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Abstract

The stable wrench-feasible workspace (SWFW) of a cable-driven tensegrity manipulator
defines the set of all end-effector poses reachable with a stable equilibrium configuration, for
a positive and bounded input cable forces. A method for determining the boundary points of
the SWFW of a manipulator with two anti-parallelogram (X) joints and link offsets, actuated
remotely by four cables, has been proposed. It involves two 1-dimensional (D) scanning of
the joint space to firstly determine the bounding points of the stable wrench-feasible joint
space (SWFJ), followed by those of the SWFW. At each grid in the joint space, a set of
univariate polynomial equations are solved to determine the desired boundary points with a
good accuracy. The steps involved in the derivation of two of these polynomials are detailed,
while the others are also derived in a similar manner. Finally, a numerical example of the 2-X
manipulator is considered and its SWFW boundary points are visualized.

1 Introduction

Figure 1 shows the schematic of a 2-X manipulator composed of two anti-parallelogram (X) joints
and link offsets. Each joint consists of a top and a base bar of length b, and two crossed bars of
length l, with (l > b) for the assembly of the joints. The orientation of the top bar w.r.t. the base
bar of ith joint is given by αi for i = 1, 2. Each joint is composed of identical springs with stiffness
ki on either sides, to ensure that it remains in equilibrium at αi = 0, in the absence of external
forces. There is a rigid offset of length a between the two joints, and between the second joint and
the end-effector point P (x, y).

The range of motion of each X-joint is limited by −π < αi < π, due to the flat-singularities at
αi = ±π (see [1]). Within this range, each joint is independently actuated by two cables Cli , Cri

in
an antagonistic manner as shown in Fig. 2b. Each of these cables are actuated by a motor fixed at
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Figure 1: Schematic of the 2-X manipulators under study.

the base. The cables Cl2 , Cr2 have been routed along the bars of the first joint and the offset in a
strut-routed scheme (see [1]) with pulleys, so as to preserve the independence in actuation. In this
study, the springs are assumed to be of zero-free length and the pulleys to be massless points.

The kinematic model of 2-X manipulator, involves expressing the end-effector coordinates (x, y)
in terms of the joint angles (α1, α2) and vice versa. From Fig. 1, knowing that αi ∈]−π, π[, i = 1, 2,
it is possible to unambiguously present the direct kinematics of the manipulator as follows (see [2]
for details):

li(αi) =
√
l2 − b2 cos2(αi/2), i = 1, 2

x = −l1(α1) sin(α1/2)− a(sinα1 + sin(α1 + α2))− l2(α2) sin(α1 + α2/2)

y = l1(α1) cos(α1/2) + a(cosα1 + cos(α1 + α2)) + l2(α2) cos(α1 + α2/2)

(1)

Differentiating Eq. (1) w.r.t. time yields :ẋ
ẏ

 = Jx

α̇1

α̇2

 ,where Jx =
 ∂x
∂α1

∂x
∂α2

∂y
∂α1

∂y
∂α2

 is a Jacobian matrix. (2)

The singularity condition for the manipulator is obtained from the vanishing of the determinant
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of Jx, which can be expressed as follows (after clearing the non-zero denominator):

(3)

4a sinα22
√
l2 − b2 cos2

(
l2 − 2b2 cos2 α22

)
+ 2b4 cosα12 sinα22 cos2 α22

+ b2l2
(
sin(α12 − α22)− 2 cos2 α22 sin(α12 + α22)

)
+ l4 sin(α12 + α22)

+
√
l2 − b2 cos2 α22

(
2a
(
cosα12 sinα2

(
l2 − b2

)
− l2 sinα12 sin2 α22 + l2 sinα12 cos2 α22

)
−
(
b2 − 4a2

)
sinα2

√
l2 − b2 cos2 α12

)
= 0

where α12 = α1/2, α22 = α2/2. Such substitutions have been made above and in the rest of this
document, for the sake of brevity. Note that (α1, α2) = (0, 0) satisfies the singularity condition
irrespective of the bar lengths.

2 Static model of the 2-X manipulator

(a) Bar labels
(b) Cable-routing

Figure 2: Bar labels (left) and cable-routing scheme (right) for the 2-X manipulator.

The total potential energy of the 2-X manipulator is computed as follows:

Ux =
12∑
i=1

migyi +mpgyp +
2∑
j=1

(1/2)kj(l2lj + l2rj
) + Flj llj + Frj

lrj
(4)

where mi represents the mass of the ith bar (see Fig. 2a), yi represents the y-coordinate of the
geometric center of the bar i, mp is the mass of the point payload and yp its y-coordinate. Together
the first two terms represent the contribution of gravity in the total potential energy (considering
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the zero-potential to be along the x-axis). The remaining terms signify the effect of springs and
actuation forces. The lengths llj , lrj

, shown in Fig. 1, are functions of l, b, αj (see [3] for their
expressions). The forces Flj , Frj

are the actuation forces imposed by cables Clj , Crj
(see Fig. 2b),

respectively, with j = 1, 2.
The static equilibrium equations can be obtained by setting the derivatives of Ux w.r.t. α1

and α2, to zeros. This results in two equations, which can written in the following form1:

G1(k1, g, l, b, α1, α2) = Γ1(Fl1 , Fr1 , l, b, α1)

G2(k2, g, l, b, α1, α2) = Γ2(Fl2 , Fr2 , l, b, α2)
(5)



G1 = C1x sinα1 − C
′
3x sin(α1 + α2)− 2C3x sin(α1 + α22)

√
l2 − b2 cos2 α22 + C

′
1x sinα12(2b2 cos2 α12−l2)√

l2−b2 cos2 α12

G2 = C3x(b2 sinα22 cos(α1+α22) cosα22+sin(α1+α22)(b2 cos2 α22−l2))√
l2−b2 cos2 α22

+ C2x sinα2 − C
′
3x sin(α1 + α2)

Γ1 = −Fl1b cosα12

(
b sinα12√

l2−b2 cos2 α12
− 1

)
− Fr1b cosα12

(
b sinα12√

l2−b2 cos2 α12
+ 1

)
Γ2 = −Fl2b cosα22

(
b sinα22√

l2−b2 cos2 α22
− 1

)
− Fr2b cosα22

(
b sinα22√

l2−b2 cos2 α22
+ 1

)
(6)

where 

C1x = 2b2k1 − ag(2m10 + 4m11 +m3 + 2m4 +m5 +m7 + 4m8 + 2mp)

C
′
1x = g(m1 +m10 + 2m11 +m3 + 2m4 +m5 +m7 + 2m8 +mp)

C2x = 2b2k2

C3x = g(m10 + 2m11 +m8 +mp)

C
′
3x = 2ag(m11 +mp)

(7)

The masses (m2,m6,m9,m12) have been replaced by (m1,m4,m8,m11), respectively, owing to sym-
metry (see Fig. 2a) to keep the resulting expressions simpler.

The coefficients of Fli (resp. Fri
) can be shown to be positive (resp. negative) within the

range −π < αi < π. Thus, when the cable forces are bounded by [Fmin, Fmax], the maximum (resp.
minimum) values of the actuation wrench Γi can be obtained when Γi(Fli = Fmax, Fri

= Fmin)
(resp. Γi(Fli = Fmin, Fri

= Fmax)). Thus, the equilibrium equations in Eq. (5) can be satisfied only
when Γi ≤ Gi ≤ Γi. The set of all αi ∈] − π, π[ where these inequalities are satisfied forms the
wrench-feasible joint space (WFJ) of the manipulator. The boundary of WFJ will be obtained from
the conditions Gi = Γi and Gi = Γi.

1The symbol g in Eq. (5) represents all the terms due to gravity.
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The articular stiffness matrix (Kα) of the 2-X manipulator is obtained from the Hessian of the
potential energy w.r.t. [α1, α2]>, as follows:

Kα =
K11 K12

K12 K22

 with K11 = K
′
11

(λ2 − c2
1)3/2 and K22 = K

′
22

(λ2 − c2
2)3/2 (8)

where

(9)

K
′

11 = −4bc12C3x
(
λ2 − c2

1

)3/2√
λ2 − c2

2 − bc1C
′

1x

(
4c4

1 − 2c2
1

(
3λ2 + 1

)
+ λ2

(
λ2 + 3

))
− bFl1

(
c4

1 + c2
1

(
s1

√
λ2 − c2

1 − λ2
)

+ λ2s1

(
s1 −

√
λ2 − c2

1

))
− bFr1

(
c4

1 − c2
1

(
s1

√
λ2 − c2

1 + λ2
)

+ λ2s1

(√
λ2 − c2

1 + s1

))
− 2c′

12C
′

3x

(
λ2 − c2

1

)3/2
+ 2C1x

(
λ2 − c2

1

)3/2 (
c2

1 − s2
1

)

(10)

K
′

22 = C3x
(
bc12

(
−2c4

2 + 3c2
2λ

2 − λ2
(
λ2 + s2

2

))
+ 2bc2s12s2

(
c2

2 − λ2
))

− bFl2
(
c4

2 + c2
2

(
s2

√
λ2 − c2

2 − λ2
)

+ λ2s2

(
s2 −

√
λ2 − c2

2

))
− bFr2

(
c4

2 − c2
2

(
s2

√
λ2 − c2

2 + λ2
)

+ λ2s2

(√
λ2 − c2

2 + s2

))
− 2c′

12C
′

3x

(
λ2 − c2

2

)3/2
+ 2C2x

(
λ2 − c2

2

)3/2 (
c2

2 − s2
2

)
(11)K12 = −2bC3x (c12 (λ2 − c2

2) + c2s12s2)√
λ2 − c2

2

− 2c′

12C
′

3x

in which λ = l/b, c1 = cos(α1/2), s1 = sin(α1/2), c2 = cos(α2/2), s2 = sin(α2/2), c12 = cos(α1 +
α2/2), s12 = sin(α1 + α2/2), c′

12 = cos(α1 + α2), s′
12 = sin(α1 + α2).

At any given configuration (α1, α2), the manipulator is said to be at a stable equilibrium if
two conditions are satisfied. Firstly, the equilibrium equations in Eq. 5 must be satisfied, and
secondly, the matrix Kα must be positive definite. To satisfy the first condition, two of the forces,
e.g., (Fl1 , Fl2) can be solved for from Eq. (5) and substituted into the stiffness matrix. This results
in the matrix Krr

α , given below:

Krr
α =

Krr
11 K12

K12 Krr
22

 with Krr
11 = Krr′

11
c1(λ2 − c2

1) and Krr
22 = Krr′

22
c2(λ2 − c2

2) (12)

where

Krr′

11 = −2bC3x

√
λ2 − c2

2

(
2c1c12

(
λ2 − c2

1

)
+ c2

1s12

√
λ2 − c2

1 + λ2s1s12

)
+ C

′

1x

(
bc2

1s1
(
2c2

1 − λ2
)

+ b
(
4c4

1 − 2c2
1 − λ2

)√
λ2 − c2

1

)
+ 2bc3

1Fr1

(√
λ2 − c2

1 + s1

)
+C

′

3x

(
2c1c

′

12

(
c2

1− λ2
)

+ c2
1(−s′

12)
√
λ2 − c2

1− λ2s1s
′

12

)
+ 2c3

1C1x

(
s1

√
λ2 − c2

1− c2
1 + λ2 + s2

1

)
(13)

5



Krr′

22 = C3x

(
bc12

(
c3

2

(
2
√
λ2 − c2

2 + s2

)
− c2λ

2
√
λ2 − c2

2

)
+ bs12

(
c4

2 − c2
2

(
2s2

√
λ2 − c2

2 + λ2
)
− λ2s2

√
λ2 − c2

2

))
+ 2bc3

2Fr2

(√
λ2 − c2

2 + s2

)
+C

′

3x

(
2c′

12c2
(
c2

2−λ2
)

+s
′

12

(
c2

2

(
−
√
λ2 − c2

2

)
−λ2s2

))
+2c3

2C2x

(
s2

√
λ2 − c2

2−c2
2 +λ2 +s2

2

)
(14)

Recalling that (l > b) (or λ > 1) and αi ∈ ]−π, π[ , i = 1, 2, it can be shown that the coefficients
of Fr1 and Fr2 are both positive. This shows that the actuation forces have a positive influence on
the stiffness of the 2-X manipulator.

Thus, at a given configuration (α1, α2), maximum stiffness can be obtained by imposing max-
imum feasible values for (Fr1 , Fr2). They can be set to Fmax each, if the corresponding (Fl1 , Fl2)
computed from the equilibrium equations are both within [Fmin, Fmax]. If this is not the case,
then Fli must be set to Fmax and the respective values of Fri

must be determined from the ith

equilibrium equation.
In general, two of the actuation forces {(Fr1 , Fr2) or (Fr1 , Fl2) or (Fl1 , Fr2) or (Fl1 , Fl2)} must

be set to their upper bound of Fmax to obtain maximum stiffness at any configuration. However,
while determining the stability boundary one does not know a priori which combination of forces
is the critical one. Hence, the stiffness matrices corresponding to all the above force combinations
must be obtained: (Krr

α ,K
rl
α,K

lr
α,K

ll
α), respectively, by eliminating the other two forces using the

equilibrium equations. Then, the forces in each of these matrices must be set to Fmax to form the
matrices corresponding to maximum stiffness (Krr

α ,K
rl
α,K

lr
α,K

ll
α), respectively. The boundary of

stability could be formed by the vanishing of the determinant of any of these matrices2. Hence, all
of these conditions must be considered together for determining the stability boundary in the joint
space.

The set of all (α1, α2) where the manipulator is both wrench-feasible and stable forms the stable
wrench-feasible joint space (SWFJ). A method to compute its bounding points is presented in the
following.

2Normally the positive definiteness of a (2 × 2) matrix is ensured when both of its leading principal minors are
positive. But, for real symmetric matrices it can be shown that the boundary (limiting case) of positive definiteness
can only be formed by the vanishing of the second leading minor (see Appendix A)
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3 Boundary points of the SWFJ

As a first step in the determination of the SWFJ boundary, all the limiting conditions of wrench-
feasibility and stability can be grouped together as follows:

f(α1, α2) :=



f1 := G1 − Γ1 = 0

f2 := −G1 + Γ1 = 0

f3 := G2 − Γ2 = 0

f4 := −G2 + Γ2 = 0

f5 := det(Krr
α ) = 0

f6 := det(Krl
α) = 0

f7 := det(K lr
α) = 0

f8 := det(K ll
α) = 0

(15)

It is possible to plot the contours of the above expressions in (α1, α2) space and determine the
SWFJ by inspecting the feasibility of one point inside each connected region. However, this approach
requires manual intervention and is not suitable for a design process, where thousands of manipulator
designs might be explored.

Hence, an alternate approach is followed in this work. Each of the above conditions can be
converted to a polynomial in tangent half-angle of the joint angles, say α1, by retaining α2 in its
coefficients. Thus, for a given α2, it would be possible to obtain the limiting values of α1 from
all the equations in Eq. (15). Then, one point inside each interval can be explored to determine
the feasibility of that interval. The bounding points of the feasible intervals of α1 would lie on the
boundary of SWFJ. Thus, α2 may be discretized at a desired resolution and the respective bounding
points in α1 may be obtained.

This process can be repeated by deriving polynomials in half-tangent form of α2, and solving
them at discrete values of α1, to obtain the bounding points of α2. In this manner, a cloud of points
that lie on the SWFJ boundary can be determined and then mapped onto the task space along
with the singularities using the direct kinematic equations, to obtain the SWFW.

The steps involved in the derivation of these polynomials are illustrated for the first condition
in Eq. (15) in the next section.
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4 Equivalent polynomial equations for f1 = 0

Using the expressions in Eq. (6), the equation f1 = 0 in Eq. (15) can be expanded into:

(16)

b cos
(
α1

2

)
(Fmax − Fmin) + C1x sinα1 − C

′

3x sin(α1 + α2)

+
b2 sin

(
α1
2

) (
C

′
1x (cos(α1)− λ2 + 1) + cos

(
α1
2

)
(Fmax + Fmin)

)
√
l2 − b2 cos2

(
α1
2

)
+−2bC3x sin

(
α1 + α2

2

)√
λ2 − cos2

(
α2

2

)
= 0

This condition would be processed differently to obtain polynomials in t1 = tan(α1/4) and tan(α2/4),
respectively, in the following sections.

4.1 Polynomial in t1 = tan(α1/4)

The objective is to rewrite f1 = 0 as a polynomial in t1 = tan(α1/4). In this case, α2 and all
other parameters are assumed to be known. Starting from Eq. (16), the trigonometric terms with
compound angles are expanded and the substitutions c2 = cos(α2/2), s2 = sin(α2/2) are carried
out. The next step is to eliminate the square root involving α1. Hence, this equation is rewritten
in terms of intermediate variables (for simplicity and fast computations) as follows:

(17)b2 sin(α1/2)
(
aa4 cos(α1/2) + C

′

1x

(
2 cos2(α1/2)− λ2

)) 1√
l2 − b2 cos2(α1/2)

= cos(α1/2)(aa1 sin(α1/2) + aa3) + aa2 cosα1



aa1 = −4bc2C3x

√
λ2 − c2

2 + 2C1x − 2c2
2C

′
3x + 2C ′

3xs
2
2

aa2 = −2s2

(
bC3x

√
λ2 − c2

2 + c2C
′
3x

)
aa3 = b(Fmax − Fmin)

aa4 = Fmax + Fmin

(18)

Squaring both sides of Eq. (17) and clearing the denominator(6= 0) results in:

(19)b4 sin2(α1/2)
(
aa4 cos(α1/2) + C

′

1x

(
2 cos2(α1/2)− λ2

))2

−
(
b2λ2 − b2 cos2(α1/2)

) (
cos(α1/2)(aa1 sin(α1/2) + aa3) + aa2

(
2 cos2(α1/2)− 1

))2
= 0

Though spurious roots will be introduced due to squaring, they will be eliminated automatically,
in the next step while inspecting the intervals (see Fig. 3a). Introducing the variable t1 = tan

(
α1
4

)
,
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and replacing: cos(α1/2) = 1−t21
1+t21

and sin(α1/2) = 2t1
1+t21

, results in a rational equation. After clearing
the non-zero denominator (1 + t21)6, one obtains a degree-12 polynomial as follows:

(20)ζ0 + ζ1t1 + ζ2t
2
1 + ζ3t

3
1 + ζ4t

4
1 + ζ5t

5
1 + ζ6t

6
1 + ζ7t

7
1 + ζ8t

8
1 + ζ9t

9
1 + ζ10t

10
1 + ζ11t

11
1 + ζ12t

12
1 = 0



ζ0 = b2 (λ2 − 1) (−(aa2 + aa3)2)

ζ1 = −4aa1b
2 (λ2 − 1) (aa2 + aa3)

ζ2 = −2b2 (2aa2
1 (λ2 − 1) + aa2

2 (7− 5λ2)− 4aa2aa3 (λ2 − 2) + aa2
3λ

2 + aa2
3 − 2aa2

4b
2

+4aa4b
2C

′
1xλ

2 − 8aa4b
2C

′
1x − 2b2

(
C

′
1x

)2
λ4 + 8b2(C ′

1x)2λ2 − 8b2(C ′
1x)2

)
ζ3 = −4aa1b

2 (aa2 (9− 5λ2) + aa3 (λ2 + 3))

ζ4 = −b2
(
16aa2

1 + 3aa2
2 (5λ2 − 21)− 2aa2aa3 (11λ2 + 13)− aa2

3λ
2 + aa2

3 + 16aa4b
2C

′
1xλ

2

+32aa4b
2C

′
1x − 16b2

(
C

′
1x

)2
λ4 + 64b2

(
C

′
1x

)2
)

ζ5 = 8aa1b
2 (3aa2λ

2 + 11aa2 + aa3λ
2 + aa3)

ζ6 = 4b2
(

2aa2
1 (λ2 + 3)− aa2

2 (13λ2 + 25) + aa2
3λ

2 + aa2
3 − 2aa2

4b
2 + 6b2

(
C

′
1x

)2
λ4

+8b2
(
C

′
1x

)2
λ2 + 24b2

(
C

′
1x

)2
)

ζ7 = 8aa1b
2 (−3aa2λ

2 − 11aa2 + aa3λ
2 + aa3)

ζ8 = b2
(
−16aa2

1 + aa2
2 (63− 15λ2)− 2aa2aa3 (11λ2 + 13) + aa2

3λ
2 − aa2

3 + 16aa4b
2C

′
12λ

2

+32aa4b
2C

′
12 + 16b2

(
C

′
12

)2
λ4 − 64b2

(
C

′
12

)2
)

ζ9 = −4aa1b
2 (aa2 (5λ2 − 9) + aa3 (λ2 + 3))

ζ10 = −2b2 (2aa2
1 (λ2 − 1) + aa2

2 (7− 5λ2) + 4aa2aa3 (λ2 − 2) + aa2
3λ

2 + aa2
3 − 2aa2

4b
2

−4aa4b
2C

′
12λ

2 + 8aa4b
2C

′
12 − 2b2

(
C

′
12

)2
λ4 + 8b2

(
C

′
12

)2
λ2 − 8b2

(
C

′
12

)2
)

ζ11 = 4aa1b
2 (λ2 − 1) (aa2 − aa3)

ζ12 = b2 (λ2 − 1) (−(aa2 − aa3)2)

(21)

The above coefficients are functions of α2, and will be known as numbers when the manipulator
parameters and α2 are known.

4.2 Polynomial in t2 = tan(α2/4)

Incorporating the substitutions c1 = cos(α1/2), s1 = sin(α1/2) into Eq. (16), and rearranging it,
results in:

ba1 cos(α22) + ba2 sin(α22)
√
λ2 − cos2(α2/2) = ba3 + ba4 cos(α2) + ba5 sin(α2) (22)
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where

ba1 = −4c1C3xs1

ba2 = 2C3x(s2
1 − c2

1)

ba3 = − bC
′
12s1(−3c2

1+2λ2+s2
1−1)

2
√
λ2−c2

1
+ bc1

(
Fmaxs1√
λ2−c2

1
+ Fmin

(
s1√
λ2−c2

1
− 1

)
+ Fmax

)
+ 2c1C1xs1

ba4 = −2c1C
′
3xs1

ba5 = −C ′
3x(c2

1 − s2
1)

(23)

Squaring both sides to eliminate the square root leads to:

(24)
(
b2λ2 − b2 cos2(α22)

)
(ba1 cos(α22) + ba2 sin(α22))2 − (ba3 + ba4 cos(α2) + ba5 sin(α2))2 = 0

Introducing the variable t2 = tan(α2/4), replacing cos(α2) = 1−t22
1+t22

and sin(α2/2) = 2t2
1+t22

, and clearing
the non-zero denominator (1 + t22)4, one obtains:

µ0 + µ1t2 + µ2t
2
2 + µ3t

3
2 + µ4t

4
1 + µ5t

5
2 + µ6t

6
2 + µ7t

7
2 + µ8t

8
2 = 0 (25)



µ0 = b2ba2
1 (λ2 − 1)− (ba3 + ba4)2

µ1 = 4b2ba1ba2 (λ2 − 1)− 8ba5(ba3 + ba4)

µ2 = 4 (b2 (ba2
1 + ba2

2 (λ2 − 1))− ba2
3 + 2ba3ba4 + 3ba2

4 − 4ba2
5)

µ3 = 4b2ba1ba2 (λ2 + 3)− 8ba5(ba3 − 7ba4)

µ4 = b2 (8ba2
2 (λ2 + 1)− 2ba2

1 (λ2 + 3))− 6ba2
3 + 20ba3ba4 − 38ba2

4 + 32ba2
5

µ5 = 8ba5(ba3 − 7ba4)− 4b2ba1ba2 (λ2 + 3)

µ6 = 4 (b2 (ba2
1 + ba2

2 (λ2 − 1))− ba2
3 + 2ba3ba4 + 3ba2

4 − 4ba2
5)

µ7 = 8ba5(ba3 + ba4)− 4b2ba1ba2 (λ2 − 1)

µ8 = b2ba2
1 (λ2 − 1)− (ba3 + ba4)2

(26)

Similar to previous case, all of these coefficients will be known as numbers when all the manipulator
parameters and α1 are known.

4.3 Details on other polynomials

Each of the conditions in Eq. (15) can be reduced to polynomials in t1 = tan(α1/2), t2 = tan(α2/2),
respectively, as illustrated in the previous two sections. The derivation of polynomials for the sta-
bility conditions involves more intermediate variables, bigger expressions, and more tedious com-
putations. Each stability condition results in a polynomial of degree-36, which are not presented in
this report due to lack of space. A total of 16 polynomials have been derived from Eq. (15), 8 of
them in t1 and the other 8 in t2.
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5 Boundary points of the SWFW for a numerical example

3 2 1 0 1 2 3
3
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(a) Intervals of α1 when α2 = 0
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(b) Scanning α2
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(c) Scanning both α1 and α2

Figure 3: 2X manipulator: Feasible interval of α1 for a given α2 = 0 (left), boundary points
obtained while scanning α2 (middle), and all the boundary points obtained by scanning both α1

and α2 (right).

For a numerical illustration, the following parameters have been adopted for the 2-X manipula-
tor: b = 0.05 m, l = 0.1 m, a = 0.2 m, k1 = 600 N/m, k2 = 300 N/m. The forces imparted by all
the cables are bounded between Fmin = 5 N and Fmax = 155 N. All the bars (thick lines in Fig. 2a)
are considered to be made of Aluminum material as solid cylinders of radius 0.005 m.

For the 2-X manipulator, determination of the SWFJ involves two 1-D scans, i.e., of α1, α2

variables separately. They were each discretized into 50 equally spaced points inside [−0.99π, 0.99π],
avoiding the flat-singularities. For instance, at grid point α2 = 0, the following steps were followed:

• All the polynomials in t1 derived above were solved and the real values of α1 ∈]− π, π[ were
filtered out.

• The values of α1 were arranged in increasing order along with the boundaries −π, π as shown
in Fig. 3a.

• One arbitrary point (α∗1, 0) inside each of the interval was checked for wrench-feasibility and
stability conditions. For wrench-feasibility, (Γi ≤ Gi ≤ Γi), i = 1, 2 were checked. For
stability, firstly, the two forces that can be set to Fmax at (α∗1, 0), while the other forces remain
within [Fmin, Fmax] were identified. Then, all the forces were substituted into the stiffness
matrix Kα in Eq. (8) and its positive definiteness was evaluated. If the inspected point is
both wrench-feasible and stable, the corresponding interval is feasible.

• All the feasible intervals are indicated with a tick mark in Fig. 3a, and the net bounding
values of α1 were found to be [−1.20613, 1.20613] radians.
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The above process is repeated for other discrete values of α2 in Fig. 3b, and for α1 in Fig. 3c.
Since the bounding points are obtained by solving polynomials, it is not possible to miss out on
any of these on the grid lines. Also, they are quite accurate with a very small residue (about 10−10

units) w.r.t. the original conditions.
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(a) Bounding points of SWFJ

-0.4 -0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

(b) Bounding points of the SWFW

Figure 4: Stable wrench-feasible joint space (left) and stable wrench-feasible workspace (right) of
the 2-X manipulator when b = 0.05 m, l = 0.1 m, a = 0.2 m, k1 = 600 N/m, k2 = 300 N/m,
Fmax = 155 N, Fmin = 5 N. In joint space (α1, α2), the points in region det(Jx) > 0 are shown in
opaque style and those in det(Jx) < 0 region are shown in transparent style. Their maps in the
task space are also shown in the same style for the sake of clarity.

Next, points on the singularity curve can be found using the condition in Eq. (3). It is possible
to obtain polynomials out of the singularity condition and solve them to obtain the desired points
along α1 and α2 grid lines, in a similar manner. The result is shown in Fig. 4a. All the points in
the region det(Jx) > 0 are shown in opaque style while those in the region det(Jx) < 0 are shown
in transparent style. These points have been mapped onto the task space using the kinematic
equations in Eq. (1), to form the boundary points of the SWFW for this manipulator as shown in
Fig. 4b. There are two regions in the SWFW bounded by the opaque and transparent points, each
of which can be reached in one configuration. The top part where the two regions overlap can be
reached in two configurations, and the central part around (x = 0, y = 0) is unreachable.
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6 Conclusion

A method to compute boundary points of the stable wrench-feasible workspace (SWFW) of a 2-X
tensegrity manipulator driven by 4 cables was discussed. Firstly, it involves two 1-dimensional (D)
scanning of the joints space. At each grid point, a set of univariate polynomials are solved to obtain
the boundary points of the stable wrench-feasible joint space (SWFJ) accurately and quickly. These
points are then mapped onto the task space of the manipulator along with the singularities, using
the direct kinematic model, to obtain the corresponding bounding points of the SWFW of the
manipulator. Since this is an automated process that can be implemented efficiently, it is suitable
to be used in an optimal design process where several designs might be explored.

Appendix A Limiting condition(s) for positive definiteness
for a (2× 2) symmetric matrix

Consider a (2× 2) real symmetric matrix P as shown below:

P =
p11 p12

p12 p22

 (27)

The conditions for its positive definiteness can be written in terms of its leading principal minors
(see e.g., [4]) as follows: f1 := p11 > 0

f2 := p11p22 − p2
12 > 0

(28)

The limiting condition of stability is formed when one of the above inequalities becomes an equality,
i.e., when (f1 = 0 with f2 > 0) or (f1 > 0 with f2 = 0). However, it is apparent that when p11 = 0,
f2 = −p2

12 < 0 always . Thus, the only limiting condition for positive definiteness of P is given by
(f2 = 0 with f1 > 0).
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