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ABSTRACT 20 

Tropical forests play a fundamental role in mitigating climate change (CC) through storage of 21 

carbon in above-ground biomass. However, greenhouse gas emissions through tropical deforestation 22 

or forest degradation are sizeable. To mitigate degradation caused by conventional logging various 23 

techniques seek to reduce biomass loss in production forests. However, little knowledge exists about 24 

the potential of sustainable management for maintaining and restoring the CC mitigation capacity of 25 

tropical forests. Our research contributes to knowledge about this potential. We evaluate the above-26 

ground biomass (AGB) of rain forests managed for sustainable production and compare production 27 

forest AGB with that of intact primary forests.  We also determine the environmental and spatial 28 

factors that influence AGB. 29 

We estimated the AGB of 141 permanent sampling plots in Costa Rican rain forests (70 plots in 30 

production forests and 71 plots in primary forests) with data for the 2000-2015 period. We compared 31 

the AGB of production forests with that of primary using linear mixed models and examined the 32 

relationship between forest AGB and climate, soil fertility and spatial variables (PCNM eigenvalues) 33 
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using variation partitioning (VARPART) and multiple linear regression in the mixed model 34 

framework.  35 

Mean AGB was higher in production forests than in primary forests. In VARPART, spatial 36 

variables had the strongest effect on AGB with a small but significant effect of soil.  Regression 37 

showed soil K to be positively related to AGB.  There was no significant effect of climate, probably 38 

because of the short temperature and precipitation gradients. 39 

Sustainable forest management in these Costa Rican forests has enabled them to store as much 40 

carbon in biomass as primary forests, due to the low intensity logging stipulated by the country’s 41 

forestry legislation. As a result, sustainable forest management, in addition to the sustainable timber 42 

provision ecosystem service, is also a natural climate solution, maintaining the mitigation potential 43 

of Costa Rica´s tropical forests in the current climate context. 44 

 45 

KEYWORDS 46 

Primary forests; sustainable forest management; climate change mitigation; permanent sampling 47 

plots, plot spatial distribution; variation partitioning; soil fertility. 48 
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1.  INTRODUCTION 50 

Tropical forests are expected to play a fundamental role in mitigating climate change and 51 

achieving the global temperature rise target set as part of the 2015 Paris Agreement. Indeed, tropical 52 

forests are crucial systems for regulating the climate and mitigating climate change (Baccini et al. 53 

2017, Sullivan et al. 2020, Griscom et al. 2020). These forests can sequester up to 30% of 54 

anthropogenic carbon dioxide (CO2) emissions and represent at least 59% of global carbon stocks 55 

(Yguel et al. 2019). They store approximately 470 billion tonnes of CO2 in above and below ground 56 

biomass (Pan et al. 2011, Huntingford et al. 2013, Pugh et al. 2019). Interest in tropical forests 57 

specifically is therefore thoroughly justified since they are the ecosystems with the most potential for 58 

storing additional terrestrial carbon (Griscom et al. 2020).  59 

On the other hand, one of the greatest sources of greenhouse gas emissions stems from the 60 

tropical deforestation (Griscom et al. 2020). These ecosystems display greater and more rapid 61 

changes in land use than any other ecosystem, as a result of anthropogenic deforestation and 62 

degradation (Chazdon et al. 2016, Poorter et al. 2016, Mitchard 2018). Net decreases in the area of 63 

tropical forests were enormous during the decade 2010-2020, mainly in Africa (3.9 million ha) and 64 

South America (2.6 million ha) (FAO, 2020).  65 

Deforestation leads to numerous sources of emissions as well as cryptic sources that occur more 66 

gradually and include the edge effect in fragmented forests (Maxwell et al. 2019). Newly accessible 67 

forests will be earmarked for a first selective conventional logging , which could result in substantial 68 

carbon emissions (Pearson et al. 2014, Maxwell et al. 2019). Conventional selective logging in 69 

tropical forests for timber and/or fuelwood is usually a source of forest degradation, since the loss of 70 

live biomass as a result of harvesting practices is, in general, greater than the accumulation of biomass 71 

through regrowth over many years (Pearson et al. 2014). The loss of biomass is mainly related to 72 

damage caused by the felling of harvested trees, incidental damage to neighbouring trees and damage 73 

caused by unplanned log extraction (Pearson et al., 2014). 74 
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This study, therefore, focuses on how selective logging affects the mitigation potential of tropical 75 

production forests. More specifically, we are interested in sustainable logging and its impact on 76 

biomass storage in tropical production forests. 77 

Various improved reduced-impact logging (RIL) techniques have been developed. They seek to 78 

balance environmental protection with timber production in tropical production forests. RIL, in 79 

addition to mitigating the damage caused by log extraction reduces the loss of carbon stocks in the 80 

remaining vegetation, thereby providing a natural climate solution (Ellis et al. 2019). Natural climate 81 

solutions are made up of discrete and quantifiable actions that avoid the emission of greenhouse gases 82 

or increase carbon sequestration in forests, savannah, agricultural lands and wetlands (Griscom et al., 83 

2020). In this context, many studies have reported that RIL in tropical forests could eventually reduce 84 

carbon emissions equivalent to 29-50% of the net emissions caused by tropical deforestation and 85 

changes in land use (Cerullo and Edwards, 2019; Sasaki et al., 2016). Moreover, the relatively small 86 

net emission of CO2 by RIL hides the high potential for CO2 storage in the form of biomass (Houghton 87 

et al., 2015). 88 

Our research seeks to contribute knowledge about the potential of sustainable management for 89 

maintaining carbon storage in production forests. We specifically study above-ground biomass 90 

(AGB) storage in production forests submitted to sustainable logging techniques. Knowing more 91 

about AGB storage in production forests will enable sustainable logging to be promoted as a natural 92 

climate solution in the tropics, where only a small area of forest is currently subject to sustainable 93 

management (FAO, 2020). Comparing biomass stocks in recovering production forests with those of 94 

primary forests (forests with no known recent human intervention) makes it possible to demonstrate 95 

how logging impacts carbon storage. 96 

 97 

The current research applies to primary rain forests in Costa Rica, where sustainable forest 98 

management and forest conservation take place on private farms within a landscape matrix that is 99 
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highly fragmented (e.g. Schedlbauer et al. 2007, Morse et al. 2009). The objective of this research 100 

was to estimate the above-ground biomass (AGB) in production forests under sustainable 101 

management and to compare it with the AGB in primary forests. This estimation is made for the 102 

period 2000-2015, and used data collected from permanent sampling plots established in different 103 

areas of Costa Rica by the Costa Rica Forest Ecosystems Observatory (Observatorio de Ecosistemas 104 

Forestales de Costa Rica, OEFo). We also examined the relationship between AGB and i) the spatial 105 

distribution of the plots, ii) climate variables, and iii) soil variables. To conclude, we discuss the 106 

results, focusing on the potential of sustainable management as a natural climate solution, through 107 

potential for storage of AGB in production forests.  108 

 109 

2. MATERIALS AND METHODS 110 

2.1. Area of study 111 

The research was carried out with data from primary and production forests in Costa Rica. Costa 112 

Rica is located at between latitudes 08°02'26'' N and 11°13'12''N and between longitudes 82°33'48'’ 113 

W and 85°57'57'’ W, being a country situated within the tropical belt (ING, 2005). Costa Rica's 114 

mountain ranges divide the territory into five climatically defined regions, two on the Caribbean or 115 

Atlantic slope, and three on the Pacific slope (Figure 1). According to the bioclimatic Holdridge Life 116 

Zone System, Costa Rica is further divided into 12 life zones and 12 transition zones (Quesada 2005).  117 

 118 

2.2. Experimental plots and data 119 

The permanent sampling plots selected for this research are part of the Costa Rica Forest 120 

Ecosystems Observatory (Observatorio de Ecosistemas Forestales de Costa Rica, OEFo) (Morrison 121 

2020). The OEFo is a group of institutions with a network of over 400 permanent sampling plots 122 
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(PSPs). Its main objective is to evaluate the status and dynamics of forest ecosystems according to 123 

their level of disturbance and to build knowledge about the ecosystem services that they provide. For 124 

the purposes of this research, we selected 171 PSPs on private farms, located in nine life zones and 125 

transition zones (Holdridge 1966, Quesada 2007) (Table 1, Figure 1).  126 

Life zone Altitudinal 

Tier 

Altitudinal 

Range 

(masl) 

Mean annual 

precipitation 

(mm) 

Mean annual 

temperature 

(°C) 

No. of 

plots 

Type of 

forest 

Tropical moist forest Lowland 0 - 700 2000 - 4000 24 - 30 8 primary 

Premontane moist 

forest, transition to 

lowland 

Premontane 700 - 1400 2000 - 4000 18 - 24 1 primary 

 

Tropical moist forest, 

transition to 

premontane 

Lowland 0 - 700 2000 - 4000 24 - 30 2 primary 

 

Tropical wet forest Premontane 700 - 1400 4000 - 8000 18 - 24 1 primary 

Premontane wet 

forest, transition to 

lowland 

Premontane 700 - 1400 4000 - 8000 18 - 24 18 primary (1 

plot) 

production 

(17 plots) 

Tropical wet forest Lowland 0 - 700 4000 - 8000 24 - 30 94 primary (54 

plots) 

production 

(40 plots) 
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Tropical wet forest, 

transition to 

premontane 

Lowland 0 - 700 4000 - 8000 24 - 30 6 production  

Premontane 

rainforest 

Premontane 700 - 1400 8000 + 18 - 24 7 primary (3 

plots) 

production (4 

plots) 

Premontane 

rainforest transition 

to lowland 

Premontane 700 - 1400 8000 + 18 - 24 4 production 

Table 1 Distributions of primary and production forest study plots by life zones. 127 

  128 



8 
 

 129 

 130 

Figure 1. Map of the distribution of the study plots across Holdridge Life Zones in Costa Rica.  131 

The area of monitoring plots varied between 0.2 ha and 1 ha. In all plots, trees with diameter at 132 

breast height (BDH, 1.3 m) were measured. Most trees were identified by genus and family and in 133 

many at the level of species. The identification was carried out by qualified staff and botanists. 134 

Palms (family Arecaceae) were excluded from the study since they were only taken into account 135 

in the monitoring of a few plots. Moreover, palm trees do not exhibit growth in their diameter so it is 136 

difficult to estimate their contribution to productivity (Goodman et al., 2013). Lianas were also 137 

excluded from the analysis since there was no consistent data relating to them. 138 

 139 
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2.3. Environmental variables 140 

In order to characterise the relationship between climate-related factors with AGB, annual 141 

precipitation and mean temperatures in all the plots were considered. We obtained precipitation and 142 

temperature data from Chelsa (Climatologies at high resolution for the earth’s land surface areas) 143 

database (Karger et al. 2017, Karger et al. 2018), through interpolation with the location coordinates 144 

of the plots, using R software (R Core Team 2019).  145 

In addition to temperature and rainfall, soil data were obtained from the Centre for Agricultural 146 

Research (Centro de Investigaciones Agronómicas, CIA) of the University of Costa Rica (Mata et al. 147 

2016). This database draws on 1500 soil sampling locations distributed throughout Costa Rica. The 148 

values of soils characteristics used in analyses were chosen according to the proximity of the CIA 149 

sampling locations to PSPs and by life zones. We used values for 0-40 cm soil depth (Sesnie et al. 150 

2009, Santiago-García et al. 2019). The following variables were taken into account: pH in water, 151 

acidity, Ca, Mg, K, Zn, P, Cu, Fe, Mn, effective cation exchange capacity (ECEC), organic carbon 152 

(OC) and the percentage of sand, loam and clay in the soil. These variables are considered to be 153 

attributes of soil fertility by Mata et al. (2016). 154 

 155 

2.4. Estimation of above-ground biomass 156 

For the estimation of AGB, data were selected for the period 2000-2015 covered by the selected 157 

plots. During this period, some plots were measured only once and others up to seven times (Appendix 158 

1).  159 

The BIOMASS package (computeAGB function) was used to estimate the AGB (Mg ha-1) of the 160 

trees (Réjou-Méchain et al. 2017), using R software (R Core Team 2019). This function uses the 161 

pantropical equation of Chave et al. (2014), to estimate AGB using DBH, species wood density and 162 

tree height, as follows: 163 
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AGB = 0.0673 * (WD * H * D^2) ^0.976 164 

WD was obtained from the getWoodDensity function of the BIOMASS package. The estimate is 165 

based on the taxonomy of the trees, or similar, using the global wood density database (Chave et al. 166 

2009,  Réjou-Méchain et al. 2017), which returns a value for each species that represents dry mass 167 

divided by dry volume (g cm-3). For trees that were not identified by species, the BIOMASS package 168 

averages wood density values by taxonomical level (genus) or assigns mean values by sub-plot.  169 

Tree height H was estimated using the retrieveH function, also from the BIOMASS package, 170 

which uses the general model of Chave et al. (2014). In their model, H is estimated on the basis of 171 

tree dbh and plot bioclimatic variables that include climatic water deficit as well as temperature and 172 

precipitation seasonality. The geographic coordinates of the plots were used to obtain these 173 

bioclimatic variables.  174 

Plot AGB was obtained from the sum of the biomasses of all trees in each plot (Mg ha-1). For 175 

plots with two or more enumerations, an average plot AGB was obtained from the set of 176 

enumerations.   177 

2.5. Statistical analysis 178 

In order to compare AGB between the production and primary ANOVA (analysis of variance) 179 

was carried out with a linear mixed model using InfoStat software (Di Rienzo et al. 2019).  The fit,of 180 

a model with no random factor was better than that of a model with plot set as the random factor 181 

according to the AIC and BIC criteria. Assumptions of normality and variance homogeneity were 182 

evaluated using QQ-plots and residuals versus predicted plots respectively (Appendix 2). 183 

 184 

2.5.1.  Spatial variables: Principal coordinates of neighbour matrices (PCNM) analysis 185 
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Principal coordinates of neighbour matrices (PCNM) analysis was used to calculate spatial 186 

variables to evaluate the effect of plot spatial distribution on AGB. This was calculated by using a 187 

log transformation of the spatial coordinates of each plot, resulting in a Euclidean distance matrix of 188 

the distances between the plots. In order to detect and quantify spatial patterns, the logarithmic values 189 

were truncated to create a second matrix of eigenvalues which were submitted to a principal 190 

component analysis (PCA). The result is a set of eigenvectors known as PCNMs (Bocard & Legendre 191 

2002, Dray et al. 2006). These represent the spatial relationships among plots at different scales. The 192 

analysis was carried out in R software (R Core Team 2019) using the Vegan library and the PCNM 193 

function (Oksanen et al. 2013).  194 

 195 

2.5.2.  Spatial, soil and climate variables affecting AGB 196 

In order to evaluate the relationship of AGB to spatial and environmental variables, the climate 197 

and soil variables were standardised. A forward selection (R Core Team 2019) was then carried out 198 

for each of the three matrices of explanatory variables, which selected the variables most closely 199 

associated with the response matrix (AGB) through a process of permutation using residuals from the 200 

reduced model (Blanchet et al. 2008). For the PCNM matrix the hypothesis test was based on 1,000 201 

permutations using α = 0.01. The hypothesis test for the soil matrix was based on 999 permutations 202 

with α = 0.05. 203 

In order to verify that a high correlation between the selected variables and the climate variables 204 

did not exist as a result of forward selection, Pearson's correlation coefficient was applied (Appendix 205 

4). 206 

 207 

2.5.3.  Variation partitioning analysis 208 
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We used variation partitioning (VARPART, Jones et al. 2008) to evaluate the explanation of 209 

AGB variation by matrices of climate (annual mean temperature and precipitation), soil and spatial 210 

variables (PCNM) VARPART combines redundancy analysis and partial redundancy analysis by 211 

dividing the variation in the matrix of the response variable (AGB) into explanatory or predictive 212 

matrices. This VARPART allowed the pure and joint effects of the three matrices to be identified, as 213 

well as the overall variance explained by the set of three matrices. For this analysis, the varpart 214 

function was used from the Vegan package (Oksanen et al. 2013).  215 

The adjusted R2 (R2 adj) values indicate the proportion of variation in AGB that is explained by 216 

each explanatory matrix. The significance of fractions from the VARPART analysis (p ≤ 0,05) was 217 

confirmed with a redundancy analysis (RDA) test.  218 

2.5.4.  Linear regressions 219 

To establish the effect of each explanatory variable on the AGB, the variables were standardised. 220 

Linear mixed model regressions were then carried out between the dependent variable (AGB) and the 221 

explanatory variables selected for the VARPART analysis. Life zone and the institution responsible 222 

for PSPs were used as random effects to take into account variations in plot size and in the number 223 

of plots between forest type.  The t-statistic value and Mallows’ Cp criterion for prediction were the 224 

statistics used to identify the explanatory variables with most influence on AGB. These analyses were 225 

carried out using InfoStat software (Di Rienzo et al. 2019). 226 

  227 

3. RESULTS 228 

3.1. Above-ground biomass 229 

The above-ground biomass (AGB) of 58,661 trees from 812 taxa was estimated, distributed 230 

across 141 plots.  86% of individuals were identified to species.  Mean AGB varied significantly 231 
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between the two types of forest (p ˂ 0.0001). Production forests stored more AGB (329.3 Mg ha-1 ± 232 

90.9) than the intact primary forests (296.3 Mg ha-1 ± 75.9) (Table 2).  233 

Type of forest No. of 

plots 

Mean AGB 

(Mg ha-1) 

SD SE Min Max 

primary 70 296.3 90.9 10 123.1 530.8 

Production 71 329.3 75.9 9.9 160.3 496.8 

Table 1. Descriptive statistics for AGB in primary and production forests. Standard deviation (SD) 234 

and standard error (SE). 235 

3.2. Influence of spatial, soil and climate variables on AGB 236 

The variables selected for the soil matrix were K, %OM (organic matter), %silt and Cu.  For the 237 

spatial matrix, PCNM58, PCNM16, PCNM3, PCNM138, PCNM127, PCNM131 were selected.  238 

These represent the spatial relationship between plots both at the local scale (PCNM138) and on the 239 

regional scale (PCNM3); (Appendix 3).  240 

A Pearson correlation test verified that the regional-scale spatial relationship represented by 241 

PCNM3 was independent of climate and soils variables (Appendix 4).  242 

VARPART showed that the combined effects soil, climate and spatial matrices explained 44% 243 

of variation in AGB (Table 3). Space, soil and climate, alone and in interaction, had Radj2 values of 244 

=0.35 and 0.15, respectively (p<0.001).  Climate did not have a significant effect on AGB.  The 245 

explanation in AGB variation caused by spatial distribution and soil, alone and in interaction, was 246 

significant (p < 0.001). The individual effect of space was highly significant and that of soil significant 247 

but small (R2adj=0.058).  248 
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 249 

Variable R2Adj F P 

Sp 0.35 13.98 0.001 

So 0.15 7.44 0.001 

Cli 0.02 2.62 0.071 

All variables 0.44 10.19 0.001 

Sp|So,Cli 0.28 12.29 0.001 

So|Sp,Cli 0.058 4.42 0.001 

Cli|Sp,So 0.004 1.49 0.239 

Table 2. Variation partitioning of above-ground biomass of 141 plots explained by spatial and 250 

environmental variables. The values for adjusted R2 , the F statistic and P value for significance are 251 

shown for all the fractions measured for space (Sp), soil (So) and Climate (Cli). The individual effect 252 

of a matrix after removal of the effects of others is indicated by the symbol ¨|¨. Overall model R2adj 253 

was 0.44. 254 
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3.3. Multiple regression analysis  255 

Linear regression enabled the variables with most influence on variability in AGB to be identified 256 

(Table 4), according to the Mallows’ Cp values obtained from the regression<n: the variables with 257 

higher values are those that exert a greater influence on biomass variation. Plot spatial distribution 258 

was found to influence AGB variation strongly, and potassium was among the soil fertility variables 259 

that was also associated with AGB variation. 260 

  261 
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Variables T Mallows’ Cp P 

PCNM58 -4.72 33.26 <0.001 

PCNM16 
-4.51 31.32 <0.001 

PCNM127 -3.46 23 <0.001 

K 2.65 18.03 0.01 

PCNM131 2.64 17.95 0.01 

PCNM3 2.46 17.06 0.02 

%MO 1.86 14.44 0.07 

Silt 1.75 14.05 0.08 

Cu 1.44 13.06 0.15 

PCNM138 -1.26 12.58 0.21 

Temperature -1.25 12.55 0.21 

Precipitation 1.04 12.07 0.3 

Table 3. Values from multiple regression statistics for the explanatory variables according to the value 262 

of Mallows’ Cp criterion for prediction. 263 

4. DISCUSSION 264 

Tropical forests play a fundamental role in changes to atmospheric carbon concentrations in the 265 

industrial era. They act as a carbon sink that varies from year to year and can revert, becoming a 266 

source of carbon in drought years or as a result of anthropic disturbances. Monitoring and evaluation 267 

of current carbon stocks in biomass in disturbed tropical forests is important for understanding their 268 
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contribution to climate change mitigation. Several studies involving monitoring of field plots show 269 

large variations in carbon sequestration and storage which could be related to the degree of previous 270 

disturbance (Poorter et al. 2016, Mitchard 2018).  271 

The objective of our study was to characterise the AGB of Costa Rican rain forests, determine 272 

whether AGB in production forests is different from that in primary forest, and to determine the 273 

effects of spatial and environmental variables on AGB. We found that plot spatial distribution was 274 

the factor that best explained variability in biomass, followed by soil fertility. Climate variables were 275 

shown to have no effect. These results are based on 290,000 measurements of trees from 141 plots 276 

which were enumerated up to seven times in a period of 15 years.  277 

The quantity of biomass in a forest determines the potential quantity of carbon (1 Mg of biomass 278 

= 0.5 Mg of carbon) (Brown and Lugo, 1992) that has been sequestered from the atmosphere and 279 

stored. On this basis, between 2000 and 2015 the intact primary forests studied in this research would 280 

have stored on average 148.15 Mg C per hectare and production forests, 164.65 Mg C per hectare. 281 

4.1 Production forests contain greater AGB than intact primary forests 282 

Plots in primary production forests had higher mean AGB ha-1 than intact primary forests during 283 

the period 2000-2015. This result demonstrates the potential of sustainable management as a natural 284 

climate solution i.e. that decreases the emission of greenhouse gases or increases carbon sequestration 285 

in forests. Sustainable logging techniques are already recognised for their potential to reduce carbon 286 

emissions resulting from forest logging (Ellis et al., 2019). Numerous studies have demonstrated that 287 

in forests subject to reduced-impact logging (RIL) under sustainable management plans, the biomass 288 

retained was substantially greater than in forests that were conventionally logged (Putz et al. 2012, 289 

Sasaki et al. 2016, Cerullo & Edwards 2019). Also, a study in Amazonian forests demonstrated that 290 

AGB recovers more quickly after RIL than after conventional logging (Rutishauser et al. 2015).  291 
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Unfortunately, records of logging intensity in the production forests we studied are not now 292 

available.  However, in the Costa Rican forest management context, production forests are subject to 293 

RIL and a very low logging intensity under a strict forest management protocol (Alice-guier et al. 294 

2020), in accordance with article 20 of the Ley Forestal (Forestry Law) No. 7575 from 1996.  Finegan 295 

and Camacho (1999), in a typical example, recorded the cutting of four trees per hectare for a mean 296 

volume of 10m3 ha-1 in rain forest at an experimental site in the north of the country.  RIL can be 297 

translated into a reduction of 50% or more of the impact caused by collateral damage (Putz et al. 298 

2008, Sasaki et al. 2016, Cerullo & Edwards 2019).  299 

Our study suggests that under certain circumstances, AGB in production forests can be greater 300 

than that in intact primary forests.  AGB resilience in neotropical secondary forests is well-studied 301 

(Poorter et al. 2016) but the potential for AGB storage in production forests has been less reported in 302 

the literature. The regeneration of fast-growing long-lived tree species in logging gaps could 303 

contribute more biomass to the system (Herault et al. 2010) though this is probably unlikely under 304 

the low-intensity harvesting that typifies forest management in Costa Rica.  However,  carbon stock 305 

enhancement after sustainable logging could be converted into carbon credits for initiatives such as 306 

REDD+ (Cerullo & Edwards, 2019). 307 

Another possible explanation for our results is that edge effects due to forest fragmentation are 308 

in fact impacting AGB of primary forests, as has been shown at an Amazonian site by Laurance et al. 309 

(2006).  Both production and primary forests in our study are located on private farms in fragmented 310 

landscapes, as documented by Morse et al. (2009) for the northern zone of the country.  While pasture 311 

was for many years the main agricultural land use, agricultural intensification, for example the spread 312 

of pineapple agroindustry, is a recent trend, potentially exacerbating edge effects in the remaining 313 

forest (Shaver et al. 2015).  However, Schedlbauer et al. (2007) showed that AGB was not affected 314 

by proximity to forest edges in north eastern Costa Rica, where most of the sample plots of the present 315 



19 
 

study are located, and changes in understorey vegetation at edges are minimal (Bouroncle and 316 

Finegan 2012).   317 

4.2 Influence of spatial, soil and climate variables on above-ground biomass 318 

AGB and biomass productivity depend on environmental conditions in terms of resource 319 

availability (water, nutrients and light) and on forest attributes, in terms of quality and quantity of 320 

vegetation (Lohbeck et al. 2015, Poorter et al. 2017). Furthermore, the resilience of tropical forests 321 

to long-term and discrete disturbances is defined by various dynamic processes that in turn are shaped 322 

by different drivers that act simultaneously. Climate variation (precipitation and temperature) is one 323 

of these drivers. Indeed, numerous studies have associated climate and soil with AGB at the local and 324 

regional scale, suggesting a potential role on a global scale (Malhi et al. 2006, Slik et al. 2013). 325 

However, our study showed a null effect of climate variables on variation of AGB and demonstrated 326 

that the effect of plot spatial distribution was the most relevant factor in explaining this variability. 327 

Although our study covered four climate regions, it is probable that the range of precipitation and 328 

temperature covered by our sample plots is not as great as in other studies (Lewis et al. 2013, Poorter 329 

et al. 2015), the results of which indicate that climate-related factors have the most influence on 330 

biomass variability. 331 

AGB variation in our study was more strongly explained by plot spatial distribution than by soil 332 

fertility or climate-related variables. As is the case for forest composition and species diversity 333 

(Legendre et al. 2009), the relationship between AGB and plot spatial distribution may be influenced 334 

by dispersal limitation and regional biogeography, if different dominant species have different 335 

potentials for accumulation of AGB due to differences in key functional traits such as maximum adult 336 

height (Finegan et al. 2015). The species composition of the forests we studied varies both within 337 

landscapes, for example in the northeast of the country (Sesnie et al. 2009) and between forests in the 338 

northeast and those of the southwest (compare Sesnie et al. 2009 with Cornejo et al. 2012). Within-339 
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landscape and regional variation in species composition could generate the effects on AGB of the 340 

spatial variables PCNM 138 (within landscapes) and PCNM 3 (regionally).  Chisholm et al. (2013) 341 

reported that species richness and AGB were positively related across forest sites at small spatial 342 

scales and this could be attributed to the local variation in stem density, more than to the effect of 343 

species, niche complementarity or facilitation (Chisholm et al. 2013). Therefore, forests that share 344 

geographical locations would share similar environmental conditions, potentially displaying a similar 345 

composition and structure and AGB.  346 

The relationship between soil and AGB often shows mixed and conflictive results in the 347 

literature. Often this is because different studies use slightly different sampling methodologies (for 348 

example, depth and intensity of the sample), which will include different nutrients and differ between 349 

each other if the sample represents the available quantity or the total quantity of these nutrients. We 350 

took soils data from a national soil database (Mata et al. 2016), in contrast to studies like Poorter et 351 

al. (2016), who used CEC from a gridded global soils database as an estimate of fertility. Therefore, 352 

different methodologies for obtaining this data could be a factor influencing results.  353 

In our study, potassium was the soil variable with most influence on biomass variability. K was 354 

correlated with local AGB distribution in a 50 ha forest plot in central Panamá (Ledo et al. (2016) 355 

and with AGB in secondary rain forests across north eastern Costa Rica (Santiago et al. 2009).  Also, 356 

when added with N in a tropical moist forest fertilization experiment, K  increased tree growth rates 357 

(Wright et al. 2011). Our study complements the cited work suggesting that soil K plays a role in 358 

regulating forest AGB at multiple scales (Ledo et al., 2016).  359 

4.3 Research perspectives 360 

The percentage of variation in AGB not explained by climate, soil and spatial variables (44%) in 361 

our research could be related to indirect effects of underlying drivers such as the structural attributes 362 

of the forests: tree diameter, tree density and specific leaf area. These attributes might vary between 363 
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communities (due to disturbances) and across communities (due to environmental gradients) (Poorter 364 

et al. 2015). For example, the study by Finegan et al. (2015) reported that, in primary tropical forests, 365 

AGB was positively correlated with community-weighted mean adult height. Furthermore, the 366 

relationship between the richness of species and AGB may vary along environmental gradients. The 367 

richness of species could also be associated with a selection effect where highly productive species, 368 

or species of large size which store a lot of biomass, are included in the forest (Poorter et al. 2015). 369 

It is therefore recommended that functional traits, species composition and species diversity be 370 

included in this kind of research, since functional traits play an important role in increasing carbon 371 

stocks and forest productivity, leading to a better biomass dynamic. 372 

4.4 Climate Change Mitigation 373 

The climate-related sensitivity of tropical forest carbon is a key uncertainty in predicting the 374 

global effects of climate change. Although it is known that droughts and the short-term increase in 375 

temperature affect forests, there is uncertainty as to whether these effects will translate into long-term 376 

responses (Sullivan et al. 2020). In addition to the effects of climate change on tropical forests, they 377 

are continually threatened by deforestation and degradation that are estimated to contribute to 378 

between 8 and 15% of global anthropogenic carbon emissions, which exacerbates climate change 379 

(Chazdon et al. 2016). It is in this context that sustainable tropical forest management is emerging as 380 

a mechanism in response to global efforts to mitigate carbon emissions. 381 

Our research showed that production forests (managed in a sustainable way) under some 382 

circumstances, can accumulate more biomass than primary forests. This potential for carbon 383 

sequestration and storage in production forests suggests the resilience of these forests to discrete 384 

disturbances. The latter may push these ecosystems from a stable steady-state to a state of instability 385 

which, without major disturbances, will transition back to their initial state. This displacement will 386 

depend on the type, scale, intensity, and duration of the disturbance. If it is large, frequent or novel, 387 
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the return of the ecosystem to its original state is unlikely (Ghazoul et al. 2015). Therefore, these 388 

forests may function as carbon sources or sinks, depending on the type of management to which they 389 

are subjected (Piponiot et al. 2016a). According to our results, production forests in Costa Rica would 390 

be acting as carbon stores and possibly sinks because of the sustainability of the logging techniques 391 

applied.  392 

 393 

5. CONCLUSIONS  394 

The overall objective of our research was to estimate above-ground biomass (AGB) in 395 

sustainably logged production forests and to compare it to above-ground biomass in intact primary 396 

forests. Furthermore, we examined the relationship between AGB and i) the spatial distribution of the 397 

plots, ii) climate variables, and iii) soil fertility variables, to see if these had any effect on biomass 398 

storage potential. Combining analysis of all plots according to type of forest, production forests were, 399 

on average, those that accumulated most AGB in the period 2000-2015. Furthermore, the spatial 400 

distribution of the plots was the factor that best explained the variability of biomass, followed to a 401 

lesser degree by soil fertility, while climate variables were shown to have no effect.  402 

Although we did not find an effect of climate on AGB variation, the effect of water availability 403 

on vegetation growth resulting in the accumulation of more biomass over time is undeniable. It is 404 

probable that research on a regional or continental scale would provide evidence of the effect of 405 

climate patterns on biomass variability. 406 

Even though it is well known that tropical forests are the richest in carbon and the most 407 

productive of the forest biomes, they are constantly under threat, which means that mechanisms need 408 

to be found to support their sustainable management and conservation. The productivity, conservation 409 

and mitigation potential of production forests makes them important ecosystems that can enhance 410 

tropical forests resilience in relation to climate change. Sustainable forest management, in addition to 411 
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encouraging an important service by providing sustainable timber, could also be a natural climate 412 

solution, and a strategy for restoring the mitigation potential of tropical forests in the current climate 413 

context. 414 
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