AllRat A end A GenPos’ — BI°.

1. Ferec (AlIRat A end A GenPos®)
= Vg (turn; A Rat®")
by the definition ofRat;, and AxiomTurnTaking ;

2. Ferec (AlIRat A end A GenPos?)

= Vieag(end Aturn; AV ki AD(V e paen hi)
by 1, and the definition dRat®"?;

3. FeLec (AlIRat A end A GenPos’) — BI°
by 2 and the definition oBI°;

Inductive case:

Letn € N and let us prove that if the theorem is true forfakl n, then it is true fom + 1.

1. FeLeG (Agcment1|CK,JAX ™ AlIRat A Depth™* A GenPos™"*)
= (No<men CK TAXAX ™ AlIRat A Depth™™! A GenPos™ )
by Theorem-gree AX" o — AXAX™¢;
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2. FELEG (Ao<meny1[CKE,JAX™AlIRat A Depth™*! A GenPos™ ')
— AX(Ag<men CK: JAX™AlIRat A Depth™ A GenPos™)
by 1, Lemmas A.3 and A.4, and AxioRermy, ax (or Permy , »y);

3. FELEG (Ao<mens1[CK,JAX™AllRat A Depth™** A GenPos™*!)
— AX(/\O<;<;[CK7th]AXmAIIRat A Depth™ A GenPos™)
by 2 and Lemma A.2;

4. FeLEG (Ao<mens1[CK,JAX™AlIRat A Depth™** A GenPos™*™)
— [Etht]AX(/\0<m<n[CKngt]AXmAIIRat A Depth™ A GenPos")
by 1, Lemmas A.3 and A.4, and AxioRerm,j ax (or Permi »y);

5. FELEG (Ag<men CKliy|AXTAlIRat A Depth™ A GenPos™) — BI"
by induction;

6. FELEG (Ag<mens1|CKA,]AXTAlIRat A Depth™! A GenPos™*)
— AXBI™ A [EK},,]JAXBI"
by 3,4 and 5;

7. FELEG GenPos™ — [K;]GenPos"
by AxiomsPermg ax andPerfectinfo, and Axiom4 for O and[K;];

8. l_ELEG Depth” — [Kj]Depth"
by Axiom Perfectinfo, and Axiom4 for [J;

9. FeLee (Ag<mens1[CKiJAX™AlIRat A Depth™** A GenPos™ ")
— AX(V,er ki A BI" A [K;]BI™ A Depth™ A GenPos™) A [K;JAX(V,c; ki A BI" A
[K;]BI" A Depth™ A GenPos™)
by 6, 7, and 8, Lemmas A.3 and A.4, Axior@®mpletePrefand Permy ax (or
Permy 1 ax), and Axiom4 for [K;];

10. Feree (Ag<menst[CK,JAX™AlIRat A Depth™** A GenPos™ ™)
- ViGAgt,aGAct turn; A a; A [Kl}al A X Vke[ D(Bln — kz)
by 9, Lemma A.6, and Axiom$urnTaking , TimeVert, OneAct, andAware;

11. Feree (Agcmens1[CK,JAX™AlIRat A Depth™* A GenPos™ ")
- VieAgt,aeAct turn; A a; A [KZ}O‘Z A Vke[ D(Q{z — X(Bln — kz))
by 10 and AxiomStrAct;
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FELEG (Ag<mens1[CKliy/AX™AlIRat A Depth™ ™ A GenPos™*1)

= Vi turng A XBI A [KIXBI" A Vo X(BI" = ki) A [KIX(BI" — k;)

by 11 and 6, Axiomserfectinfo and TimeVert, Axiom 7" for 1, Axiom K for
[K;], and boolean principles;

FELEG (Ag<mensi[CK, JAX™AlIRat A Depth™*" A GenPos™ ")
- \/z‘eAgt,kel turn; A Xk; A [K;]Xk;
by 12 and AxiomK for [K;] andX;

FELEG (Ag<men1[CK,JAXTAlIRat A Depth™ ! A GenPos™*1)
= Vieagiker turni A ki A [Kilk;
by 13 and AxiomTimePref;

FELEG (Ag<mens1[CK T, JAX™AlIRat A Depth™*!' A GenPos™ ")
— [KAX([K;]BI" A Vo ki AD(BI™ — ky))
by 9 and Lemma A.6;

FELEG (Ao<ment1[CK, JAXTAlIRat A Depth™ ! A GenPos™ )
= [KGIAX (Ve ki A [K;ki)
by 15, AxiomPerfectinfo, and AxiomXK for [K;];

FELEG (Ag<men1[CK,JAXAlIRat A Depth™! A GenPos™*1)
— Vieage (turn; A Rat; " A [KJAXV, (ks A [Kilks))
by 6 and 16, the definition dfat;, Axiom TurnTaking , and boolean principles;

FeLEG (Aocmeni[CK,JAX™AlRat A Depth™*! A GenPos™")
— vigAgt(turni AV ier(Ki) (ki AAX NV ppai (K hi) A TKIAX N, ¢ (hi A [Kihy))
by 17, the definition oRat;*";

FELEG (Ao<men1[CK, JAXTAlIRat A Depth™ ! A GenPos™ 1)

- VieAgt(turni A Vier(Ki) (ki A AX Ve rn<i i)

by 18, Axiom SinglePref, and AxiomT for [K;] (or Axiom D if [K;] is K D45
modal operator);

FELEG (Ag<men1[CK, JAXTAlIRat A Depth™ ! A GenPos™ 1)

— VieAgt(turni A Vier(Ki) (ki AAXD(BI™ — Vhe];hgk hi)))
by 19 and 9, Lemma A.6, and AxioM for [K;] (or Axiom D if [K;] is K D45
modal operator);
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21. FeLec (Aocmens1[CKA,JAX™AlIRat A Depth™ ! A GenPos™ )

- \/iGAgt(turni AV er(Kiyki A AX(BI" — Vhe[;hgk hi))
by 20, AxiomsPermg ax andPerfectinfo, and AxiomsI" and5 for [J;

22. FeLEG (Ao<mens1[CK,JAX™AlIRat A Depth™** A GenPos™*™)

- VieAgt(turni A VkeI(Ki>ki A AX(BI™ A Vhe[;hgk hi))
by 21 and 6, and Axion#& for AX;

23. FeLEG (Ao<mens1[CKA,JAX™AlIRat A Depth™** A GenPos™ ')
— —end A Vi 40 (turni AV ki AAX(Verne hi A BIY))
by 22 and 14, the definition depth™™, and boolean principles;

24. FeLEG (Ag<mens1[CKGJAX™AlIRat A Depth™™! A GenPos™ ™)
N Bln—i—l
by 23 and the definition dBI"**;
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ABSTRACT

The aim of this work is to propose a logical framework for representing inter-
acting agents in the context of extensive form games. Because of the impor-
tance of the temporal dimension provided by such games, we create a modal
epistemic logic that allows to quantify over both strategies and vertices within
the game tree. The first part of the article is devoted to the logic itself with the
definition of its language and its semantics. In order to illustrate the use of this
logic, we define, in the following part, the concept of rationality in the case of
extensive form games and the backward induction concept, as they are defined
by Robert Aumann. Based on these definitions, we then provide a syntactic
proof of Aumann’s theorem that states the following: “for any non degenerate
game of perfect information, common knowledge of rationality implies the
backward induction solution”. We finally propose an in-depth formal analysis
of the hypotheses that are needed to prove such a theorem.
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