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Comparing Probability Densities: A Comparative Approach

Probability densities, characterized by non-negativity and normalization, are among the most important concepts underlying analysis and modeling the physical sciences from both theoretical and applied perspectives. The great relevance of this topic is readily accounted, among other facts, by the several approaches that have been used to compare two given densities. In this work, we report a comparison of several approaches for comparing statistical densities, including Kolmogorov-Smirnov, normalized Euclidean distance, Pearson, Kendall, and Spearman correlations, as well as the real-valued interiority, Jaccard and coincidence similarity indices, while considering several respective parametric variations. The comparison indices are then compared themselves by using the coincidence method for translating datasets into networks. Several interesting results are described regarding the comparison of two 1D normal densities, one with parameters kept fixed and the other with varying mea and standard deviation. Interesting results are obtained that not only confirm the highest selectivity and sensitivity of the coincidence index, but also indicate that all the three multiset-based indices tend to be more selective and stable.

Introduction

Developing and evaluating models of nature constitute the basic approach to science, often known as the scientific method. Given that several theoretical and applied situations involve intrinsic variations that can not be accurately predicted, statistical modeling approaches (e.g. []) have been often adopted. Given an experiment or data characterized in terms of a random variable X, the respective density probability function, or probability density for short, provides all the statistical information that can be obtained regarding the characteristics of X. As such, probability densities provide effective models of the studied phenomenon, through the respectively associated random variable X.

Given the particular importance of probability densities for scientific modeling, it frequently occurs that two given data X and Y need to be compared in terms of their respective density probabilities p(X) and p(Y ). Several interesting approaches have been developed for this finality, including but not being limited to the measurements as the Pearson (e.g. [START_REF] Degroot | Probability and Statistics[END_REF][START_REF] Kreyszig | Advanced Engineering Mathematics[END_REF]), Kendall [START_REF] Kendall | A new measure of rank correlation[END_REF][START_REF] Kendall | The treatment of ties in rank problems[END_REF] and Spearman (e.g. [START_REF] Daniel | Spearman rank correlation coefficient[END_REF]) correlation coefficients , Kolmogorov-Smirnov (e.g. [START_REF] Marsaglia | Evaluating kolmogorov's distribution[END_REF][START_REF] Birnbaum | One-sided confidence contours for probability distribution functions[END_REF]), as well as the Euclidean distance (possibly in some normalized form, e.g. [START_REF] Da | Multiset neurons[END_REF]).

More recently, the concept of coincidence similarity was proposed as an extension of the Jaccard similarity coef-ficient (e.g. [START_REF] Jaccard | Distribution de la flore alpine dans le bassin des dranses et dans quelques régions voisines[END_REF][START_REF] Jaccard | Étude comparative de la distribution florale dans une portion des alpes et des jura[END_REF][START_REF] Samanthula | Secure multiset intersection cardinality and its application to jaccard coefficient[END_REF][START_REF]Jaccard index[END_REF][START_REF] Schubert | A note on the Jaccardized Czekanowski similarity index[END_REF]), that has been most frequently used for comparing sets, to consider real-valued data and to incorporate quantification of the interiority between the two datasets being compared [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | On similarity[END_REF]. This similarity index has been found to be characterized by implementing particularly selective comparison, while being highly sensitive when comparing similar patterns and robust to localized perturbations [START_REF] Da | Multiset neurons[END_REF][START_REF] Da | On similarity[END_REF]. These welcomed properties have allowed the coincidence similarity index to be applied to several areas and problems (e.g. [START_REF] Da | Coincidence complex networks[END_REF][START_REF] Da | On similarity[END_REF]).

In the present work, we develop a comparative approach to several measurements for comparing probability densities, including Kolmogorov-Smirnov, Pearson, Kendall and Spearman correlation coefficients, a normalized version of the Euclidean distance, as well as three multisetbased similarity indices for real-valued densities, namely the interiority, Jaccard and coincidence [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | On similarity[END_REF].

We start by briefly revising the three adopted multiset similarities and then proceed to comparing the several considered measurements respectively to varying instances of 1D normal densities.

Multiset Similarities

While similarity indices such as the interiority (or overlap [START_REF] Vijaymeena | A survey on similarity measures in text mining[END_REF])and Jaccard have been typically employed for comparing two sets, it is also possible to derive multiset (e.g. [START_REF] Hein | Discrete Mathematics[END_REF][START_REF] Knuth | The Art of Computing[END_REF][START_REF] Blizard | Multiset theory[END_REF][START_REF] Blizard | The development of multiset theory[END_REF][START_REF] Mahalakshmi | Properties of multisets[END_REF][START_REF] Singh | Complementation in multiset theory[END_REF]) versions of them that are capable of dealing with real-valued arguments, including negative numbers and even continuous functions (e.g. [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | On similarity[END_REF]).

Given that the densities to be used in the present work are non-negative, the multiset versions of the three considered indices -namely the interiority I(f (x), g(x)), Jaccard J (f (x), g(x)) and coincidence C(f (x), g(x)) similarities between two real-valued 1D functions f (x) and g(x), can be expressed in simplified form as:

I(f (x), g(x)) = ´S min {f (x), g(x)} dx min ´S f (x)dx, ´S g(x)dx (1) 
J (f (x), g(x)) = ´S min {f (x), g(x)} dx ´S max {f (x), g(x)} dx (2) 
C(f (x), g(x)) = I(f (x), g(x)) J (f (x), g(x)) ( 3 
)
where S is the common support of f (x) and g(x). We also have that 0 ≤ I(f (x), g(x)) ≤ 1; 0 ≤ J (f (x), g(x)) ≤ 1; and 0 ≤ C(f (x), g(x)) ≤ 1.

Comparing Approaches: Varying Mean

Henceforth, we will consider the 1D normal probability density function, which can be expressed as:

g(x, σ, µ) = 1 σ √ 2π e -0.5( x-µ σ ) 2 (4) 
In this section we compare the comparison methods respectively to 1D normal densities with mean displacements. More specifically, one of the densities remains with respective parameters fixed as µ = 0 and σ = 1, while the other has σ = 1 but means varying from 0 to 3. The resulting measurements are shown in Figure 1.

The enhanced selectivity of the multiset similarity indices can be readily observed from Figure 1, with the coincidence index implementing the most strict comparison between the varying probability densities.

The relationship between the several considered comparison methods can be effectively quantified and visualized by application of the coincidence methodology to translate datasets, where each entry is characterized by respective features, into complex networks [START_REF] Da | Coincidence complex networks[END_REF]. More specifically, we take the values shown in Figure 1 as features characterizing the performance of each of the considered comparison approaches. The results obtained by adopting α = 0.5, T = 0, and exponent [8] D = 4 are depicted in Figure 2. The obtained result reflects effectively the similarity between the curves in Figure 1, with the normalized Euclidean distance resulting markedly different from the other indices. In this case (mean shifting), the Kendall and Spearman correlation coefficients resulted markedly similar, while the Pearson correlation resulted surprisingly similar to the interiority index. The Kolmogorov-Smirnov approach resulted particularly central in the coincidence network. The coincidence similarity index re-sulted well-separated as a consequence of its markedly enhanced selectivity and strictness.

Comparing Approaches: Varying Standard Deviation

In this section we report on an experiment similar to that described in the previous section, but here the standard deviation of the second function is varied, while its mean is kept as µ = 0. The results are presented in Figure 3. The respective coincidence network obtained with the same parameters as before is shown in Figure 4.

Several interesting results can be observed. First, we have again that the normalized Euclidean distance resulted very distinct from the others, as in the previous case and as could be expected. Also as before, the Kendall and Spearman coefficients resulted quite similar, as well as the interiority and Pearson indices. Perhaps the main surprising aspect concerns the great similarity observed between the Kolmogorov-Smirnov and Jaccard indices, suggesting that they perform very similarity in this specific comparison situation where one of the normal densities undergoes a change in standard deviations. The coincidence similarity resulted again well apart from the other methods as a consequence of its pronounced selectivity.

Concluding Remarks

Comparing probability densities constitutes a recurrent issue in theoretical and applied physical sciences. In the present work, we compared several approaches frequently employed for that finality, namely the Kolmogorov-Smirnov, and Pearson, Kendall and Spearman correlation coefficients, as well as three multiset-based similarity approaches corresponding to the interiority, Jaccard and coincidence indices extended to real-values.

The considered indices were compared respectively to comparing two 1D normal densities, one kept fixed while the other underwent variations of mean and standard deviation.

The obtained results are particularly interesting in which they confirm the enhanced selectivity and sensitivity of the multiset indices, with the coincidence similarity resulting in the most strict comparison. It should be born in mind that neither of the considered approaches have absolute advantages. Rather, each of them have specific interesting features that can best suit specific requirements and applications. In the present work, for instance, focus is placed on the selectivity of the approaches in the sense of performing more strict comparisons between the probability densities.

It can also be hypothesized with basis on the presented visualizations that the multiset indices seem to provide a quantification of similarity between the considered densities that is closer to human intuition. This is an interesting possibility worth further investigation.
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 1 Figure 1: Comparison of the several considered measurements for comparing two probability densities: one with fixed µ = 0 and σ = 1, and the other with varying means. The results obtained by the Kolmogorov-Smirnov approach are shown to 10 times their original values, and have been complemented by 1 (i.e. 1 -ks) in order to become congruent with the other measurements. The three multiset-based approaches resulted markedly more selective than the other methods.
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 2 Figure 2: The coincidence network obtained by taking into account the comparison values obtained by each of the considered methods as features, respectively to varying means.
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 3 Figure 3: Comparison of the several considered measurements for comparing two probability densities: one with fixed µ = 0 and σ = 1, and the other with varying standard deviations. The results obtained by the Kolmogorov-Smirnov approach have been complemented by 1 (i.e. 1 -ks) in order to become congruent with the other measurements. The three multiset-based approaches resulted markedly more selective than the other methods.
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 4 Figure 4: The coincidence network obtained by taking into account the comparison values obtained by each of the considered methods as features, respectively to varying standard deviations.
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