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Abstract. Finding optimal related-key differential characteristics for a
given cipher is a problem that hardly scales. For the first time, we study
this problem against the 25 instances of the block cipher Rijndael, which
are the little brothers of the AES. To achieve this, we adapt and im-
prove an existing approach for the AES which is based on Constraint
Programming.
The attacks presented here overpass all the previous cryptanalytic results
of Rijndael. Among all our results, we obtain a 12-round (out of 13
rounds) related-key differential attack for Rijndael with a block size equal
to 128 bits and a key size equal to 224 bits. We also obtain an 11-round
related-key differential characteristic distinguisher for Rijndael with a
block size equal to 160 bits and a key size equal to 256 bits leading to
an attack on 12 rounds (out of 14 rounds).

Keywords: Related-key differential characteristics · Constraint Pro-
gramming (CP) · Automatic Tools · Rijndael

1 Introduction

Cryptanalysis aims at finding non-random properties and distinguishers against
classical cryptographic primitives. In particular, differential cryptanalysis [5] is a
powerful tool against block and stream ciphers. It studies the propagation of the
difference δX = X⊕X ′ between two plaintextsX andX ′ through the cipher E or
a part of the cipher, where ⊕ is the exclusive OR (xor). If the distribution of the
output difference δC = EK(X)⊕EK(X ′) is non uniform over all the keys K, then
an adversary has a distinguisher and can exploit this non-uniformity to guess part
of the key K faster than exhaustive search. Most of the times, the distinguisher
is constructed on a reduced number of rounds. Today, differential cryptanalysis
is a public knowledge, and block ciphers have proven security bounds against
differential attacks. Hence, [4] proposed to consider differences not only between
the plaintextsX andX ′ but also between the keysK andK ′ to mount related-key
attacks. In this case, the cryptanalyst is interested in finding optimal related-key
differentials, i.e., input and output differences that maximize the probability of



obtaining the output difference given the input difference. In other words, we
search for δX, δK, and δC that maximize the probability that δC is equal to
EK(X)⊕ EK⊕δK(X ⊕ δX) for a plaintext X and a key K.

Finding an optimal related-key differential characteristic is a highly com-
binatorial problem that hardly scales. To simplify this problem, Knudsen [16]
introduced truncated differential characteristics where byte or nibble differences
are abstracted by single bits that indicate if there is a difference at a given
position or not. Thus, the search for related-key differential characteristics is
divided into two steps as done in [6,10]. In Step 1, each byte or nibble differ-
ence is abstracted by a Boolean value and the aim of this step is to find the
trail which minimizes the number of active S-boxes. The goal here is to find
the positions of the differences. Then, for each solution found at Step 1, Step 2
aims at instantiating each Boolean value into a valid byte or nibble difference
while maximizing the overall probability of the differential characteristic cross-
ing the S-boxes. However, some truncated differential characteristics found at
Step 1 may not be valid (i.e., there do not exist byte or nibble values corre-
sponding to these difference positions). Scaling from the AES to Rijndael can
only be made with a tight model for Step 1. Models described in [6,10] do not
scale when increasing the block size and the key size. Only the model described
in [13] has a sufficiently small number of solutions found at Step 1 to hope that
the computational time will be reasonable.

In this paper, we show how to adapt the two-step solving process of [13] ded-
icated to the AES to compute optimal related-key differential characteristics for
Rijndael [8]. Both steps are solved with Constraint Programming (CP) solvers5:
Picat-SAT for Step 1 and Choco for Step 2. We improve the approach of [13]
by better interleaving Steps 1 and 2 and exploiting bounds to stop the search
sooner. We also improve the Step 2 process of [13] by decomposing the con-
straints associated with MixColumns. These improvements allow us to compute
the optimal differential characteristics for all Rijndael instances but one within
a reasonable amount of time.

Rijndael is a family of block ciphers (more precisely it is composed of 25
instances of the same cipher where the block size and the key size vary) originally
proposed at the AES competition. But the NIST only retained as a standard
its 128-bit-block version under the key sizes 128, 192 and 256 bits. Studying the
security of Rijndael is interesting to enlighten the AES standardization process.
Among the most interesting results, we obtain a 12-round (over 13 rounds)
related-key differential distinguisher and a 12-round (over 13 rounds) attack
for Rijndael with a block size equal to 128 bits and a key size equal to 224 bits.
We also obtain an 11-round related-key differential distinguisher for Rijndael
with a block size equal to 160 bits and a key size equal to 256 bits leading to an
attack on 12 rounds out of 14.

5 The code is available here: https://gitlab.inria.fr/lrouquet/

cp-differential-cryptanalysis/-/tree/AfricaCrypt22.

https://gitlab.inria.fr/lrouquet/cp-differential-cryptanalysis/-/tree/AfricaCrypt22
https://gitlab.inria.fr/lrouquet/cp-differential-cryptanalysis/-/tree/AfricaCrypt22


When looking at the state of the art concerning the cryptanalysis of Rijndael,
some of the results are in the single key scenario [15,27,11], [25,19,18] or in the
related-key scenario [26] and none of those attacks exceeds 10 rounds.

The rest of this paper is organized as follows: in Section 2, we recall the
full description of Rijndael; in Section 3, we detail the methods and our CP
models. in Section 4, we sum up all the related-key differential characteristics
distinguishers we obtained, give all resolution times and compare them with
those of [13]; in Section 5, we present two attacks based on the most efficient
distinguishers and finally, in Section 6, we conclude this paper.

2 Rijndael

Rijndael-Clen-Klen(where Clen is the block size and Klen is the key size) is a
set of 25 different SPN block ciphers designed by Joan Daemen and Vincent
Rijmen [9]. Each instance varies according to the block size (128, 160, 192, 224
or 256 bits) and to the key size (128, 160, 192, 224 or 256 bits) but the ciphering
process is the same for all variants, except for the ShiftRows operation (given
in Table 1) and the number of rounds (given in Table 2). It has been chosen as
the new advanced encryption standard by the NIST [1] with a 128-bit block size
and a key length that can be set to 128, 192 or 256 bits. The number of rounds
Nr depends on the text size Clen and on the key size Klen and varies between
10 and 14. For all the versions, the current block at the input of the round i is
represented by a 4×Nb matrix of bytes Xi where Nb = (Clen/32) is the number
of columns and where each byte at row j and column k is denoted by Xi[j, k].
The round function, repeated Nr − 1 times, involves four elementary mappings,
all linear except the first one. Round i consists of the following transformations:

SubBytes. A bytewise transformation is applied on each byte of the current
block using an 8-bit to 8-bit non linear S-box, denoted by SBOX: SXi[j, k] =
SBOX(Xi[j, k]), ∀j ∈ [0, 3],∀k ∈ [0, Nb − 1].

ShiftRows. A linear mapping rotates to the left all the rows of the current
matrix SXi. The values of the shifts denoted PNb (given in Table 1) depend
on Nb: Yi[j, k] = SXi[j, (PNb [j] + k) mod Nb], ∀j ∈ [0, 3],∀k ∈ [0, Nb − 1].

MixColumns is a linear multiplication of each column of the current state by a
constant matrix M in the Galois field GF(28), that provides the correspond-
ing column of the new state. For a given column k ∈ [0, Nb−1], if we denote
by ⊗ the multiplication in GF(28), we have:

Zi[l, k] =
∑
j∈[0,3]

M [l, j]⊗ Yi[j, k]

with M the 4× 4 circulant matrix defined by its first row = [2, 3, 1, 1]
AddRoundKey performs a bitwise xor between the subkeyRKi of round i and the

current state Zi: Xi+1[j, k] = Zi[j, k]⊕RKi[j, k], ∀j ∈ [0, 3],∀k ∈ [0, Nb−1].

The subkeys RKi are generated from the master key K using a KeySchedule

algorithm composed of byte shifting, SBOX substitutions and xors which is fully



Algorithm 1: Rijndael KeySchedule function

input : A key matrix K of [4;Nk] bytes
output: The expanded key WK of [4;Nb × (Nr + 1)− 1] bytes
for k ∈ [0, Nb] and j ∈ [0, 3] do

WK[j, k ] ← K[j, k ] ;

for k ∈ [Nb, Nb × (Nr + 1)− 1] do
if k mod Nk = 0 then

WK[0, k ] = WK[0, k - Nk] ⊕ SBOX(WK[1, k - 1 ]) ⊕ RCi ;
for j ∈ [1, 3] do

WK[j, k ] = WK[j, k - Nk] ⊕ SBOX(WK[(j + 1) mod 4, k - 1 ]) ;

else if k > 6 ∧ k mod Nk = 4 then
for j ∈ [0, 3] do

WK[j, k ] = WK[j, k - Nk] ⊕ SBOX(WK[j, k - 1 ]);

else
for j ∈ [0, 3] do

WK[j, k ] = WK[j, k - Nk] ⊕ WK[(j + 1) mod 4, k - 1 ] ;

return WK

Row
0 1 2 3

P128 0 1 2 3
P160 0 1 2 3
P192 0 1 2 3
P224 0 1 2 4
P256 0 1 3 4

Table 1. ShiftRows table PClen . This
table specifies the required number of
byte shifts to the left according to the
row number, e.g., P224[3] = 4.

Clen 128 160 192 224 256

Klen=128 10 11 12 13 14

Klen=160 11 11 12 13 14

Klen=192 12 12 12 13 14

Klen=224 13 13 13 13 14

Klen=256 14 14 14 14 14
Table 2. The number of rounds Nr of
Rijndael-Clen-Klen.

described in Algorithm 1.We denote by Nk =Klen/32 the number of columns of
the master key K. Note that each subkey RKi is extracted from a main register
WK in the following way: RKi[j, k] = WK[j, (i+ 1)×Nb + k], ∀j ∈ [0, 3],∀k ∈
[0, Nb − 1].

Those Nr − 1 rounds are surrounded at the top by an initial key addition
with the subkey RK0 and at the bottom by a final transformation composed by
a call to the round function where the MixColumns operation is omitted.

Our notations are summarized below.

– Xi: the state at the beginning of round i. Note that Xi is also the state after
applying the AddRoundKey function on the previous round Xi−1;

– SXi: the state of round i, after applying SubBytes;
– Yi: the state of round i, after applying ShiftRows;
– Zi: the state of round i, after applying MixColumns.



– RKi: the subkey of round i.

3 The Solving Process

In this section, we describe how to compute the optimal related-key differential
characteristics for Rijndael by adapting and improving the approach introduced
in [13] for the AES. We first recall some basic principles of CP; then we describe
the two-step solving process; finally, we describe the CP models associated with
each of these two steps.

3.1 Constraint Programming

CP is a generic framework for solving Constraint Satisfaction Problems (CSPs),
i.e., finding an assignment of values to variables such that (i) each variable is
assigned to a value that belongs to its domain, and (ii) a given set of constraints is
satisfied. Each constraint is a relation between some variables which restricts the
set of values that may be assigned simultaneously to these variables. This relation
may be defined in intention, by using mathematical operators, or in extension, by
listing all allowed tuples. For example, let us consider the constraint that ensures
that the sum of three variables x1, x2, and x3 is different from 1. This constraint
may be defined in intention by using operators + and 6=: x1 + x2 + x3 6= 1 or
it may be defined in extension by using a table constraint: 〈x1, x2, x3〉 ∈ Tsum6=1

where Tsum6=1 is a table which enumerates every triple of values the sum of which is
different from 1. For example, if the domain of x1, x2, and x3 is {0, 1}, then Tsum6=1

contains the following triples: 〈0, 0, 0〉, 〈0, 1, 1〉, 〈1, 0, 1〉, 〈0, 1, 1〉, and 〈1, 1, 1〉.
CP may also be used to solve Constrained Optimisation Problems (COPs),

i.e., CSPs with an additional objective function that must be optimised. CSPs
and COPs are defined by using a modelling language such as MiniZinc [20]. Then,
they can be solved by CP solvers such as, Choco [21], Gecode [12], Chuffed [7],
or Picat-SAT [28]. We refer the reader to [22] for more details on CP.

SAT is a special case of CSP, where all variables have boolean domains and
all constraints are logical formulae (clauses). Also, MILPs (Mixed Integer Linear
Programs) are special cases of COPs where all variables have numerical domains,
constraints are linear inequalities, and the objective function is linear. To com-
pute differential characteristics with SAT or MILP solvers, it is necessary to
model the problem by means of logical formulae (for SAT) or linear inequalities
(for MILP). In particular, the non linear DDT associated with an S-box must be
represented by a large number of clauses (for SAT) or inequalities (for MILP),
and the resulting models hardly scale [2,17,24].

When using CP, constraints do not need to be linear and DDTs are modelled
in a straightforward way by using table constraints. In particular, [13] recently
showed that CP solvers can compute optimal differential characteristics very
efficiently and outperform the dedicated approaches of [6] and [10] for the AES.



Algorithm 2: Computation of optimal related-key differential charac-
teristics for Rijndael.

Input: The size Klen of the key, the size Clen of the block and the number r
of rounds

Output: An optimal related-key differential characteristic S∗

begin
NBSBOX ← Step1-opt(Nk, Nb, r) where Nk =Klen/32 and Nb=Clen/32
UB ← 2−6·NBSBOX

LB ← 0
while LB < UB do

S1 ← Step1-next(Nk, Nb, r,NBSBOX)
if S1 6= null then

S2 ← Step2(Nk, Nb, r, LB, S1)
if S2 6= null then

S∗ ← S2

LB ← probability of S2

else
NBSBOX ← NBSBOX + 1
UB ← 2−6·NBSBOX

return S∗

3.2 Two-step solving process

Finding the best related-key differential characteristic is a highly combinatorial
problem. To improve the scalability of the attack, Knudsen has introduced trun-
cated differentials [16]. The core idea is to solve the problem in two steps: In Step
1, we compute a truncated differential characteristic S1 where each differential
byte δA of the ciphering process is replaced with a boolean variable ∆A that in-
dicates whether δA contains a difference or not (i.e., ∆A = 0 ⇐⇒ δA = 0 and
∆A = 1 ⇐⇒ δA ∈ J1, 28 − 1K); In Step 2, we instantiate S1 into a differential
characteristic S2: for each boolean variable ∆A, if ∆A is equal to 0 in S1, then
δA is equal to 0 in S2; otherwise δA must belong to J1, 28 − 1K. Note that some
truncated characteristics cannot be instantiated to a characteristic because some
abstractions are done at Step 1.

As SBOX is the only non-linear operation, the probability of a differential char-
acteristic only depends on the values of the differential bytes that pass through
S-boxes, under the Markov assumption that rounds are independent. We de-
note δSB this set of bytes (including those in the key schedule), and ∆SB the
corresponding set of boolean variables.

A theoretical upper bound on the probability of the best differential char-
acteristic may be computed by searching for the truncated differential charac-
teristic which minimises the number of active S-boxes NBSBOX = #{∆A | ∆A ∈
∆SB ∧∆A = 1}. As 2−6 is the maximal differential probability of the Rijndael
SBOX, the best probability is upper bounded by UB = 2−6·NBSBOX .

UB may be larger than the actual best probability because it may be possible
that the best truncated differential characteristic cannot be instantiated into a



differential characteristic, or because some non null differential bytes that go
through S-boxes have a probability equal to 2−7 instead of 2−6. Hence, the best
differential characteristic is searched by alternating Step 1 and Step 2 in an
iterative process which is described in Algorithm 2. First, we call Step1-opt to
compute NBSBOX, a lower bound of the number of active S-boxes in a truncated
differential, and this number is used to compute a first upper bound UB on the
probability. The lower bound LB on the probability is initialised to 0. Then, at
each iteration of the while loop, we call Step1-next to compute the next truncated
differential characteristic with NBSBOX active S-boxes: each time this function is
called, it returns a new Step 1 solution with NBSBOX active S-boxes until they all
have been computed (in this latter case, Step1-next returns null). If a new Step 1
solution S1 has been computed, then Step2 is called to search for the differential
characteristic S2 corresponding to S1 whose probability is larger than LB and
maximal: if such a characteristic exists, then the best characteristic S∗ is updated
to S2 and LB is updated to the probability of S2. When Step1-next returns null,
all truncated characteristics with NBSBOX active S-boxes have been enumerated.
In this case, we increment NBSBOX and update consequently the upper bound
UB. We stop iterating when UB becomes smaller than or equal to LB: in this
case S∗ is equal to the optimal differential characteristic.

Algorithm 2 is different from the one used in [13]: it avoids computing use-
less Step 1 solutions by updating LB and UB and stopping the process when
LB ≥ UB . Step1-opt, Step1-next and Step2 are implemented with CP solvers
and the corresponding CP models are described in the next two sections.

3.3 Step 1

Both Step1-opt and Step1-next compute truncated differential characteristics:
Step1-opt searches for the truncated characteristic that minimises NBSBOX, whereas
Step1-next searches for the next truncated characteristic given NBSBOX. Both
problems share the same constraints which are described in this section. Step1-
opt is a COP which is obtained by adding the objective function: minimise
NBSBOX. Step1-next is a CSP which is obtained by assigning the variable NBSBOX

to the optimal solution of Step1-opt.

A key point for Algorithm 2 to be efficient is to avoid as much as possible
computing truncated characteristics which cannot be instantiated at Step 2. To
this aim, we consider the model introduced in [13] which is tighter than the
model of [14], i.e., it computes fewer truncated characteristics that cannot be
instantiated at Step 2. This model has been defined for the AES, and we show
in this section how to extend it to Rijndael.

Constraints Associated with Rijndael Transformations. A basic Step 1
model for Rijndael is displayed in Model 1. Constraint (A1) relates NBSBOX with
the number of active S-boxes. The other constraints are derived from Rijndael
round function transformations.



NBSBOX =
∑

∆A∈∆SB

∆A (A1)

∀i ∈ [0, Nr − 1], ∀j ∈ [0, 3], ∀k ∈ [0, Nb − 1],
(A2)

∆SX i[j, k] = ∆Xi[j, k]

∀i ∈ [0, Nr − 2], ∀j ∈ [0, 3], ∀k ∈ [0, Nb − 1],
(A3)

∆Yi[j, k] = ∆SX i[j, PNb [j] + k mod Nb]

∀i ∈ [0, Nr − 2], ∀k ∈ [0, Nb − 1],
(A4)∑

j∈[0,3]

∆Zi[j, k] +
∑

j∈[0,3]

∆Yi[j, k] ∈ {0, 5, 6, 7, 8}

∀i ∈ [0, Nr − 2], ∀j ∈ [0, 3], ∀k ∈ [0, Nb − 1],
(A5)

∆RK i[j, k] = ∆WK [j, (i+ 1)×Nb + k]

∆Xi+1[j, k] +∆Zi[j, k] +∆RK i[j, k] 6= 1

∀ω ∈ [Nb, Nb × (Nr + 1)− 1] such that isSbCol(ω), ∀j ∈ [0, 3],
(A6)

∆SWK [j, ω] = ∆WK [j, ω]

where predicate isSbCol(ω) is ω ≥ Nk − 1 ∧ ω < Nb × (Nr + 1)− 1 ∧
(ω mod Nk = Nk − 1 ∨ (Nk > 6 ∧ ω mod Nk = 3))

∀j ∈ [0, 3], ∀ω ∈ [Nb, Nb × (Nr + 1)− 1],
(A7)

if ω mod Nk = 0 : ∆WK [j, ω] +∆WK [j, ω −Nk] +∆SWK [(j + 1) mod 4, ω − 1] 6= 1

else if Nk > 6 ∧ k mod Nk = 4 : ∆WK [j, ω] +∆WK [j, ω −Nk] +∆SWK [j, ω − 1] 6= 1

else : ∆WK [j, ω] +∆WK [j, ω −Nk] +∆WK [j, ω − 1] 6= 1

Model 1: Basic step 1 model for Rijndael.

SubBytes: As SBOX is bijective, there is an output difference if and only if there
is an input difference. The SubBytes transformation at Boolean level is thus
abstracted by an identity mapping ∆Xi and ∆SXi (Constraint (A2)).

ShiftRows: As ShiftRows is just a shift at byte level, its abstraction in Step 1
is directly expressed as the equivalent shift as defined in Constraint (A3).

MixColumns: Multiplications of MixColumns cannot be mapped into the Boolean
domain as the coefficients of M belong to GF(28). Thus, instead of encoding
multiplications, we exploit the MDS (Maximum Distance Separable) prop-
erty of the MixColumns transformation as defined in Constraint (A4).

AddRoundKey: It is a simple xor between bytes of the current state Zi and bytes
of the subkey RKi. It is modelled by constraint (A5) which prevents every
triple of boolean variables involved in a same xor from having exactly one
difference. This constraint also relates variables associated with the subkey
RK i with variables associated with the expanded key WK.

KeySchedule: the whole KeySchedule process of Rijndael is described in Al-
gorithm 1. The variables that pass through SBOXes are unchanged, as stated
in Constraint (A6). Xors are modelled by Constraint (A7) which prevents
every triple of boolean variables involved in a same xor from having exactly
one difference.

However, this simple model generates many truncated characteristics which
cannot be instantiated at Step 2. This mainly comes from the fact that xors
performed by AddRoundKey and KeySchedule are modelled by constraints which



simply prevent the sum of differences to be equal to 1. Thus, we show how to
refine this in the next two paragraphs.

Inference of new XOR equations from the KeySchedule. In Model 1,
every xor equation δA ⊕ δB ⊕ δC = 0 is represented by a sum constraint
∆A+∆B+∆C 6= 1. This simple model is not sharp enough and generates a lot
of truncated solutions that cannot be instantiated at Step 2. For example, the two
xor equations δA⊕ δB ⊕ δC = 0 and δB ⊕ δC ⊕ δD = 0 are represented by
the two sum constraints ∆A+∆B +∆C 6= 1 and ∆B +∆C +∆D 6= 1 . When
reasoning at the byte level, we easily infer that we cannot have δA = 0 and
δD 6= 0, whatever the values of δB and δC are. However, when reasoning at
the boolean level, the two sum constraints may be satisfied when ∆A = 0 and
∆D = 1 (e.g., when ∆B = ∆C = 1).

To sharpen the Step 1 model and reduce the number of Step 1 solutions that
cannot be instantiated at Step 2, we generate new xor equations from the initial
set of equations, by xoring them. These new equations do not change the set
of solutions at the byte level. However, at the boolean level, they remove some
of the truncated solutions that cannot be instantiated at Step 2. For example,
when xoring the two xor equations of our previous example, we obtain the
equation δA ⊕ δD = 0. When adding the constraint ∆A + ∆D 6= 1 to the two
sum constraints, we prevent the search from generating solutions with ∆A = 0
and ∆D = 1.

This trick has been introduced in [13] for the AES, and we extend it to
Rijndael in a straightforward way. More precisely, we consider the set of all xor
equations coming from the KeySchedule (this set corresponds to Constraint
(A7) of Model 1). From this set, we generate all possible equations that involve
no more than 4 variables by recursively xoring these equations6. This set of new
equations is denoted ExtXOR.

Introduction of diff variables. As done in [13], we also introduce diff variables
to reason on differences at the byte level: every variable diff A,B is a boolean vari-
able which is true if δA 6= δB, and false otherwise. diff variables are associated
with variables involved in the KeySchedule, in AddRoundKey and in MixColumns.
This new Model is presented in Model 2.

Each variable diff A,B is related with ∆A and ∆B by ensuring: diff A,B +
∆A + ∆B 6= 1. In other words, diff A,B = 0 whenever ∆A = ∆B = 0 and
diff A,B = 1 whenever ∆A 6= ∆B . This corresponds to Constraints (E1) (for
KeySchedule) and (E2) (for the MixColumns). These constraints also ensure
symmetry, i.e., diff A,B = diff B,A. Constraints (E3) and (E4) ensure transitivity
(i.e., if δA = δB and δB = δC, then δA = δC) by constraining the sum of the
corresponding diff variables to be different from 1.

Constraint (E5) relates diff variables associated with the subkey RK i with
diff variables associated with the expanded key WK.

6 We do not generate equations with more than 4 variables as the number of new
equations grows exponentially with respect to their size.



Constraints (E6) and (E7) are associated with the new xor equations in Ex-
tXOR. Two cases are considered: equations with three variables in Constraint
(E6), and equations with four variables in Constraint (E7). In both cases, if at
least one variable involved in the equation belongs to ∆SB , then the constraint
simply prevents the sum of the variables to be equal to 1. Otherwise, we exploit
diff variables to tighten the constraint.

Finally, Constraints (E8) and (E9) ensure the MDS property of MixColumns on
differences between pairs of columns (this constraint is partly equivalent with
the linear incompatibility of [10]). Indeed, the MDS property holds between each
input and output column before and after applying MixColumns but it also holds
when xoring different columns. More precisely, if i1, i2 ∈ [0, r−2] are two round
numbers, and k1, k2 ∈ [0, 3] are two column numbers, for every row j ∈ [0, 3], we
have

δZi1 [j][k1]⊕ δZi2 [j][k2] =
(⊕3

l=0M [j][l] · δYi1 [l][k1]
)
⊕
(⊕3

l=0M [j][l] · δYi2 [l][k2]
)

=
⊕3

l=0M [j][l] · (δYi1 [l][k1]⊕ δYi2 [l][k2])

Therefore, the MDS property also holds for the result of the xor of two
different columns. This is modelled by Constraint (E8). This constraint removes
many Step 1 solutions that cannot be instantiated at Step 2. In a rather similar
way, Constraint (E9) is derived by xoring equations coming from AddRoundKey.



∀ω1, ω2 ∈ [0, Nb × (Nr + 1)− 1], ∀j ∈ [0, 3] where ω2 > ω1

(E1)

diff WK [j,ω1],WK [j,ω2] +∆WK [j, ω1] +∆WK [j, ω2] 6= 1

diff WK [j,ω1],WK [j,ω2] = diff WK [j,ω2],WK [j,ω1]

∀i1, i2 ∈ [0, Nr − 2], ∀j ∈ [0, 3], ∀k1, k2 ∈ [0, Nb − 1] where (i2, k2) > (i1, k1)
(E2)

diff Yi1
[j,k1],Yi2

[j,k2] +∆Yi1 [j, k1] +∆Yi2 [j, k2] 6= 1

diff Yi1
[j,k1],Yi2

[j,k2] = diff Yi2
[j,k2],Yi1

[j,k1]

diff Zi1
[j,k1],Zi2

[j,k2] +∆Zi1 [j, k1] +∆Zi2 [j, k2] 6= 1

diff Zi1
[j,k1],Zi2

[j,k2] = diff Zi2
[j,k2],Zi1

[j,k1]

∀ω1, ω2, ω3 ∈ [0, Nb × (Nr + 1)− 1], ∀j ∈ [0, 3] where ω3 > ω2 > ω1

(E3)

diff WK [j,ω1],WK [j,ω2] + diff WK [j,ω1],WK [j,ω3] + diff WK [j,ω2],WK [j,ω3] 6= 1

∀i1, i2, i3 ∈ [0, Nr − 2], ∀j ∈ [0, 3], ∀k1, k2, k3 ∈ [0, Nb − 1] where (i3, k3) > (i2, k2) > (i1, k1)
(E4)

diff Yi1
[j,k1],Yi2

[j,k2] + diff Yi2
[j,k2],Yi3

[j,k3] + diff Yi3
[j,k3],Yi1

[j,k1] 6= 1

diff Zi1
[j,k1],Zi2

[j,k2] + diff Zi2
[j,k2],Zi3

[j,k3] + diff Zi3
[j,k3],Zi1

[j,k1] 6= 1

∀i1, i2 ∈ [0, Nr − 1], ∀j ∈ [0, 3], ∀k1, k2 ∈ [0, Nb − 1]
(E5)

diff RKi1
[j,k1],RKi2

[j,k2] = diff WK [j,(i1+1)×Nb+k],WK [j,(i2+1)×Nb+k]

For each equation δB1 ⊕ δB2 ⊕ δB3 = 0 in ExtXOR,
(E6)

if {∆B1, ∆B2, ∆B3} ∩∆SB 6= ∅ then ∆B1 +∆B2 +∆B3 6= 1
if {∆B1, ∆B2} ∩∆SB = ∅ then diffB1,B2 = ∆B3

if {∆B2, ∆B3} ∩∆SB = ∅ then diffB2,B3 = ∆B1

if {∆B1, ∆B3} ∩∆SB = ∅ then diffB1,B3 = ∆B2

For each equation δB1 ⊕ δB2 ⊕ δB3 ⊕ δB4 = 0 in ExtXOR,
(E7)

if {∆B1, ∆B2, ∆B3, ∆B4} ∩∆SB 6= ∅ then ∆B1 +∆B2 +∆B3 +∆B4 6= 1
else diffB1,B2 = diffB3,B4

diffB1,B3 = diffB2,B4

diffB1,B4 = diffB2,B3

∀i1, i2 ∈ [0, Nr − 2], ∀k1, k2 ∈ [0, Nb − 1] where (i2, k2) > (i1, k1)
(E8)∑

j∈[0,3]

diff Yi1
[j,k1],Yi2

[j,k2] +
∑

j∈[0,3]

diff Zi1
[j,k1],Zi2

[j,k2] ∈ {0, 5, 6, 7, 8}

∀i1, i2 ∈ [0, Nr − 2], ∀j ∈ [0, 3], ∀k1, k2 ∈ [0, Nb − 1] where (i2, k2) > (i1, k1)
(E9)

diff RKi1
[j,k1],RKi2

[j,k2] + diff Zi1
[j,k1],Zi2

[j,k2] +∆Xi1+1[j, k1] +∆Xi2+1[j, k2] 6= 1

Model 2: Additional constraints for the refined Step 1 model for Rijndael.

Incomplete Step 1 solutions. As pointed out in [13], some AES instances
have a huge number of Step 1 solutions. Many of these solutions have exactly the
same values for the boolean variables in ∆SB (corresponding to S-boxes), and
they only differ on values of other boolean variables (that do not correspond to
S-boxes). For example, when the key has 192 bits and the number of rounds is
equal to 10, there are 27,548 different Step 1 solutions. However, there are only
7 different assignments of values to the variables in ∆SB .

As Rijndael is a generalisation of the AES, this is also true for Rijndael.
Hence, as proposed in [13], we enumerate incomplete solutions such that only
the variables in ∆SB are assigned.



3.4 Step 2

Given a Step 1 solution (corresponding to a truncated characteristic), Step 2 aims
at searching for the corresponding characteristic which has the largest probabil-
ity, and such that this largest probability is larger than the best probability
found so far (LB).

The CP model used to solve Step 2 is described in Model 3. For each boolean
variable ∆A of Step 1, this model uses an integer variable δA to represent the
corresponding differential byte. If this byte passes through an S-box (i.e., δA ∈
δSB ), then the initial domain of δA depends on the value of ∆A in the Step
1 solution: If ∆A = 0, then δA is assigned to 0; Otherwise the domain of δA
is J1, 255K. For each variable δA 6∈ δSB , the domain of δA is J0, 255K as the
associated boolean variable ∆A is not assigned in the Step 1 solution.

SBOX. We introduce new variables in order to represent probabilities associated
with S-boxes. More precisely, for each byte δA ∈ δSB that passes through an
S-box, we introduce an integer variable pA. This variable represents the binary
logarithm of the probability to observe the output difference δSA given the
input difference δA. We consider the binary logarithm of the probability (instead
of the probability), in order to avoid rounding errors. As the probability for
Rijndael S-boxes is 0, 2−7, 2−6, or 1, and as we only consider values with non
null probabilities, the values that may be assigned to pA are −7, −6, and 0.

Constraint (C2) of Model 3 relates input differences, output differences and
probabilities for the S-boxes applied on the plaintext, whereas Constraint (C9)
relates them for the S-boxes in the KeySchedule. In both cases, we use a table
constraint which ensures that the triple of variables belongs to a table denoted
TSBOX: This table contains a triple 〈δin, δout, p〉 for each couple of differential bytes
(δin, δout) such that the DDT content for (δin, δout) is different from 0, and such

that p is equal to: log2(#{(X,X′)∈J0,255K2|(X⊕X′=δin)∧(SBOX(X)⊕SBOX(X′)=δout)}
256 ).

Objective function. We introduce an integer variable obj to represent the bi-
nary logarithm of the probability of the differential characteristic. The objective
function is: maximise obj. The actual probability is computed as 2obj .



obj =
∑

δA∈δSB

pA (C1)

obj > LB

∀i ∈ [0, Nr − 1], ∀j ∈ [0, 3], ∀k ∈ [0, Nb − 1],
(C2)

〈δXi[j, k], δSX i[j, k], pXi [j, k]〉 ∈ TSBOX

∀i ∈ [0, Nr − 1], ∀j ∈ [0, 3], ∀k ∈ [0, Nb − 1],
(C3)

δYi[j, k] = δSX i[j, PNb [j] + k mod Nb]

∀i ∈ [0, Nr − 1], ∀k ∈ [0, Nb − 1], ∀j ∈ [0, 3], ∀v ∈ {2, 3}
(C4)

〈δYi[j, k], vδYi[j, k]〉 ∈ TMULv

∀i ∈ [0, Nr − 1], ∀k ∈ [0, Nb − 1],
(C5)

〈2δYi[0, k], 3δYi[1, k], ai[k]〉 ∈ T⊕ 〈δYi[2, k], δYi[3, k], bi[k]〉 ∈ T⊕ 〈ai[k], bi[k], δZi[0, k]〉 ∈ T⊕
〈δYi[0, k], 2δYi[1, k], ci[k]〉 ∈ T⊕ 〈3δYi[2, k], δYi[3, k], di[k]〉 ∈ T⊕ 〈ci[k], di[k], δZi[1, k]〉 ∈ T⊕
〈δYi[0, k], δYi[1, k], ei[k]〉 ∈ T⊕ 〈2δYi[2, k], 3δYi[3, k], fi[k]〉 ∈ T⊕ 〈ei[k], fi[k], δZi[2, k]〉 ∈ T⊕
〈3δYi[0, k], δYi[1, k], gi[k]〉 ∈ T⊕ 〈δYi[2, k], 2δYi[3, k], hi[k]〉 ∈ T⊕ 〈gi[k], hi[k], δZi[3, k]〉 ∈ T⊕

∀i ∈ [0, Nr − 1], ∀k ∈ [0, Nb − 1], ∀j ∈ [0, 3], ∀v ∈ {9, 11, 13, 14}
(C6)

〈δZi[j, k], vδZi[j, k]〉 ∈ TMULv

∀i ∈ [0, Nr − 1], ∀k ∈ [0, Nb − 1],
(C7)

〈14δZi[0, k], 11δZi[1, k],mi[k]〉∈T⊕ 〈13δZi[2, k], 9δZi[3, k], ni[k]〉 ∈ T⊕ 〈mi[k], ni[k], δYi[0, k]〉∈T⊕
〈9δZi[0, k], 14δZi[1, k], oi[k]〉 ∈ T⊕ 〈11δZi[2, k], 13δZi[3, k], pi[k]〉 ∈ T⊕ 〈oi[k], pi[k], δYi[1, k]〉 ∈ T⊕
〈13δZi[0, k], 9δZi[1, k], qi[k]〉 ∈ T⊕ 〈14δZi[2, k], 11δZi[3, k], ri[k]〉 ∈ T⊕ 〈qi[k], ri[k], δYi[2, k]〉 ∈ T⊕
〈11δZi[0, k], 13δZi[1, k], si[k]〉 ∈ T⊕ 〈9δZi[2, k], 14δZi[3, k], ti[k]〉 ∈ T⊕ 〈si[k], ti[k], δYi[3, k]〉 ∈ T⊕

∀i ∈ [0, Nr − 1], ∀j ∈ [0, 3], ∀k ∈ [0, Nb − 1],
(C8)

〈δXi+1[j, k], δZi[j, k], δWK [j, (i+ 1)×Nb + k]〉 ∈ T⊕

∀ω ∈ [Nb, Nb × (Nr + 1)− 1] such that isSbCol(ω), ∀j ∈ [0, 3],
(C9)

〈δWK [j, ω], δSWK [j, ω], pWK [j, ω]〉 ∈ TSBOX

where predicate isSbCol(ω) is ω ≥ Nk − 1 ∧ ω < Nr × (Nk + 1)− 1 ∧
(ω mod Nk = Nk − 1 ∨ (Nk > 6 ∧ ω mod Nk = 3))

∀j ∈ [0, 3], ∀ω ∈ [Nb, Nb × (Nr + 1)− 1],
(C10)

if ω mod Nk = 0 then 〈δWK [j, ω], δWK [j, ω−Nk], δSWK [(j + 1) mod 4, ω−1]〉 ∈ T⊕

elsif Nk > 6 ∧ k mod Nk = 4 then 〈δWK [j, ω], δWK [j, ω−Nk], δSWK [j, ω−1]〉 ∈ T⊕

else 〈δWK [j, ω], δWK [j, ω−Nk], δWK [j, ω−1]〉 ∈ T⊕

Model 3: Step 2 model for Rijndael.

Constraint (C1) of Model 3 ensures that obj is equal to the sum of every pA
such that δA is a byte that passes through an S-box. It also ensures that obj is
strictly greater than the current lower bound LB.

ShiftRows. Constraint (C3) of Model 3 is the straightforward translation of
ShiftRows.

MixColumns. Constraints (C4) to (C7) represent the MixColumns operation. We
introduce new integer variables to represent the result of applying the Galois



Field multiplication to a byte: for each value v ∈ {2, 3}, and each byte δYi[j, k],
the variable vδYi[j, k] is constrained to be equal to v ⊗ δYi[j, k] by the table
constraint (C4), where TMULv contains every couple (δA, δB) ∈ J0, 255K2 such that
δB = v⊗ δA. Then, Constraint (C5) ensures that δZi[j, k] is equal to the result
of xoring four bytes (corresponding to the bytes at column k of δYi multiplied
by the coefficients at row j of M). Again, this is done by using table constraints.
The main novelty with respect to the model introduced in [13] for the AES is
that we do not use a single table containing every tuple of five bytes such that
the xor of these bytes is equal to 0, as this table is very large (240 tuples of five
bytes). Instead, we introduce new variables (denoted ai[k], bi[k], etc), and we
decompose the relation into three constraints such that each constraint ensures
that the xor of three variables is equal to zero. For example, the relation

δZi[0, k]⊕ 2δYi[0, k]⊕ 3δYi[1, k]⊕ δYi[2, k]⊕ δYi[3, k] = 0

is decomposed into the three following constraints:

〈2δYi[0, k], 3δYi[1, k], ai[k]〉 ∈ T⊕

〈δYi[2, k], δYi[3, k], bi[k]〉 ∈ T⊕

〈ai[k], bi[k], δZi[0, k]〉 ∈ T⊕

where T⊕ is the table which contains every triple (δA, δB, δC) ∈ J0, 255K3 such
that δA⊕ δB ⊕ δC = 0. This decomposition allows us to remove some variables
and simplify constraints when we know that some variables are equal to 0. For
example, if ∆Yi[0, k] = 0 in the truncated characteristic, then we infer that
2δYi[0, k] = 0 (because 2⊗ 0 = 0) and ai[k] = 3δYi[1, k] (because 0⊕ δYi[1, k]⊕
ai[k] = 0). Hence, in this case the three previous constraints are replaced with:
〈δYi[2, k], δYi[3, k], bi[k]〉 ∈ T⊕ and 〈3δYi[1, k], bi[k], δZi[0, k]〉 ∈ T⊕.

Constraints (C6) and (C7) are redundant constraints that model the MixColumns−1

operation: They do not change the solutions, but they speed up the solution pro-
cess by allowing the solver to propagate in both forward (from the plaintext to
the ciphertext) and backward (from the ciphertext to the plaintext) directions.

AddRoundKey. Constraint (C8) is a straightforward implementation of AddRoundKey,
using table T⊕.

KeySchedule. Constraints (C9) and (C10) model the KeySchedule. Constraint
(C9) models the S-boxes of the KeySchedule (as described in Section 3.4). Con-
straint (C10) models the xors of the KeySchedule, using table T⊕. Note that
we do not represent xors with constants as they are cancelled by differential
cryptanalysis.

4 Results

The Step 1 model is implemented with the MiniZinc 2.4.3 modelling language7.
This language is accepted by many CP solvers and preliminary experiments have

7 https://github.com/MiniZinc/MiniZincIDE/releases/tag/2.4.3

https://github.com/MiniZinc/MiniZincIDE/releases/tag/2.4.3
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Fig. 1. Comparison of the approach of [13] (in green) with our new approach (in
red), our new approach without MixColumns decomposition (in orange), and our new
approach without exploiting bounds (in purple). Each point (x, y) corresponds to an
AES instance (with Klen = 128 on the left, Klen = 192 on the middle, and Klen = 256
on the right): y gives the CPU time in seconds needed to solve it (logscale) when there
are Nr = x rounds.

shown us that the best performing solver is Picat-SAT8 2.8.6: This solver first
translates the MiniZinc model into a SAT instance and then uses the Lingeling
SAT solver to solve the SAT instance. The Step 2 model is implemented and
solved with the CP library Choco9 v4.10.2.

In Fig. 1, we compare solving times of the approach of [13] with those of
our new approach on the AES instances in order to evaluate the interest of our
two modifications, i.e., (i) the interleaving of Steps 1 and 2 and the active use
of LB and UB to stop the search whenever LB≥UB (see Section 3.2), and (ii)
the decomposition of the MixColumns constraint into 3 smaller table constraints
(see Section 3.4). For this experiment, all runs have been performed on a single
core of an Intel Xeon CPU E3 at 3.50 GHz with 4 cores under a Linux Ubuntu
20.04.1 (Focal Fossa) using at most 16 GB of RAM. There are two instances
for which our new approach needs slightly more time than the approach of [13]:
AES-128 when Nr = 3 (48s instead of 23s) and AES-256 when Nr = 13 (567s
instead of 479s). For the 21 remaining instances our new approach is faster and,
in some cases the difference is very large, e.g., 4, 217s instead of 95, 389s for AES-
128 when Nr = 5, or 5, 163s instead of 30, 059s for AES-192 when Nr = 10. To

8 http://picat-lang.org/download/picat28_6_linux64.tar.gz
9 https://github.com/chocoteam/choco-solver/releases/tag/4.10.2

http://picat-lang.org/download/picat28_6_linux64.tar.gz
https://github.com/chocoteam/choco-solver/releases/tag/4.10.2


evaluate the interest of each of our two modifications separately, we also display
our new approach without (ii), and our new approach without (i). In many
cases, each modification improves the solution process, and the combination of
these two modifications is even better. However, modification (i) deteriorates the
solution process when Nr ≥ 10 for AES-256. This comes from the fact that, for
these instances, the optimal solution is strictly smaller than 2−6·NBsbox so that
the lower bound LB cannot be used to stop the search.

We give in Tables 3 and 4 the results of Algorithm 2 for every key length
Klen ∈ {128, 160, 192, 224, 256}, every block size Clen ∈ {128, 160, 192, 224, 256},
and every number of rounds Nr ∈ J3, xK where x is the maximum number of
rounds authorized (i.e., the maximal number of rounds for which NBSBOX is
smaller than the key length divided by 6 and the number of active S-boxes in the
plaintext part is smaller than the block length divided by 6). For this experiment,
all runs have been performed on a single core of an Intel Xeon E5-2630 v4 at
3.10 Ghz with 10 cores under a Linux Debian 10 (Buster) using at most 16 GB
of RAM (default JVM configuration). This architecture was provided by the
Grid5000 cluster [3].

Please note that there is a slight difference between the model used for Fig. 1
and the model used for Tables 3 and 4. Indeed, the model in [13] ignores the
sboxes of the last round subkey. When the key has 128 or 256 bits, this does not
change anything. However, when the key has 192 bits this may change results.
To allow a fair comparison with [13], we also ignore the sboxes of the last round
key in all models compared in Fig. 1. However, in Tables 3 and 4, we do consider
the sboxes of the last round subkey. Therefore, when the key has 192 bits and
the text 128 bits, some probabilities may be greater than those reported in [13],
e.g., for the instance Rijndael-128-192 with 7 rounds the maximal probability is
2−84 instead of 2−78.

One instance (when Clen = 128, Klen = 160, and Nr = 8) is still not com-
pletely solved at the time we submit the paper, after 38 days of computation.
For this instance, the output value of Step1-opt is 23. Step1-enum has enumer-
ated 7 truncated characteristics with 23 active S-boxes and none of them can be
instantiated into a Step 2 characteristic. So far, we have enumerated 213 trun-
cated characteristic with 24 active S-boxes and none of them can be instantiated
into a Step 2 characteristic. Hence, for this instance the current upper bound is
UB = 2−150. We have computed 189 instances with 25 active S-boxes and 1048
instances with 26 active S-boxes and the smaller probability is LB = 2−160.

All other instances have been solved within a reasonable amount of time: 82
are solved within 1, 000s; 24 need more than 1, 000s and less than 10, 000s (i.e.,
less than three hours); 10 need more than 10, 000s and less than 100, 000s (i.e.,
less than 28 hours); and finally 2 need more than 28 hours and less than 3 days.

In Tables 3 and 4, o1 is the output value of Step1-opt (called at line 1 of Al-
gorithm 2), i.e., the initial value of NBSBOX; p is the output value of Algorithm 2,
i.e., the probability of the optimal related-key differential characteristic; and
time is the total CPU time spent by Algorithm 2 in seconds (this time both in-
cludes the running times of Picat-SAT and of Choco). We also report the number



o2 of active S-boxes in the optimal differential characteristic. In most cases (91
out of 122 cases), o1 = o2 and p > 2−6·(o1+1). In these cases, Algorithm 1 has
enumerated Step 1 solutions for only one value of NBSBOX, and LB became larger
than or equal to UB the first time NBSBOX has been incremented.

In 17 cases (marked with c just after o2), o1 = o2 but it has been necessary to
increment NBSBOX at least once in order to check that no better characteristic can
be found with more active S-boxes. For example, when Clen = 128, Klen = 224,
and r = 9, the best differential characteristic has 22 active S-boxes and its
probability is 2−139. As 2−139 < 2−6·23, Algorithm 1 has incremented NBSBOX in
order to check that it is not possible to have a larger probability (equal to 2−139)
with 23 active S-boxes.

In 2 cases (marked with ! just after o2), o2 ≥ o1 + 1 because none of the
step 1 truncated characteristic with o1 active S-boxes can be instantiated into a
Step 2 characteristic. In these two cases, Algorithm 1 has incremented NBSBOX

in order to enumerate Step 1 solutions with o1 + 1 active S-boxes and find the
best differential characteristic.

Finally, in 13 cases (marked with ↑ just after o2), o2 ≥ o1+1 because a better
characteristic has been found with o1 + n active S-boxes (though at least one
Step 1 solution can be instantiated into a Step 2 solution).



Results when Clen = 128 and Klen ∈ {128, 160, 192}
Klen = 128 Klen = 160 Klen = 192

o1 o2 p time o1 o2 p time o1 o2 p time

Nr = 3 5 5 2−31 13 4 4 2−24 5 1 1 2−6 1
Nr = 4 12 12 2−75 31 5 5 2−30 21 4 4 2−24 6
Nr = 5 17 17 2−105 8,304 10 10 2−60 12 5 5 2−30 8
Nr = 6 17 17 2−108 641 10 10 2−60 17
Nr = 7 19 19 2−120 1,089 14 14 2−84 46
Nr = 8 23 ≥ 24! 2−160 ≤ p ≤ 2−150 > 106 18 18 2−108 83
Nr = 9 24 24 2−146 1,800

Results when Clen = 128 and Klen ∈ {224, 256}
Klen = 224 Klen = 256

o1 o2 p time o1 o2 p time

Nr = 3 1 1 2−6 1 1 1 2−6 1
Nr = 4 3 3 2−18 3 3 3 2−18 3
Nr = 5 6 6 2−36 8 3 3 2−18 5
Nr = 6 8 8 2−48 14 5 5 2−30 13
Nr = 7 13 13 2−78 35 5 5 2−30 18
Nr = 8 18 18 2−112 1,593 10 10 2−60 32
Nr = 9 22 22c 2−139 2,425 15 15 2−92 346
Nr = 10 24 24c 2−151 1,834 16 16 2−98 159
Nr = 11 27 27c 2−169 1,823 20 20 2−122 330
Nr = 12 34 34c 2−212 9,561 20 20 2−122 277
Nr = 13 24 24 2−146 420
Nr = 14 24 24 2−146 557

Results when Clen = 160 and Klen ∈ {128, 160, 192}
Klen = 128 Klen = 160 Klen = 192

o1 o2 p time o1 o2 p time o1 o2 p time

Nr = 3 9 9 2−54 6 5 5 2−30 880 4 4 2−24 4
Nr = 4 18 18 2−112 49,501 10 10 2−60 11 6 6 2−36 7
Nr = 5 17 17 2−107 621 9 9 2−54 15
Nr = 6 21 22! 2−138 36,788 15 15 2−90 62
Nr = 7 19 19 2−117 600
Nr = 8 23 23 2−141 2,059

Results when Clen = 160 and Klen ∈ {224, 256}
Klen = 224 Klen = 256

o1 o2 p time o1 o2 p time

Nr = 3 2 2 2−12 2 1 1 2−6 2
Nr = 4 5 5 2−31 16 4 4 2−24 4
Nr = 5 10 10 2−60 18 6 6 2−36 14
Nr = 6 15 15 2−90 40 12 12 2−72 42
Nr = 7 20 20 2−124 402 15 15 2−93 226
Nr = 8 24 24 2−148 783 20 20 2−124 755
Nr = 9 30 30c 2−190 13,081 23 23c 2−146 2,284
Nr = 10 27 27c 2−169 4,927
Nr = 11 32 32c 2−204 15,497

Table 3. Summary of the best related-key differential characteristics for Rijndael when
Clen ∈ {128, 160}. The time is given in seconds.



Results when Clen = 192 and Klen ∈ {128, 160, 192}
Klen = 128 Klen = 160 Klen = 192

o1 o2 p time o1 o2 p time o1 o2 p time

Nr = 3 9 9 2−54 7 6 6 2−37 20 5 5 2−30 199
Nr = 4 15 15 2−94 92 9 9 2−54 15
Nr = 5 19 19 2−118 183 14 15↑ 2−90 146
Nr = 6 19 19 2−117 864
Nr = 7 25 25 2−153 2,101

Results when Clen = 192 and Klen ∈ {224, 256}
Klen = 224 Klen = 256

o1 o2 p time o1 o2 p time

Nr = 3 4 4 2−24 7 1 1 2−6 2
Nr = 4 8 8 2−48 13 5 5 2−30 10
Nr = 5 15 15 2−95 387 12 12 2−72 84
Nr = 6 16 17↑ 2−103 1,349 17 17 2−106 452
Nr = 7 24 24c 2−157 11,908 18 18 2−112 551
Nr = 8 32 33↑c 2−205 91,983 24 24 2−149 951
Nr = 9 29 29 2−179 3,397
Nr = 10 38 38c 2−236 88,076

Results when Clen = 224 and Klen ∈ {128, 160, 192}
Klen = 128 Klen = 160 Klen = 192

o1 o2 p time o1 o2 p time o1 o2 p time

Nr = 3 9 9 2−54 13 9 9 2−54 9 6 6 2−37 39
Nr = 4 19 19c 2−122 2,742 13 13 2−78 35
Nr = 5 20 20 2−124 1,040
Nr = 6 28 29↑ 2−179 18,632

Results when Clen = 224 and Klen ∈ {224, 256}
Klen = 224 Klen = 256

o1 o2 p time o1 o2 p time

Nr = 3 6 6 2−36 8 4 4 2−24 10
Nr = 4 13 13 2−79 121 8 8 2−48 22
Nr = 5 16 17↑ 2−103 1,562 15 16↑ 2−97 3,267
Nr = 6 23 23c 2−150 1,511 18 19↑ 2−115 5,049
Nr = 7 31 31c 2−196 49,429 20 21↑ 2−128 1,378
Nr = 8 28 30↑ 2−182 18,377
Nr = 9 37 37c 2−241 210,290

Results when Clen = 256 and Klen ∈ {128, 160, 192}
Klen = 128 Klen = 160 Klen = 192

o1 o2 p time o1 o2 p time o1 o2 p time

Nr = 3 9 9 2−54 15 9 9 2−54 13 9 9 2−54 12
Nr = 4 20 21↑ 2−130 4,157 18 18 2−110 824
Nr = 5 24 24 2−148 4,624

Results when Clen = 256 and Klen ∈ {224, 256}
Klen = 224 Klen = 256

o1 o2 p time o1 o2 p time

Nr = 3 6 6 2−37 33 5 5 2−30 34
Nr = 4 18 18c 2−115 65,672 13 13 2−79 276
Nr = 5 28 29! 2−179 455,210 16 17↑ 2−103 3,084
Nr = 6 20 21↑ 2−128 2,170
Nr = 7 27 29↑ 2−176 9,237
Nr = 8 37 37c 2−240 191,581

Table 4. Summary of the best related-key differential characteristics for Rijndael when
Clen ∈ {192, 224, 256}. The time is given in seconds.



5 Attacks

We describe in this section the best attacks we could mount based on the distin-
guishers found in the previous section. More precisely, two particular distinguish-
ers have a real interest in terms of attacks. The first one is an 11-round related-
key differential characteristic distinguisher on Rijndael-128-224 (presented in
Table 5 that allows us to mount an attack on 12 rounds (out of 13) of this ci-
pher. There also exists a 12-round distinguisher for Rijndael-128-224 but due to
its very low probability (equal to 2−127) for the data path, we do not manage to
transform this distinguisher into an attack. And second, we also mount an at-
tack on 12 rounds of Rijndael-160-256 (it has 14 rounds) based on the 11-round
related-key differential characteristic distinguisher (presented in Table 6).

5.1 Attack on 12 rounds of Rijndael-128-224

First, remember that the 12th round of Rijndael-128-224 is the last round for
our attack so it does not contain a MixColumns operation. We base our attack
on the distinguisher presented in Table 5. This distinguisher has a probability
equal to 2−169: 2−103 coming from the state and 2−66 coming from the key.

Round δXi = Xi ⊕X ′i (before SBOX) δRKi Pr(States) Pr(Key)
δSBXi (after SBOX)

i = 0 005D005D 00A300A3 00A300A3 00FE00FE 015C005D 00A300A3 00A300A3 00FE00FE − −
i = 1 01010000 00000000 00000000 00000000 21210001 1F1F0000 1F1F0000 21210000 2−2×6 −

1F1F0000 00000000 00000000 00000000

2 1F1F0001 00000000 00000000 00000000 5D5D0021 A3A3001F A3A3001F FEFE0021 2−3×6 −
A3A3001F 00000000 00000000 00000000

3 0000001F 00000000 00000000 00000000 0000015C 000000A3 000000A3 000000FE 2−6 −
000000A3 00000000 00000000 00000000

4 00001F1F 00000000 00000000 00000000 01013E3E 00001F1F 00001F1F 00002121 22×(−6) 2−6

00001F1F 00000000 00000000 00000000

5 01010000 00000000 00000000 00000000 3E5C0001 1FA30000 1FA30000 21FE0000 2−6−7 2−6−3×7

1FA30000 00000000 00000000 00000000

6 00010001 00000000 00000000 00000000 003E003E 001F001F 001F001F 00210021 22×(−6) 2−6−3×7

001F001F 00000000 00000000 00000000

7 00000000 00000000 00000000 00000000 01010000 00000000 00000000 00000000 − −
00000000 00000000 00000000 00000000

8 01010000 00000000 00000000 00000000 3E3E0001 1F1F0000 1F1F0000 21210000 22×(−6) −
1F1F0000 00000000 00000000 00000000

9 00000001 00000000 00000000 00000000 0000003E 0000001F 0000001F 00000021 2−6 −
0000001F 00000000 00000000 00000000

10 00000000 00000000 00000000 00000000 00000101 00000000 00000000 00000000 − −
00000000 00000000 00000000 00000000

11 00000101 00000000 00000000 00000000 01012121 00001F1F 00001F1F 00002121 22×(−6) 2−6

00001F1F 00000000 00000000 00000000

output 01013E3E 00001F1F 00001F1F 00002121

Table 5. The Best related key differential characteristic we found on 11 rounds of
Rijndael-128-224 with probability equal to 2−169. The four words represent the four
rows of the state and are given in hexadecimal notation. Note that the last round does
not contain the MixColumns operation.



Thus, the attack process is the following one. We submit M = 2103+ε pairs
of plaintexts X and X ′ with the difference specified in the first line of Table 5
under the keys K and K ′ = K⊕ δK with the difference specified in the first line
(second column) of Table 5. Then a possible propagation of the difference is the
one shown in Table 5, and we obtain the corresponding ciphertexts C and C ′.

We know from Table 5 that the output of the 11th round (and the beginning

of the 12th round) is of the form δX12 =


01 01 1F 1F
0 0 0 0
0 0 0 0
0 0 0 0

. After passing through

SubBytes and ShiftRows, it becomes: δSX12 =


? ? ? ?
0 0 0 0
0 0 0 0
0 0 0 0

. From the keysched-

ule, the subkey difference δK12 will be of the form


21 A⊕ 01 A A⊕ 01
1F B B B
1F C C C
21 D D D


where A,B,C and D are unknown difference. Thus the difference between C

and C ′ will be of the form δC =


? ? ? ?

1F B B B
1F C C C
21 D D D

.

So the attack works as follows:

1. We filter on the values 1F , 1F , and 21 at positions (1, 0), (2, 0), and (3, 0)
in δC before the last ShiftRows. It remains 2103+ε−24 = 279+ε pairs of
plaintexts/ciphertexts. Moreover, we know that the three bytes at positions
(1, 1), (1, 2) and (1, 3) must be equal (this remark also holds for the second
and the third rows). This leads to another filter of 48 bits.

2. We guess the byte value of K12 at position (0, 0) with a cost of 28. Then, we
decipher this byte from C and C ′ to check if it is equal to 01 at the input
of the 12th round. Then, it filters 2−8 values. Moreover, the known byte
at position (0, 0) in K12 gives us the difference D (due to the keyschedule
construction).

3. We can guess the byte at position (1, 0) in K12 and check the value at the
input of the 12th round at position (1, 0), by deciphering from C and C ′.
Then, it filters 2−8 values. Moreover, we can compute the difference A.

4. We can guess the three bytes at positions (0, 1), (0, 2), and (0, 3) in K12 and
check the value at the input of the 12th round at the same position knowing
the difference A, by deciphering from C and C ′. Then, it filters 2−24 values.

5. We can guess the byte at position (3, 0) in K12 and check the value at the
input of the 12th round at position (3, 0), by deciphering from C and C ′.
Then, it filters 2−8 values.

6. We can guess the byte at position (2, 0) in K12 and check the value at the
input of the 12th round at position (2, 0), by deciphering from C and C ′.
Then, it filters 2−8 values.



Then, we have guessed 7 bytes of the subkey K12, 56 bits of key, and we have
filtered an equivalent of 72 bits, leading to keep 2103+ε−72 = 231+ε pairs of plain-
texts/ciphertexts. After guessing the 7-byte difference in the subkey K12, δK12

is fully determined. Thus, guessing the bytes of one key state could determine
the bytes of the related-key state.

The related-key differential characteristic given in Table 5 has a probability
to happen for the state part equals to 2−103. Thus, if we use 2104 plaintexts/ci-
phertexts in the related-key differential attack on 12 rounds of Rijndael-128-224,
then the right difference of the 56 bits of the last subkey will be counted at least
twice on average whereas the probability that a bad key appears twice is really
low (around 232−72 = 2−40). The success probability computed using the results
of [23] is around 97%. The time complexity of the attack is about 2105 encryp-
tions and the attack succeeds if the key follows the characteristic described in
Table 5. In other words, we have a set of weak keys of size 2224−66 = 2158.

The 168 remaining bits of the master key can be guessed through guessing
more bytes in K11 and in K12 and filtering according to the remaining values in
δX11 and the SBoxes of the key schedule.

5.2 Attack on 12 rounds of Rijndael-160-256

Round δXi = Xi ⊕X ′i (before SBOX) δRKi Pr(States) Pr(Key)
δSBXi (after SBOX)

i = 0 E094E0E082 7000700041 1400700041 701F9000C3 E000E0E000 7000700041 7000700041 70909000C3 − −
i = 1 0094000082 0000000000 6400000000 008F000000 008282E0E0 0041007070 0041007070 00C3000090 24×(−6) 2−6

0041000070 0000000000 2000000000 0010000000

2 000082D000 0000000000 0000000000 0000000000 00E0828200 0000414100 0000414100 0000C3C300 22×(−7) 2−6

0000414100 0000000000 0000000000 0000000000

3 00E0000000 0000000000 0000000000 0000000000 82E00000E0 0070000000 0070000000 0090000000 2−7 2−6−7

0070000000 0000000000 0000000000 0000000000

4 82000000E0 0000000000 0000000000 0000000000 00828200E0 4100000070 4100000070 C300000090 22×(−7) −
4100000070 0000000000 0000000000 0000000000

5 8282820000 0000000000 0000000000 0000000000 E0E0000082 7070700000 7070700000 9090900000 23×(−6) 23×(−7)

7070700000 0000000000 0000000000 0000000000

6 0000E00082 0000000000 0000000000 0000000000 0000E000E0 0000700070 0000700070 0000900090 2−6−7 −
0000700070 0000000000 0000000000 0000000000

7 0000000000 0000000000 0000000000 0000000000 E082000000 0000000000 0000000000 0000000000 − 2−6

0000000000 0000000000 0000000000 0000000000

8 E082000000 0000000000 0000000000 0000000000 E0E000E000 7070000000 7070000000 9090000000 2−6−7 2−6

7070000000 0000000000 0000000000 0000000000

9 000000E000 0000000000 0000000000 0000000000 000000E000 0000007000 0000007000 0000009000 2−7 −
0000007000 0000000000 0000000000 0000000000

10 0000000000 0000000000 0000000000 0000000000 00E0828282 0000000000 0000000000 0000000000 − 2−6

0000000000 0000000000 0000000000 0000000000

11 00E0828282 0000000000 0000000000 0000000000 82E0E0E000 0070707070 0070707070 00E0E0E0E0 24×(−6) 2−6

0082707070 0000000000 0000000000 0000000000

Output ?????????? 00F20000?? 00F20000?? 000D0000??

Table 6. The Best related key differential characteristic we found on 11 rounds of
Rijndael-160-256 with probability equal to 2−204. The four words represent the four
rows of the state and are given in hexadecimal notation. Note that the last round does
not contain the MixColumns operation.



In the same way, from the related-key differential characteristic distinguisher
on 11-round of Rijndael-160-256 presented in Table 6, we can easily mount a
12-round attack against Rijndael-160-256 that has 14 rounds. Note that the
12th round does not contain the MixColumns operation as it is the last round
of our attack. The 11-round related-key differential characteristic distinguisher
presented in Table 6 has a probability equal to 2−204: 2−128 coming from the
difference in the state and 2−76 coming from the key.

Thus, the attack process is the following one. We submit M = 2128+ε pairs
of plaintexts X and X ′ with the difference specified in the first line of Table 6
under the keys K and K ′ = K⊕ δK with the difference specified in the first line
(second column) of Table 6. Then a possible propagation of the difference is the
one shown in Table 6. Then, we obtain the corresponding ciphertexts C and C ′.

Then, we know from Table 6 that the output of the 11th round (and the
beginning of the 12th round) is of the form

δX12 =


82 FF 0 0 E0
0 F2 0 0 0
0 F2 0 0 0
0 ED 70 70 70

. After passing through SubBytes and ShiftRows,

it becomes: δSX12 =


? ? 0 0 ?
? 0 0 0 0
0 0 0 0 ?
? ? 0 ? ?

. From the keyschedule, the subkey differences

δK12 will be of the form


82 0 82 0 F
A A A A D
B B B B E
C C C C E0

 where A,B,C,D,E and F are un-

known difference. Thus the difference between C and C ′ will be of the form

δC =


? ? 82 0 ?
? A A A D
B B B B ?
? ? C ? ?

.

So the attack works as follows:

1. For all the 2128+ε encrypted pairs of plaintexts/ciphertexts, we filter on the
values 82 and 0 at positions (0, 2) and (0, 3) in δC. This filters 2−16 values.
Then, it remains 2112+ε encrypted pairs of plaintexts/ciphertexts.

2. We guess the three bytes at positions (1, 4), (2, 4), and (3, 4) in K11 for a
cost of 224. This gives us the values of differences A, B and C. With those
known values, we filter on δSX12 on the 8 positions that are equal to 0 after
removing A, B, and C (positions (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (2, 3)
and (3, 2)). This filters 2−64 values.

3. We guess 6 bytes of K12 (those at positions (0, 0), (0, 1), (1, 0), (3, 0), (3, 1)
and (3, 3)). We filter the corresponding 2−48 values on δX12 (before the
SBOXes) at the same positions.

4. We guess the byte at position (2, 3) in K12 to get one new byte in δK12 at
position (1, 4) equal to D and check if the difference is equal to 0 at position
(1, 4) in δX12. It filters 2−8 values.



5. We guess the byte at position (3, 4) in K12 to filter one byte of value in δX12

at position (3, 4). We guess another byte at position (2, 4) in K12 to filter
the byte value at position (2, 4) in δX12. And finally, we guess the two bytes
at positions (1, 3) and (0, 4) in K12 to filter the byte value at position (0, 4)
in δX12.

We have guessed a total of 112 key bits and we have filtered, in the initial
step 16 bits and the equivalent of 32 bits in the second step and the last step
leading to stay with 280+ε pairs of plaintexts/ciphertexts.

The related-key differential characteristic given in Table 6 has a probability
to happen for the state part equals to 2−128. Thus, if we use 2129 plaintexts/ci-
phertexts in the related-key differential attack on 12 rounds of Rijndael-160-256,
then the right difference of the 112 bits of the last subkey will be counted at least
twice on average whereas the probability that a bad key appears twice is really
low (around 281−112 = 2−31). The success probability computed using the results
of [23] is around 97% also. The time complexity of the attack is about 2130 en-
cryptions and the attack succeeds if the key follows the characteristic described
in Table 6. In other words, we have a set of weak keys of size 2256−76 = 2180.

The 144 remaining bits of the master key can be guessed through guessing
more bytes in K11 and in K12 and filtering according the remaining values in
δX11 and the SBoxes of the key schedule.

6 Conclusion

In this paper, we have extended and improved the models initially proposed
in [13] for the AES to the 25 instances of Rijndael. This allowed us to compute
optimal related-key differential characteristics for all Rijndael instances but one
(and provide upper and lower bounds for the remaining one). We sum up in
Table 7 the best attacks described in this paper.

Instance Nb rounds Nr Time Number of keys

Rijndael-128-224 12 13 2105 2158

Rijndael-160-256 12 14 2130 2180

Table 7. Summary of the best related-key differential attacks we found on different
Rijndael instances. The last column displays the number of keys for which the attack
works.

Those results are obtained using a two-step strategy that is feasible in terms
of memory usage and time consumption. This strategy is modelled in MiniZinc,
and it is solved by combining two solvers: Picat-SAT for Step 1 and Choco
for Step 2. It essentially means that we could today automate a big part of
cryptanalysis through the use of generic solvers: we have gone from the artisan
age of cryptanalysis to its industrial age.
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