S Baghernezhad-Tabasi

L Druette

F Jouanot

C Meurger

M C Rousset

IOPE: Interactive Ontology Population and Enrichment Guided by Ontological Constraints

Keywords: Ontology Engineering, Knowledge Acquisition, Automation Form Generation, Simulation-based Training in Medecine

In this paper, we focus on the construction of specialized ontologies that capture skills of experienced experts in a particular domain with the goal to share them with a larger community of trainees or less experienced experts in the domain. Our main contribution is the automatic construction of a Graphical User Interface (GUI), named IOPE, built from the ontological constraints of an input ontology, as the support of the controlled update process of the considered ontology. The resulting GUI functions as a guidance for the experts with no knowledge of OWL/RDFS, which enables them to easily explore and update their ontologies. We illustrate the functionality of IOPE on an ontology for simulation-based medical workshops called ONTOSAMSEI. In an extensive set of experiments, we discuss the effectiveness and efficiency of our proposed approach in a specialized medical domain.

Introduction

Ontologies are the backbone of many information systems that require access to structured knowledge. By their very nature, real world ontologies are dynamic artifacts that evolve both in their structure (the data model) and their content (instances). Keeping them up-to-date is a critical operation for most applications which rely on semantic Web technologies. Ontology updates encompass both enrichment and population. Ontology enrichment is the task of extending an existing data model of an ontology with additional concepts and semantic relations, while ontology population is the task of adding new instances of concepts to the ontology, using domain documentations. Ontology updates are typically performed in an exploratory and manual fashion, as the non-documented knowledge of the domain expert is required to be taken into consideration. However, these manual updates put burden on the experts and render the whole ontological ecosystem inefficient. In this paper, we advocate for an alternative and more effective approach, and propose to handle updates automatically through a few interactions with the expert, using a Graphical User Interface (GUI). The challenges associated to interaction-based automatic updates are two-fold:

• While ontologies are typically represented in the form of graphs, it is inherently difficult and counterintuitive to provide a graphical graph-based representation of ontologies for the consumption of experts. While there exist several methods to visualize a graph structure [START_REF] Henry | Nodetrix: a hybrid visualization of social networks[END_REF][START_REF] Fang | C-Explorer: Browsing communities in large graphs[END_REF], the outcome is often hard to digest by domain experts.

• It is unclear how experts should perform ontology updates through the interactions, without the prior knowledge of the formal syntax and the semantics of ontology languages.

In this paper, we propose IOPE (Interactive Ontology Population and Enrichment), a framework for the automatic construction of a Graphical User Interface (GUI) consisting of pre-filled Web pages. We leverage Web pages as a natural interaction means to tackle the challenge of counterintuitive ontology representations. IOPE generates the Web pages from ontological constraints, which support the controlled update process of a given ontology, and prefills the generated pages. While IOPE is generic and can be applied to ontologies from a variety of domains, we employ an ontology called ONTOSAMSEI [START_REF] Baghernezhad-Tabasi | OntoSAMSEI: Interactive ontology engineering for supporting simulation-based training in medicine[END_REF] as a use case, whose content helps the domain experts design teaching units for learning skills in simulation-based Medicine. ONTOSAMSEI is a hierarchy of classes and properties enriched by ontological constraints on those classes and properties, that convey the constraints that will have to be fulfilled by their future sub-classes, sub-properties or instances. ONTOSAMSEI contains 30 different types of simulation sessions formalized with properties such as the target audience, the aimed objectives, the prerequisites, the resources required (human, consumable, simulator, material), as well as the evaluation mode of prerequisites and objectives, to name a few. All these sessions have been defined with the help of many formal documentations, expert and teacher interviews, and analyses on all information from a teaching ingineer. ONTOSAMSEI is availabe in Perscido dataset storage: https:// perscido. univ-grenoble-alpes.fr/ datasets/ DS352. In this paper, we show how to exploit these ontological constraints as a source of guidance for (possibly less experienced) educators willing to design their own simulation sessions, hence addressing the challenge of expert noviceship. ONTOSAMSEI's IOPE GUI is accessible via the following link: http:// iope.tabasi.info.

The paper is organized as follows. Section 2 describes the formal background of the ontologies that we consider. Section 3 describes our methodology for the automatic construction of a GUI from an input ontology, and its usage for guiding its update (population and enrichment). Section 4 summarizes the evaluation conducted to assess the added value of the GUI for ontology updating. Section 5 is dedicated to related work, and Section 6 concludes the paper.

Formal Background

An ontology is a shared formalization of a domain of interest based on a structured vocabulary made of classes, properties and instances. Ontological constraints are declared on classes and properties to constrain their formal semantics to fit with their actual meaning in the domain of application. Then, factual statements can be added to describe specific entities as instances of classes with specific values for some properties. The ontological constraints are defined in RDFS 1 and OWL 2 , and described as RDF graphs.

RDF Format

Ontological Constraints

The ontological constraints that we consider are RDFS constraints and some OWL constraints (displayed in Table 1). These constraints form the main core for the most of domain ontologies and are sufficient for our application domains. Adding new ontological constraints will be studied in future works. Figure 1 displays part of the specialization hierarchies of properties and classes resulting from RDFS ontological constraints declared in ONTOSAMSEI.

Figure 2 shows the RDF graphs associated to two constraints declared in the ontology on the property 1 Resource Description Framework Schema (RDFS): https://www.w3. org/TR/rdf-schema 2 Web Ontology Language (OWL): https://www.w3.org/TR/ owl-features Classes samsei:Gesture samsei:Resource samsei:TeachingUnit samsei:Simula@onLearningUnit samsei:PortACathPlacement samsei:S@tch samsei:InfusionSupplies samsei:Protec@veSupplies samsei:Material samsei:HumanResources samsei:Simulator samsei:ElectronicSimulator samsei:Synthe@cSimulator samsei:Par@alManikin samsei:En@reManikin samsei:VenousChestSimulatorManikin samsei:KneeManikin samsei:simula@onSessionAudience samsei:hasTutor samsei:objec@ves samsei:prerequisites samsei:knowHowToAchieve samsei:toLearn samsei:toObserve samsei:toValidate samsei:resources samsei:equipmentSupplies samsei:humanResources samsei:simulatorRessources samsei:dura@on samsei:dura@onOfSimula@onSession samsei:numberOfLearner samsei:numberOfLearnerPerSimula@onSe samsei:forAcademicYear Proper@es owl:Thing for the class samsei:PortACathPlacement, which is a particular type of simulation learning unit that trains students to place a port or a catheter. The constraint graph in Figure 2(a) expresses that samsei:sterilecompress (which is an instance of Bandage material) is declared in the ontology as a mandatory value of the property samsei:equipmentSupplies.

The constraint graph depicted in Figure 2(b) expresses that at least one equipment of type samsei:protectiveSupplies is mandatory for simulating a placement of a port or a catheter.

Interactive Ontology Update

Our approach consists of transposing the RDF data and the ontological constraints of a given domain ontology into a graphical user interface (GUI) named IOPE GUI. The Web form templates on which the IOPE GUI is built are described using a Web form ontology called IOPE_Web that we have developed by adapting RaUL [START_REF] Haller | Raul: Rdfa user interface language -A data processing model for web applications[END_REF].

The IOPE_Web Ontology

The IOPE_Web ontology is shown in Figure 4. It is organized around 4 main classes IOPE:Page, IOPE:PageLayout, IOPE:Container and IOPE:Widget related by properties for modeling Web pages which are structured in containers with widgets and are associated with page layouts. The widgets act as a direct point of user interaction and provide access to the triples of the referenced RDF graph. The interaction with users can be done using several types of widgets such as LABEL, TREE-VIEW, LIST BOX, TEXT BOX and CHECK BOX, which leads to as many corresponding subclasses of the main class IOPE:Widget. They inherit of the standard properties for widgets that are described in IOPE_Web as datatype properties such as IOPE:name, :placeholder, IOPE:label, and others.

In our setting, the IOPE:dataSource property is used to assign an input data from a domain ontology that can be of type xsd:string, simple or nested list IOPE:list, or owl:Thing. The IOPE:value property is filled by the output value of the widget provided by a user. The boolean properties IOPE:hidden, IOPE:multiple, IOPE:readonly and IOPE:onclick are similar to HTML form attributes. A widget with the IOPE:required property as "True" will be rendered by a red asterisk to specify that the widget must be filled in by the user. Widgets can be grouped in a Web page within containers that can be nested using the IOPE:partOf property. In our setting, different types of specific containers are declared as subclasses of IOPE:Container to express that the different types of ontological constraints in our setting will be rendered in a specific manner in the IOPE GUI.

Ontology-Based GUI Construction

We have followed a declarative approach based on a set of mapping rules to generate automatically pre-filled Web pages, and on a set of binding rules to generate RDF graphs from entered values by users via widgets. Input: The input of GUI construction is a domain ontology in which the ontological constraints have been automatically saturated by a reasoning algorithm as detailed in [START_REF] Baghernezhad-Tabasi | IOPE: Interactive Ontology Population and Enrichment[END_REF]. Initialization: The GUI construction is initiated with the choice of one class of interest in the ontology by the user, which is called the focus class F. The set Constraints(F) of the ontological constraints associated to the focus class F is decomposed in groups Group(P, F) of all the constraints involving sub-properties of a given property P . For the focus class F , and for each group of properties Group(P, F), an instance of a Web page is created with the page layout depicted in Figure 5, which sets up the organization within the page of the specific containers dedicated to the different types of constraints on subproperties p of P for which there exists constraints in Group(P, F). The following instances of the IOPE:Container class are • IOPE:FocusClass F Container denotes the main container of the created Web page,

• IOPE:Group(P, F)Container denotes the container that will group all the containers corresponding to the constraints holding for F on sub-properties of P ,

• IOPE:ConstraintContainer p denotes the container that will display the restrictions of F on property p,

• IOPE:HasValueContainer p denotes the container that will display the hasValue restrictions of F on property p,

• IOPE:AlternativeValuesContainer p denotes the container that will display the alternative values restrictions of F on property p,

• IOPE:CardinalityContainter p, C denotes the container that will display the cardinality restrictions of F on property p and class C,

• IOPE:RangeContainter p, C denotes the container that will display the range restrictions of F on property p which is class C,

• IOPE:FreeEntryContainer p denotes the container for the user to add new classes involved in cardinality restrictions for the property p.

Then mapping rules are triggered for mapping components of each ontological constraints to the visual widgets in the prepared containers in order to fill each Web page guided by the ontology.

Mapping rules: Each mapping rule has a constraint graph pattern in its left-hand side and a IOPE_Web graph pattern in its right-hand side. The constraint graph pattern expresses a particular ontological constraint on the focus class and can be instantiated via the input data. The corresponding instantiation of IOPE_Web graph pattern in the right-hand side is a specification using the vocabulary of the IOPE_Web ontology of how to fill the corresponding widgets and containers in the corresponding Web page.

The mapping rules can be triggered in a forward-chaining manner and in any order. The resulting IOPE_Web graph provides the full RDF specification of the pre-filled Web pages that have to be created for the focus class chosen by the user. The effective implementation of the mapping rules is implemented using RDFLib and JSON libraries in Python 2.7.16 language. Our code is publicly available in [START_REF]IOPE implementation[END_REF]. The set of mapping rules are given in a companion report [START_REF] Baghernezhad-Tabasi | IOPE: Interactive Ontology Population and Enrichment[END_REF]. Here, we just give two of them in their instantiated form for clarity purpose.

Figure 6 shows a mapping rule for a value restriction (F p value v).

The specific container IOPE:HasValueContainer p is decomposed in two sub-containers defined as blank nodes whose types are IOPE:HasValueInstanceContainer and IOPE:HasValueClassContainer respectively. For these two sub-containers, widgets of type IOPE:LABEL are created as blank nodes with the property IOPE:dataSource filled by the corresponding labels of v and its class C in the domain ontology. The property IOPE:required is set to "True" for the first widget to refer that the value v is mandatory for the property p.

Figure 7 shows a mapping rule for a cardinality restriction (F p min n C) such that n > 0, where C has a hierarchy of sub-classes and a list of instances in the domain ontology.

The specific container IOPE:CardinalyContainer p, C is decomposed in two sub-containers defined as blank nodes whose respective types are:

• IOPE:CardinalityClassContainer

• IOPE:CardinalityInstanceContainer

For the former, a widget of type IOPE:TREEVIEW is created as a blank node with the property IOPE:dataSource filled by the tree view of subClasses(C), which denotes the hierarchy of the sub-classes of C in the domain ontology enriched with an additional item Other_C.

The property IOPE:required and IOPE:onClick are set to "True" for this widget to indicate that entering at least one value is mandatory for the property p, and this widget supports the interaction with users to display interactively the sub-class hierarchy.

For the latter, a widget of type IOPE:LISTBOX is created as a blank node with the property IOPE:dataSource filled by the list instances(C) of instances of the class C, the IOPE:label property set to "select existing item(s) or enter new item(s)" and the IOPE:hidden property set to "True" to make the widget invisible until the first interaction of the user through the widget of type IOPE:TREEVIEW. A widget of type IOPE:TEXTBOX is also created with the IOPE:placeholder property set to the value "Enter the new item(s) (separated by a comma)" in order to give users possibility to enter new instances. The other binding rules are given in [START_REF] Baghernezhad-Tabasi | IOPE: Interactive Ontology Population and Enrichment[END_REF].

Evaluation

The objective of our study is to evaluate the efficiency, the users' satisfaction and the effectiveness of the IOPE interface with the purpose of populating and enriching the ONTOSAMSEI ontology. The users involved in our user study are a subgroup of 22 experts in simulationbased training in Medicine. They are domain experts but they are not familiar with RDF and OWL. The user study was organized in two steps for each expert. In the first step, the expert logs in the system with her credentials, picks one simulation training session, and begins to observe and update the information in the pre-filled Web pages.

In the second step, she will be transferred to a survey form to evaluate some qualitative aspects of IOPE and ONTOSAMSEI ontology and reflect her viewpoint based on her interactions with the IOPE interface.

Evaluation of the IOPE GUI Efficiency

We first provide quantitative results on the time spent by users and their number of interactions with IOPE . Then, we compare these results with the time insight perceived by users and with the number of interactions required for Enter the new item a comma).

IOPE:placeholder

Select exis:ng item(s) or enter new item(s)

IOPE:label

Enter the new item(s) (separated by a comma) or give a minimal number of items

IOPE:placeholder

SimulaFon training session of Port-a-cath placement

Equipment and supplies: (*)

Other :

Provide the label(s) (separated by a comma).

Simple disposal drape Fenestrated disposal drape

Select exis@ng item(s) or enter new item(s):

Enter the new item(s) (separeted by a comma).

Resources

Sterile compress (Bandage material) (*)

Protec@ve supplies (*)

Disposable drape

Simulator-type resources: (*)

Venous-access chest simulator manikin (*) Provide item(s):

Enter the new item(s) (separeted by a comma) or give a minimal number of items.

Other :

Provide the label(s) (separated by a comma).

Warning! To save the informa/on entered on this page, you must click on "Save

SimulaFon training session of Port-a-cath placement

Equipment and supplies: (*)

Other :

Provide the label(s) (separated by a comma).

Simple disposal drape Fenestrated disposal drape

Select exis@ng item(s) or enter new item(s):

Enter the new item(s) (separeted by a comma). seconds (1.12 minutes). On average, their number of interactions with IOPE is 5.78, with a maximum of 14 and a minimum 3. The majority of interactions are with CHECK BOX widget (56.15%) followed by TEXT BOX widget (32.30%) and LIST BOX widget (11.53%). Table 2 shows the distribution of experts in two categories of groups. In terms of number of interactions, we have built the groups of "prolific" experts (having more than 6 interactions with IOPE), "active" experts (having between 3 and 6 interactions), and "moderate" experts (with less than 3 interactions). In terms of interaction duration, we have built the groups of experts spending "short-time" (less than 2 minutes), "medium-time" (between 2 and 4 minutes), and "long-time" (more than 4 minutes). Table 3 reports the distribution of time groups for each interaction activity groups. We notice that more interactions do not necessary yield to more time spent to interact. This shows that IOPE helps experts to fulfill their task in a reasonable amount of time, even for prolific experts. 4.1.2 Time-to-Insight Users's Evaluation.

Resources

After they are done with using the IOPE interface for fulfilling their task, we ask the experts the following question to estimate the time-to-insight for a future interaction with IOPE : "how much time do you expect to take for setting up a new simulation training session with IOPE?". The response is in the form of a Likert scale from 1 to 5 where "1" means "very short time" and "5" means "very long time". Figure 11 shows the results. We observe that the majority of experts chose "short time" and "average time", i.e., options 2 and 3 in the Likert scale. Moreover, prolific experts and long-time perceive shorter expected time compared to the active and moderate experts. A possible interpretation is that more interactions and more time sent interacting with the system boosts the perception of faster delivery of required information. The goal of this experiment was to measure the addedvalue of IOPE compared to a standard ontology editor such as TOPBRAID [START_REF]Topquadrant topbraid composer[END_REF], in terms of number of interactions required to fulfill edition tasks mentioned in Table 4.

2 0 2 1 1 2 1 1 2 0 0 2 3 2 1 0 1 2 5 1 2 4 1 1 3 1 0 0 0 1 2 0 2 4
0 0 1 2 0 0 0 0 0 0 0 0 1 0 1 3 4 1 0 1 0 0 2 0 2 1 0 2 2 0 2 2 0 2 0 0 2 5 1 0 1 1 3 4 1 3 3 1 2 1 0 0 0 1 2 0 2 2

Easy-friendliness

The tasks are categorized into three levels of difficulty based on [START_REF] Dimara | A task-based taxonomy of cognitive biases for information visualization[END_REF]. TOPBRAID is a major IDE for knowledge graph management. It can play the role of a rich model, constraint, data and queries editing tool, and of a powerful querying and reasoning flexible. It is intensively used by many actors in the area of ONTOSAMSEI.

For the fairness of this experiment, since none of the Fill the number of trainees for X Medium Fill the target audience of X Difficult Fill the required resources for X domain experts have ever used TOPBRAID, the different tasks were fulfilled by the five authors of the paper who have a sufficient knowledge about the domain, as well as a sufficient experience using both IOPE and TOPBRAID. Figure 12 shows the average number of interaction steps to fulfil those tasks in IOPE and TOPBRAID. We observe

Easy task

How many participants are needed to setup X? 1.31 10.24

Medium task

What are the disciplines targeted for X? 1.62 164.17

Difficult task

What are the necessary resources to setup X? that for both tools, the number of interaction steps increases with the difficulty of the tasks. However, the IOPE's trend grows from average 3.00 steps for an easy task to average 5.72 steps for a difficult task, while using TOPBRAID grows from average 5.00 steps for an easy task to average 21.00 steps for a difficult task. This shows that IOPE , by weaving relevant information together using constraints, enables the experts to fulfill their tasks more rapidly than by using a standard editor.

Evaluation of IOPE Users' Satisfaction

We have measured on a Likert scale in the range 1 to 5 the assessment by users of three aspects of satisfaction, namely utility, usability, and adoption, through the questions of the three first rows of Table 5. The aggregated results are shown in the three first column of Figure 13. Utility. 82.35% of the participants have a positive view on the utility of IOPE. However, the prolific experts appreciate the utility more than active experts. This shows that more interactions increases the perception of utility, which is also confirmed by long-time experts who are entirely on the positive spectrum. Usability.

Overall, the experts perceived usability positively. However, there is a vivid contrast between moderate experts versus active and prolific experts, where the former group seems to not enjoy the usability of IOPE. We conjecture that moderate experts got lost early in the process, and abandoned their task. There is also a subset of long-time experts who assessed low usability. They probably spent too much time to fulfil their tasks and got lost in the process also. Adoption. The choice over adoption is from 1 to 5, where 1 means "never" and 5 means "always". Most of the experts voted to adopt IOPE in the future.

Effectiveness of IOPE for Enriching the ONTOSAMSEI Ontology

In this part of the experiment, we measure the expert's assessment of accuracy and completeness of the ONTOSAMSEI ontology through its presentation to the experts by IOPE GUI. We do it by asking the experts the questions in the two last rows of the Table 5. The aggregated results (on the Likert scale from 1 to 5) are shown in the two last columns of Figure 13.

Accuracy. The majority of the participants are positive on accuracy, while 11.76% are negative. Short-time and moderate experts express more negative votes on accuracy compared to long-time and prolific experts, respectively. This is presumably because less investigations in the former groups did not enable them a precise view of the ontology.

Completeness.

76.46% of the participants find ONTOSAMSEI complete enough. However, prolific experts appreciate completeness less than the overall population. We found out that they prominently interact with text-boxes, which shows that they use IOPE to effectively enrich the ontology. The entire long-time expert group votes positively, which means that spending more time to go into the details of the simulation training sessions convinces them of their completeness.

Related Work

In the literature, ontological updates are often performed using ontology editing tools, such as PROTÉGÉ [START_REF] Noy | Creating semantic web contents with protégé-2000[END_REF], TOPBRAID [START_REF]Topquadrant topbraid composer[END_REF], and ONTODIA [START_REF] Mouromtsev | The simple webbased tool for visualization and sharing of semantic data and ontologies[END_REF]. However, these systems require a basic understanding of the RDF notation and of the OWL semantics to edit the ontology consistently. Graph-based editing approaches alleviate this limitation by leveraging shapes graphs in the form of SHACL standard3 [START_REF] Wright | Schímatos: A shacl-based web-form generator for knowledge graph editing[END_REF][START_REF] Valdestilhas | Voceditor an integrated environment to visually edit, validate and versioning rdf vocabularies[END_REF]. While shapes graphs are well adapted for editing complex data, they require the definition of such graphs for each ontology. In contrast, IOPE abstracts all RDF/OWL technicalities and seamlessly enforces the ontological constraints as a strong guidance for the experts to update the ontology, using the pre-filled forms. WebVOWL [START_REF] Wiens | Webvowl editor: Device-independent visual ontology modeling[END_REF] is a web application for the interactive graph-based visualization of ontologies which employs the Visual Notation for OWL Ontologies (VOWL) [START_REF] Lohmann | Visualizing ontologies with VOWL[END_REF]. However, WebVOWL does not visualize the instances but only the OWL part of a (possibly populated) ontology. Also, the graphs displayed by the tool tend to become quickly illegible when their size increases. In IOPE, we employ Web forms as a more widespread medium for visualizing information, and we support the update of instances and of ontological constraints. Forms are also used in [START_REF] Maillot | Nested forms with dynamic suggestions for quality RDF authoring[END_REF] in a nested structure to capture relational aspects of knowledge graphs and update RDF data. However, the nested structure introduces increasing complexity and hence lacks intuitiveness. Moreover, the focus in [START_REF] Maillot | Nested forms with dynamic suggestions for quality RDF authoring[END_REF] is solely on the population part and the approach does not extend to OWL constraints. In [START_REF] Butt | Activeraul: Automatically generated web interfaces for creating rdf data[END_REF], Web forms are generated from ontologies (using a User Interface ontology, called RaUL) by interpreting ontology assertions as rules. While the approach only incorporates individual assertions (ontology population), IOPE serves both ontology enrichment and population, through interactions with the experts. IOPE stresses on ontological constraints as first-class citizens and renders pre-filled forms to provide a more aggregated view for the experts, which is, to the best of our knowledge, nonexistent in the literature.

In [START_REF] Wright | Schímatos: A shacl-based web-form generator for knowledge graph editing[END_REF], Web forms generation are very close to ActiveRaul approaches. Constraints are expressed using SHACL language as SHACL shapes. The SchÍmato application manages the web form generation, the end-user interaction and the ontology engineer enrichement. While end-user interactions are limited to add and update instances of a knowledge graph, IOPE allows end-users to enrich the knowledge graph by updating classes and some constraints on data. IOPE has been applied and evaluated on a complex domain and is able to generate a sequence of web pages that structures the knowledge graph for the end-users, and not only a simple web form generator.

Conclusion

In this paper, we have presented the interactive IOPE framework for enrichment and population of specialized ontologies.Given any input ontology, IOPE exploits the ontological constraints and a set of mapping rules to generate a set of user-friendly Web pages which assist the experts in editing the ontology. Binding rules are then used to derive the RDF graphs corresponding to the updates entered by the experts. We have conducted an extensive set of experiments on the domain of simulation-based medical education, for measuring IOPE's efficiency, effectiveness, as well as the experts' satisfaction in fulfilling their tasks using IOPE . In the future, we plan to improve the explainability of IOPE to reduce the number of abandoned editing tasks and increase its usability by domain experts not familiar with ontology engineering.

Figure 1 :

 1 Figure 1: A part of hierarchy of properties and classes in ONTOSAMSEI

Figure 2 :

 2 Figure 2: Two constraint graphs (a) and (b) on the property equipmentSupplies for the class PortACathPlacement

Figure 3 :

 3 Figure 3: Overview of IOPE workflow

Figure 4 :Figure 5 :

 45 Figure 4: The IOPE Web form ontology

Figure 8 -

 8 Figure8-left shows one of the resulting pre-filled Web pages generated by the HTML implementation of the IOPE_Web specification resulting from the application of the mapping rules to the ONTOSAMSEI's ontological constraints. Figure8-right shows the effect of a user interaction through the widget of type the IOPE:TREEVIEW to select the sub-class DisposableDrape from the ProtectiveSupplies sub-class hierachy. As a result of this interaction, the instance container corresponding to the selected sub-class becomes visible to let the user select an instance or enter a new one. User interaction are guided by constraints on properties based on the mapping rules, which allow to check cardinality, domain and codomain. The input entered by the user must be bound to RDF data corresponding to new instances or new constraints submitted to populate or enrich the domain ontology. This binding mechanism is based on a set of binding rules that are triggered on IOPE_Web graphs to generate RDF graphs built on the domain ontology. Binding rules: Each binding rule is defined as a diagram with a IOPE_Web graph on the left side and the corresponding generated triples in the form of RDF graph on the right side. The binding rule shown in Figure9is triggered when a focus class F is chosen. This rule simply creates an instance f of the focus class F . The other binding rules are triggered when the IOPE:value property is filled by an input provided by the user through an interactive widget. Figure10shows the binding rule for the textbox widget in the free entry container of a property p for the focus class F . Its application generates a new constraint graph expressing a new cardinality constraint for F on the property p and a new class. The other binding rules are given in[START_REF] Baghernezhad-Tabasi | IOPE: Interactive Ontology Population and Enrichment[END_REF].

Figure 6 :

 6 Figure 6: Mapping rule for a value restriction (F p value v) where v rdf:type C cardinality model 1 and 2-V 3

Figure 7 :

 7 Figure 7: Mapping rule for a Cardinality constraint where subClasses(C) and instance(C) are not empty

Figure 8 :BindingFigure 9 :Figure 10 :

 8910 Figure 8: Left: HTML Web page generated from the outcome of the application of mapping rules on ONTOSAMSEI ontological constraints. Right: HTML Web Page changes after user interaction by the widgets.

Figure 11 :

 11 Figure 11: Time-to-insight results.

1

 1

Figure 12 :

 12 Figure 12: Comparative number of interactions between IOPE and TOPBRAID.

Figure 13 :

 13 Figure 13: Satisfaction and effectiveness metrics results.

Table 1 :

 1 RDFS and OWL constraints considered in this paperIt functions as a guidance for domain experts to easily explore the ontology and update it through interactive graphical widgets. The input entered by domain experts through the IOPE GUI is transformed into RDF triples that must be verified by a specialist in knowledge management, to maintain ontology correctness, before being added effectively in the domain ontology. Figure3is an overview of our interactive IOPE system.

	Type		Shortened syntax	Semantics
	Class specialization	(C rdfs:subClassOf D)	∀ i ((i rdf:type C) ⇒ (i rdf:type D))
	Property specialization	(p rdfs:subPropertyOf q)	∀ i ∀ j ((i p j) ⇒ (i q j))
	Domain restriction	(p rdfs:domain C)	∀ i ∀ j ((i p j) ⇒ (i rdf:type C))
	Range restriction	(p rdfs:range D)	∀ i ∀ j ((i p j) ⇒ (j rdf:type D))
	Value restriction	(C p owl:hasValue v)	∀ i ((i rdf:type C) ⇒ (i p v))
	Alternative values restriction (C p owl:oneOf [v1, ..., vn])	∀ i ((i rdf:type C) ⇒ k∈[1..n] (i p vk))
	Cardinality restriction	(C p min k D)	∀ i ((i rdf:type C) ⇒ ∃o 1 , ... o k (i,j∈[1..k] o i = o j
				∧ j∈[1..k] (o j rdf:type D) ∧ (i p o j))
	INPUT		
	RDF Data	Ontological Constraints	
		(1) Decode	
	User Interface	Interac.ons	
	Updated RDF Data	Updated Ontological Constraints	

(4) Encode Domain expert

HasValue InstanceContainer IOPE:HasValue ClassContainer IOPE:Cardinality ClassContainer IOPE:Cardinality InstanceContainer IOPE:Range ClassContainer IOPE:Range InstanceContainer IOPE:FreeEntry Container IOPE:Alterna:ve ValuesContainer

	IOPE:PageLayout	IOPE:has	IOPE:Page
					IOPE:contain	IOPE:partOf
					IOPE:Container
					IOPE:hasWidget
	xsd:string		xsd:boolean		xsd:string	xsd:string xsd:int ∪	IOPE:
	IOPE:placeholder	IOPE:readonly	IOPE:name	IOPE:value
	xsd:boolean	IOPE:required		IOPE:hidden	xsd:boolean
					IOPE:Widget
		IOPE:onClick		IOPE:mul.ple
	xsd:boolean					xsd:boolean
						IOPE:dataSource
		IOPE:label		
	xsd:string				rdfs:subClassOf	xsd:string IOPE:list owl:Thing ∪ ∪
	IOPE:LABEL IOPE:TREE VIEW	IOPE:LISTBOX	IOPE:CHECKBOX	IOPE:TEXTBOX

rdfs:subClassOf

Table 2 :

 2 Distribution of expert groups

		moderate	active	prolific
	Expert population	22.73%	50%	27.27%
		short-time medium-time long-time
	Expert population	50%	31.82%	18.18%

Table 3 :

 3 Distribution of interaction time groups for interaction volume groups.

			Interaction volume groups
			moderate active prolific
	Interaction	short-time	0.80	0.46	0.33
	time	medium-time	0.00	0.27	0.67
	groups	long-time	0.20	0.27	0.00

Table 4 :

 4 Tasks descriptions

	Task	Description (Given the simulation training session X ...)
	Easy	

Shapes ConstraintLanguage (SHACL): https://www.w3.org/TR/shacl/

Table 5: Measure definitions and corresponding questions asked in the survey.

Measures

Definition Question asked in the survey utility [START_REF] James | Illuminating the Path: The Research and Development Agenda for Visual Analytics[END_REF][START_REF] Albert | Measuring the user experience: collecting, analyzing, and presenting usability metrics[END_REF] The usefulness of the method to fulfil a given task.

How do you evaluate the utility of IOPE for setting up simulation training sessions? usability [START_REF] Rahman | Evaluating interactive data systems[END_REF][START_REF] Albert | Measuring the user experience: collecting, analyzing, and presenting usability metrics[END_REF] The easiness of interactions with the method To which degree do you find IOPE easy-to-use?

adoption [START_REF] James | Illuminating the Path: The Research and Development Agenda for Visual Analytics[END_REF] The usefulness of the method for future similar tasks How often will you employ IOPE for setting up and describing a new simulation training session in the future?

accuracy [START_REF] Omidvar | Data pipelines for user group analytics[END_REF][START_REF] Rahman | Evaluating interactive data systems[END_REF] The precision of information based on expert's prior knowledge.

How do you evaluate the accuracy of IOPE's pre-filled information for describing simulation training sessions?

completeness [START_REF] Rahman | Evaluating interactive data systems[END_REF] The retrieval exhaustiveness of the necessary and required information.

How do you evaluate the sufficiency of IOPE's pre-filled information for describing simulation training sessions?