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Abstract

The stable wrench-feasible workspace (SWFW) of a cable-driven tensegrity manipulator
defines the set of all end-effector poses reachable with a stable equilibrium configuration, for
a positive and bounded input cable forces. A method for determining the boundary points of
the SWEFW of a manipulator with two anti-parallelogram (X) joints and link offsets, actuated
remotely by four cables, has been proposed. It involves two 1-dimensional (D) scanning of
the joint space to firstly determine the bounding points of the stable wrench-feasible joint
space (SWFJ), followed by those of the SWFW. At each grid in the joint space, a set of
univariate polynomial equations are solved to determine the desired boundary points with a
good accuracy. The steps involved in the derivation of two of these polynomials are detailed,
while the others are also derived in a similar manner. Finally, a numerical example of the 2-X

manipulator is considered and its SWFW boundary points are visualized.

1 Introduction

Figure [1| shows the schematic of a 2-X manipulator composed of two anti-parallelogram (X) joints
and link offsets. Each joint consists of a top and a base bar of length b, and two crossed bars of
length [, with (I > b) for the assembly of the joints. The orientation of the top bar w.r.t. the base
bar of i*® joint is given by «; for i = 1,2. Each joint is composed of identical springs with stiffness
k; on either sides, to ensure that it remains in equilibrium at «; = 0, in the absence of external
forces. There is a rigid offset of length a between the two joints, and between the second joint and
the end-effector point P(x,y).

The range of motion of each X-joint is limited by —7 < «a; < 7, due to the flat-singularities at
a; = £7 (see [1]). Within this range, each joint is independently actuated by two cables C,, C,, in

an antagonistic manner as shown in Fig. Each of these cables are actuated by a motor fixed at
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Figure 1: Schematic of the 2-X manipulators under study.

the base. The cables C},, C;, have been routed along the bars of the first joint and the offset in a
strut-routed scheme (see [1]) with pulleys, so as to preserve the independence in actuation. In this
study, the springs are assumed to be of zero-free length and the pulleys to be massless points.
The kinematic model of 2-X manipulator, involves expressing the end-effector coordinates (z, y)
in terms of the joint angles (ay, as) and vice versa. From Fig. , knowing that o; €] —m, 7[,i = 1,2,
it is possible to unambiguously present the direct kinematics of the manipulator as follows (see [2]

for details):

lLi(ow) = \/P —b2cos?(wy/2), i1=1,2
r = —li(ay)sin(a1/2) — a(sin oy + sin(a; + ag)) — la(ae) sin(og + az/2) (1)
y = l1(a) cos(a1/2) + a(cos ay + cos(ay + az)) + la(an) cos(ay + az/2)

Differentiating Eq. w.r.t. time yields :

@ dn = L
=J, ,where J, = [ 921 992 | ig 3 Jacobian matrix. (2)
y (v 9y Oy

Y dar  daz

The singularity condition for the manipulator is obtained from the vanishing of the determinant



of J,, which can be expressed as follows (after clearing the non-zero denominator):

4a sin age V12 — b? cos? (l2 — 2b% cos? a22> + 2b* cos 1y SN oy cOs% (rgo

+ 212 (Sin(a12 — (rg9) — 2cos® gy sin(ayg + azg)) + *sin(ag + agg)

(3)

+ \/F — b2 cos? ag (2a (COS Q9 Sin g (l2 — b2) — 1% sin oo sin® agg + 12 sin a5 cos? a22)

- (b2 — 4a2> sin a2\/l2 — b2 cos? a12> =0

where a9 = a1/2, 90 = a3/2. Such substitutions have been made above and in the rest of this
document, for the sake of brevity. Note that (ay,as) = (0,0) satisfies the singularity condition

irrespective of the bar lengths.

2 Static model of the 2-X manipulator

(b) Cable-routing

(a) Bar labels

Figure 2: Bar labels (left) and cable-routing scheme (right) for the 2-X manipulator.

The total potential energy of the 2-X manipulator is computed as follows:

12 2
Uy = > migy; + mygy, + Z(l/Z)kj(li, + lfj) + Fy,li, + Foly, (4)

i—1 j=1

where m; represents the mass of the i*" bar (see Fig. [2al), y; represents the y-coordinate of the
geometric center of the bar ¢, m, is the mass of the point payload and y, its y-coordinate. Together

the first two terms represent the contribution of gravity in the total potential energy (considering
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the zero-potential to be along the z-axis). The remaining terms signify the effect of springs and
actuation forces. The lengths I;,,[,;, shown in Fig. , are functions of 1,b,c; (see [3] for their
expressions). The forces Fy,, I, are the actuation forces imposed by cables Cy;, C;, (see Fig. ,
respectively, with 7 =1, 2.

The static equilibrium equations can be obtained by setting the derivatives of U, w.r.t. o

and as, to zeros. This results in two equations, which can written in the following formE|:

Gl(k17g7lvb7 (1/1,0(2) - Fl(E17FT1>lvb> Oll)

(5)
Gz(kz, g, l, b, aq, 052) = FQ(EQ, FTQ, l, b, Oéz)

Gl _ Clx sin o — C:;$ Sin(a1 + 042) . 2031’ Sil’l(Oél + a22)\/l2 — b2 cos2 Qg + C;:x; SiIl\t/XllQQ(jszcs;s? a12—l2)
— «a
Gy — O3z (b2 sin o cos(a1+oz2i};os :;z:szir;(a1+a22)(b2 cos? agz—lz)) + Cyp sin g — Céx SiH(Ozl + 042) )
- 22
I'y = —Fj,bcos aga <\/% — 1) — F, bcosais (\/% + 1)
I'y = —F},bcos g (\/% - 1) — F,bcos ag (% +1

where

Cie = 20%k1 — ag(2mag + 4myy + ms3 + 2my + ms + my7 + 4mg + 2m,,)

Cle = g(my + mag + 2muy + my + 2my + ms + my + 2mg + mp)

Ciy = 26%ky (7)
C3p = g(mao + 2may + mg +my)

Cy, = 2ag(myy +my)

The masses (my, mg, Mg, m12) have been replaced by (my, m4, mg, mi1), respectively, owing to sym-
metry (see Fig. to keep the resulting expressions simpler.

The coefficients of Fj, (resp. F),) can be shown to be positive (resp. negative) within the
range —m < oy < 7. Thus, when the cable forces are bounded by [Finin, Finax], the maximum (resp.
minimum) values of the actuation wrench T'; can be obtained when T;(F), = Fuax, Fr, = Fiuin)
(resp. I';(Fl, = Fiin, Fr, = Finax)). Thus, the equilibrium equations in Eq. can be satisfied only
when I'; < G; < T;. The set of all o; €] — 7, m[ where these inequalities are satisfied forms the
wrench-feasible joint space (WFJ) of the manipulator. The boundary of WFJ will be obtained from
the conditions G; = I'; and G; = T}.

IThe symbol ¢ in Eq. represents all the terms due to gravity.
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The articular stiffness matrix (K,) of the 2-X manipulator is obtained from the Hessian of the

potential energy w.r.t. [y, as] ", as follows:

K K K
K, = 1 12 with Ky, = 7113/2 and Koy = o 932
Ky Ky (A2 =) (A2 —c3)

where

Ky = —dberaCay (X = C%>3/2 VA2 = G = berCl, (4t — 262 (3)% +1) + 02 (A2 + 3))
—bFy, <Ci‘ +c (Slm - )\2> + A5y (31 — m»
— bF, (Cil — (Sler )\2) + sy ( N2 — 2+ 51>)
2l (- ) 20 (- 2)" (4 )

K;Q = Cs, (bclz (—20‘21 + 357 — \? ()\2 + sg)) + 2bcys1259 (cg — )\2))

— bF, <C§1 +6 <52\/>\27—C§ - >\2> + Nsy (82 — /A2 = 02>> 0
—bF,, (C;’L - (Szm—l- )\2) + A5y <\/)‘27_C%+ 32>)
=26y, (W = )" 200 (0= ) (8- 43)

Ky = _ 20C3; (12 (A2 — 3) + 251252) e "

2 _ 2
A2 — ¢

in which A = 1/b, ¢; = cos(ay/2),s1 = sin(a1/2),ca = cos(az/2), 85 = sin(as/2), 12 = cos(ag +
2/2), 812 = sin(aq + ay/2), ¢yy = cos(ay + a), 515 = sin(ag + as).

At any given configuration (g, az), the manipulator is said to be at a stable equilibrium if
two conditions are satisfied. Firstly, the equilibrium equations in Eq. 5| must be satisfied, and
secondly, the matrix K, must be positive definite. To satisfy the first condition, two of the forces,
e.g., (F,, Fl,) can be solved for from Eq. and substituted into the stiffness matrix. This results
in the matrix K, given below:

KT K Krr’ Krr’
Ko= " M) with K= — 1 and Kjp = —— 2 (12)
Ky K3 c1(A? —¢f) ca(A? —¢3)

where

Kﬁl = _QbC&T\/T_C% (201612 ()\2 — C%) + C%Slg\/ A2 — C% + )\251812)
+C, (bc?sl (26% — >\2) +b (4c‘1l — 202 — )\2) VA2 — c%) + 203 F, (\/AQ -+ 51>
+ C:lsx (201512 (C% - )‘2) + C%(_S/n) Y e )\2815/12> + 20‘;’0195 (51 \/ A2 — 2 — cf + 22+ 5%)

(13)



Kg = Cso (bewr (2 (20— G+ 52) — 2?32~ 3)
+bsrz (C% -G (282\/)‘27_03 + /\2> - )‘252\//\27—03» +2b3 F, (m + 32)
+Gi <26/1262 (5 =2%) 451, (03 (—M) - A232)> +265Ch, (32\/T—c§ — A+ A+ sg)

(14)

Recalling that (I > b) (or A > 1) and «; € |—m,7w[,i = 1,2, it can be shown that the coefficients
of F,, and F,, are both positive. This shows that the actuation forces have a positive influence on
the stiffness of the 2-X manipulator.

Thus, at a given configuration (aq, ), maximum stiffness can be obtained by imposing max-
imum feasible values for (F},, F;,). They can be set to Fy.x each, if the corresponding (Fj,, F,)
computed from the equilibrium equations are both within [Fin, Finax]. If this is not the case,
then Fj, must be set to Fi,.x and the respective values of F,, must be determined from the ith
equilibrium equation.

In general, two of the actuation forces {(F},, F,,) or (F,, F},) or (F},, F,,) or (F,, F},)} must
be set to their upper bound of Fj,.. to obtain maximum stiffness at any configuration. However,
while determining the stability boundary one does not know a priori which combination of forces
is the critical one. Hence, the stiffness matrices corresponding to all the above force combinations
must be obtained: (K™, K7 K" KU") respectively, by eliminating the other two forces using the
equilibrium equations. Then, the forces in each of these matrices must be set to Fj.. to form the
matrices corresponding to maximum stiffness (K., K., K., K.), respectively. The boundary of
stability could be formed by the vanishing of the determinant of any of these matricesﬂ Hence, all
of these conditions must be considered together for determining the stability boundary in the joint
space.

The set of all (aq, ay) where the manipulator is both wrench-feasible and stable forms the stable
wrench-feasible joint space (SWFJ). A method to compute its bounding points is presented in the

following.

2Normally the positive definiteness of a (2 x 2) matrix is ensured when both of its leading principal minors are
positive. But, for real symmetric matrices it can be shown that the boundary (limiting case) of positive definiteness

can only be formed by the vanishing of the second leading minor (see Appendix )
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3 Boundary points of the SWEFJ

As a first step in the determination of the SWFJ boundary, all the limiting conditions of wrench-
feasibility and stability can be grouped together as follows:

Ji 1:G1—&:0
for==Gi+T1=0
foi=Gy—Ty=0
fii=—Gy+Ty=0

flag,ag) == . (15)
fs = det(K) =0
for=det(K0) =0
fr= det(fi) =0
fs = det(Kh) =0

It is possible to plot the contours of the above expressions in (g, as) space and determine the
SWEFJ by inspecting the feasibility of one point inside each connected region. However, this approach
requires manual intervention and is not suitable for a design process, where thousands of manipulator
designs might be explored.

Hence, an alternate approach is followed in this work. Each of the above conditions can be
converted to a polynomial in tangent half-angle of the joint angles, say oy, by retaining as in its
coefficients. Thus, for a given as, it would be possible to obtain the limiting values of «; from
all the equations in Eq. . Then, one point inside each interval can be explored to determine
the feasibility of that interval. The bounding points of the feasible intervals of a; would lie on the
boundary of SWFJ. Thus, ay may be discretized at a desired resolution and the respective bounding
points in a; may be obtained.

This process can be repeated by deriving polynomials in half-tangent form of as, and solving
them at discrete values of ay, to obtain the bounding points of . In this manner, a cloud of points
that lie on the SWFJ boundary can be determined and then mapped onto the task space along
with the singularities using the direct kinematic equations, to obtain the SWFW.

The steps involved in the derivation of these polynomials are illustrated for the first condition
in Eq. in the next section.



4 Equivalent polynomial equations for f; =0

Using the expressions in Eq. @, the equation f; = 0 in Eq. can be expanded into:

bcos (O;l) (Fmax — Finin) + Ciz sin oy — Cél, sin(oy + o)
b%sin (%) (C’im (cos(ay) — A* + 1) + cos (%) (Finax + Fmin))
\/P — b2 cos? (%)

+ —2bC5, sin (al + O;) \/)\2 — cos? (O;Q> =0

+

(16)

This condition would be processed differently to obtain polynomials in ¢; = tan(ay/4) and tan(as/4),

respectively, in the following sections.

4.1 Polynomial in ¢; = tan(ay/4)

The objective is to rewrite f; = 0 as a polynomial in ¢; = tan(a;/4). In this case, ay and all
other parameters are assumed to be known. Starting from Eq. , the trigonometric terms with
compound angles are expanded and the substitutions c; = cos(as/2), s2 = sin(ay/2) are carried
out. The next step is to eliminate the square root involving «;. Hence, this equation is rewritten

in terms of intermediate variables (for simplicity and fast computations) as follows:

1
\/ZQ — b%cos?(ay/2) (17)

b sin(a:/2) (aas cos(an/2) + Ci, (2c08*(a1/2) — A?))

= cos(a1/2)(aay sin(ay/2) + aaz) + aag cos oy

aay = —4beaCyp\ /N2 — & + 201, — 263C4, + 204,53

aay = —28; <bC3x\/m + Czoéw) (18)
aaz = b(Fpax — Fiin)

aay = Foax + Froin

Squaring both sides of Eq. and clearing the denominator(# 0) results in:

bt sin? (v /2) (aa4 cos(ay/2) + C, (2 cos?(ay/2) — /\2)>2

)
— (b2)\2 —V? COSZ(a1/2)> (cos(al/Q)(aal sin(ay/2) + aasz) + aas (2 cos?(ay/2) — 1)) =0

Though spurious roots will be introduced due to squaring, they will be eliminated automatically,

in the next step while inspecting the intervals (see Fig. . Introducing the variable ¢; = tan (%),



)
and replacing: cos(a;/2) = i ié and sin(a;/2) = 24, results in a rational equation. After clearing
1 1

the non-zero denominator (1 + 1), one obtains a degree-12 polynomial as follows:

Co+ Gitr + Gtf 4 Gt + Gty + GEY + Cot + GtT + Cstl + Got] + Ciot” + Cuty' + Gt =0 (20)

Co=b*(\* = 1) (—(aas + aaz)?)
¢ = —4aab? (\? — 1) (aas + aas)
(o = —2b* (2aa? (N\* — 1) + aa3 (7 — 5\?) — daazaaz (N\* — 2) + aa3\* + aa3 — 2aa3b?
+4aa 201,02 — 8aaib*Cl, — 207 (C1,) X+ 81(Ch,)2A% — 8b2(01w)2>
G = —daa1b? (aaz (9 — 5N?) + aaz (\* + 3))
G=-b (16aa% + 3aa3 (5% — 21) — 2aasaas (1102 + 13) — aa2)\? + aa? + 16aa,b>C; N>
’ 7\ 2 ;7\ 2
+320a182C}, — 166* ()" N + 6482 (€1, )
(s = 8aarb? (3aazA? + 1laas + aaz\? + aas)
(s = 4b* (Qaa% (A? +3) — aa3 (130% 4 25) + aa3\* + aaj — 2aaib® + 6b> (Cil,f Al
862 (1) A2 4 2407 (C;x)2>
Cr = 8aayb? (—3aax\* — 1laay + aazA? + aas)
Gs = b? (—16a03 + a3 (63 — 15)2) — 2aazaa5 (113 + 13) + aa3)? — aa3 + 16aa,b°Cjy)2
/ 7\ 2 ;N\ 2
320,520}, + 1657 (C,) " M — 6482 (C1) )

(21)

Co = —4aab? (aas (5A? — 9) + aas (A\* + 3))

Clo = —2b% (2aa? (N — 1) + aa3 (7 — 50%) + daazaas (A* — 2) + aad)? + aal — 2aa2b?
—daa b Cy, N + 8aaub?Chy — 267 (C1,) N 4 882 (C1,) 22 — 812 (012)2)

¢ = daab* (AN — 1) (aas — aas)

G2 = 0% (N = 1) (—(aaz — aas)?)

The above coefficients are functions of oy, and will be known as numbers when the manipulator

parameters and as are known.

4.2 Polynomial in t; = tan(as/4)

Incorporating the substitutions ¢; = cos(ay/2),s1 = sin(a;/2) into Eq. (16), and rearranging it,

results in:

bay cos(ag) + basg sin(a22)\//\2 — cos?(ag/2) = bas + bay cos(aw) + bas sin(as) (22)



where

ba; = —4c¢;Cs,81

bas = 2C3,(s? — 2)

— bC/ 81(_302+2)\2+52_1) Finaxs S
ba3 = b 2\/;2—0% L + bCl <\/@ + Fmin <\/)\21_—c% - 1> + Fmax) + 20101:1:31 (23)
ba, = —2010§,$31
ba5 = _CZISI(C% - 8%)

Squaring both sides to eliminate the square root leads to:

(b2/\2 — b’ 0082(0@2)) (bay cos(aay) + bag sin(agg))? — (bas + bay cos(ag) + bas sin(az))? =0 (24)

1—t2
1+t2

and sin(ap/2) = 22, and clearing

Introducing the variable to = tan(ay/4), replacing cos(az) = el
2

the non-zero denominator (1 + t2)%, one obtains:

po + puts + pioty + pists + puatt + psty + ety + pgts + psty =0 (25)

po = b*ba? (\? — 1) — (baz + bay)?

w1 = 4b*baibay (A\* — 1) — 8bas(baz + bay)

o = 4 (b% (ba? + bas (A\* — 1)) — ba3 + 2bagbay + 3ba3 — 4ba?)

M3 = 4b2ba1ba2 ()\2 + 3) - 8()(15(()@3 - 7ba4)

g = b% (8baZ (A2 + 1) — 2ba? (A2 + 3)) — 6ba3 + 20bazba, — 38ba? + 32ba? (26)
s = 8bas(baz — Thay) — 4b*baybay (A\* + 3)

pe = 4 (b2 (ba? + bas (A2 — 1)) — ba3 + 2bagbay + 3ba3 — 4ba?)

M7 = 8ba5(ba3 + ba4) - 462[)&1[)&2 ()\2 — 1)

ps = b?ba? (A\? — 1) — (bas + bay)*

Similar to previous case, all of these coefficients will be known as numbers when all the manipulator

parameters and oy are known.

4.3 Details on other polynomials

Each of the conditions in Eq. can be reduced to polynomials in t; = tan(a; /2),ts = tan(ay/2),
respectively, as illustrated in the previous two sections. The derivation of polynomials for the sta-
bility conditions involves more intermediate variables, bigger expressions, and more tedious com-
putations. Each stability condition results in a polynomial of degree-36, which are not presented in
this report due to lack of space. A total of 16 polynomials have been derived from Eq. (15, 8 of
them in ¢; and the other 8 in t,.
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5 Boundary points of the SWFW for a numerical example
3 3 7 3 : e Pl jhi
2 2 2
—~ 1 —~~ —~
'_% XX XXX T ! ] !
s 4 IS < &y
= 0 0 ) s 0 = 0 :
g | L T 1s |/ g
- a; € [-1.20613, 1.20613] =15 < —1r ¢ H
-2 -2 -2 i oesesssasnna, J
_3 -3 *e s _3 m [y
3 -2-10 1 2 3 3-2-10 1 2 3 -3-2-10 1 2 3
a; (rad) a; (rad) a; (rad)

(a) Intervals of ay when ag =0

(b) Scanning s (¢) Scanning both ay and oo

Figure 3: 2X manipulator: Feasible interval of a; for a given ay = 0 (left), boundary points
obtained while scanning s (middle), and all the boundary points obtained by scanning both ay

and ay (right).

For a numerical illustration, the following parameters have been adopted for the 2-X manipula-
tor: b=0.05m, [ =0.1m, a =02 m, k; =600 N/m, ko = 300 N/m. The forces imparted by all
the cables are bounded between Fi,;, =5 N and Fy. = 155 N. All the bars (thick lines in Fig.
are considered to be made of Aluminum material as solid cylinders of radius 0.005 m.

For the 2-X manipulator, determination of the SWFJ involves two 1-D scans, i.e., of ai, s
variables separately. They were each discretized into 50 equally spaced points inside [—0.997, 0.997],

avoiding the flat-singularities. For instance, at grid point ap, = 0, the following steps were followed:

e All the polynomials in ¢; derived above were solved and the real values of oy €] — 7, 7| were
filtered out.

e The values of a; were arranged in increasing order along with the boundaries —m, 7 as shown
in Fig. [3al
e One arbitrary point (aj,0) inside each of the interval was checked for wrench-feasibility and

(I; < G; < Ty),i = 1,2 were checked. For

stability, firstly, the two forces that can be set to Fyax at (af,0), while the other forces remain

stability conditions. For wrench-feasibility,

within [Fluin, Finax] were identified. Then, all the forces were substituted into the stiffness
matrix K, in Eq. and its positive definiteness was evaluated. If the inspected point is

both wrench-feasible and stable, the corresponding interval is feasible.

e All the feasible intervals are indicated with a tick mark in Fig. [3a] and the net bounding
values of a; were found to be [—1.20613, 1.20613] radians.
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The above process is repeated for other discrete values of as in Fig. BB and for «; in Fig. [3d
Since the bounding points are obtained by solving polynomials, it is not possible to miss out on
any of these on the grid lines. Also, they are quite accurate with a very small residue (about 10~1°

units) w.r.t. the original conditions.

ee Singularity ee Joint limits
e e Singularity

e e Wrench-feasibility ee Stability

e e Wrench-feasibility ee Stability

0000 000OC0FOGFEOGFOSGNOSIOIOS I..‘.:..........

3 E ... o-.... : . ® LA B LI
: :.' ................ .‘. : . . . .
2 Ll 04 .
5 : ‘..:‘ S . K e, .
I F 02 - e,
T e RSN ™
i_‘/ O LLLITY YL --ooooo.ooooooo.oo; ; ; : [ﬁ . '. :
g 0.0 i
-1 . l/ s.\. .
. '~. 'Y
-0.27 - s ’
_9 . i .
| i-,,
_3 ; _04 | . o oo - ) |
‘ ‘ ‘ ‘ ‘ ‘ -04 -0.2 00 02 04
-3 -2 -1 0 1 2 3 z (m)
ay (rad)

(b) Bounding points of the SWFW
(a) Bounding points of SWFJ

Figure 4: Stable wrench-feasible joint space (left) and stable wrench-feasible workspace (right) of
the 2-X manipulator when b = 0.05 m, [ = 0.1 m, a = 0.2 m, k; = 600 N/m, ky = 300 N/m,
Frax = 155 N, Fin = 5 N. In joint space (aq, ), the points in region det(J,) > 0 are shown in
opaque style and those in det(J,) < 0 region are shown in transparent style. Their maps in the

task space are also shown in the same style for the sake of clarity.

Next, points on the singularity curve can be found using the condition in Eq. . It is possible
to obtain polynomials out of the singularity condition and solve them to obtain the desired points
along a; and ay grid lines, in a similar manner. The result is shown in Fig. [da] All the points in
the region det(J,) > 0 are shown in opaque style while those in the region det(J,) < 0 are shown
in transparent style. These points have been mapped onto the task space using the kinematic
equations in Eq. , to form the boundary points of the SWFW for this manipulator as shown in
Fig. [Abl There are two regions in the SWFW bounded by the opaque and transparent points, each
of which can be reached in one configuration. The top part where the two regions overlap can be

reached in two configurations, and the central part around (z = 0,y = 0) is unreachable.
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6 Conclusion

A method to compute boundary points of the stable wrench-feasible workspace (SWFW) of a 2-X
tensegrity manipulator driven by 4 cables was discussed. Firstly, it involves two 1-dimensional (D)
scanning of the joints space. At each grid point, a set of univariate polynomials are solved to obtain
the boundary points of the stable wrench-feasible joint space (SWFJ) accurately and quickly. These
points are then mapped onto the task space of the manipulator along with the singularities, using
the direct kinematic model, to obtain the corresponding bounding points of the SWFW of the
manipulator. Since this is an automated process that can be implemented efficiently, it is suitable

to be used in an optimal design process where several designs might be explored.

Appendix A Limiting condition(s) for positive definiteness

for a (2 x 2) symmetric matrix

Consider a (2 x 2) real symmetric matrix P as shown below:

P— P11 P12 (27)
P12 P22
The conditions for its positive definiteness can be written in terms of its leading principal minors

(see e.g., [4]) as follows:

fi=pu>0

2 (28)
f2 = pupe2 — iy >0

The limiting condition of stability is formed when one of the above inequalities becomes an equality,
i.e., when (f; = 0 with fo > 0) or (f; > 0 with fo = 0). However, it is apparent that when p;; = 0,
fo = —p?, < 0 always . Thus, the only limiting condition for positive definiteness of P is given by
(fo =0 with f; > 0).
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