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Abstract—An accurate detection of intracranial aneurysms is
of paramount importance for a timely diagnosis and a possible
treatment. Indeed, intracranial aneurysms (ICA) need to be
detected at an early stage, and their evolution must be closely
monitored before any treatment becomes hazardous. Numerous
methods have been proposed to detect ICA either on Digital
Subtraction Angiography (DSA) on Computed Tomography An-
giography (CTA), or Magnetic Resonance Angiography (MRA)
Time-Of-Flight (TOF) modalities. In the present study, we are
particularly interested in the saccular ICA occurring onto the
vascular tree’s bifurcations, and we specifically focus our research
on MRA-TOF acquisitions. We propose a synthetic model of
both the artery bifurcation and the aneurysm itself. We are
able to very accurately model some vasculature bifurcations as
they are represented on TOF acquisitions. Their geometrical
disposition, the various background noises and the aneurysm’s
shapes and positions are rigorously reproduced. The purpose of
this approach is to alleviate the burden of a ground-truth manual
segmentation commonly required when using deep-learning for
object detection or semantic segmentation. Our model is highly
configurable and intends to produce vast datasets used to feed a
Convolutional Neural Network (CNN) for the automatic detection
and segmentation of the saccular ICAs. In this preliminary study
we only intend to propose a model for 3D aneurysm-bearing
bifurcations. Evidently, a thorough evaluation of the model’s
accuracy is conducted. A preliminary experiment was conducted
on a reduced dataset in order to assess the applicability of
our bifurcation model. In future works, we will enhance the
bifurcation model and propose an in-depth evaluation via Deep
Learning methods.

Index Terms—intracranial aneurysm detection, synthetic bi-
furcation model

I. INTRODUCTION

Intra-Cranial Aneurysms (ICA) are arterial hernias forming
onto the brain vasculature. The formation of the aneurysm is
painless, the patient has no way of suspecting the presence
of an ICA on its vascular tree. The aneurysm itself does not
cause any symptoms whatsoever, nevertheless, it is crucial to
detect and monitor the said aneurysms, indeed the risk comes
when an ICA ruptures. Effectively, the consequences of the
rupture are devastating, it causes bleeding around the brain
(subarachnoid hemorrhagic stroke). A ruptured aneurysm is

life threatening, and if not causing immediate death, it can
provoke some serious brain damage. Mortality rate due to
a ruptured aneurysm has been estimated as high as 65%.
Moreover, in case of a patient survival, a loss of various
brain functions can result from the induced subarachnoid
hemorrhage [1]. Thus, it is crucial to efficiently detect and
monitor the ICA. The preferred imaging modalities used to
inspect the vascular tree in search for ICA are the Digital
Subtraction Angiography (DSA) or Time-Of-Flight (TOF)
Magnetic Resonance Angiography (MRA). DSA provides a
very high-quality representation of the vascular tree, and hence
of the eventual aneurysms it may hold [2]. However, the DSA
implies the injection of contrast liquid within the blood system
and is an invasive imaging. DSA acquisitions benefit from a
much better resolution, at the expense of the contrast liquid
injection, and moreover, such imagery only displays a single
hemisphere of the brain. The vascular tree can very easily
be extracted from the DSA volume, as the background noise
is significantly weaker than the contrast liquid being imaged.
Contrary to the DSA, the MRA-TOF acquisitions are much
noisier; apart from the vascular tree, various matters appear
on the image: the grey/white matter, the Cerebro-Spinal Fluid
(CSF), the ventricle, the corpus callosum, all such portions of
the brain exhibit varying radio-opacities, and hence a different
grey level onto the resulting acquired volume. Both a DSA and
a TOF segmentation are shown on Fig 1; an aneurysm can be
observed on each of these acquisitions.

Although the ICA can easily be spotted on the 3D binary
segmentations (see inside the red circles), it is a much more
tedious and complex task on the original acquisitions. Fig. 1
(bottom row) represents a single slice of the DSA and TOF
acquisitions, again the aneurysms are circled in red. Browsing
through an entire 3D MRI volume in search for an aneurysm
(which sometimes can be rather small) is time consuming and
tedious. Of course, one might consider making a diagnosis
on the segmented volume, which would be much faster,
but unfortunately, although some recent progress on image
segmentation (especially thanks to deep learning approaches)



leads to better segmentation performances, there is still ample
room for improvements. One cannot always fully trust the
resulting segmented images, especially when the ICA can
occur in hyposignal (e.g. -partially- treated aneurysms for
instance). In this work, we are only interested in Unruptured
ICAs (UIAs).

(a) 3D DSA (segmented (b) 3D TOF (segmented)

(c) 2D DSA slice (d) 2D TOF slice

Fig. 1. 3D segmented stacks, along with a example of 2D slice for DSA
(left) and TOF (right) acquisitions.

ICA can present themselves in two different shapes, the
fusiform aneurysms are identified by a local swelling of the
artery, whereas the saccular aneurysm (also known as berry
aneurysms) forms a spherical protrusion. This latter form
is predominant in the brain vascular tree, they represent up
to 90% of all brain aneurysms. Moreover, such ICA most
commonly occur on a specific structure of the vasculature
named the “Circle of Willis” [3], [4]. Some studies claim that
about 85% of the ICAs occur along this particular pattern of
the vascular tree [5]. Moreover, the saccular aneurysms most
often arise onto a bifurcation of the arterial tree. Indeed, the
fluid motion within the arteries presses the blood against the
arterial wall, which, if weakened (by a genetic predisposition,
or various environmental factors), will entail the aneurysm
formation.

The efficient detection and segmentation of unruptured
intracranial aneurysms is a matter of great concern, many
studies have been devoted to this task throughout the last few
decades. The vast majority of the researches being conducted
on ICA detection focus on DSA images [6], [7], fewer works
have been devoted to MRA-TOF acquisitions. Furthermore,
although ICA detection is a widely studied field [8], the
aneurysm segmentation is more marginally investigated [9],
[10]. Authors in [11] used a Bayesian optimized filter for the
automatic detection of ICA on DSA acquisitions. Quite often,

the authors turn to 2D projected images [8], such as Maximum
Intensity Projection (MIP) for various tasks of pattern recog-
nition, as such 2D projections offers a better contrast. In [12]
a two-stage CNN architecture was used to detect intracranial
aneurysms on 2D-DSA images. Deep Learning methods have
been employed for aneurysm detection as well. Works in [13]
for instance intended to detect ICAs within MRA-TOF us-
ing a CNN. The authors exploited 85 datasets of patients,
which represented a total of 115 intracranial aneurysms. They
relied on manual annotations of this whole dataset to train
their system. It is stated in the paper that 60 examinations
were performed on a 3T Siemens scanner, while 12 were
performed on a 1.5T Siemens scanner. Similarly, in [14],
works have been conducted to detect and segment intracranial
aneurysms on CT-Angiography, but the aneurysms were to be
found in the particular context of aneurysmal subarachnoid
hemorrhage, which means that the rupture already took place.
However, again, manual segmentations were conducted by
neurosurgeons and radiologists on a large panel of patients
(68 for training and 185 for the evaluation step). As far as
Deep Learning is concerned, manual labeling is most often
unavoidable. This indeed, is the problem we expect to tackle
using our approach. Effectively the manual annotation of 3D
volumes is a rather tedious task, and moreover, if this dataset
was constituted of one single acquisition source (e.g. one MRI
scanner from a given University hospital), then, the trained
neural network might end up being inefficient on different
acquisitions (different magnetic field strength, implying a dif-
ferent resolution, background noise or contrast). A challenge
has very recently been organized in order to compare some
state-of-the-art methods from the literature [10]. A training
set was composed of 113 cases, whereas a test set was made
of 141 cases, holding respectively 129 and 153 unruptured
ICA. Both detection and segmentation tasks were targeted.
The authors conclude that “Methods for UIA detection and
segmentation are encouraging but require further development
before being able to be accurately used to detect, segment and
quantify UIAs automatically”. We believe that, by providing
huge image datasets, it might be possible to increase the
detection and segmentation performances. If the CNN could
learn on thousands or even tens of thousands of 3D volumes
instead of only a few hundreds, significant improvements
might be achieved.

The saccular bifurcation aneurysms being predominant onto
the cerebral arterial tree, and more particularly onto the tree’s
bifurcations, this work focuses on this particular disposition.
In this study, we aim to propose some means to automati-
cally detect and segment the unruptured saccular intracranial
aneurysms on MRA-TOF acquisitions. We propose to build
up a full model of both the 3D bifurcation and the aneurysm,
in order to train a deep learning network to recognize the
ICA. Our approach here is somewhat similar to a previous
project we have recently been investigating [15]. Nevertheless,
the approach presented here is much more advanced, with
regard to several aspects: i) in [15], a 2D artery dataset was
built, whereas here, we aim to tackle not only the artery, but



rather the whole bifurcation in 3D; ii) the bifurcation bears
an unruptured aneurysm; and iii), the background noise is
now characterized and modeled with a much better accuracy.
However, it is important to notice that this current work is
only devoted to the design of the model itself. We hereby
aim to build up the 3D bifurcation along with it’s associated
aneurysm and also intend to fully evaluate the verisimilitude of
the modeled bifurcation (and ICA). Future works will consider
adopting Deep Learning for the detection and segmentation
tasks. To the best of our knowledge, we propose the very first
approach considering the implementation of a full numerical
bifurcation model for ICA deep-learning segmentation.

This paper is structured as follows. In section II, we will
present both the geometrical model (i.e. the topological layout
of the arteries, the dark and the bright background areas) and
the noise model being employed to generate a background
noise being as realistic as possible. Section III is devoted to the
presentation of our experimental results. We will first describe
how some statistical properties are collected onto human MRI
images to be later applied in our model. We provide some
examples of the 3D bifurcation model, but most importantly,
we show how the 3D U-Net can cope with the segmentation
task. We conclude this work in section IV

II. METHOD

In order to properly feed a neural network, so that it
can recognize and locate intracranial aneurysms, we aim to
accurately model some three-dimension bifurcations as well
as the ICA to be precisely embedded onto the bifurcation. The
model will thus need to be composed of three distinct steps,
first, the geometry of the three artery branches needs to be
built, then, an artificial ICA is generated and fused with the
bifurcation and finally, the surrounding noise will also have
to be accurately modeled and combined with the synthetic
bifurcation.

A. Geometrical model

1) Artery bifurcation: The composition of the 3D bifurca-
tion is quite straightforward. We build a 60× 60× 60 voxels
cube, in which we randomly determine 3 points located onto
the faces of the cube. We then build three linear segments
passing through these 3 points and grouping at the centroid of
the cube. This basically forms the skeleton of the bifurcation.
The next step consists of bringing some thickness to the
three branches. We thus simply convolve the so-obtained
3D skeleton with a binary sphere (of a variable radius).
This produces a 3D bifurcation made of three thick linear
branches. To make the model more realistic, we need to bring
some geometric transformations onto the synthetic arteries. An
elastic deformation1 is thus applied [16], [17] onto the model,
so as to mimic the tortuosity of real-life arteries.

2) Aneurysm model: The synthetic aneurysm is also simply
modeled by composing a binary sphere that will be merged
onto the binary bifurcation. The ICA will also endure geo-
metric deformations, as in human brains, the ICA commonly

1The ElasticDeform library was used : https://elasticdeform.readthedocs.io/

exhibit higher level distortions [18], [19]. As for the spatial po-
sitioning of the ICA, we seek to place the ICA approximately
onto the angle bisector. Thanks to a 3D graph extraction from
the vasculature skeleton [20], we can collect the 3D directional
vectors initiated at the bifurcation center and following each
of the three arteries (bifurcations’ branches).

Let us denote ~V1, ~V2 and ~V3 the three vectors initiated at
a bifurcation center (3D graph node) and tangent to the 3
branches centerlines. If we intend to embed an aneurysm in
between branches 1 and 2, we must consider that the blood
shall flow from branch 3 (mother branch). Indeed saccular ICA
typically occur on the arterial wall opposite to the mother
branch, as the blood pressure will be more important on
this portion of the bifurcation. ~V1 + ~V2 being the bisector
line for this angle, we want the aneurysm to have a better
alignment with branch 3. We thus plan to position the ICA
as much as possible on the axis of the mother branch, and
hence we compute the orientation that is along the orientation
~V0 = ~V1 + ~V2 − 2× ~V3. Once this orientation determined, the
distance of the aneurysm along this line must be estimated.
We determine the distance D separating the bifurcation center
to the aneurysm center (along ~V0) as shown on Eq. 1.

D =

(
T

2
+ r

)
×
(

2− θ12
π × (1− 1/36)

)
, (1)

where θ12 is the angle formed by the branches #1 and #2, T is
the average thickness of the 3 branches and r the aneurysm’s
radius. We consider that the angles cannot be smaller than 5◦

(π/36 rad). This way, the smaller is the angle between the two
branches, the further away will the ICA be embedded. On the
opposite, for the largest angle configuration (180◦), the ICA is
approximately placed at (T/2+r) voxels from the bifurcation
center, i.e. the aneurysm is tangent to the bifurcation wall.

3) Modeling various radio-opacites: As previously ex-
plained, within a MRA-TOF acquisition, several matters ap-
pear on the brain image (the grey/white matter, the Cerebro-
Spinal Fluid, the ventricle, the corpus callosum, etc.). We
thus have to model these different areas, of varying radio-
opacities. Commonly the arteries are surrounded by the brain
fluids and are not directly located within the grey matter. It
is thus important to encircle the bifurcations by the darkest
background noise. In order to tackle this issue, we generate a
distorted version of the segmented artery (binary shape) that
will be used as a mask to arrange the darker area within the
image. Applying elastic distortions to the artery mask will thus
generate a new mask dedicated to the dark background noise.

B. Noise model

Noise in Magnetic Resonance Images (MRI) can be approx-
imated by a Gaussian distributed noise [21]. Not only must
we properly model the basic statistical properties of the target
MRA-TOF (average and variance of the noise) but it is also
critical to ensure that the spatial frequency of the modeled
noise is a perfect match with the target MRI.

When going through Gaussian blur, the input image I(x, y)
is filtered as shown by eq. 2.



O(x, y) =

∞∑
i=−∞

∞∑
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e
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The Bienaymé’s identity states that

V ar

(
n∑

i=1

Xi

)
=

n∑
i=1

V ar(Xi)+

n∑
i,j=1,i6=j

Cov(Xi, Xj) (3)

Thus, the variance of a linear combination is:

V ar

(
n∑

i=1

ciXi

)
=

n∑
i=1

c2iV ar(Xi) + 2×
n∑

i,j=1,i6=j

cicjCov(Xi, Xj) (4)

However, if Xi, ..., Xn are pairwise independent integrable
random variables (Cov(Xi, Xj) = 0, ∀(i 6= j)), which is our
assumption in the following, then:

V ar

(∑
i

ciXi

)
=
∑
i

c2iV ar(Xi) (5)

where ci are constants.
We consider that the variance of the input image is

V ar [I(x+ i, y + i)] = σ2
0 , our goal here is to estimate the

variance of the output (filtered) image V ar [O(x, y)] = σ2
f .

Thus,

σ2
f = σ2

0

∞∑
j=−∞

∞∑
i=−∞

(
1

2πσ2
G

e
− i

2+j2

2σ2
G

)2

(6)

For large σG, the squared Gaussian is smooth and the sum
can be approximated as:

σ2
f ≈ σ2

0

∫ ∞
−∞

∫ ∞
−∞

(
1

2πσ2
G

e
− i

2+j2

2σ2
G

)2

di.dj =
σ2
0

4πσ2
G

(7)

and thus,

σf ≈
σ0

2σG
√
π

(8)

In summary, when an image composed of Gaussian noise
of standard deviation σ0 is being filtered by a Gaussian filter
of standard deviation σG, the so-obtained filtered image has a
standard deviation of σf according to the equation 8.

However, for our particular purpose, we intend to determine
which Gaussian filter (of standard deviation σG) shall be used
on the input image so as to obtain a filtered image with a
given target statistics (σf ), and hence σG ≈ σ0/(2σf

√
π).

The process starts thus with the generation of a high
frequency Gaussian Noise of average set to our target 3D crop.
This noise will then be filtered out using a Gaussian filter
of standard deviation σG. The resulting image (of standard
deviation σf ) will thus present strong similarities with the
target TOF.

III. EXPERIMENTAL RESULTS

This section is divided into three different parts. We first
show how some statistical properties are collected onto target
MRA-TOF acquisitions. In the second part, we provide some
details on the dataset we have constituted. Finally, the third
part is devoted to a full evaluation of the model with regards
to different aspects (texture analysis and blur measure).

A. Statistical Modeling of the TOF volumes

In order to efficiently model the 3D bifurcations, and more
specifically, the background noise, it is critical to gather
some coherent statistics from the target MRI images. For this
purpose, we have used Gaussian Mixture Models (GMM) to
collect a range of target averages and standard deviations on
13 MRA-TOF volumes. Based on the assumption that a TOF
volume contains 4 distinct components, which, ordered by in-
creasing grey level would be: i) the black noisy background, ii)
the various fluids, iii) the white/grey matter and iv) the arteries
and possibly the fat tissues (if skull stripping methods were
not applied). An example of a GMM fit with 4 components
is shown on Fig. 2. The fourth component has been partially
cut out of the plot, and is barely visible on this scale, as it
accounts for the arteries, which represent very few pixels in
this TOF slice (inset within the plot).

50 100 150 200 250 300 350
x

0

0.005

0.01

0.015

0.02

p(
x)

GMM #1
GMM #2
GMM #3
GMM #4
Slice histogram

Fig. 2. One example of a fit with 4 components of a GMM.

The fat tissues, the meninges along with all unwanted
portions or the MRI, such as the eyes, or nasal cavities
can be discarded via the use of the Brain Extraction Tool
(BET) [22], indeed, keeping these parts of the image might
bias the results. We have thus applied BET prior to collect the
statistics of the various background noises. The so-obtained
skull-stripped images go through a GMM decomposition, see
Eq. 9, where several Gaussian components N (µi,Σi) are
each weighted by an independent weight φi. This allows
to gather the target averages and standard deviations of the
various image portions we want to model. The collected
averages and standard deviations can be observed on Fig. 3.
In the following, the background noise representing the grey
matter will be modeled according to the properties of the
third Gaussian distribution. In this study, in order to limit the
number of generated images, the voxel values for the darker
portions of the image (ventricle, CSF) have simply be set to



two-thirds of the brighter noise. Future works will consider
having a better differentiation between those two areas by
considering both the second and third GMM.

p(x) =

N∑
i=1

φiN (x|µi,Σi) (9)
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Fig. 3. Collected averages and standard deviations out of 13 MRA-TOF
acquisitions (GMM with four components).

The bifurcation model can now be carried out using these
statistical properties to modulate the synthetic noise that will
be added up onto the modeled arteries.

B. Dataset constitution

Overall, the model was used to generate 5 418 bifurca-
tions. For each bifurcation, when its configuration made it
possible, we have independently embedded three ICA (one
between each pair of branches). In total, 14 073 ICA were
thus generated, with arteries diameters in the range [4, 8], the
amplitude (in grey levels) of the arteries were in [220, 290], 3
different parameters were used for the elastic deformations,
the target average of the background noise (white matter)
was in the interval [50, 110] whereas its standard deviation
was in [7, 11]. As previously explained, the darker noise was
simply set to 2/3 of the white matter average. Four aneurysms’
diameters have been modeled: 2, 4, 6 and 8 voxels (with
two different distortion strengths). Table I encompasses the
various geometrical and statistical settings being used by
the model. During our experiments, we have witnessed a
rather realistic rendering of the various matters composing the
brain (i.e. CSF, grey/white matter, arteries, etc.) as shown on
Fig. 4. Four different ICA are depicted on Figure 5, where we
show some modeled 3D aneurysm-bearing bifurcations after a
manual segmentation. This Figure shows how realistic is the
positioning of the ICA onto the bifurcation. We did encounter
a few cases where the aneurysm collar is slightly shifted away

Vascular Property Settings
Artery Thickness 4 5 6 7 8
Artery Amplitude 220 230 240 250 270 290

ElasticDeform (arteries) 3 4 5
µ (background) 90 100 110
σT (background) 7 9 11

ElasticDeform (ICA) 2 3
� (ICA diam) 2 4 6 8

TABLE I
VARIOUS PARAMETERS BEING USED BY THE MODEL.

from the bifurcation center (see Fig. 5b and 5c for instance),
but we believe that such a small shift might not influence much
a CNN in its task of ICA detection and segmentation.

Fig. 4. A modeled (left column) and a true (right) ICA.

C. Evaluation of the bifurcation model

The very first purpose of our bifurcation model being to
feed a CNN in order to automatically detect and segments
Intra-Cranial Aneurysms, we obviously need to ensure that the
model efficiently simulates some true ICAs. The bifurcation
model must thus present very strong similarities with the true
bifurcations collected from MRA-TOF acquisitions.

In order to assess the verisimilitude of our model, or in
other words, its resemblance with the ground-truth, we have
constituted a substantial dataset. Out of the full bifurcation
dataset, 100 modeled bifurcations were (randomly) extracted
from the 14.073 samples and Template Matching [23] was
used to find the best matches with the MRA-TOF images. A
matching 3D normalized correlation is highly unlikely, as the
geometry of the images is too complex to efficiently match,
and hence, we ran numerous 2D correlations. From the 100
bifurcations models, 10 slices were extracted from each 3D
stack, they were correlated (using Template Matching) with
430 slices extracted from each tested TOF volumes (along the
x, y and z orientations). Three different TOF were used, mak-
ing a total of 1.000 modeled slices correlated with 1.290 TOF
slices. We have set a matching threshold based on the Nor-
malized Correlation Coefficient (NCC), all patches with a peak
correlation such as NCC > 0.75, have been retained as good
matches. Overall, the Template Matching allowed to collect
more than 50.000 correlated patches. The statistics of the TOFs
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Fig. 5. Some example of modeled ICAs in 3D (after segmentation from the grey-level produced 3D model).
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Fig. 6. Evaluation of the model : (a) Haralick features, (b) Variance of the
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are closely modeled, as previously shown in section II-B,
but for a thorough analysis, we also ran a texture analysis
and a blur factor evaluation. The Haralick features [24] were
computed to ensure a good match of both textures (model and
ground truth), as for the blur factor, both the Variance of the
Laplacian and the Tenengrad coefficient [25] were computed.
The Figure 6 shows a comparison between the model and
three different TOF acquisitions with regard to these three
measurements. The distribution of the data is displayed next
to the box plot to show the (mis)matching dispersion. Although
both the Haralick features and the Variance of the Laplacian
seem to accurately match, the Tenengrad coefficient seems to
drift a bit away in the Model. Hopefully, this drift might not
be strong enough to have an impact on the upcoming use of
this dataset for Deep Learning ICA detection.

In previous works [15], we managed to efficiently train a
CNN (Half U-Net) using only modeled arteries, we believe
that despite the more sophisticated model presented here (3D
artery and ICA), such a training scenario should still be
feasible. Moreover, the model might also be used as backup
to some ground truth segmentations to train a neural network

(acting as augmented data).
In order to evaluate the applicability of our model within

a Deep Neural Network, we have set up a 3D U-Net to
perform the segmentation of small 3D cropped bifurcations.
The network was first trained on 120 modeled bifurcations and
provided an average DICE score of 0.8 on a test set composed
of 41 images, which is fairly close to the performances
achieved in [15]. Next, to evaluate the model’s suitability as a
generator of augmented data, we have first launched the U-Net
on 120 ground truth bifurcations, and then, on a set composed
of both 40 ground truth and 80 modeled bifurcations. For both
scenarios, the average DICE score was equivalent (≈ 0.94).

IV. CONCLUSION

In this work, we have presented a full 3D artery bifurca-
tion model. More precisely, an aneurysm-bearing bifurcation
model. Effectively, both the bifurcation and the aneurysm were
built in such a way to best model the various features of MRA-
TOF acquisitions. Evidently, the geometrical characteristics
of the actual MRA bifurcations and ICA were respected.
Moreover, the statistical properties of the background noise
were collected from a set of target TOF images and accurately
modeled. A thorough comparison between some ground-truth
MRA volumes and the bifurcation+ICA model was conducted
and showed that the resemblance might be sufficient for using
a CNN in a ICA detection and segmentation task. Indeed, this
work is a preliminary study on the feasibility of designing a
fully synthetic artery bifurcation model. Using such a model to
train a Deep Learning architecture can be very advantageous.
Using such an approach, we avoid resorting to manual annota-
tions on 3D volumes, which is a laborious task, and moreover,
such manual annotations would have to be conducted on a
very wide variety of MRI scanners for the Neural Network to
apprehend the wide variety of image qualities. Using a model
such as the one presented in this paper might help to train
a CNN for a specific target MRI scanner. One single TOF
acquisition is sufficient to gather some statistical properties
and generate a vast image dataset that will be used to feed
the network. A preliminary experiment was set up in order to
evaluate the applicability of our model within a deep learning
segmentation / recognition framework, this latter produced
very encouraging results.
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V. Kurtcuoglu, and S. Hirsch, “Radiomics approach to quantify shape
irregularity from crowd-based qualitative assessment of intracranial
aneurysms,” in 4th MICCAI workshop on Deep Learning in Medical
Image Analysis, 2020, pp. 538–546.

[20] A. Nouri, F. Autrusseau, R. Bourcier, A. Gaignard, V. L’Allinec,
C. Menguy, J. Veziers, H. Desal, G. Loirand, and R. Redon, “Char-
acterization of 3D bifurcations in micro-scan and MRA-TOF images of
cerebral vasculature for prediction of intra-cranial aneurysms,” Elsevier
Computerized Medical Imaging and Graphics, vol. 84C, 2020.

[21] A. Chaudhari and J. Kulkarni, “Noise estimation in single coil MR
images,” Biomedical Engineering Advances, vol. 2, p. 100017, 2021.

[22] S. Smith, “Fast robust automated brain extraction,” Human Brain
Mapping, vol. 17, no. 3, pp. 143–155, 2002.

[23] J. Lewis, “Fast normalized cross-correlation,” in Vision interface, vol. 95,
1995.

[24] R. M. Haralick, “Statistical and structural approaches to texture,”
Proceedings of the IEEE, vol. 67, no. 5, pp. 786–804, 1979.

[25] U. Ali and M. Mahmood, “Analysis of blur measure operators for single
image blur segmentation,” Applied Sciences, vol. 8, no. 5, pp. 807–839,
2018.


