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Abstract—In order to build an intelligent dental care process
that both facilitates the treatment and improves the diagnosis,
an accurate tooth segmentation and recognition on panoramic
X-ray images might prove helpful. Although many studies have
been conducted on teeth segmentation, few methods allow to
perform tooth recognition and numbering at the same time. The
existing methods allowing both those processes rely on instance
segmentation architectures. To fill some gaps in the area of dental
image segmentation, we propose a novel approach of automatic
joint teeth segmentation and numbering using the pioneer U-
Net model. We are first to employ the conventional U-Net model
and show its limitations to provide accurate segmentation, being
affected by noisy pixels outside the teeth region and by missing
teeth in the X-ray images. To overcome this problem and reduce
the misclassifications, we use a bounding box prior at the level
of the skip connections. Such an approach helps guiding the
network to better locate the teeth, and hence improves the
segmentation. To validate the effectiveness of the method, we
have conducted two experiments on the DNS Panoramic Dataset:
a first one using manual bounding boxes and another one relying
on a preliminary step of object detection. The implemented
networks were evaluated using the Dice coefficient index and our
results showed that consideration of location information onto
the skip connections improves the performances of the semantic
segmentation by 5% to 10% in average Dice accuracy depending
on the quality of the bounding box labels.

Index Terms—Panoramic X-ray images, Teeth segmentation,
U-Net, location prior, deep learning.

I. INTRODUCTION

In order to formulate a diagnosis of oral diseases, panoramic
X-rays are important tools for dentists to visualize the struc-
ture, shape and position of each tooth and confirm or discard a
particular diagnosis such as a fracture, infection, tooth loss or
simply to detect any previous dental treatment. The limitations
of the image acquisition modality; its resolution, a bad contrast
balance or the presence of high amplitude noise in panoramic
X-rays can make the interpretation quite challenging and lead
to some errors in formulating the diagnosis. So, providing an
automatic analysis of panoramic X-ray images has become
crucial in the dentistry community as it can increase the

diagnosis accuracy while reducing the screening time and thus,
the medical costs. One of such aids to dentists is medical
image segmentation, which consists in the classification of
each image pixel into an object of interest.

In the field of teeth segmentation, several unsupervised
pixel-wise segmentation [1] approaches have been developed,
mostly using intra-oral images (periapical or bitewing radio-
graphs). Very few works have been conducted on panoramic
X-ray images, including region-based [2], threshold-based [3],
cluster-based [4], or boundary-based [5] methods. Silva et
al. [1], provides an interesting overview of 10 classical
methods on dental imaging segmentation. They created a
dataset of 1500 panoramic X-ray images, called UFBA-UESC
Dental Images Dataset, on which they tested the previously
cited methods. Unfortunately, they conclude that classical
segmentation solutions failed to completely isolate the teeth
from neighboring bone parts present inside the mouth.

Encouraged by their recent success on various computer
vision tasks, they proposed Convolutional Neural Networks
(CNN) for teeth segmentation. In [1], the authors propose
separating the whole dental arch from the background using
deep learning. This solution surpassed most of the traditional
methods considerably. Jader et al. [6], investigated teeth seg-
mentation and detection on a modified version of the previ-
ously mentioned dataset using a Mask R-CNN [7] solution
to carry out an instance segmentation task. However, all teeth
were classified into a single category, and thus independent
tooth recognition was not considered. Koch et al. [8] trained a
semantic segmentation network using the pioneer U-Net [9],
with a patching scheme strategy and obtained good results at
detecting the foreground class (presence of teeth). However,
again, this approach does not allow an independent tooth
extraction / recognition.

Indeed, most of the recent teeth segmentation methods that
can be found in the literature [10], [11] are devoted to one-
class segmentation, i.e. all teeth are classified into one single
category, thus ignoring both the morphological properties and



Fig. 1. FDI tooth notation

the independent tooth position. However, the teeth numbering
is crucial for composing the odontogram of a patient and
facilitate the diagnosis. The odontogram, or dental chart, is a
diagram used by dentists to record all the needed information
concerning a patient’s set of teeth. On this chart, not only are
the patient’s teeth (or absence of teeth) represented, but also
all the treatments the patient underwent. An adult commonly
has 32 teeth, which are classified according to their locations
(upper left, upper right, lower left and lower right quadrants
of the panoramic X-ray) and positions (1 to 8 from incisors to
molars). Fig. 1 shows the FDI World Dental Federation tooth
notation.

It is quite challenging to come up with a computer vision
strategy that will be able to precisely recognize and locate
each of the 32 teeth on panoramic X-rays as such radiographs
commonly suffer from a very large variability, due to a rather
high amplitude noise or even low contrasts. Moreover, within
each category (incisors, canines, premolars and molars), the
teeth may sometimes be quite difficult to differentiate for
non experts. Their shapes are very close, their grey level
amplitudes are in the same range, and the position information
can be misleading, as a missing tooth might lead its neighbor
to shift and occupy its site. Aside from the teeth arrangement,
which can vary significantly from person to person, two
consecutive teeth can share some restorations and can be of
very close proximity if not even overlapping on the X-ray
image. This leads us to question CNN’s ability to differentiate
two distinct teeth sharing the same morphology and same pixel
values. To automatically segment, detect and number the teeth,
Silva et al. [12] proposed instance segmentation methods using
4 different architectures, namely, PANet, HTC, ResNeSt and
Mask R-CNN, and obtained very good performances.

In this work, we propose a different approach, where by
using semantic segmentation we are able to accurately segment
the image and locate the teeth positions, and thus, we can
efficiently number the teeth in a panoramic X-ray using a U-
Net based architecture. The latter is known for its ability to
improve the effect of fine-grained segmentation compared to a
Fully Convolutional Network (FCN) [13] segmentation head,
used in instance segmentation.

In order to increase the segmentation accuracy and reduce
the misclassification of some teeth positions, we exploit the
use of spatial prior onto U-Net training. For instance, recent
works have studied the integration of prior knowledge, such as

the shape or location of objects, used as constraints, in order
to improve CNN’s performance [14]–[21]. For example, Zotti
et al. [14] proposed extracting the cardiac center of mass by
adding a regression model onto the bottleneck of U-Net. In
[18], the authors injected multi-scale patches extracted from
the image into their network to incorporate spatial information.
In this context, we explore the effect of injecting the tooth
location information by introducing a bounding box prior at
the level of the skip connections [21].

This paper is structured as follows: in section II, we provide
some details on the modified U-Net architecture, show how
it considers the teeth location for an optimized segmentation
task. In section III we analyze improvements of the perfor-
mances brought by this spatial localization addition onto the
skip connections compared to an original U-Net model and
finally, section IV concludes our work.

II. METHOD

In this section, we present the pipeline of our method. The
architecture of the semantic segmentation model is described
as well as the used prior knowledge supervision technique.

A. U-Net Architecture

As previously mentioned, the architecture of our method is
based on the U-Net model, which is widely used for medical
image semantic segmentation as it can achieve very good
performances while relying on small sets of training data.
As inputs, our model takes some images of size 512 × 1024
and at the output, produces a pixel-wise probability prediction
for 33 classes; a separate class is dedicated to each tooth
position (that is 32 classes), the last one being allocated to
the background.

The U-Net architecture has a symmetric encoder/decoder
structure with bottleneck and skip connections. We have
chosen a 4 stages U-Net architecture. Each stage in the
encoder consists of two successive convolutional blocks sep-
arated by max pooling layers in order to reduce the feature
resolution, while each stage of the decoder consists of a
transposed convolution followed by two convolutional blocks.
Each convolutional block contains a 3×3 convolutional layer, a
batch normalization layer and a Rectified Linear Unit (ReLU)
activation. The last layer is a 1 × 1 convolution followed
by a softmax activation function that produces the pixel-wise
probability map. The encoder layers extract contextual infor-
mation or features present in the image. On the other hand,
the decoder layers are dedicated to determine the localization
of the patterns and recover the image maps with their original
input size. In order to combine both contextual and positional
features, the skip connections are used between the encoder
and the decoder.

Despite its success in incorporating global features via its
symmetric architecture and the use of skip connections, the U-
Net model has some limitations when incorporating location
information, as we will see below. The way to address this
issue is through the integration of prior information and more
specifically, location prior, into the model architecture. In this



Fig. 2. Network architecture.

work, we adopt integrated location prior information into the
learning process via bounding boxes at the level of the skip-
connections, as introduced by [21].

B. Modified U-Net architecture

In this work, we adopt a very recent U-Net adaptation, the
BB-Conv layer introduced by Rosana et al. [21]. A BB-Conv
layer is composed of 2D max pooling layers followed by
2 convolutional layers. Bounding boxes relative to different
teeth are fed independently through a multi-channel binary
map onto the BB-Conv layer that gives, as an output, a
feature map helping the network to improve the localization
of a given tooth. The BB-conv layers are introduced onto
each skip connection as shown in Fig. 2. At each stage, an
element-wise multiplication is performed between the output
of the BB-conv layer and the input features from the encoder
before being concatenated with the features issued by the
deconvolutional layers of the decoder. To distinguish this new
network architecture from the original U-Net, in the following,
it will be referred as the Modified U-Net.

C. Generating bounding boxes

In order to assess the effectiveness of the proposed model,
two techniques are used to generate the bounding boxes.
In the first case, the bounding boxes for each tooth were
generated from the ground-truth as the smallest bounding
box framing the tooth’s mask. As we used manual bounding
boxes for both our training and inference tasks, this setup
supposedly provides the best results that can be reached, in the
following it will be denoted as Optimal U-Net. Evidently, this
approach only intends to prove the feasibility of the method
and provide a glimpse of the best segmentation results one can
reach. It isn’t feasible in real world applications, as of course,
the manual segmentation is not available. Ideally, automatic

bounding boxes should be generated using an object detection
framework for the training and inference steps. Our proposed
system here is based on a region proposal approach, namely,
the state-of-the-art Faster R-CNN model [22]. A Faster R-
CNN is a single unified network consisting of two stages: the
Region Proposal Network (RPN) which proposes regions of
interest (ROIs), in which an object can be localized, and the
ROI classifier that identifies which category an object belongs
to and refines the bounding box generated by the RPN. As an
extension of the Faster R-CNN, the Mask R-CNN introduces
a parallel branch (or the mask branch) to the network in
order to carry out instance segmentation. For the sake of
comparison between segmentation masks, we propose directly
using bounding box coordinates predicted by the classification
branch of the Mask R-CNN network to be fed onto the skip
connections of our Modified U-Net, rather than training a
separate Faster R-CNN network.

D. Pipeline of the Proposed method

We have developed a two-steps process for teeth segmen-
tation using a Modified U-Net architecture. In the first step,
we train a Mask R-CNN model to locate the teeth, and more
precisely, to extract bounding boxes of each positional tooth.
In the second step, we train a Modified U-Net network using
the predicted bounding boxes from the first step.

III. EXPERIMENTAL RESULTS

Let us now give some details on the dataset composition,
provide some information on the training step and show the
performances our approach can achieve.

A. Dataset

The DNS Panoramic images from IvisionLAB [12] were
used. This dataset contains 543 images of size 1127 × 1191
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Fig. 3. Dice coefficients (a) and (c) and Standard Deviations (b) and (d) for U-Net, Modified U-Net, and Optimal U-Net configurations ((a)&(b): teeth from
the upper jaw, (c)&(d): lower jaw).

annotated with the tooth numbering (FDI notation, i.e. position
label) using the Coco format. The images can be divided into
8 categories regarding the presence or absence of all teeth in
images, of restorations and appliances (please refer to [12] for
a detailed description of different categories).

Mask R-CNN and U-Net models were trained using a 4-fold
cross validation. In total, 111 images were retained to build
the test set and the rest of the images were divided into 4 folds
(108 images each) thus composing the train and validation data
in a cross-validation fashion.

B. Object detection training procedure

Our experiments are based on the open source implemen-
tation of Mask R-CNN [23]. We also benefit from transfer
learning using pre-trained weights taken from the MS COCO
dataset. The network’s backbone was ResNet-101. We used
the stochastic gradient descent optimizer with a learning rate
of 0.001 and momentum of 0.9. For each combination of
train/validation data, we trained a Mask R-CNN network using
a batch size of 1 for 80 epochs (the validation loss didn’t de-
crease after 80 epochs for any of the 4 networks). For training
and inference, we set a detection score threshold at 0.05 to
filter out all predictions with low confidence. Additional details
of the several hyperparameters and parameters related to the
implementation can be found in [23]. The performances of the
object detection task were evaluated using the mean Average
Precision (mAP), i.e. the average of the Average Precisions
calculated for all tooth classes with the traditional IoU (In-
tersection over Union) of 0.5 [24]. The mAPs of 4 trained
neural networks (of 4-CV) on their respective validation data
are 0.983, 0.963, 0.980 and 0.970 respectively. These results
are comparable to the performances reached by previous works
on teeth detection and numbering [12], [25], [26] and show
that the object detection network performs very well, and most
importantly, is consistent across the validation dataset.

After obtaining all of the bounding boxes and before train-
ing our Modified U-Net, for every image in our dataset, we
choose one box to be selected per class at most, i.e., the box
presenting the highest confidence score, based on the natural
assumption that each tooth can occur in the image only once.

C. Loss function and model training

We use Dice loss as the criterion to optimize the U-Net
model parameters. This loss is widely used in medical image
segmentation and is defined as :

Ldice = −
1

C

C∑
c=1

2
N∑
i=1

pc(i).gc(i)

N∑
i=1

pc(i)
2
+

N∑
i=1

gc(i)
2

where N is the number of pixels in the image, C represents
the number of class labels, pc(i) is the predicted probability
of class c at pixel i and gc(i) ∈ {0, 1} represent the ground-
truth label at position i. Note that C = 33 as we take into
account the background class in the computation of the Dice
loss; The idea is to improve the ability of the model to detect
the boundaries of each tooth.

In order to study the effectiveness of the proposed method,
we conducted three different experiments using three different
model settings : a classical U-Net, a Modified U-Net with
bounding boxes generated by Mask R-CNN and an Optimal
U-Net described earlier. When building our dataset, we re-
sized the images to 512 × 1024 pixels. For all three U-Net
configurations, we used 64 feature maps in the highest stage.
The number of feature maps double with each downsampling
step until it reaches 512 within the fourth stage and within
the bottleneck. Moreover, the Adam optimizer is used to train
our model with an initial learning rate of 0.0001. We set the
number of training epochs to be 60 with a batch size of 2.
The learning rate was halved each 15 epochs if the validation
performance did not improve.

D. Quantitative Results

Fig. 3 shows the overall results of the proposed method in
terms of average Dice coefficient index (%) and its standard
deviation for each tooth position from the cross validation step.

We observe that the Modified U-Net configuration con-
sistently outperforms the original U-Net model for all teeth
classes. Evidently, the Optimal U-Net model offers even better
performances. The Optimal U-Net surpasses the other two
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Fig. 4. DICE coefficients for the three tested CNN architectures and for the
four distinct teeth types. Results obtained from the test set (composed of 111
images).

models with an average dice index of 94.5% and with minimal
standard deviations. This confirms the importance of properly
integrating location knowledge onto the model structure. The
performance gap between the Optimal and the Modified U-Net
is due to the inaccuracies between the ground-truth bounding
boxes and the ones detected by the Mask R-CNN network.

The quite large Dice score difference between the original
U-Net and the Modified U-Net comes from the detection inac-
curacies of the molar teeth. The inclusion of prior information
via the bounding boxes onto the skip connections increases
the dice accuracy by over 11% on tooth #46, 10% on teeth
#28 and #36, 9% on tooth #16 and by 8% on teeth #18
and #38. This stems from the fact that the original U-Net
model suffers from a misclassification issue on panoramic
X-ray images with noisy pixels, degraded teeth and most
importantly, missing teeth. The positional information carried
by the bounding boxes guarantees that all teeth are located
nearby their correct location. Finally, the Modified U-Net
and U-Net architectures achieve an average Dice accuracy of
89.5% and 85% respectively.

Following the same protocol, we computed the Dice metric
using the test data set. Using unseen data, the Optimal U-Net
offered the best performances with an average dice score of
94.49% followed by the Modified U-Net with an average Dice
of 90%. Unsurprisingly, the U-Net model exhibits the worst
Dice coefficient with an average of 86%. Fig. 4 summarizes
the average and the boundaries (error bars) of the Dice ratio for
each architecture with respect to the tooth type. As it can be
observed from this Figure, the Original U-Net performances
significantly decrease from incisors (0.89) to molars (0.82).
This is due to teeth being segmented wrongly as one of their
(missing) neighbors, which mostly occurs for premolars and
molars. It is worth noting that 2.7% of incisors, 2.9% of
canines, 3.8% of premolars and 7.9% of molars were missing
in our test set (composed of 111 X-rays). The Modified U-
Net presents a much smaller decrease in Dice ratio (0.91
for incisors, down to 0.88 for molars) explained by the rare
miss-labeling of teeth by the object detection model. This
can be clearly observed from Table I and Fig. 5. Among
the 36 detected miss-classified teeth, 29 occurred nearby

TABLE I
RESULTS OF THE OBJECT DETECTION TASK (MASK R-CNN) ON THE TEST
SET USING THE BEST NETWORK SOLUTION ACCORDING TO MAP. TOOTH
DETECTION AND NUMBERING IS DONE USING BOUNDING BOXES AND AN

IOU THRESHOLD OF 0.5

Count
Total Number of teeth 3382

Detected and correctly classified 3333
Miss-classified detections 36

Missed detections 13

Fig. 5. Sub-matrix of the confusion matrix for a 0.5 IoU detection threshold
on the test dataset, corresponding to molar teeth.

molar teeth. However, the Optimal U-Net maintains consistent
performances (0.94) across the different tooth types. These
results confirm, once again, the importance of integrating some
geographic location information into the segmentation task.

E. Qualitative results

In Fig. 6, we show some typical segmentation results
produced by both the U-Net and our proposed Modified U-Net.
Compared to U-Net, the Modified U-Net avoids segmenting
surrounding tissues as teeth (the first row), most importantly,
it avoids classifying pixels from one class (one tooth) into 2
or more classes (the second row). This mainly occurs when a
tooth is degraded or missing. The third row shows an example
of a false segmentation also occurring with the Modified U-Net
due to a mislabeling of tooth position by the object detection
network (tooth number 37 being labeled as number 38).

F. Comparison with instance segmentation

U-Net (or some of its derived forms) is among the gold
standards for biomedical image segmentation, as it presents
a high robustness despite a noisy image context. However,
several works propose instance segmentation using the Mask
R-CNN architecture on medical images [27]–[29] as the latter
offers interesting performances for some problems that require
a sense of a whole object segmentation rather than focusing



(a) Original scan (b) Ground Truth (c) U-Net (d) Modified U-Net

Fig. 6. Examples of the segmentation results using the U-Net (c) and Modified U-Net (d) architectures.

on individual pixels only. In fact, R-CNN (Region Based
Convolutional Neural Networks) were initially developed for
object detection purposes. The Mask R-CNN extends the
Faster R-CNN by adding a branch, the purpose of which,
is to predict the object mask, hence providing segmentation
capabilities. However, at the pixel-level, the segmentation task
of Mask R-CNN is performed by FCN, which is less accurate
than U-Net especially for small datasets. To address this issue,
the Modified U-Net combines the performance of U-Net with
the advantage of an object detection step. For a thorough
evaluation of our method and an exhaustive comparison with
state-of-the-art approaches, we hereby compare our results
with the segmentation masks obtained by the mask branch
of Mask R-CNN. Table II shows that the Modified U-Net
provides higher performance in terms of dice coefficient (2
percentage point) than Mask R-CNN for all teeth types.

Finally, it is important to note that the Modified U-Net can
be used easily with faster object detection approaches than
region proposed methods such as the one stage detectors [30]–
[32]. This method has the potential for practical and faster
application for automated dental analysis, but further investi-
gation is needed to assess its precision. On the other hand, one
stage detectors are not quite suitable for instance segmentation
as the mask branch incorporation is not straightforward.

TABLE II
PERFORMANCE COMPARISON OF OUR METHOD WITH MASK R-CNN ON

THE TEST SET

Model Avg Dice(%) per class
Network Incisors Canines Premolars Molars

Mod U-Net 91.55 91.00 90.00 88.58
Mask RCNN 89.56 89.45 88.70 87.55

IV. CONCLUSION

The vast majority of the research works on teeth detection
and segmentation focuses on periapical or intraoral radio-
graphs. Few works are devoted to the panoramic X-rays, as
such radiographs unfortunately often suffer from a poor quality
(high noise, unbalanced contrasts, etc.). The segmentation
of panoramic X-rays is very challenging. In this work, we
propose an automatic teeth segmentation and numbering using
the Modified U-Net model that integrates location prior by
connecting bounding boxes to the skip connections. We have
demonstrated effectively that it is crucial to incorporate some
geometric localization information into the U-Net, in order
to improve its performances and avoid false segmentation
occurring on panoramic images with noisy surrounding pixels,
degraded or missing teeth. Experiments showed an increase
of the Dice coefficient index for all teeth classes with an
average increase of 5% and which can go up to 10% for
an Optimal U-Net. Furthermore, the proposed segmentation
scheme is superior to the Mask R-CNN segmentation in terms
of the Dice coefficient. As the Modified U-Net depends on
bounding boxes generated by an object detection approach,
the future steps include using or developing an optimized
object detection algorithm that minimizes the shift between
the detected vs. ground-truth bounding boxes.
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