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ARTICLE

Identification of genetic elements in metabolism by
high-throughput mouse phenotyping
Jan Rozman et al.#

Metabolic diseases are a worldwide problem but the underlying genetic factors and their

relevance to metabolic disease remain incompletely understood. Genome-wide research is

needed to characterize so-far unannotated mammalian metabolic genes. Here, we generate

and analyze metabolic phenotypic data of 2016 knockout mouse strains under the aegis of

the International Mouse Phenotyping Consortium (IMPC) and find 974 gene knockouts with

strong metabolic phenotypes. 429 of those had no previous link to metabolism and 51 genes

remain functionally completely unannotated. We compared human orthologues of these

uncharacterized genes in five GWAS consortia and indeed 23 candidate genes are associated

with metabolic disease. We further identify common regulatory elements in promoters of

candidate genes. As each regulatory element is composed of several transcription factor

binding sites, our data reveal an extensive metabolic phenotype-associated network of co-

regulated genes. Our systematic mouse phenotype analysis thus paves the way for full

functional annotation of the genome.
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Metabolic disorders, including obesity and type 2 diabetes
mellitus, are major challenges for public health. High
initial treatment costs are compounded by complica-

tions that arise after diagnosis, including a number of con-
sequential diseases, which together generate a significant burden
for health care systems1–5. Genetic variations play established
roles in the susceptibility and pathogenesis of these diseases6–11.
However, identification of the underlying gene variants and their
pathogenic roles is difficult because (1) functional annotation is
still not available for many genes, especially genes that may be
involved in disease but currently lack biological characteriza-
tion12. (2) It also became clear that gene variants do not work in
isolation but as parts of networks13. (3) There are concerns
regarding the reproducibility, predictability, and relevance of

results obtained from genotype–phenotype associations in disease
model organisms14.

At the International Mouse Phenotyping Consortium (IMPC),
we are generating a comprehensive catalog of mammalian gene
functions to gain functional insights for every protein-coding
gene, by producing and phenotyping more than 20,000 knockout
mouse strains15,16. Knockout strains are analyzed in a compre-
hensive, standardized phenotyping screen that covers multiple
areas of biology and disease with 14 compulsory test procedures
and several additional optional tests (wwww.mousephenotype.
org/impress). Phenotyping is conducted in 10 research centers in
Europe, North America, and Asia. Each site follows the IMPC’s
standardized operating procedures (IMPReSS), which were
developed during the pilot programs EUMORPHIA and
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Fig. 1 Strategical abstract depicting the research strategy to identify new genetic elements in metabolism. The IMPC phenotyping data of 2016 knockout
mouse strains was systematically evaluated for new links to human metabolic disorders. Nine hundred seventy-four knockout strains showed a strong
metabolic phenotype. This set of genes was used as data mining resource. In a multiple line of evidence approach, we finally identified 23 genes that were
linked to human disease-related SNPs
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EUMODIC17,18. Standardization, data quality control, an auto-
mated statistical analysis pipeline, and the phenotyping of refer-
ence strains to assess inter-center variation all help to ensure
robust and reproducible data19–22. Adherence to each of these
standards enables derivation of a high-quality, powerful
hypothesis-generating resource that includes genes from a sub-
stantial proportion of the entire mouse genome. Here we analyze
phenotyping data of 2016 knockout strains for strong metabolic
phenotypes and identify 974 known and previously unannotated
genes with relevance for metabolic diseases. Twenty-three genes
for which we find new strong metabolic phenotypes also have
links to human metabolic disorders. We introduce a focus on
network/context analysis to demonstrate how systemic phenotype
information can be linked to known metabolic pathways. This
pathway mapping revealed an unexpected degree of metabolic
dimorphism between sexes. In addition, phenotype-associated
regulatory networks allow the prediction of previously unknown
gene functions. Therefore, our results underline the value of the
IMPC resource for gene function discovery and augment the
translational potential of metabolic phenotypes in mice.

Results
Strong metabolic phenotypes in IMPC mutants. We analyzed a
total of 2016 IMPC mouse strains that were homozygous for a
single-gene knockout on a C57BL/6N background or hetero-
zygous when homozygotes were lethal or sub-viable (see Fig. 1 for
a study overview). We chose seven metabolic parameters with
diagnostic relevance in human clinical research for our study:
fasting basal blood glucose level before glucose tolerance test (T0),
area under the curve of blood glucose level after intraperitoneal
glucose administration relative to basal blood glucose level (AUC),
plasma triglyceride levels (TG), body mass (BM), metabolic rate
(MR), oxygen consumption rate (VO2), and respiratory exchange
ratio (RER), which is a measure of whole-body metabolic fuel
utilization. To identify the universal cross-project metabolic
characteristics of knockouts, we calculated mean mutant/wild-type
ratios separately for all contributing centers23. Males and females
were analyzed separately because sexual dimorphism is common
in disease-related phenotypes24,25 (Fig. 1, top part). For all para-
meters, mutant/wild-type ratios were distributed around a modal
value of 1.00, which would be expected when mutant and wild-
type mice on average did not differ in the respective parameter
(Table 1 and Fig. 2a–n). The shape of the metabolism phenotype
mutant/wild-type ratio distributions differed between some para-
meters more than others. Triglycerides, basal blood glucose, and
glucose clearance varied more between mutant and wild-type mice
than RER, BM, VO2, and MR. For further analysis, we focused on
gene knockout strains with a strong metabolic phenotype and
compiled lists of genes for which the knockout resulted in mutant/
wild-type ratios below the 5th percentile and above the 95th

percentile of the ratio distributions (shown as the filled areas in
Fig. 2). Based on these thresholds, we generated 28 gene lists, one
for every sex parameter combination. Our 28 lists included a total
of 974 “strong metabolic phenotype” genes (Fig. 1, second part
from top). We used these genes as a data mining resource for
further investigation into potential links to human metabolic
disorders (see Supplementary Data 1—Mutant wildtype ratios for
complete gene lists and Supplementary Data 2—Strong metabolic
phenotype genes for strong phenotype genes).

Evaluation of false discovery rates. The reproducibility and
robustness of large-scale biology projects depends on minimizing
the risks of false-positive or false-negative results. Using a post
hoc approach to evaluate the risk of false-negative findings, we
compiled a list of 666 mouse and human genes with published
links to obesity and type 2 diabetes25–29. We then used these
candidate genes to estimate the rate of false-negative discoveries
in our project (see Supplementary Data 3—Candidate genes for
false negative discovery). Hundred and one knockout mutants of
these genes had been phenotyped by the IMPC at the time when
we conducted our analysis. Hundred of 101 had a detectable
metabolic phenotype: 58 (57.4%) scored as “strong metabolic
phenotype genes” (p value 0.04, null hypothesis was defined as no
enrichment of “strong metabolic phenotype” genes, see “Methods”
section for description of the permutation simulation). With only
one exception (Serpinf1, 210 MGI: 108080), knockout mice of all
other 43 remaining genes even though not scoring as “strong
metabolic phenotype genes” had phenotypic deviations in meta-
bolic parameters in the range of low 20th or high 80th percentiles
of their respective frequency distributions (p value 0.047).

New knockout mouse models for metabolic diseases. For 58 of
our 666 candidate genes with known links to metabolic functions,
the link was based only on GWAS data with no further evidence
available. Based on a systematic search of the mouse genome
informatics (MGI) curated database, knockout mouse models had
not yet been described for 4 of these 58 candidate genes before our
study: Lypla128, Rfx626, Slc6a14, and Slc6a329. Knockout mouse
models had been generated previously for another 15 candidate
genes but these had either no proven link to metabolism or were
not reported to have been tested for metabolic parameters. Our
phenotype data can therefore identify new genetic disease mouse
models that allow in-depth investigation of disease mechanisms
and fill the gap between genome-wide association studies and
functional validation in a mammalian model organism.

Illuminating unexplored mouse metabolic genes. Many genes
still lack any functional annotation. We conducted a systematic
search of the MGI curated database to identify murine genes in
our “strong metabolic phenotype” list with no previously known

Table 1 Number of genes analyzed and candidate hits identified by phenotyping mutant and wild-type mice from both sexes

Parameter Number of genes Females and males (in brackets: expected number if sex equally
affected)

Females Males Both Outlier <5% Outlier >95% Outlier <5% and >95%
T0 1843 1840 1839 162 (96) 166 (96) 324 (192)
AUC 0–120 1846 1840 1839 172 (96) 163 (96) 334 (192)
Triglycerides 1384 1383 1380 124 (73) 129 (72) 249 (145)
Body mass 1649 1645 1645 121 (79) 143 (86) 264 (165)
Metabolic rate 335 910 329 55 (48) 53 (48) 108 (96)
VO2 335 910 329 58 (48) 52 (46) 110 (94)
RER 319 901 313 55 (47) 54 (46) 109 (93)
Total 1995 2012 2016 575 587 974
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links to metabolism (see Supplementary Fig. 1 and Supplemen-
tary Data 4—Search results for unexplored metabolic genes). By
careful stepwise evaluation, we found 429 of the 974 strong
metabolic phenotype genes had no link to metabolic functions in
mice. Fifty-one of these genes had no functional annotation at all
(Fig. 1, center part). Their knockout caused strong phenotypes

regarding glucose and energy metabolism (Fig. 3). Our data
analysis provides evidence for new links to metabolic functions
for these hitherto uncharacterized genes.

Function of new metabolism genes is linked to human disease.
We were interested in whether the strong metabolic phenotype
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genes could be mapped to diseases in the OMIM database. Of all
515 genes that were linked to at least one OMIM disease, 264
(27.1%) belonged to the strong metabolic phenotype genes,
whereas 251 (24.1%) were “non-strong metabolic phenotype”
genes (Fig. 1, lower left branch; also see Supplementary Data 5—
OMIM mapping table).

As a next step, we searched for non-annotated disease links to
connect previously unknown strong metabolic phenotype genes to
human disease. We found human orthologues for 402 of the
429 strong metabolic phenotype mouse genes. Note these 429
genes had no previously described link to metabolism and that
includes the 51 completely unexplored mouse genes and 378
genes, which had no link to metabolism so far. Next, we extracted
single-nucleotide polymorphisms (SNPs) in the SNiPA database30,
from a ±2 kb region around the 402 human orthologues of strong
phenotype genes (Fig. 1, second lower branch from the left). The
SNiPA database has both functional annotations and linkage
disequilibrium information for bi-allelic genomic variants (SNPs
and single-nucleotide variations), based on the 1000 Genome
Project. We found 19,253 SNPs for 268 of the 402 orthologous
genes. SNiPA SNPs have various annotation layers such as gene
annotations, associated phenotypic traits, and expression based
quantitative trait loci. For each SNP, we evaluated the extent of
association across 16 type 2 diabetes-related traits using the cross
phenotype meta-analysis method on data from the DIAGRAM,
MAGIC, GIANT, GLGC, and ICBP GWAS consortia30–40 (Fig. 4).
We applied different levels of evidence and p value thresholds to
infer association with disease traits (Table 2). By applying a
standard genome-wide significance level of p ≤ 5 × 10−8, we found
SNPs in 17 gene regions (MTNR1B, MTCH2, SLC39A8, NUTF2,
PABPC4, DNAJC5G, TCF19, PACSIN3, EVI5, EPB41L4B, DMXL2,
RPTOR, CCDC18, RPGRIP1L, PCNXL3, WNT3, ELMO3) that
were associated with human metabolic phenotypes. By applying a
significance level of 2.6 × 10−6 and correcting for all the SNPs we
looked up in GWAS data, we found that more SNPs in CCDC18
and in four additional genes (CFAP69, IQCE, LYPD6B, and
NRDE2) were strongly linked to human phenotypes (Fig. 4).
Regarding the remaining genes, all SNPs with a p value above 0.05
nevertheless had weak links to metabolic phenotypes in humans
and only seven of the 268 genes with SNPs (CMTM5, PPP1R14A,
DUSP5, FGFBP3, TIMM22, WNT6, and PPP1R35) lacked
potential links to metabolic phenotypes.

As a next step, we corroborated the role of so-far unexplored
mouse metabolic genes in a well-phenotyped clinical cohort. We
analyzed the associations of common SNPs (i.e., those with minor
allele frequencies ≥0.05) in the human orthologues of these
murine genes with five human metabolic phenotypes: body fat
content/distribution, blood glucose, insulin sensitivity, insulin
secretion, and plasma lipids. To do this, we assimilated genome-
wide genotype data, generated with Illumina’s Infinium® Global
Screening Array, from 2788 participants of the Tübingen Family
(TÜF) study for type 2 diabetes41. We identified 240 common, bi-
allelic, and non-linked SNPs (call rates ≥0.75) in 37 orthologues
and analyzed them in the additive inheritance model by multiple
linear regression analysis. Potential confounders were accounted
for, e.g., gender, age, BMI, and insulin sensitivity, where

appropriate. After Bonferroni correction for the number of SNPs
tested, we found two SNPs below the study-wide significance
threshold of p< 0.000213. These are the minor allele of
SNP rs11734172 in C4orf22, which is associated with reduced
insulin sensitivity (HOMA-IR, p = 8.8 × 10−5; ISI Matsuda, p =
6.2 × 10−5), and the minor allele of SNP rs76378941 in CNBD1
which is associated with reduced plasma triglycerides (p =
0.00020). We identified seven additional non-linked SNPs in
C4orf22 and two additional non-linked SNPs in CNBD1 with
nominal associations (p< 0.05) with insulin sensitivity and
triglycerides, respectively (Fig. 1, bottom left; all association
results are shown in Supplementary Data 6—Association results
of the TÜF study). To address whether the identified SNPs in
C4orf22 and CNBD1 likely affect other nearby genes, we explored
linkage disequilibrium data of the CEU population (99 Utah
residents of Central European origin) from phase 3 of the 1000
Genomes Project (http://grch37.ensembl.org/Homo_sapiens/
Info/Index). Neither the C4orf22 nor the CNBD1 gene locus
had any adjacent disequilibrium. Thus, the identified SNPs in
C4orf22 and CNBD1 likely do not affect nearby genes. So in
conclusion, our single-gene based analysis identified a total of 23
orthologous genes with a link to human disease traits. We next
focused on context and network aspects of our findings.

Pronounced metabolic sexual dimorphism on gene level. As we
had discovered connections between several strong metabolic
phenotype murine genes and human disease, we next focused on
the biological gene networks that underlie these phenotypes and
their interconnections. First, we mapped our strong metabolic
phenotype genes to metabolic pathways in the KEGG repository42.
At least one knockout gene for each metabolic phenotype analyzed
mapped to a metabolic pathway (males and females, (Supple-
mentary Data 7—Metabolic pathways in KEGG). We present
three interesting findings: (i) genes from different pathways caused
comparable metabolic phenotypes in males and females (Supple-
mentary Data 8–14—Pathway maps). (ii) The 13 male and 13
female strong metabolic phenotype genes for triglyceride levels
that were linked to the global metabolic pathway map of the
KEGG database had one gene in common, Hpse. However, 13
male and 13 female strong metabolic phenotype genes mapped to
the same pathway (out of 121 male and 121 female genes). (iii)
Some metabolic pathways were only found in the set of female
strong metabolic phenotype genes, and not in males affecting
plasma triglyceride levels. These pathways were “glyceropho-
spholipid metabolism,” “linoleic acid metabolism,” and “ether lipid
metabolism” pathways. We mapped the strong triglyceride-
phenotype genes to non-metabolic biological pathways in the
KEGG database, this also revealed sex-specific differences (Sup-
plementary Data 7—Metabolic pathways in KEGG). These results
give insight into and confirm sexual dimorphism in genes and
pathways associated with metabolic phenotypes in mice.

Regulatory networks of strong metabolic phenotype genes.
Metabolic pathways require simultaneous and coordinated presence
of functionally connected proteins. Therefore, we analyzed next

Fig. 2 Frequency distribution of mutant/wild-type ratios for metabolic parameters, separated for males and females. a T0 females, basal blood glucose
after overnight food deprivation, b T0 males, basal blood glucose after overnight food deprivation, c AUC females, area under the curve of blood glucose
excursions after glucose injection in a glucose tolerance test, d AUC females, area under the curve of blood glucose excursions after glucose injection in a
glucose tolerance test, e TG females, plasma triglyceride concentrations, f TG males, plasma triglyceride concentrations, g body mass females, h body
mass males, i MR females, metabolic rate obtained from a 21 h indirect calorimetry trial, j MR females, metabolic rate obtained from a 21 h indirect
calorimetry trial, k VO2 females, oxygen consumption obtained from a 21 h indirect calorimetry trial, l VO2 males, oxygen consumption obtained from a 21 h
indirect calorimetry trial, m RER females, respiratory exchange ratio, n RER females, respiratory exchange ratio. Filled areas of the distributions cover the
<5% and >95% strong metabolic phenotype genes, n provides number of mutant lines
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whether our strong metabolic phenotype genes have common
molecular regulatory features within their promoters. Transcrip-
tional co-regulation often involves a common set of transcription
factor-binding sites shared between co-regulated promoters. This
concept of higher-level organized promoter wiring is known as
multiple organized regulatory element (MORE) cassettes (see
Supplementary Note 1). First, we extracted the promoter sequences
of all our strong metabolic phenotype genes from the mouse gen-
ome sequence and analyzed them for the presence of identical
MORE cassettes. We required promoter sets to contain at least
three promoters. Analysis of all promotor sets for shared MORE
cassettes resulted in a total of 225 sets of one or more MORE
cassettes. These MORE sets were associated with at least one of the

four sub-phenotypes (male, female, up or down). They were sub-
divided into these four subtypes by sex, up or down (top and
bottom percentiles, respectively) of the seven metabolic phenotypes,
e.g., AUC female low or VO2 female high. These associated MORE
sets were present in 428 promoters of unique genes (Fig. 1, central
part right). Genes sharing the same MORE set in at least one of
their promoters thus belong to one regulatory network. We
obtained a grouping of the collection of knockout genes indepen-
dent of prior knowledge by the regulatory promotor analysis.

We next selected genes from our strong metabolic phenotype
list that have two or more phenotypic associations with glucose
homeostasis (18/20), body mass regulation (10/20), metabolic rate
(2/20), and substrate utilization (2/20). The list of genes selected
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was Asf1a, Atp2a2, Bbs5, Cir1, Commd9, Cpe, Dpm2, Dtnbp1,
Epha5, Ggnbp2, Golga3, Il31ra, Lbp, Mboat7, Mrap2, Rabl2, Scrib,
Slc2a2, Zranb1, and Zfpl1 (see Supplementary Data 15—Genes
with metabolic phenotype). We chose these 20 genes as targets to
examine shared links to regulatory network links. These links
were defined by MORE cassettes and MORE sets. Overall, we
found several MORE sets in corresponding promoters and the
majority of the MORE sets were in more than one gene promoter
in the 20 genes set (Table 3). This overlap allowed us to construct
an association network with 14 of the 20 genes (Fig. 5).
Interestingly, 12 of these genes were present in one single
network indicating potentially coordinated expression of these
genes (Fig. 5a). The overrepresented MORE sets thus connect

genes within a specific phenotype, which suggests that individual
regulatory mechanisms are confined to phenotypic subtypes
(Fig. 5b). The overlap between different phenotypes is mainly due
to genes that have more than one associated phenotype (Fig. 5c).
Twelve of the 20 examined genes have common regulatory
structures in their promoters that link them to a network. The
edges of the network in Fig. 5c are shared MORE cassettes
between the connected nodes (genes). Each edge is a phenotype
or sub-phenotype association of the connected genes (nodes).
Since MORE sets are molecular regulatory mechanisms,
common MORE sets that link phenotype genes to each other
indicate potential common regulatory mechanisms for the linked
genes.
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MORE sets and KEGG pathway mappings are overlapping
networks. MORE sets are solely derived from promoter analysis
without the use of prior knowledge of the phenotypes or the genes
involved. Therefore, the resulting networks are independent of
knowledge, often exceeding current knowledge. Because of that,
validation of the regulatory network connection by existing cur-
rent knowledge is rather limited. However, the genes within these
regulatory networks are well-known and many are already asso-
ciated with known pathways. We thus selected the genes that
mapped to KEGG pathways and that had a strong glucose
clearance phenotype to construct a MORE set network of 15
genes (Fig. 1, third lower branch from the left and Fig. 6a). A
network for those 15 genes was constructed in which the edges
were KEGG pathway networks to which both connected genes
(nodes) mapped (Fig. 6b). Importantly, the two networks could
be superposed, which thus validates combining our data-driven
MORE set approach with experimental knowledge-based KEGG
pathway mapping (Fig. 6c). In summary, our analysis supports
the concept that the various initially unconnected knockout genes
form well-organized functional metabolic networks. These net-
works are supported at several system levels (phenotype, regula-
tion, and metabolism).

Prediction of metabolic genes. We hypothesized that the pre-
sence of MORE cassettes in currently unannotated genes could be
used to functionally characterize them. Therefore, we proceeded
determining which of the promoter sequences of the ~22,000
protein-coding genes in the mouse genome matched to the
MORE cassettes defined in this study. We analyzed promoters of
an independent set of genes that was not part of the original data
set used to define the initial MORE cassettes (original data set:
IMPC Release 4.2 from Dec 2015; additional set of genes: IMPC
Release 4.3 from Apr 2016). The complementary data set con-
tained 757 genes that had completed IMPC phenotyping after the
earlier Release 4.2. A batch query of phenotype terms, from the
IMPC portal (www.mousephenotype.org), for these genes showed
that 150 of 460 genes (32.6%) with 1–11 MORE cassette matches
had a metabolic phenotype, whereas only 68 of the total 297 genes
(22.9%) with no MORE cassette matches had such a metabolic
phenotype (32.6% vs. 22.9%, p = 0.004, Fisher’s exact test; Fig. 1,
right lower branch). Thus, the presence of phenotype-associated
MORE cassettes does indeed predict genes with a corresponding
phenotype.

The 9 genes with 6–11 MORE cassette matches associated with
metabolic phenotypes were linked to the MORE set network
defined in this study. This analysis also provided additional
support for the relative position of the gene in the network in
several cases. Figure 7 shows the Zranb2 gene, which has six
MORE sets in its promoters. Zranb2 shares two central MORE
sets with the Dtnbp1 and Epha5 genes, which confirms their

previously reported functional links with Zranb242–45. Gauging
the presence of phenotype-associated MORE cassettes in
promoters is thus currently the only method to predict whether
an uncharacterized gene has a candidate phenotype, or whether
disruption of the gene will cause the respective phenotype (Fig. 1,
second from right lower branch).

Discussion
In this study, we have established and evaluated analysis and
visualization tools that identify and select candidate genes with
roles in glucose and energy metabolism starting from the pool of
IMPC phenotype data of mouse knockout strains, which covers
~10% of mammalian protein-coding genes. This data set links
new genes to disease-relevant metabolic phenotypes. As with all
large-scale approaches, false discovery could be a major issue. We
used 101 genes with a known or hypothesized link to obesity or
type 2 diabetes to assess the false-negative discovery rate and our
approach missed only one of the 101 genes. Therefore, metabolic
phenotypes can be detected in almost all IMPC mouse models of
published candidate genes for obesity and type 2 diabetes.

The pioneering systematic approach of our IMPC database is
an advance toward the final frontier of genome functional
annotation as 44% of the strong metabolic phenotype genes have
not been linked to metabolism in mice (429 of the 974). Fur-
thermore, 51 of these new metabolism genes had no previous
functional annotation at all. Strikingly, orthologues of 23 of these
genes had single-nucleotide polymorphisms associated with
human metabolic disease phenotypes. With large-scale projects
like the IMPC, adding functional annotation and disease links to
so-far unannotated genes will continuously contribute to closing
the systems biology knowledge gap in all fields, e.g., for unex-
plored metabolic genes. The data analysis approaches we describe
are based on snapshot computational evaluation of current
knowledge that is changing fast. Since our initial analysis, new
suggested links to physiological functions of three so-far unex-
plored genes (AB124611, Dppa1, and GM13125) were found in an
updated literature search.

The problem of candidate genes without established links to
existing knowledge is as “old” as high-throughput analysis itself.
These “out of context” genes are very hard to characterize func-
tionally and pure statistical association (e.g., gene ontology ana-
lysis) is insufficient to understand their biological context. Since it
is well established that genes only work in collaboration with
other genes, our analysis focuses on elucidating the genetic con-
text of newly discovered candidate genes. Our approach allows
targeted verification of a simple “guilt-by-association” hypothesis
that infers that a gene likely contributes to a specified pathway if
it is frequently found in our lists alongside genes with a common
function.

Our findings of wide-spread pathway and network structures
underlying individual gene findings provide a new integrative
view to our results. Our pathway network approach pinpointed
genes that caused specific and interrelated metabolic phenotypes
in specific genetic backgrounds. For example, we confirmed
recently published findings regarding a strong sexual dimorphism
with minimal or no shared genes between males and females with
the same associated phenotypes46. The metabolic discordance
between males and females was generally lower at the pathway
level than at the gene level. For example, only 1 out of 13 genes
was common between the 13 strong metabolic phenotype genes
for triglyceride levels for each sex, whereas both sets of 13 genes
mapped to the same pathways.

Our pathway mapping necessarily used prior knowledge, like
the metabolic (KEGG) pathways, which cannot be derived from
newly inputted experimental data. We complemented this prior

Table 2 Translation to human disorders

p value—class across
metabolic phenotypes in
human GWAS data

SNPs Genes Unexplored
metabolic genes

>5.0e−08 89 17 3
2.59e−06 to 5.0e−08 52 12 1
1.0e−03 to 2.59e−06 1071 94 5
0.05 to 1.0e−03 9107 254 20
>0.05 8912 233(7) 17(0)

Search for single-nucleotide polymorphisms in prioritized genes from IMPC in a cohort of pre-
diabetic patients
The number of genes in the category >0.05 not overlapping with genes from other categories is
displayed in brackets
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knowledge-based approach by a purely data-driven (prior
knowledge-independent) analysis using MORE sets. This MORE
set analysis deciphered the molecular regulatory networks in the
promoters of the strong metabolic phenotype genes. Our
approach therefore detects functionally connected gene networks
that are supported by several techniques.

Data-driven analysis has another important feature. MORE
cassettes are invariant features like reading frames. It is therefore
very likely that the promoters of some uncharacterized genes with
the same phenotypes will have phenotype-associated MORE
cassettes. If this is the case, it should be possible to use the pre-
sence of MORE cassettes for a priori prediction of phenotypes.
We validated this hypothesis based on a set of newly phenotyped
genes that were not part of our initial analysis. A considerable
number of these genes also had metabolic phenotype-associated
MORE sets. We found a significant correlation between the
presence of these MORE sets and the link of genes to metabolic
functions. Of course, also genes newly predicted based on MORE
sets would be expected to link into the known context of genes for
this phenotype. Therefore, we analyzed one example of a de novo
predicted potential phenotype-causing gene (Zranb2) in more
detail. We not only found additional verification for the pre-
defined network, but also additional links in the literature sup-
porting the network association of this gene. Therefore, the pre-
sence of characterized MORE sets provides opportunities for
experimental planning of verification experiments.

In conclusion, we show here that our new multiple-line-of-
evidence functional discovery approach, which is based on the
IMPC phenotyping program, can identify new disease genes
related to energy metabolism and glucose homeostasis. Our
platform will thus enable researchers to prioritize research on so-
far uncharacterized genes to fill the gap in functional annotation
for metabolic genes. We predicted gene functions in a set of
757 subsequently phenotyped genes, based on the integration of
functionally uncharacterized genes into established regulatory
networks and functional contexts. By linking gene functions to
metabolic disorders, our protocol and the identification of
metabolic relevant genetic elements will accelerate the under-
standing of human disease.

Methods
Mouse husbandry and phenotyping. We used the IMPC data resource to identify
genes associated with strong metabolic phenotypes in mice. The IMPC pheno-
typing pipeline includes 14 mandatory and several optional tests that cover all
major disease areas (www.mousephenotype.org/impress). Phenotyping procedures

are being conducted in 10 centers (Baylor College of Medicine BCM, Helmholtz-
Zentrum München HMGU, PHENOMIN Institut Clinique de la Souris ICS,
Jackson Laboratory JAX, Medical Research Council Harwell MRC Harwell, MARC
Nanjing University NING, RIKEN BioResource Center RBRC, Toronto Centre for
Phenogenomics TCP, Mouse Biology Program University of California Davis UC
Davis, and Wellcome Trust Sanger Institute WTSI) in Europe, North America, and
Asia (for details, see http://www.mousephenotype.org/about-impc/impc-
members). Mice were generated on a C57BL/6N background and phenotyping data
were collected between the age of 4 and 16 weeks following approved animal ethics
protocols in every institution (see Supplementary Table 3 for license numbers).

Phenotyping parameters. From the 509 phenotyping parameters assessed by the
IMPC early adult phenotyping screen (http://www.mousephenotype.org/impress),
we chose seven parameters: (1) basal blood glucose levels after overnight food
deprivation (T0) and (2) the area under the curve (AUC) of glucose excursions
during the intraperitoneal glucose tolerance test as a read out for glucose-
stimulated insulin secretion and insulin sensitivity (IPGTT) [IMPC_IPG_001]; (3)
non-fasted triglyceride levels from clinical chemistry [IMPC_CBC_003]; (4) body
weight [IMPC_DEXA_001]; (5) metabolic rate (MR) normalized to body mass (see
below); (6) oxygen consumption (VO2) normalized to body mass (see below); and
(7) respiratory exchange ratio (RER =VCO2/VO2) from the indirect calorimetry
trial [IMPC_CAL_003].

Bioinformatics. In general, only unique genes were included, i.e., in the case that
data for two different zygosities were available, we selected homozygotes instead of
heterozygotes. We included lines in which data of males and females with the same
genotype was available instead of having different genotypes for either males or
females. Multiple entries for the same gene only occurred in reference strains. For
each test procedure (indirect calorimetry, clinical chemistry, and glucose tolerance
test), we received a csv file containing phenotyping data (one row per mouse,
including characteristics such as sex, center, etc., parameters and metadata in
columns). We conducted careful quality-control checks on each of the selected
seven parameters and excluded obviously invalid values, which was only the case
for VO2 and metabolic rate.

VO2 and metabolic rate parameters. For VO2 and metabolic rate parameters, we
used the body weight-independent residuals since body mass is the major deter-
minant for variability in absolute VO2 and metabolic rate. For this, we calculated a
linear model with mean body mass (mean individual mass before and after the
calorimetry test) as predictor and VO2, respectively, metabolic rate as response
variable separate for each phenotyping center and for each sex. The residuals of
these models represent the difference between each individual’s actual VO2/
metabolic rate and the response value predicted by their mean body weight. By
adding a constant (e.g., the predicted value for the mean body weight) to the
residual, the sense of an actual VO2/metabolic rate value is conveyed. The new
residual response variable is finally uncorrelated with the mean body weight47.

General statistics. The number of mutant strains assessed for each parameter
varied depending upon (1) center-wide test implementation; and (2) whether both
males and females were phenotyped; e.g., indirect calorimetry providing VO2, MR,
and RER was not conducted in every center and not always using both sexes. The
statistical power of the phenotyping approach implemented by the IMPC alliance

Table 3 Transcription factor-binding site alignment of MORE sets comprising a regulatory network of 14 genes

MORE cassette set

AUC-mh MHS dtnpb1 golga3
AUC-mh PZE asfa1 atp2a2
AUC-mh XSSh dtnpb1 bbs5
AUC-ml PSH dtnpb1 dpm2
BM-fh CFS dtnpb1 ggnbp2 slcs2a2 bbs5 mrap2
BM-mh GEgE ggnbp2 cir1
MR-mh PBLS dtnpb1 ggnbp2 zranb1
MR-ml ASF dtnpb1 epha5
RER-mh XEE epha5 ggnbp2
RER-mh GSO epha5 rabl2
RER-ml MHS slcs2a2 bbs5
TG-fh XEgEg dtnpb1 ggnbp2
TG-fl NSF epha5 ggnbp2
VO2-mh XXCS epha5 zranb1
VO2-mh XXLSS epha5 slcs2a2
VO2-fh XCHS epha5 zranb1
VO2-fl XSSSf slcs2a2 rabl2 cpe
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was evaluated by data obtained from the pilot program EUMODIC21. Here a
sample size of seven mutant mice per sex was found to be required to detect
genotype effects. This is the outcome of a trade-off between sufficient statistical
power and technical and workflow constraints, which are linked in any high-
throughput phenotyping screen. As described above mean mutant/wild-type ratios
were calculated for all parameters split for phenotyping center and sex to identify
universal cross-project metabolic characteristics of knockouts. No further quanti-
tative statistical measure was assigned to these pragmatic but restrictive selection
criteria. However, critical values for the 5% tails could be computed by upper/lower
threshold =mean± 1.645 s.d., approximating a significance value of p < 0.05 for
each tail or p < 0.1 for both higher and lower tails together.

Permutation analysis. We performed permutation tests in order to estimate p
values for the fraction of strong metabolic phenotype genes within the set of 101
IMPC genes with documented links to obesity and type 2 diabetes. In particular, we
shuffled the phenotype ratios of the gene set analyzed by IMPC one million times
and then we obtained sample distributions of the fraction of genes within the <5th
>95th and the <20th and >80th range percentiles of the 101 genes in these random
sets. These distributions were subsequently used to obtain the p values.

Identification of unexplored genes. Starting with all genes with strong metabolic
phenotype of the IMPC project (IMPC Release 4.2 from Dec 2015), several filters
were applied to discard genes with known molecular or functional annotation.
First, we removed genes linked to mammalian phenotype (MP) terms related to
metabolism (as described in the next section “Mapping to MP ontology terms”).
Next, genes with annotated information in KEGG or gene ontology (GO) databases
were removed following the procedure described in “Representation of genes in
KEGG graphical pathways” and “Selection of GO terms describing metabolic
processes” Method sections, respectively. Literature information on the function of
the resulting list of genes was inspected using PubMed, LitInspector48, and Gen-
eCards49. This iterative process produced a list of 51 genes with no information.
The additional 20 genes represent those genes with known molecular information
(based on GO molecular properties) but unknown biological processes (See Sup-
plement Fig. 1).

Representation of genes in KEGG graphical pathways. The Interactive Path-
ways Explorer v2 web-based tool50 was used to visualize the strong metabolic
phenotype genes on a map representing global metabolism in mice. To that aim, we
mapped the strong metabolic phenotype and “non-strong” metabolic phenotype
genes for each parameter and sex to the global “Metabolic pathways” overview map
from Mus musculus organism constructed using 146 KEGG pathways.

To get an overview of the representation of the strong metabolic phenotype
genes of each parameter and sex in biological pathways, we mapped the genes to
the graphical KEGG pathways provided by KEGG online website. In these pathway
maps, several functionally related genes might be grouped in the same node. When
strong metabolic phenotype and “normal” genes of the same parameter and sex
mapped to the same group, we highlighted the strong metabolic phenotype genes.

To link genes to KEGG pathways, the KEGG website search tool (http://www.
genome.jp/kegg/tool/map_pathway1.html) was used applying the filter “organism:
Mus musculus.” The information available from the page was then downloaded and
processed using Bash shell and R scripts (R version 3.3.2). To identify those genes
linked to metabolism, we selected those mapping to the “Metabolism” class of
KEGG classification.

Selection of GO terms describing metabolic processes. Associations of genes to
GO terms were extracted from Gene Ontology Consortium website51. We analyzed
terms of the “Molecular function” and “Biological processes” domains. To select
genes involved in metabolism based on GO term annotation, we selected all GO
terms under the “metabolic process” category and mapped them to the genes of
interest.

Mapping to MP ontology terms. MP terms for the genes of interest were
extracted from the MGI database (http://www.informatics.jax.org/) using the file
(MGI_PhenoGenoMP.rpt), which contains information on genes and their anno-
tated phenotypes. In order to avoid circular discoveries, as the MGI database
includes the IMPC phenotype data, IMPC entries were removed using internal
filters.

Human subjects, GWAS, and SNP analysis and statistics. Orthologous/para-
logous genes of mouse metabolism genes mapping to the human genome were used
for analysis. We searched for SNPs in a ±2 kb region in SNiPA database. For each
SNP occurring in or around genes, we evaluated the extent of this sharing for 19238
SNPs in 16 metabolic phenotype GWAs from various consortia, including DIA-
GRAM, MAGIC, GIANT, GLGC, and ICBP30–36. All participants of the studies
contributing to the consortia have given their informed consent for genetic studies,
which was confirmed by the appropriate ethics committees. For our present study,
we used metadata without any link to individual IDs or data only. We used cross
phenotype meta-analysis (CPMA), which detects association of a SNP to multiple,
but not necessarily all, phenotypes37. The CPMA analysis applies the likelihood
ratio test that measures the likelihood of the null hypothesis (i.e., that the sig-
nificant SNP is uniformly distributed across consortiums) over the alternative
hypothesis.
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The ongoing Tübingen family (TÜF) study for type 2 diabetes currently
comprises more than 3000 unrelated non-diabetic Caucasian individuals at
increased risk of type 2 diabetes (subjects with family history of diabetes, BMI ≥27,
impaired fasting glycemia, and/or previous gestational diabetes). The participants
were comprehensively characterized by anthropometrics, five-point oral glucose
tolerance tests, and clinical chemistry41 and were genotyped on Illumina’s
Infinium® Global Screening Array-24 v1.0 BeadChip, which was developed based
on Phase-III data of the 1000 Genomes Project and which has 700,078 single-
nucleotide polymorphisms (SNPs). The study followed the principles laid down in
the Declaration of Helsinki and was approved by the Ethics Committee of the
University of Tübingen. Informed written consent was obtained from all
participants. From the TÜF study, we selected 2788 subjects with complete
phenotypic data sets (body fat content/distribution, blood glucose, insulin
sensitivity, insulin secretion, and plasma lipids) as the study population for the
analysis of the human orthologues of unexplored murine metabolic genes. Of these
51 murine genes, four (1500011B03Rik, 4930591A17Rik, Dppa1, and Cldn34b2) had
no human orthologues, and three orthologues (PRAMEF20, C17orf105, and
TMEM42) were not on the array. In the remaining 44 orthologues, only SNPs with
minor allele frequencies ≥0.05 were analyzed, due to statistical power limitations of
the study population. In consequence, seven orthologues (C5orf52, CCDC24,

CCDC116, FBXW12, TMEM136, DNAJC5G, and TEX37) with no common SNPs
were excluded from the analyses. In the remaining 37 genes, 240 common, bi-
allelic, and non-linked (r< 0.8) SNPs with call rates ≥0.75 were identified and
ultimately analyzed. Analysis of association with the aforementioned phenotypes
was carried out by multiple linear regression analysis (least squares method) to
account for potential confounders (gender, age, BMI, and insulin sensitivity)
whenever appropriate. The SNPs were analyzed in the additive inheritance model.
According to Bonferroni correction for the number of SNPs tested in parallel, p
values <0.000213 were considered significant. Associations were indicated as
nominal if p values were ≥0.000213 and <0.05.

MORE cassette enrichment analysis (promoter analysis). Regarding promoter
selection, sets of genes were collected from genes in the 5% outlier range (sex, high
and low outliers were separately analyzed). The promoters of these gene sets were
collected with the ElDorado database and the program Gene2Promoter (both
Genomatix, Munich).

Multiple organized regulatory elements (MORE) form a (partial) “fingerprint”
that is present within a group of regulatory regions (promoters, enhancers, etc.).
Transcriptional MORE cassettes use transcription factor-binding sites (TFBSs) as
elements, which are defined by a weight-matrix-based detection method
(MatInspector, Genomatix, Munich).

A MORE cassette is defined by several individual TFBSs and corresponding
detection thresholds, their order and strand orientation in the DNA sequence, and
the distance ranges and distance variations between pairs of TFBS elements
(See Supplementary Notes 1 and 2 for more details).

Since there are too many potential MORE cassettes to collect in a database for
standard enrichment analysis (see Supplementary Note 1 for details), we
determined the number and structures of the MORE cassettes actually present in at
least three promoters of each set. Each promoter set was analyzed separately for the
presence of MORE cassettes shared by at least three promoters per set using the
program FrameWorker (Genomatix, Munich). Parameters were set according to
the supplier’s defaults, except for Sequence quorum which was adapted top-down
until MORE cassettes were found. The distance range variation was set to 20 bp,
the minimum distance between elements was set to 10 and the minimum range of
elements in MORE cassettes was set to 3–6. No further adjustments were made
unless the minimum setting of three sequences did not reveal any MORE cassettes.
In this case, the distance variation was increased to 30. Promoter sets that still had
no MORE cassettes with at least three elements were considered negative.

To define MORE cassette sets following procedure was applied: In cases where
multiple MORE cassettes were detected, a manual alignment of the MORE
cassettes was carried out and all MORE cassettes that were identical in all elements
and in their order were collected into a MORE cassette set (only varying in the
distance definitions). In cases of four or more elements, MORE cassettes were also
collected into one bin if they differed only in one element at the exact same relative
position within the MORE (e.g., A-B-C-D and A-B-F-D), however, in such cases
the overlap of the promoters harboring one of these MORE cassettes was required
to exceed 80%. The resulting MORE cassette sets were treated as if they were
individual MORE cassettes. However, detection in promoters by ModelInspector
was always based on actual individual MORE cassettes.

All MORE cassettes and the respective sets were located in promoter sequences
by the program ModelInspector (Genomatix, Munich) in the following promoter
sets: the set initially used for the detection of these MORE cassettes (to detect
additional matches missed in the detection process, e.g., located on the opposite
strand), the promoter set derived from the opposite outlier group (plus or minus,
respectively), the corresponding promoter sets from the other sex, and finally the
set of all promoters from the mouse genome as provided in the ElDorado database.
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To analyze enrichment of MORE cassettes, we applied following procedures.
From the total number of promoters containing a particular MORE cassette or
MORE cassette set, as determined above, an expectation value was determined for a
random subset of the same size as the test set (e.g., the original promoter set) and
an over-representation against an expected random draw of a subset of the size of
the sub-phenotype (male, female, up or down) gene promoters, comparing the
promoter set of interest to all of the mouse promoters (and the total number of
MORE sets actually present in all promoters). Any over-representation ≥2 was
regarded as indication of an association of the MORE cassette or MORE cassette set
with the specific promoter set analyzed. Enrichment was also analyzed in the set of
genes with the corresponding opposite phenotype as a control (e.g., for female low,
female high was checked).

To determine regulatory connections between phenotypes, all promoters from
all genes selected for all phenotypes were analyzed for presence of each enriched
MORE cassette or MORE set as determined from that phenotype. This analysis was
carried out across all phenotypes for both sexes and regardless of the high/low
differentiation. Genes with any of the enriched MORE cassettes or MORE sets in at
least one of their promoters were collected. In this case, enrichment with
phenotypes other than the initial one from which the MORE cassettes were
determined was not required.

The list of the 20 most interesting genes was checked for the presence of
associated MORE cassettes in their promoters. Then a network was constructed in
which genes associated with the same MORE sets in the same sub-phenotype
(male, female, up or down) were “connected” via this shared MORE structure in
their promoters. The resulting network was superimposed onto closed areas that
represent the respective phenotype, the MORE sets or the genes they were
associated with.

Ethical approval. All details regarding animal ethics approval of mouse produc-
tion, breeding and phenotyping at each center are provided in Supplementary
Table 3. All procedures were conducted in compliance with each center’s ethical
animal care and use guidelines. All procedures were in accordance with the
respective national legislation. In addition, we confirm that all efforts were made to
minimize suffering by considerate housing and husbandry. Animal welfare was
assessed routinely for all mice.

Data availability. All phenotyping data and mouse lines presented in this paper
are openly available from the IMPC portal and via our FTP site (ftp://ftp.ebi.ac.uk/
pub/databases/impc/latest/). Information on strong metabolic phenotype gene,
GWAS results and network analysis are provided in Supplementary Data files. The
complete list of MORE cassette descriptions is available from the authors, con-
sisting of the salient features: individual TFBS elements, their order, strand
orientation, distance rage and distance range variations between the pairs. This
allows location of the MORE cassettes, using any suitable TFBS program, without
requiring access to the Genomatix Suite—for individual promoters. The list of
MORE sets, consisting of the MORE cassettes belonging to each set is also
available.
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