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The Method of Moving Frames for Surface Global Parametrization This article introduces a new representation of surface global parametrization based on Cartan's method of moving frames. We show that a system of structure equations, characterizing the local coordinates changes with respect to a local frame system, completely characterizes the set of possible cone parametrizations. The discretization of this system provably provides necessary and sufficient conditions for the existence of a valid mapping. We are able to derive a versatile algorithm for surface parametrization, allowing feature constraints and singularities. As the first structure equation is independent of the global coordinate system, we do not require prior knowledge of cuts or cone positions. So, a single non-linear least-square problem is enough to place quantized cones while minimizing a given distortion energy. We are therefore able to take full advantage of the link between the parametrization geometry and the topology of its cone metric to solve challenging constrained parametrization problems.

INTRODUCTION

Computing global surface parametrizations is a central problem of geometry processing due to its numerous applications in mesh quadrangulation, texture mapping with invisible seams or solving differential equations. Depending on the problem to solve, specific constraints are often required, such as alignment with boundary, feature edges or creases, as-well-as controlled distortion.

A global parametrization can be defined as assigning a flat metric everywhere except at a few local exceptions called singularities or cones. These extraordinary points are bound to appear to compensate the topology of non-torus-like surfaces and also have a great impact on the parametrization distortion: depending on the surface curvature, the number of cones and their positions can drastically change the mesh quality. In particular, when singularity indices are integer multiple of 1/4, finding optimal positions minimizing the overall distortion is challenging and often leads to sophisticated integer programming problems.

To overcome this apparent complexity, there exists two broad classes of algorithms. The first relies on two-steps: first choosing the singularity locations using a cross field or other proxies and then compute a global rotationally seamless parametrization. This procedure, however, loosens the link between cone placement and the distortion of the final result. As a consequence, a quad-mesh extracted from this parametrization can present quads that stray far away from squares because its connectivity was optimized almost independently of its geometry. The second type of methods restricts the parametrization to simpler deformations (typically conformal) allowing for simple distortion estimation but ends up using either greedy algorithms or highly specialized integer optimization algorithm for cone placement. This is where differential geometry tools come to the rescue. Cartan's method of moving frames provides a rich theory to design and describe local deformations. This framework uses local frames as references, making local coordinates translation and rotation invariant [START_REF] Lipman | Volume and shape preservation via moving frame manipulation[END_REF]]. Furthermore, the first structure equation provides a necessary and sufficient condition to the existence of an embedded surface. This equation describes how differential coordinates should change relative to the frame's motion, effectively removing all influence of the ambient coordinate systems on the deformation.

In this paper, we extend Cartan's method to singular frame fields and we prove that any solution of the derived structure equations is a valid cone parametrization. Most importantly, we provide a vertexbased discretization of the smooth theory which provably preserves all its properties. The absence of a global coordinate system allows us to compute parametrizations without prior knowledge of the cut positions and to automatically place quantized cones optimizing for a given distortion energy. Moreover, we study useful user prescribed constraints, such as feature or boundary alignment and cone locations as shown in Fig. 1.

Our technical contributions include:

(1) A formalization of surface parametrization using Cartan's method of moving frames; (2) An extension of Cartan's method to cone parametrization;

(3) A versatile tool allowing all types of constraints as-well-as simple free-boundary parametrization; (4) An algorithm for simultaneously computing a parametrization and quantized cone positions without integer variables.

Related Work

Cartan and Geometry Processing. In geometry processing, Cartan's method of moving frames has drawn a lot of attention for its rotation and translation invariant representation of metric and curvature [START_REF] Lipman | Linear rotationinvariant coordinates for meshes[END_REF]]. In a follow-up work, [START_REF] Lipman | Volume and shape preservation via moving frame manipulation[END_REF] use this representation to design volume preserving and asisometric-as possible deformations. However, these works do not consider the structure equations. [START_REF] Wang | Linear surface reconstruction from discrete fundamental forms on triangle meshes[END_REF] also design general deformations and provide discrete conditions, akin to the structure equations, for the existence of a deformation. However, in practice, frames are computed independently of the deformation and structure equations are never used. As a consequence, these methods are limited to suboptimal solutions and if they consider parametrization as an application, cones are out of scope. Previous work using moving frame theory mostly focuses on deformations of volumes or surfaces with normals. In this context, the second structure equation is non-linear and describing a discrete equivalent of it is in itself a challenge [START_REF] Corman | Symmetric Moving Frames[END_REF]. In contrast, we only study intrinsic properties of surfaces where the second structure equation is a simple linear equation [START_REF] Crane | Trivial connections on discrete surfaces[END_REF]. The additional information provided by the first structure equation, which relates the local frames to the local deformation, allows us to compute maps from a surface to the plane.

In this work, the discretization of the structure equations is achieved by decomposing the mesh into disjoint vertex-based charts. We show that a valid parametrization can be constructed from any solutions of these discrete equations. No such guaranty can be given when using the vertex-based discretization of differential operators proposed by [START_REF] Liu | Discrete connection and covariant derivative for vector field analysis and design[END_REF].

Distorsion Minimizing Injective Maps. As our algorithm is a parametrization algorithm, it is interesting to consider our work as a specific instance of the broader problem of computing distortion minimizing injective maps [START_REF] Hormann | Mesh Parameterization: Theory and Practice[END_REF]. Given a target topology (disk [START_REF] Lévy | Least squares conformal maps for automatic texture atlas generation[END_REF][START_REF] Thomas | How to draw a graph[END_REF], orbifold [START_REF] Aigerman | Orbifold tutte embeddings[END_REF], sphere [START_REF] Michael Kazhdan | Can mean-curvature flow be modified to be non-singular?[END_REF] or cone metric [START_REF] Sawhney | Boundary first flattening[END_REF][START_REF] Springborn | Conformal equivalence of triangle meshes[END_REF]), standard distortion minimization finds an optimal geometry in parameter space. In our setting, we are able to both find the geometry and act on the topology to minimize our distortion criterion. Since this problem is particularly challenging, the most common approach is to first solve for the topology independently of the geometry using a practical proxy such as cross fields.

Cross Field Based Parametrizations. A cross field is an extremely useful tool for seamless parametrization since it has the same symmetry as a square and thus fixes the element orientations. Direction fields generation is generally well understood for surface meshes. A complete review of the literature is out-of-scope of this paper and we refer to the relevant surveys [de Goes et al. 2016;[START_REF] Vaxman | Directional field synthesis, design, and processing[END_REF]. When needed, we will represent symmetric frames by the 𝑛 th root of a complex number [START_REF] Palacios | Rotational symmetry field design on surfaces[END_REF][START_REF] Ray | N-symmetry direction field design[END_REF]. Most recent results guarantee that the smoothest cross field can be computed using a diffusion/renormalization scheme [START_REF] Viertel | An Approach to Quad Meshing Based on Harmonic Cross-Valued Maps and the Ginzburg-Landau Theory[END_REF]. However, as shown by our experiments, the smoothest cross field topology is not necessarily the optimal choice to minimize the parametrization distortion.

Parametrizations based on cross fields are computed in two steps. First, the smoothing of a cross field outputs crosses over each element. This local basis can be interpreted as the rotation part of the polar decomposition of the parametrization's Jacobian matrix [START_REF] Panozzo | Frame fields: Anisotropic and non-orthogonal cross fields[END_REF]. Second, the extraction of the parametrization boils down to the recovery of the missing part of the Jacobian. The simplest method is to find the functions whose gradients are closest to the field directions [START_REF] Kälberer | Quadcover-surface parameterization using branched coverings[END_REF]. This can also be done using global periodic functions [START_REF] Fang | Quadrangulation through morse-parameterization hybridization[END_REF][START_REF] Ray | Periodic global parameterization[END_REF] with the advantage of constraining singularities to integer coordinates. A more stable approach traces the motorcycle graph of the field and then solves for the graph edge lengths [START_REF] Myles | Robust field-aligned global parametrization[END_REF]. Local injectivity can be ensured very efficiently using a generalization of Tutte's embedding [START_REF] Bright | Harmonic global parametrization with rational holonomy[END_REF][START_REF] Campen | Seamless Parametrization with Arbitrary Cones for Arbitrary Genus[END_REF]. [START_REF] Fu | Computing inversion-free mappings by simplex assembly[END_REF] take an ingenious approach: they divide the input mesh into a set of independent triangles and constrain adjacent simplices to be equal up to the cross field rotation. This simple constraint allows them to compute seamless global parametrizations for triangle-based cross fieldswithout prior knowledge of the parametrization cuts. In this paper, we use a similar formulation but adapted to cross field defined at vertices so that singularities are not bound to appear at vertices. While convenient, cross field based approaches have one major drawback: not all cross fields can generate a valid parametrization. In particular, some can exhibit limit cycles creating degenerated triangles in parameter space. Many solutions have been proposed to circumvent this issue. Limit cycles can be detected and fixed locally by adding a singularity dipole [START_REF] Myles | Robust field-aligned global parametrization[END_REF]]. However, this solution stays local and does not take into account the global problem of minimizing the distortion. [START_REF] Diamanti | Integrable polyvector fields[END_REF] provide a system of necessary and sufficient equations for the existence of a seamless cone parametrization. The Jacobian of the deformation is expressed in a symmetry invariant way using the PolyVector representation. Like ours, this representation allow them to compute a cone parametrization freely placing 1/4-index singularity minimizing a distortion criterion. However, in practice, the algorithm is prone to add multiple singularities, even when starting from a cross field with integrable singularities.

Works on Chebyshev Nets have also introduced algorithms able to place singularities at the same time as computing geometry for the simple reason that these nets do not always exist on general surfaces and often require specific cone placement. [START_REF] Andrew O Sageman-Furnas | Chebyshev nets from commuting polyvector fields[END_REF] use a PolyVector representation but its integrability condition depends on the frame field matching, thus requires an integer optimization. Moreover, a post-processing step is needed to compute the parametrization as the construction is not exact. Later works, such as [START_REF] Liu | Practical fabrication of discrete chebyshev nets[END_REF], alternate between computing a parametrization and a frame field are able to slowly move the singular points.

Maybe closer too our representation, [START_REF] Pluta | PH-CPF: planar hexagonal meshing using coordinate power fields[END_REF] introduce the so-called "coordinate power fields". This representation simply relies on the definition of seamless parametrization: edges of adjacent triangles must be equal up to 𝜋/2 rotations. To avoid integer variables they raise edge vectors in the complex plane to the fourth power. In this setup, singularities are unlikely to appear as it would require creating a new cut along which all the variables must change. In our setting, singularities can be created easily by adjusting the frame field local rotations.

Cone Metric Deformation. Overall, a cross field is a convenient way of placing quantized singularities necessary for quad-meshing, however, it is not the only way to solve this problem. Most alternatives rely on conformal deformations as they offer a simple relationship between area distortion and cone positions. Greedy methods place singularities in regions of high distortion or curvature [START_REF] Ben-Chen | Conformal flattening by curvature prescription and metric scaling[END_REF], sometimes using a diffusion process [START_REF] Vintescu | Least squares affine transitions for global parameterization[END_REF]. [START_REF] Myles | Global parametrization by incremental flattening[END_REF] compute seamless parametrizations by incrementally flattening regions of smallest Gaussian curvature. In its follow-up [START_REF] Myles | Controlled-distortion constrained global parametrization[END_REF], they enable feature alignment using a greedy mixed-integer algorithm operating on loops angle defect. However, these methods only use an approximation of the distortion during optimization and the actual parametrization is only computed in a post-processing step. Again, the link between distortion and cone placement is weakened. Only [START_REF] Springborn | Conformal equivalence of triangle meshes[END_REF] actually use the real mapping distortion but ±1/4-index singularities are again obtained by a rounding procedure after finding their positions. [START_REF] Soliman | Optimal cone singularities for conformal flattening[END_REF] and [START_REF] Fang | Computing sparse cones with bounded distortion for conformal parameterizations[END_REF] are some of the only non-greedy approaches available. They also rely on conformal deformation and are very efficient for minimizing area distortion. However, quantized cone points are not considered. In a followup [START_REF] Li | Computing sparse integer-constrained cones for conformal parameterizations[END_REF], the authors consider quarter-index cone using an ad hoc integer optimization scheme but are still limited to conformal parametrizations. [START_REF] Levi | Direct Seamless Parametrization[END_REF] proposes to compute distortion minimizing seamless maps by directly using its definition as a constraint in an integer programming solver. Unlike [START_REF] Fang | Computing sparse cones with bounded distortion for conformal parameterizations[END_REF][START_REF] Myles | Controlled-distortion constrained global parametrization[END_REF], this approach is greedy and never backtracks on previously made decisions. We instead propose a set of constraints that can be solved by any smooth optimization solver with no integer variables involved, for surfaces with and without boundaries, resulting in reduced stretch distortion and well distributed singularities.

All these methods suffer from the same problem as cross fields: not all sets of cones admit a valid parametrization. For surfaces without boundary, prescribed cones satisfying the Gauss-Bonnet theorem are always feasible [START_REF] Campen | Seamless Parametrization with Arbitrary Cones for Arbitrary Genus[END_REF][START_REF] Levi | Seamless Parametrization of Spheres with Controlled Singularities[END_REF]] and a few obstructions exist for controlling non-contractible cycles [START_REF] Shen | Which cross fields can be quadrangulated? global parameterization from prescribed holonomy signatures[END_REF]]. However, the existence of boundaries or feature curves can lead to situations where quantized cones and Gauss-Bonnet theorem are no longer sufficient conditions. It appears to us that the only way to be certain that a set of singularities is consistent with a seamless mapping is to compute the underlying parametrization.

SMOOTH FORMULATION

Let us start by describing the theoretical background used to build our global parametrization technique, which is, at its core, a discretization of Cartan's method of moving frames. This simple and intuitive framework only uses two ingredients: local frames and Jacobian matrices expressed in local coordinates. The theory provides two structure equations precisely describing how these two quantities must relate in order to create a valid parametrization of the surface.

In all the paper, Euclidean planes, either as parametric spaces or tangents to a surface, will be identified to the space of complex numbers C. Orthogonal frames will be represented as elements of the space U of unit complex number.

Cartan's Method of Moving Frames

Although Cartan's theory is a very broad topic [START_REF] Sharpe | Cartans Generalization of Kleins Erlangen Program[END_REF]], we will limit ourselves to the study of a mapping 𝑓 : 𝑀 → C sending a compact smooth orientable surface 𝑀 to the complex plane. As a first step, we will further ask that 𝑀 has disk topology. The results of this section can be found in the translation of Cartan's lecture on Riemannian geometry [START_REF] Cartan | Riemannian Geometry in an Orthogonal Frame: From Lectures Delivered by Élie Cartan at the Sorbonne in 1926-1927[END_REF]].

Cartan's key idea is to assign, at each point of a surface, an orthogonal frame represented by a unit complex number 𝑧 : 𝑀 → U that will be used as a local reference system. The differential map d𝑓 : 𝑇 𝑀 → 𝑇 C ≡ C, mapping tangent vectors of 𝑀 to vectors in parameter space, is itself projected into the local frame leading to the complex-valued 1-form 𝜎 : 𝑇 𝑀 → C as illustrated in Fig. 2. Cartan decomposes the differential map as a product of frame and local deformation:

(d𝑓 ) 𝑝 = 𝑧 𝑝 𝜎 𝑝 .

(1)

The complex-valued 1-form 𝜎 𝑝 is nothing more than a representation of the Jacobian of the deformation at point 𝑝 ∈ 𝑀 in the coordinate system 𝑧 𝑝 .

Obviously, the frame field 𝑧 and the local deformation tensor 𝜎 cannot be chosen arbitrarily and must depend on the frame's rotation. The main results of Cartan [Cartan et al. 2001, Thm. 1. p. 38] is that there exists a mapping 𝑓 and a frame field 𝑧 solution of the system Eqs. (1) if and only if a system of two differential equations is satisfied.

Field of local references. The only requirement on the reference field 𝑧 is that it should be smooth and unit norm. Thus, locally there exists a smooth angle function 𝜃 such that 𝑧 = exp(𝚤𝜃 ). The frame's speed of rotation in direction 𝑋 is given by differential form 𝜔 (𝑋 ) := d𝜃 (𝑋 ). Therefore, the frame evolution is entirely captured by the differential equation: d𝑧 = 𝚤𝜔𝑧.

(2)

Eq. ( 2) is well-known in geometry processing for computing cross fields [START_REF] Crane | Trivial connections on discrete surfaces[END_REF][START_REF] Ray | N-symmetry direction field design[END_REF] or even quad or stripe patterns [START_REF] Knöppel | Stripe Patterns on Surfaces[END_REF][START_REF] Ray | Periodic global parameterization[END_REF]]. As proved in [START_REF] Cartan | Riemannian Geometry in an Orthogonal Frame: From Lectures Delivered by Élie Cartan at the Sorbonne in 1926-1927[END_REF][START_REF] Sharpe | Cartans Generalization of Kleins Erlangen Program[END_REF], the frame field is uniquely determined by its rotation speed 𝜔.

Local deformations. The evolution of deformation form 𝜎 is by definition deeply related to the evolution of the frame on the surface as it must compensate for the frame's rotation. The first structure equation describes exactly this relationship and, as proved in Thm. 2.1, it is also a necessary an sufficient condition for the existence of the mapping 𝑓 defined in Eq. (1).

Theorem 2.1. Given a frame field whose rotation speed is 𝜔, there exists a unique solution of the system (1) up to translation/rotation if and only if 𝜎 is solution of Cartan's first structure equation: d𝜎 + 𝚤𝜔 ∧ 𝜎 = 0.

(3)

Proof. The structure equation is equivalent to showing that 𝑧𝜎 is a closed-form:

d(𝑧𝜎) = d𝑧 ∧ 𝜎 + 𝑧d𝜎 = 𝑧 (𝚤𝜔 ∧ 𝜎 + d𝜎).
Since 𝑀 is assumed to be disk-like, 𝑧𝜎 is exact if and only if it is closed.

A proof in a more general context can be found in [Cartan et al. 2001, Thm. 1, p. 38]. □

Local injectivity. If the differential map and the deformation tensor 𝜎 differ by a rotation, they still share many properties. For instance, the local change of area is invariant by rotation and can be computed directly from 𝜎. For parametrizations, we would like to obtain locally injective maps, or stated differently that the local areas stay positive. One way to ensure this is by checking that 𝜎 does not change the sign of the cross product between tangent vectors:

★Im( σ ∧ 𝜎) > 0.
(4)

Cartan's Method of Symmetric Moving Frames

So far, Cartan's method provided us with two integrability conditions for disk-like domains. In this section, we will extend this method to global parametrizations by allowing cone metrics -metrics with zero Gaussian curvature everywhere except at a few singular points. We will show that simply allowing symmetric frame fields is enough to guarantee parametrization with cone angles matching the singularity indices.

Field of local references. One obstruction to extending the theory to general topology is that, in general, we cannot define a regular reference field everywhere. Thus, we will consider frame with rotational symmetry [START_REF] Palacios | Rotational symmetry field design on surfaces[END_REF]. Two frames are deemed equivalent if they are equal up to a rotation in the symmetry group Γ. As shown in [START_REF] Crane | Trivial connections on discrete surfaces[END_REF]], these symmetric fields still define a rotation speed 𝜔 and Eq. ( 1) still admits a solution but this time within the quotient space U/Γ.

Local deformations. Interestingly, the first structure equation Eq. ( 3), obtained by differentiating Eq. ( 1), does not change as it only depends of the frame's rotation speed.

Now we can define a global parametrization of a "cut" manifold 𝑀 𝑐 . The surface 𝑀 𝑐 is defined by puncturing 𝑀 at singular points and "cutting" the domain in order to recover a disk topology. We are able to show, in Thm. 2.2, that any solution of the first structure equation is a global parametrization of 𝑀 𝑐 . Theorem 2.2. Given a 1-from 𝜎 satisfying Eq. (3) and a symmetric frame field solution of Eq. (2) in the quotient space U/Γ, there exists a mapping 𝑓 : 𝑀 𝑐 → C such that:

d𝑓 𝑝 = 𝑧 𝑝 𝜎 𝑝 , ∀𝑝 ∈ 𝑀 𝑐 .
Moreover, the image of a pair of vectors tangent to the cuts are equal up to a rotation of the symmetry group Γ in parameter space.

We prove Theorem 2.2 in Appendix A. The key idea is that the frame field 𝑧 is continuous in the quotient space U/Γ but discontinuous over the space of rotation U whereas the local deformation 𝜎 is continuous everywhere away from singularities. As a consequence, the mapping 𝑓 : 𝑀 𝑐 → C exhibits cuts where the frame field is discontinuous. Moreover, to go from one side of the cut to the other, we need to apply a rotation equal to the frame field jump.

Parametrization Design

Following Cartan's method, computing a parametrization is equivalent to finding local frames 𝑧 with rotation speed 𝜔 and a 1-form 𝜎 satisfying the structure equations. Thus, we can setup an optimization problem aiming at finding 𝑧, 𝜔, 𝜎 minimizing a distortion energy D and satisfying Eqs. ( 2), ( 3) and ( 4):

min D (𝜎) 𝑧 : 𝑀 → U/Γ d𝑧 -𝚤𝜔𝑧 = 0 𝜔 : 𝑀 → R s.t. d𝜎 + 𝚤𝜔 ∧ 𝜎 = 0 𝜎 : 𝑇 𝑀 → C ★Im( σ ∧ 𝜎) > 0 (5)
The optimization constraints ensure the existence of a global parametrization of the cut surface 𝑀 𝑐 but never use the position of the cuts or the singular points. In fact, cones are determined during optimization and cuts are discovered during the construction of the parametrization when solving Eq. ( 1). This formulation allows for a great range of possible constraints: boundary constraints, feature constraints, distortion measure, singularity positions as-well-as a lot of freedom to let the cone be placed according to the distortion minimization.

Feasible region. In theory, for a mapping 𝑓 : 𝑀 𝑐 → C, there are an infinite number of pairs 𝑧, 𝜎 satisfying Thm. 2.2. In particular, one can rotate the frame and the deformation tensor at each point by a rotation 𝑟 𝑝 ∈ U such that z𝑝 := 𝑟 𝑝 𝑧 𝑝 , σ𝑝 := 𝑟 -1 𝑝 𝜎 𝑝 does not alter the deformation -i.e. d𝑓 𝑝 = z𝑝 σ𝑝 . In order to satisfy Eq. ( 2) and Eq. ( 3), the rotation speed ω of z must change according to the formula ω = 𝜔 -𝚤𝑟 -1 d𝑟 . Thus, for any rotation field, if 𝑧, 𝜔, 𝜎 are feasible then z, ω, σ are also feasible with possibly the same distortion energy. Therefore, the feasible region in Eq. ( 5) is extremely large and the optimization problem is highly non-convex. In practice, the size of the feasible set allows us to easily converge to a feasible solution (expects for some specific configurations discussed in Sec. 9). However, we cannot guarantee that we will find a global minimum of the distortion energy.

Overview

Our goal is to discretize the optimization problem in Eq. ( 5). We will first recall definitions necessary for discrete parametrization in Sec. 3. The constraints on frame rotations will be the topic of Sec. 4 and the first structure equation will be studied in Sec. 5. We will show in Sec. 6 that the discrete constraints are equivalent to the existence of a discrete parametrization. Sec. 7 discusses boundary conditions and feature alignment. Sec. 8 and Sec. 9 describe our numerical optimization scheme as-well-as our results and applications. 

DISCRETE SETTING

In this section, we give a formal definition to three key properties of parametrization mappings used throughout the paper: cone parametrization, rotationally seamless parametrization and feature adaptation. These properties are illustrated in Fig. 3.

Discrete Parametrization

A piecewise linear parametrization is a map 𝑓 : M ⊂ R 3 → C assigning, to every triangle corner 𝑐 ∈ R 3 a coordinate in the (complex) plane 𝑓 𝑡 (𝑐) = (𝑢, 𝑣). Coordinates for points inside a triangle are then linearly interpolated from its corners. Such a parametrization can exhibit cuts along some edges, namely adjacent triangles in the initial mesh are no longer adjacent in the parametrization. The linear functions 𝑔 relating an edge on one side of the cut to its duplicated version on the other side of the cut are called transition functions (see Fig. 3a). Given a closed loop of triangles (𝑡 0 , 𝑡 1 , . . . , 𝑡 𝑝 , 𝑡 0 ), all incident to the same vertex 𝑖 ∈ 𝑉 , the vertex is said singular if the accumulated transition function

𝑔 𝑖 = 𝑔 𝑡 0 𝑡 𝑝 • . . . • 𝑔 𝑡 2 𝑡 1 • 𝑔 𝑡 1 𝑡 0 is not identity.
We say that a parametrization is rotationally seamless if duplicated edge vectors are equal up to a 𝑘𝜋/2 rotation for any two adjacent triangles (Fig. 3b). More generally, a parametrization has quantized cones if all transition functions are rotations of angle 2𝑘𝜋/𝑛 for 𝑛 ∈ N + . Definition 3.1. A parametrization has quantized cones if for two adjacent triangles 𝑡 1 , 𝑡 2 ∈ 𝑇 sharing an edge 𝑖 𝑗 ∈ 𝐸, their edge vectors are related by the transition function:

𝑓 𝑡 1 (𝑝 𝑖 )-𝑓 𝑡 1 (𝑝 𝑗 ) = exp(𝚤2𝑘𝜋/𝑛) 𝑓 𝑡 2 (𝑝 𝑖 ) -𝑓 𝑡 2 (𝑝 𝑗 ) , 𝑘 ∈ {0, . . . , 𝑛-1}.
In particular, a parametrization is rotationally seamless if 𝑛 = 4.

Another important property is that the surface boundaries and feature edges are isolines of the parametrization (Fig. 3c). 

∃𝑘 ∈ {1, 2}, ⟨𝑓 𝑡 (𝑝 𝑖 ) -𝑓 𝑡 (𝑝 𝑗 ), 𝑒 𝑘 ⟩ = 0
where 𝑒 1 = 1 + 𝚤0, 𝑒 2 = 0 + 𝚤 are the plane axes.

The Cayley Map

During the process of discretizing the integrability equations, we will see that rotations are represented using the Cayley map [START_REF] Kobilarov | Lie group integrators for animation and control of vehicles[END_REF]. By definition this map, noted cay : R → U, associates to a real value 𝛼 ∈ R a complex fraction equal to the rotation of angle 2 arctan(𝛼/2) ∈ (-𝜋, 𝜋):

cay(𝛼) := 1 -𝚤𝛼/2 1 + 𝚤𝛼/2 = exp 2𝚤 arctan 𝛼 2 . ( 6 
)
The Cayley map is often used as an efficient way of parametrizing the space of rotations by a polynomial function [START_REF] Zhang | Fast Updates for Least-Squares Rotational Alignment[END_REF]]. Moreover, it defines a single covering of the space of rotations which is a desirable property for numerical optimization.

LOCAL FRAMES

In this section we propose a discretization of our first integrability equation Eq. (2). To do so, we need to define our local frames and how to compare them on a curved surface using a parallel transport. As we consider tangent vectors defined at vertices, the material exposed in Sec. 4.2 is inspired by [START_REF] Knöppel | Globally optimal direction fields[END_REF]].

Vertex-Based Frame Fields and Singular Triangles

The choice of vertex-based frame fields can come as unusual in the context of cone parametrization. Indeed, the more common choice of frames on faces defines singularities at vertices and cuts along edges which is, in practice, very convenient. However, frames on vertices give more room for singularity placement as a cone may appear anywhere inside a triangle. Therefore, our algorithm succeeds in parametrizing poorly sampled surfaces by adding a new vertex inside each singular triangle as demonstrated in Fig. 4. Such parametrizations are inaccessible to face-based algorithms.

Frames on faces are also easy to constrain at boundaries and at feature curves. Again, these constraints are also easily accessible for vertex-based field by adapting the flattening of the local vertex chart, as we will see in Sec. 7.

Most importantly, we can prove that our framework has to create cones of same index as the frame field. This is not guaranteed in the face-based paradigm due to possible creation of unwanted "double covering" [START_REF] Garanzha | Practical lowest distortion mapping[END_REF]]. In any case, a face-based discretization of our integrability equations is also possible.

Parallel Transport From Levi-Civita connection

Our construction of a vertex-based frame field follows the one by [START_REF] Knöppel | Globally optimal direction fields[END_REF]. A tangent vector 𝑣 𝑖 ∈ C is expressed in the local basis of the vertex 𝑖. This local basis defines a tangent space at this vertex. Vertices on a triangulated surface are generally not flat as the inner angles 𝜃 𝑗𝑘 𝑖 of triangles incident to 𝑖 do not sum to 2𝜋. A local coordinate system is constructed by intrinsically "flattening" each vertex, namely inner angles are normalized:

𝜑 𝑖 𝑗 𝑎 𝑗 𝑎 𝑗 0 𝑖 𝑗 𝜑 𝑖 𝑗 𝜑 𝑗𝑖 θ 𝑗𝑘 𝑖 := 2𝜋𝜃 𝑗𝑘 𝑖 /Θ 𝑖
where Θ 𝑖 = 𝑖 𝑗𝑘 𝜃 𝑗𝑘 𝑖 is the total inner angle at vertex 𝑖. At each vertex, we assign a reference edge 𝑖 𝑗 0 whose angle coordinate 𝜑 𝑖 𝑗 0 is by definition zero. The angles of other ordered edges 𝑖 𝑗 0 , . . . , 𝑖 𝑗 𝑛 are obtained by accumulating modified inner angles: 

𝜑 𝑖 𝑗 𝑎 := 𝑎-1 ∑︁ 𝑝=0 θ 𝑗 𝑝 𝑗 𝑝+1 𝑖 . ( 7 

Discrete Frame Field Condition

We are now ready to discretize the frame equation Eq. ( 2) using Discrete Exterior Calculus [START_REF] Nirmal | Discrete exterior calculus[END_REF]].

A frame field is an assignment of unit complex number 𝑧 per vertex. So, the exterior derivative of the frame is simply the frames difference corrected by the parallel transport:

(d𝑧) 𝑖 𝑗 = 𝑧 𝑗 -𝑟 𝑖 𝑗 𝑧 𝑖 .
For the second part of the equation, we integrate a wedge product between a 1-form and a 0-form along a primal edge following [START_REF] Nirmal | Discrete exterior calculus[END_REF][START_REF] Ptáčková | A simple and complete discrete exterior calculus on general polygonal meshes[END_REF]:

(𝜔𝑧) 𝑖 𝑗 = 𝚤𝜔 𝑖 𝑗 (𝑧 𝑗 + 𝑟 𝑖 𝑗 𝑧 𝑖 )/2.
Combining these two equations, the discrete frame constraint Eq. (2) reads:

(1 + 𝚤𝜔 𝑖 𝑗 /2)𝑟 𝑖 𝑗 𝑧 𝑖 = (1 -𝚤𝜔 𝑖 𝑗 /2)𝑧 𝑗 .

(8)

Eq. ( 8) implies that the frame at vertex 𝑖 is equal to the frame at vertex 𝑗 up to a multiplication by cay(𝜔 𝑖 𝑗 ). So adjacent frames are equal up to a rotation of angle 2 arctan(𝜔 𝑖 𝑗 /2). This is precisely the intuition behind the continuous equation.

Quantized Singularity Cones Fields

According to Thm. 2.2, we can define a cone parametrization if the local bases admit quantized cone singularities. This property is satisfied exactly by discrete symmetric frame fields [START_REF] Ray | N-symmetry direction field design[END_REF].

A rotationally symmetric 𝑛-direction field (𝑛-RoSy field [START_REF] Vaxman | Directional field synthesis, design, and processing[END_REF]]) assigns at each vertex a set of 𝑛 directions:

{exp(𝚤2𝑘𝜋/𝑛) 𝑧 𝑖 , 𝑘 = 0, . . . , 𝑛} .

A key insight is that, when raised to the 𝑛 th power, this set reduces to a single complex value:

𝑣 𝑖 := 𝑧 𝑛
𝑖 . Thus, it can be uniquely represented by a unit complex number whose 𝑛 th roots gives the 𝑛 directions [START_REF] Palacios | Rotational symmetry field design on surfaces[END_REF][START_REF] Ray | N-symmetry direction field design[END_REF]. For 𝑣 to represent a 𝑛-RoSy direction field, we simply raise Eq. ( 8) to the power 𝑛:

(1 + 𝚤𝜔 𝑖 𝑗 /2) 𝑛 𝑟 𝑛 𝑖 𝑗 𝑣 𝑗 = (1 -𝚤𝜔 𝑖 𝑗 /2) 𝑛 𝑣 𝑖 . (F 𝑛 )
The symmetric field may be smooth over the surface, it can still represent a discontinuous frame field. Taking the 𝑛 th root of Eq. (F 𝑛 ), we can quantify the rotation jumps in the frames by an integer 𝑘 𝑖 𝑗 ∈ Z per edge:

𝑧 𝑗 = exp 2𝚤𝜋𝑘 𝑖 𝑗 /𝑛 cay(𝜔 𝑖 𝑗 ) -1 𝑟 𝑖 𝑗 𝑧 𝑖 .
We will see with Theorem 6.1 that a rotation jump by an angle 2𝜋𝑘 𝑖 𝑗 /𝑛 in the frame field will create a cut with the same transition functions in the parametrization.

FIRST STRUCTURE EQUATION

We are now ready to discretize the other equation needed for integrability a.k.a. the first structure equation Eq. (3).

Vertex Charts

The 1-form 𝜎 expresses a deformation of the mesh in the coordinates of a local frame. Thus, we need to define a neighborhood or chart affected by this local basis.

As singularities may appear inside triangles, the charts must include a point inside each triangle physically representing the (potential) cone. For this reason, we build our charts as the intersection of mesh M with its dual. Namely, each triangle is split into three quads, as in Fig. 5b, by adding three edges linking the triangle center to edge midpoints. We explicitly build the chart C 𝑖 at vertex 𝑖 as the union of quads containing 𝑖. In this construction, adjacent charts are disjoint but share two types of duplicated edges: primal edges from the input mesh and dual edges linking edge centers to triangle centers. Both types of edges are highlighted in red in Fig. 5b. We define the chart collection M 𝑐 = ∪ 𝑖 ∈𝑉 C 𝑖 as the set of all charts emanating from the subdivision of the input mesh. Effectively, we will parametrize the mesh M 𝑝 exactly equal to the initial mesh except at singular triangles which will be split into three to insert singular points (Fig. 5c).

In the DEC formalism, 1-forms are discretized using their integrated values along edges. By definition, the deformation of an edge vector 𝑢 of M is given by 𝜎 (𝑢) ∈ C. To ease the notations, we directly use the deformed edges as variables by using specific letters for each point type of the deformed mesh. The letter 𝑝 denotes the vertex coordinates (with a complex number) of the input mesh in parameter space, the letter 𝑒 is the midpoint of an edge and 𝑠 the center of the triangle and thus a potential singularity. Moreover, under-scripts are reserved to make explicit the membership of a vector to a chart. For example, 𝑠 𝑗𝑘 𝑖 -𝑒 𝑗 𝑖 is a deformed dual edge in the chart C 𝑖 whereas 𝑠 𝑘𝑖 𝑗 -𝑒 𝑖 𝑗 is its copy in the chart C 𝑗 .

Discrete Structure Equation

𝜎 𝑖 𝜎 𝑗 𝜔 𝑗𝑖 𝜔 𝑖 𝑗 C 𝑖 C 𝑗
In order to discretize Eq. (3), we use Discrete Exterior Calculus [START_REF] Nirmal | Discrete exterior calculus[END_REF]] on "lens" complexes as introduced in [START_REF] Soliman | Constrained willmore surfaces[END_REF]. A lens complex is obtained by gluing opposite halfedges of adjacent charts. Note that 𝜎 𝑖 is expressed in the basis 𝑧 𝑖 , thus, in order to compare two 1-forms living in adjacent charts, we must compensate for the basis rotation by multiplying by the inverse parallel transport. So, along a dual edge, the integral exterior derivative reads:

(d𝜎) 𝑖 𝑗 := 𝑟 𝑗𝑖 (𝑠 𝑗𝑘 𝑖 -𝑒 𝑗 𝑖 ) -(𝑠 𝑘𝑖 𝑗 -𝑒 𝑖 𝑗 ).
The wedge product between a primal 1-form 𝜔 and a lens complex can be thought of as a wedge product on a virtual quadrangle made of primal and dual edges where the frame rotations 𝜔 on dual edges are zero. Using the wedge product on a quadrilateral element defined in [Krantz and Parks 2008; Ptáčková and Velho 2021], we obtain:

(𝜔 ∧ 𝜎) 𝑖 𝑗 = 𝚤𝜔 𝑖 𝑗 (-𝑟 𝑗𝑖 (𝑠 𝑗𝑘 𝑖 -𝑒 𝑗 𝑖 ) -(𝑠 𝑘𝑖 𝑗 -𝑒 𝑖 𝑗
))/2. When applied to both the primal and dual edges of a chart, we obtain the system of equations:

1 + 𝚤𝜔 𝑖 𝑗 /2 𝑒 𝑖 𝑗 -𝑝 𝑗 = - 1 -𝚤𝜔 𝑖 𝑗 /2 𝑟 𝑗𝑖 𝑒 𝑗 𝑖 -𝑝 𝑖 , ∀𝑖 𝑗 ∈ 𝐸 1 + 𝚤𝜔 𝑖 𝑗 /2 𝑠 𝑘𝑖 𝑗 -𝑒 𝑖 𝑗 = 1 -𝚤𝜔 𝑖 𝑗 /2 𝑟 𝑗𝑖 𝑠 𝑗𝑘 𝑖 -𝑒 𝑗 𝑖 .
∀𝑖 𝑗𝑘 ∈ 𝐹 (E) Again, we notice that any edges shared by two adjacent charts are equal up to a rotation but this time it involves the inverse Cayley transform cay(𝜔 𝑖 𝑗 ) -1 and the inverse parallel transport.

Note that Eqs. (E) are written only in term of the chart edges. So, without loss of generality, we can reduce the number of variables by fixing the charts translations and setting 𝑝 𝑖 = 0, ∀𝑖 ∈ 𝑉 .

Local Injectivity

To obtain a valid parametrization, we also need to ensure local injectivity. In other words, triangle areas must remain positive in parameter space. This boils down to two different constraints. First, the orientation of primal edges in vertex charts should be preserved:

det(𝑝 𝑖 -𝑒 𝑗 𝑖 , 𝑝 𝑖 -𝑒 𝑘 𝑖 ) > 0. (I 1 )
Second, the singularity point 𝑠 𝑖 𝑗𝑘 should stay inside triangle 𝑖 𝑗𝑘:

det(𝑝 𝑖 -𝑒 𝑗 𝑖 , 𝑝 𝑖 -𝑠 𝑗𝑘 𝑖 ) > 0, det(𝑝 𝑖 -𝑠 𝑗𝑘 𝑖 , 𝑝 𝑖 -𝑒 𝑘 𝑖 ) > 0.
(I 2 )

QUANTIZED CONE PARAMETRIZATION

Now that we have all integrability conditions in hand, we are ready to reconstruct the parametrization from local bases and chart coordinates. Furthermore, assuming that the charts satisfy the system of equations in Eqs. (E) and Eq. (F 𝑛 ), we can show that it defines a valid quantized cone parametrization.

Parametrization Reconstruction

Recovering a parametrization from the chart collection M 𝑐 , is very simple as we just need to integrate Eq. ( 1). This equation states that parametrized edges are simply the chart edges but rotated by the basis 𝑧:

(d𝑓 ) 𝑖 = 𝑧 𝑖 𝜎 𝑖 .
Since edges of two adjacent charts C 𝑖 , C 𝑗 and two adjacent frames 𝑧 𝑖 , 𝑧 𝑗 are both equal up to a rotation of cay(𝜔 𝑖 𝑗 )𝑟 𝑖 𝑗 , the rotated charts 𝑧 𝑖 C 𝑖 , 𝑧 𝑗 C 𝑗 can be stitched together by finding a translation. However, when using a reconstruction based on vertex charts, singular triangles will be split into three quads and parametrization cuts will follow dual edges. Thus, in order to minimize connectivity changes, it is better to first reconstruct triangles from quads and then build the parametrization from triangles.

To do so, we need to recover the local bases 𝑧 from their power representation 𝑣. As shown by Thm. 2.2, the discontinuities of the frame field determine the position of the parametrization cuts. Since there are 𝑛 vectors satisfying 𝑣 = 𝑧 𝑛 , the choice of the root of unity should not be random. Thus, we compute the bases along a spanning tree on quads prioritizing coherent bases on triangles so that cuts will appear on primal edges and changes in mesh topology will be minimal.

Then, we rotate the quads according to their bases 𝑧 and we reconstruct all triangles independently by applying the appropriate translation to each quad. Singular triangles are triangulated by adding edges linking the singular point 𝑠 and triangle vertices. However, if the singularity position is known in parameter space, its position on the surface mesh is not yet determined. To overcome this issue, we place the point 𝑠 𝑖 𝑗𝑘 on the surface using the barycentric coordinates in parameter space.

The parametrization is then reconstructed by recursively stitching triangles along the spanning tree. This guarantees that cuts only appear at primal edges except for singular triangles who are split into three quads.

In summary, the parametrization is computed by following the steps:

(1) Recover a basis 𝑧 per quads from the power vector 𝑣 by finding the smallest symmetry rotation along a tree; (2) Rotate each quad with their respective basis;

(3) Reconstruct triangles and remesh singular ones; (4) Recursively stitch adjacent triangles along the tree. This reconstruction process is summarized in Fig. 6.

Theoretical Guarantees

Crucially, we can prove that if Eqs. (E), (I 1 ), (F 𝑛 ) and (I 2 ) are satisfied, the reconstruction leads to a valid quantized parametrization whose transition functions are equal to the rotational discontinuity of the frame field 𝑧. Fig. 1 shows an example of parametrization obtained by solving Cartan's structure equation. Theorem 6.1. If a set of charts, a frame field and its rotations satisfy the system of Eqs. (E), (F 𝑛 ), (I 1 ) and (I 2 ), then we can recover a locally injective parametrization with quantized cones whose transition functions are rotation equal to the frame field discontinuities.

The proof can be found in App. B.

BOUNDARY AND FEATURE EDGE CONSTRAINTS

Another requirement we discussed in Sec. 3 is that the parametrization should be adapted to the mesh boundary and features edges (Fig 3c). Additional constraints are therefore required on the cross field and on vertex charts. We process feature edges extracted from a boundary or user specified in the same way. We assume that the user provides us, at each vertex of a feature curve, with the target angle Ω 𝑖 = 2𝜋𝑘 𝑖 /𝑛 in parameter space.

Single vertex corner. We define a vertex corner as a set of adjacent triangles incident to the same vertex 𝑖 and delimited by two feature edges 𝑖 𝑗 0 and 𝑖 𝑗 𝑎 . In this paragraph, we consider a single vertex corner. We assume that target corner angles Ω 𝑗 0 𝑗 𝑎 𝑖 integer multiple of 2𝜋/𝑛 are provided as input. At a corner 𝑖 𝑗 0 𝑗 𝑎 , inner angles are normalized to match the prescribed angle: where Θ 𝑗 0 𝑗 𝑎 𝑖 is the total inner angle between edges 𝑖 𝑗 0 and 𝑖 𝑗 𝑎 . The edge angles in the tangent plane are obtained by accumulating the modified inner angles as in Eq. ( 7). The representation vector 𝑣 𝑖 is constrained to be equal to 𝑒 𝑛𝚤𝜑 𝑖 𝑗 0 so that one of its root agrees by construction with the feature edge direction. An illustration of this procedure is given in Fig. 7.
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The corresponding vertex corner in chart C 𝑖 must also be constrained to the corner angle. To do so, the primal edge vector corresponding to a feature edge must remain orthogonal to the feature edge normal. Therefore, at a vertex corner, we enforce three constraints linear with respect to the chart coordinates and the cross field:

𝑣 𝑖 = exp(𝑛𝚤𝜑 𝑖 𝑗 0 ), ⟨𝑝 𝑖 -𝑒 is an integer multiple of 2𝜋, then the flattening of each corner creates a valid vertex chart. However, when Ω 𝑖 ≠ 2𝑘𝜋, vertex 𝑖 is singular and an additional seam is necessary to lay out edges in the tangent plane. Thus, we cut open the vertex neighborhood at edge 𝑖 𝑗 𝑎 0 introducing a duplicated edge 𝑖 𝑗 ′ 𝑎 0 . For the parametrization of chart C 𝑖 to remain valid, edges on each side of the cut must be equal in length, yielding an additional linear constraint:

⟨𝑝 𝑖 -𝑒 𝑗 𝑎 0 𝑖 , exp(𝚤𝜑 𝑖 𝑗 𝑎 0 )⟩ = ⟨𝑝 𝑖 -𝑒 𝑗 ′ 𝑎 0 𝑖 , exp(𝚤𝜑 𝑖 𝑗 ′ 𝑎 0 )⟩. (B)
Fig. 8 illustrates the computation of the tangent plane at a cube corner where Ω 𝑖 = 3𝜋/2.

NUMERICAL OPTIMIZATION

So far, we have defined a system of necessary equations for computing valid global parametrizations. In this section, we describe our optimization process in order to compute the vertex charts, j 0 j a Fig. 7. Boundary edges, depicted in black, are laid out in the tangent complex plane so that they match the provided corner angle Ω 𝑗 0 𝑗𝑎 𝑖 . j a0 j a2 j a1 Fig. 8. Three feature edges, depicted in black, are laid out in the tangent complex plane. A seam is introduced at edge 𝑖 𝑗𝑎 0 because the sum of the corner angles Ω is not an integer multiple of 2𝜋 .

the frame field rotations 𝜔 and local bases 𝑧 (represented, when necessary, by its power vector 𝑣) which are solutions of this system.

Non-Linear Least-Squares

Like the smooth optimization problem of Eq. ( 5), we would like to find the chart vertices (𝑥, 𝑦), the frame rotation 𝜔 and the field power vector 𝑣 solution of the constrained optimization problem: where D : M 𝑐 → R is any given distortion energy. Note that to solve the optimization problem in Eq. ( 9), we do not need to know in advance the position of the cones or the cuts; everything will be decided during optimization.

To simplify the problem, the inequality constraints of Eqs. (I 1 ) and (I 2 ) are enforced using the continuously differentiable barrier function 𝐵 𝜂 : R >0 → R:

𝐵 𝜂 (𝑥) =        +∞ 𝑥 ≤ 0, log( 𝑥 𝜂 ) 0 < 𝑥 ≤ 𝜂, 0 𝜂 ≤ 𝑥 .
Given a determinant 𝑑 whose initial value is 𝑑 0 , we set the threshold to 𝜂 = 𝑑 0 /2. Furthermore, we enforce non-linear constraints as a sum of squares energy. Abusing the notations, let E and F 𝑛 denote the vectors formed by the differences of left and right hand sides in equations (E) and (F 𝑛 ). Let I 1 and I 2 be the vectors of determinants appearing in equations (I 1 ) and (I 2 ). We reformulate the constraints as the energy:

𝑅(𝜔, 𝑣, 𝑥, 𝑦) = ∥E ∥ 2 2 + 𝜆 𝐹 ∥F 𝑛 ∥ 2 2 + 𝜆 det ∥𝐵 𝜂 (I 1 )∥ 2 2 + 𝜆 det ∥𝐵 𝜂 (I 2 ) ∥ 2 2
, where the function 𝐵 𝜂 is applied componentwise. This leads to a non-linear least-squares optimization with linear constraints: We use the Levenberg-Marquardt algorithm, an optimizer tailored for solving non-linear least squares with zero as global minimum, to minimize this objective function. Each optimization step consists in solving a quadratic optimization problem with linear constraints involving the function's Jacobian matrices. We follow the implementation of [START_REF] Marumo | Constrained Levenberg-Marquardt method with global complexity bound[END_REF]] whose evolution of the damping parameter ensures global convergence toward a local minimum and a second order rate of convergence near a zero of the objective function. The problem in Eq. ( 10) is solved several times for decreasing values of 𝜀. For our distortion minimizing experiments, we start at 𝜀 = 10 2 and divide by a factor of 10 until 𝜀 = 10 -4 , before solving one last time with 𝜀 = 0. This penalty scheme does not provide strong guarantee of convergence toward a global minimum of the distortion. However, in practice the choice of distortion energy greatly impacts singularity positions (see for example Figs. 1 and9) and distortion measure is indeed lower and competitive with other methods (Figs. 20 or 12).

Note that for surfaces with boundary or feature edges, we do not need to force 𝑣 to be unit norm: it suffices that the frame field is constrained somewhere so that whenever Eqs. ( 8) are satisfied, the field has unit norm everywhere. For surfaces without features, we constrain 𝑣 at a random vertex to avoid the trivial zero solution.

Distortion Energy

Many differentiable distortion metrics can be optimized to obtain interesting parametrizations. In our experiments, we consider three of these metrics.

As-Rigid-As-Possible distortion. The first way to prevent charts distortion is to impose an isometric map between initial and final charts. This boils down to minimizing the so-called As-Rigid-As-Possible energy [START_REF] Sorkine | As-rigid-as-possible surface modeling[END_REF] which forces the map Jacobians to be orthogonal matrices:

D ARAP (𝑥, 𝑦) = ∑︁ 𝑖 ∈𝑉 ∑︁ 𝑡 ∈𝑇 C 𝑖 ∥𝐽 𝑇 𝑡 𝐽 𝑡 -𝐼 2 ∥ 2
We refer to this energy as the ARAP or isometric energy.

Conformal distortion. One important application of seamless parametrizations is quad remeshing. In this context, it is often desirable to avoid shearing i.e. quads with non-orthogonal edges as much as possible . The simplest way to promote these square-like quads is to penalize parametrizations whose parameter gradients are nonorthogonal. Thus, as a distortion energy, we use the LSCM [START_REF] Lévy | Least squares conformal maps for automatic texture atlas generation[END_REF] energy summed over all charts:

D LSCM (𝑥, 𝑦) = ∑︁ 𝑖 ∈𝑉 ∑︁ 𝑡 ∈𝑇 C 𝑖 ∥∇𝑦 𝑡 -R∇𝑥 𝑡 ∥ 2 ,
where (𝑥, 𝑦) are the chart vertex coordinates and R is the 90 • counter-clockwise rotation around the normal. The gradient operator is computed with respect to the initial isometric chart parametrization described in Sec. 8.3.

Area distortion. Finally, one can require that the quad elements present the same overall size everywhere, which can be achieved by penalizing the change in chart area. This boils down to a constraint on the determinants of the Jacobian matrices, which should be as close as possible to 1. However, this class of area preserving deformations is not sufficient on its own as it also contains solutions with dramatic shearing. We therefore balance our area distortion term with the previously defined D LSCM :

D AREA (𝑥, 𝑦) = ∑︁ 𝑖 ∈𝑉 ∑︁ 𝑡 ∈𝑇 C 𝑖 ∥ det(𝐽 𝑡 ) -1∥ 2 + 𝜇D LSCM (𝑥, 𝑦)
We set 𝜇 to 0.1 in our experiments.

Metrics comparison. Fig. 1 illustrates the influence of D ARAP , D LSCM and D AREA on cone positions and overall parameterization geometry. We quantitatively compare the resulting parametrizations using three criteria: the number of cones, the scale and the stretch distortion.

The scale distortion, defined over each triangle as (det 𝐽 +det 𝐽 -1 )/2, quantifies how much triangles' area changes between initial geometry and parameter space. The stretch distortion, defined as the ratio 𝜎 2 /𝜎 1 of the sorted singular values (𝜎 2 > 𝜎 1 ) of the Jacobian matrices, quantifies the deformation of angles. Both metrics have an optimal value of 1. We usually present them as a integrated quantity over the entire model.

In Fig 12, we run our algorithm with distortion minimization on a large dataset of models and plot the resulting scale distortion against stretch distortion. As expected, D LSCM reduces the stretch distortion, at a cost of a greater variation on the scaling of triangles thus producing parametrizations that are more conformal. On the other hand, minimizing D AREA leads to parametrizations with little to no scale distortion. D ARAP yields a good compromise between the previous two. 

Initialization

As for any non-convex optimization, the question of a good initialization arises and initial values for our variables 𝑥, 𝑦, 𝜔 and 𝑣 should be chosen carefully.

Charts. The charts coordinates are initialized using the tangent plane flattening introduced in Secs. 4 and 7. Given the normalized triangle inner angles, the chart primal edges are laid out in the plane with their initial edge lengths. The chart is completed by initializing points 𝑠 at the triangle barycenters. These initial charts keep the triangle edge lengths unchanged so they can be seen as an isometric parametrization of the input triangle mesh. Since the system is invariant by chart translation, the central vertex is set to zero and all coordinates in a chart are given in relation to the origin.

Rotations. For surfaces without boundaries or feature edges, the frame rotations 𝜔 are simply initialized to zero. In some cases, this initialization can lead to highly distorted solutions. Typically, for CAD models where feature edges meet at very acute angles, a singularity appears directly inside the sharp triangle. Inspired by [START_REF] Desobry | Frame Fields for CAD Models[END_REF], we compute an initial frame rotation 𝜔 by forcing the cross field to be regular on all triangles 𝑇 (𝑝) belonging to 3-ring of a sharp corner 𝑝. In practice, we solve the quadratic problem:

min 𝜔 ∈R |𝐸 | 𝑖 𝑗 ∈𝐸 ∥𝜔 𝑖 𝑗 ∥ 2 2 s.t. 𝜔 𝑖 𝑗 + 𝜔 𝑗𝑘 + 𝜔 𝑘𝑖 = -𝐾 𝑖 𝑗𝑘 , ∀𝑖 𝑗𝑘 ∈ 𝑇 (𝑝)
𝜔 𝑖 𝑗 fixed on feature edges Fig. 10 illustrates how this initialization drastically changes the parametrization and reduces the distortion.

Frame field. Many different frame field initializations are possible as long as they respect boundary and feature edges constraints (see Sec. 7). In Fig. 9 (and Fig. 1 of the supplemental), we compare four initializations: a random cross field, the principal curvature directions obtained with [START_REF] Cohen | Restricted Delaunay Triangulations and Normal Cycle[END_REF], the smoothest cross field computed via [START_REF] Viertel | An Approach to Quad Meshing Based on Harmonic Cross-Valued Maps and the Ginzburg-Landau Theory[END_REF] or zero everywhere except at boundary and feature vertices. When no distortion is minimized, the algorithm converges to the singularity configuration specified by the cross field which is the closest valid parametrization. On the other hand, any reasonable initialization will allow our algorithm to converge to a very similar cone distribution as soon as a distortion energy is minimized. This is due to the fact that the distortion energy dominates the optimization in early iterations and guides the charts towards finding the position minimizing it. The cross field and its rotations will conform with the charts when the distortion weight decreases.

Parameter Choice

Since our objective function of Eq. ( 9) is a sum of several terms, their balance influences the final solution. While every global parametrization is a zero of the energy ∥E ∥ 2 2 + 𝜆 𝐹 ∥F 𝑛 ∥ 2 2 , the cone distribution depends on the value of 𝜆 𝐹 . For small 𝜆 𝐹 , the chart term ∥E ∥ 2 2 converges first. The optimizer prioritizes the validity of the parametrization over the quantization of singularities to multiple of 2𝜋/𝑛. This results in parametrizations with more cones, and often smaller distortion. On the other hand, for large 𝜆 𝐹 , the optimization prioritizes the convergence of the frame field variables and the quantization of rotations. The final parametrization exhibits fewer singularity cones and a smoother frame field. This phenomenon is illustrated in Fig. 11, where the same mesh is parametrized for six values of 𝜆 𝐹 . As [START_REF] Myles | Global parametrization by incremental flattening[END_REF], we observe that adding well-placed singularities tend to decrease the distortion. In our experiments in Sec. 9, our default value is 𝜆 𝐹 = 10 representing an interesting trade-off. The other weighting term 𝜆 det is set to 1.

APPLICATIONS AND EVALUATION

In this section, we present results obtained with our method on a large selection of models and comparison with previous works.

Database and implementation. Our results are obtained on a database of 274 triangular meshes. This includes 131 models without feature edges gathered from [START_REF] Myles | Robust field-aligned global parametrization[END_REF]] and [START_REF] Levi | Direct Seamless Parametrization[END_REF]] or created manually for specific test cases (like the model of Figure 14). Additionally, we collected 143 CAD models with correct feature edge flagging from the Mambo CAD dataset1 as well as models with sharp edges from [START_REF] Myles | Robust field-aligned global parametrization[END_REF]. A complete gallery of our results is available in the supplemental material.

All our experiments were conducted on a Ubuntu 18.04 workstation with a eight-core, 2.6-GHz Intel Core i5. Our implementation was done in python and accelerated with Numba [Lam et al. 2015]. We solve the quadratic programming problems inside the Levenberg-Marquardt algorithm using the open source solver OSQP [START_REF] Stellato | OSQP: an operator splitting solver for quadratic programs[END_REF]] linked to the Pardiso linear solver [START_REF] Alappat | A Recursive Algebraic Coloring Technique for Hardware-Efficient Symmetric Sparse Matrix-Vector Multiplication[END_REF][START_REF] Bollhöfer | Large-scale Sparse Inverse Covariance Matrix Estimation[END_REF][START_REF] Bollhöfer | State-of-the-Art Sparse Direct Solvers[END_REF]. Computation times for the optimization without distortion are displayed in Fig. 13.

Seamless Parametrization

We first setup our algorithm to compute a rotationally seamless parametrization for all of the 274 models. Comprehensive results are available in supplemental materials including 3D models with uv-coordinates as well as renders and distortion evaluation. For the 131 models with no features, we output a valid parametrization for 123 of them. Since we need to avoid the trivial zero solution, we initialize our optimization with a smooth frame field (as described in Section 8.3). For the 143 models with feature edges, we obtain 132 valid results. We initialize those models with fixed frames on feature edges and zero elsewhere.

The 19 failure cases observed in the whole database are of two types.

1. Low quality triangles. 17 of the 19 failed models present flat or nearly-flat triangles, with angles as low as 1e-4 radians. This creates numerical instabilities or infinite values in the log-barrier 𝐵 𝜂 (Eq. (8.1)). A simple local remeshing to get rid of bad quality elements was sufficient to ensure convergence.

2. Limit Cycles. The two remaining cases are due to topological failure preventing the convergence of the optimization scheme. This is typically created by a frame field with a limit cycle whose parametrization is degenerated. Fig. 14a shows an example of such a configuration. In this case, the algorithm is not able to converge towards a zero of the objective function but tries to reach a global minimum at infinity. Standard parameters of our optimization are not able to escape this situation. However, we can lower the weight on the frame field constraint (F 𝑛 ) to 𝜆 𝐹 = 0.01, so that the edge constraint (E) dominates the energy (see Section 8.4). This way our algorithm converges to a global minimum and introduces new singularities as in Fig. 14b.

Other Applications

Besides seamless parametrization, we now demonstrate the versatility of our method through a series of other applications. changing the parameter 𝑛. While choosing 𝑛 = 4 leads to rotationally seamless maps used for quad remeshing, higher order can be easily computed by our method with minimal change. On Figure 15, we present two models, one with feature and one without, that are parametrized using 𝑛 = 3,6 and 8. Higher values of 𝑛 naturally result in a greater number of singularity cones, as well as less distorted parametrizations at the expense of more cones and seams.

Cone

Fixed topology parametrization. Finally, it is possible to lock the frame field and rotations variables 𝑣 and 𝜔 during optimization in order to compute parametrization with a user prescribed cone distribution and alignment constraints. Fig. 1b shows a parametrization of Rhino's head based on the principal curvature directions.

This allows us to investigate the benefits of simultaneously optimizing for the cone distribution and the parametrization geometry. In Figure 16, we run our algorithm with the fixed frame field generated by [START_REF] Viertel | An Approach to Quad Meshing Based on Harmonic Cross-Valued Maps and the Ginzburg-Landau Theory[END_REF]. We compare the resulting parametrization to our full algorithm using the three distortions of Section 8.2. We observe that, by minimizing LSCM, our method outputs a parametrization with less cones that better minimizes the stretch distortion at the price of more scale distortion. The opposite holds when minimizing the area energy. Again, the ARAP energy yields the most isometric deformation and thus balances both distortions. Interestingly, a smooth frame field is also an excellent proxy to obtain area-preserving maps. Free boundary parametrization. So far, we focused on computing a parametrization with a cone metric where cones are constrained to have 2𝜋/𝑛 curvature, with 𝑛 > 1. By setting 𝑛 = 1 in Eq. (F 𝑛 ), cones are therefore forced to take values of either 2𝜋, which implies that at least one chart will be flattened or flipped, thus contradicting the injectivity condition of Eq. (I 1 ), or -2𝜋, which implies a "double covering" which is impossible in our setting (see App. B). Therefore, no singularity can appear in a parameterization that satisfies Eq. (F 𝑛 ) for 𝑛 = 1. Besides, by omitting boundary constraints of Eq. (B) in the optimization, our algorithm is able to produce free boundary parametrization with minimal distortion for disk-shaped models. Fig. 17 presents four of such parametrizations.

Comparison With Other Methods

We now provide comparisons with previous works computing rotationally seamless maps for 𝑛 = 4 by considering our two distortion metrics scale and stretch. For a more precise analysis than just an integrated value, we plot distortion histograms in log scale of the triangle count. When quad meshes are provided, they are obtained by computing an integer grid map using [START_REF] Bommes | Integer-grid maps for reliable quad meshing[END_REF] and by then extracting quads with [START_REF] Ebke | QEx: Robust quad mesh extraction[END_REF]. Most importantly, they have the same singularities (positions and indices) as the input parametrizations. More results and comparisons can be found in the supplemental material. Comparison with [START_REF] Levi | Direct Seamless Parametrization[END_REF]. Levi directly computes a seamless parametrization from a triangle mesh using a greedy algorithm. However, this method seems very dependent on its initialization: for the Dilo model in Fig. 20, the singularities appear on a single side of the mesh and seem unrelated to the geometry. The parametrizations provided by the author minimize the maximum stretch over all triangles. This can be observed in Fig. 19 where the stretch is bounded. In comparison, our method yields a higher maximal value but a smaller stretch for a majority of triangles (see histograms), as well as a reduced number of cone singularities -16 against 217. Our optimization does not attempt to reduce triangle scaling in this case, thus our scale distortion is not as competitive.

More in depth comparisons are available in supplemental material.

Comparison with [START_REF] Diamanti | Integrable polyvector fields[END_REF]. The integrable Polyvector field method takes an initial frame field and optimizes it to guarantee its integrability. However, this process is prone to introduce new singularities. In Fig. 12, we compare our method on the 62 meshes provided by the authors. The integrable Polyvector field method performs very well for scale minimization. However, we are able to outperform them while placing 15% less cones on average.

Comparison with [START_REF] Myles | Global parametrization by incremental flattening[END_REF]. Myles and Zorin propose a greedy algorithm for cone placement along with a post-processing procedure to obtain 𝑛𝜋/2 singularity cones. Cones tend to be placed in high curvature regions which can be suboptimal. In Figs. 20, our method is shown to match their scale distortion and outperform their stretch distortion on the Dilo model.

Comparison with [START_REF] Fang | Quadrangulation through morse-parameterization hybridization[END_REF]. Finally, we compare our results to a method producing quad-meshes without the quantization step. [START_REF] Fang | Quadrangulation through morse-parameterization hybridization[END_REF] use periodic functions to integrate a frame field directly into an integer seamless parametrization. This type of methods generally output a high quality mesh on most of the input surface. However, some localized regions need to be repaired which often introduce new singularities.

Fig. 18 shows the repartition of quad angles and stretch for our respective quad meshes of the Dilo model. Our quads are more orthogonal and suffer less from stretching, while our meshes present fewer singular vertices. An additional comparison of quad generation is provided in Sec. 2 of the supplemental material.

CONCLUSION AND FUTURE WORKS

By discretizing Cartan's structure equations, we were able to construct a general algorithm for global parametrization where cones and seams do not need to be known in advance, but can instead be computed along with the geometry. This all-in-one optimization of the topology and the geometry enables us to find cone points whose positions minimize any given distortion energy. Unlike most previous methods our solver is not greedy and does not rely on integer variables.

In the perspective of quad meshing, the main limitation of our work is that it does not handle integer coordinates of cone points. We still rely on a post-processing quantization step which impacts the overall distortion distribution. While the cone placement is optimal for the seamless parametrization, there is no guarantee of optimality for the final quadmesh.

A second limitation is that our current implementation is slower than previous methods because of the a higher number of variables -2|𝐹 | +4|𝐸| for vertex charts coordinates, |𝐸| for the parallel transport and 2|𝑉 | for the cross field.

Finally, since Cartan's method of moving frame is not limited to two-dimensional geometry, the structure equations can be written for higher dimension meshes. This opens the door to future works for computing valid seamless parametrization for tetrahedral meshes in the context of hexahedral remeshing. 

A PROOF OF THEOREM 2.2

The proof will follow three steps: 1) we demonstrate that there is a mapping 𝑓 satisfying Eq. ( 1) in 𝑀 𝑐 , 2) we show that 𝜎 is continuous away from singular points even though the frame field is discontinuous in U and 3) the vector tangent to the cuts are equal up to a rotation due to the discontinuity in the frame 𝑧.

First, we show the existence of a mapping 𝑓 solution of Eq. ( 1). By construction, there exists a smooth frame field 𝑧 : 𝑀 𝑐 → U whose Darboux derivative is 𝜔. Since Eq. ( 3) holds true, the form 𝑧𝜎 is closed. Using the Poincaré lemma, we conclude that 𝑧𝜎 is exact on 𝑀 𝑐 as it is simply connected. Therefore, there exists a map 𝑓 : 𝑀 𝑐 → C solution of:

d𝑓 𝑝 = 𝑧 𝑝 𝜎 𝑝 , ∀𝑝 ∈ 𝑀 𝑐 .
Secondly, we are going to prove that, even though 𝑧 is discontinuous in U, there always exists a form 𝜎 satisfying the first structure equation Eq. (3) which is smooth away from singularities and independent of 𝑧 and 𝜔. To do so, we restrict ourselves to conformal deformations by choosing 𝜎 = 𝑒 𝑢 d𝑥 where d𝑥 = d𝑥 1 +𝚤d𝑥 2 is a local 1-form orthonormal basis. Injecting this into Eq. (3), we show that the log-scale factor 𝑢 is solution of the system of equations:

d𝑢 ∧ d𝑥 1 + 𝜔 ∧ d𝑥 2 = 0, d𝑢 ∧ d𝑥 2 -𝜔 ∧ d𝑥 1 = 0.
The only solution of this system is: 𝜔 = -★ d𝑢. The frame field rotation 𝜔 uniquely defines the frames up to global rotation [START_REF] Sharpe | Cartans Generalization of Kleins Erlangen Program[END_REF]] and can be related to the Gaussian curvature 𝐾 and the frame cones points Ω by the equation [START_REF] Corman | Symmetric Moving Frames[END_REF][START_REF] Crane | Trivial connections on discrete surfaces[END_REF]

]: d𝜔 = -𝐾 + Ω.
Therefore, 𝑢 is solution of the Poisson's equation:

Δ𝑢 = 𝐾 -Ω. (11) 
Eq. ( 11) always has a smooth solution away from singular points. Thus, 𝜎 is locally smooth away from singularities and is independent of the frame field discontinuities. Third, we are going to study the properties of the parametrization cuts. Let 𝑝 ∈ 𝑀 be a point at a cut and 𝑝 + , 𝑝 -are the corresponding points on each side of the cut in 𝑀 𝑐 . By construction, there exists a frame field 𝑧 : 𝑀 𝑐 → U whose rotation speed 𝜔 is smooth on 𝑀 𝑐 but discontinuous on 𝑀. At a discontinuity, there exists a transition rotation 𝑔 𝑝 ∈ Γ, such that: 𝑧 𝑝 -= 𝑔 𝑝 𝑧 𝑝 + . Since 𝜎 is continuous on 𝑀 𝑐 , we have: 𝜎 𝑝 -= 𝜎 𝑝 + . Therefore, a tangent vector 𝑋 ∈ 𝑇 𝑝 𝑀 has two limit images by the differential map: d𝑓 𝑝 + (𝑋 𝑝 ) = 𝑧 𝑝 + 𝜎 𝑝 (𝑋 𝑝 ) and d𝑓 𝑝 -(𝑋 𝑝 ) = 𝑧 𝑝 -𝜎 𝑝 (𝑋 𝑝 ). Using the continuity of 𝜎, we have:

d𝑓 𝑝 + (𝑋 𝑝 ) = 𝑔 𝑝 d𝑓 𝑝 -(𝑋 𝑝 ), 𝑔 𝑝 ∈ Γ.
Therefore, vectors tangent to the cut are mapped to vector equal up to a rotation defined by the frame field discontinuity.

B PROOF OF THEOREM 6.1

In order to show that our constraints define a valid parametrization with quantized cone points in the sense of Def. 3.1. We will follow four steps. 1) We will show the validity of the triangle reconstruction (Sec. 6) and that transition functions are rotations of angle 2𝑘𝜋/𝑛.

2) The parametrization is locally injective. 3) The parametrization's angle defects are equal to the singular indices of the frame field up to a subtraction of an integer multiple of 2𝜋. 4) Due to the Gauss-Bonnet theorem, parasite singularities cannot appear.

Triangle reconstruction. First, we will show that the parametrization cuts appear at the frame field discontinuities and that the rotation jumps match those of the frames. Since the power field satisfies Eq. (F 𝑛 ), the bases 𝑧 rotations are given by the formula:

𝑧 𝑗 = exp 2𝚤𝜋𝑘 𝑖 𝑗 /𝑛 cay(𝜔 𝑖 𝑗 ) -1 𝑟 𝑖 𝑗 𝑧 𝑖 ,
where 𝑘 𝑖 𝑗 is the jump index at edge 𝑖 𝑗.

Let 𝜎 𝑖 ∈ C, 𝜎 𝑗 ∈ C be duplicated primal edge vectors of adjacent charts C 𝑖 , C 𝑗 and 𝑎 = 𝑧 𝑖 𝜎 𝑖 , 𝑏 = 𝑧 𝑗 𝜎 𝑗 their coordinates in parameter space. Using Eqs. (E) and Eq. ( 8), we see that they are opposite in parameter space: 𝑏 = 𝑧 𝑗 𝜎 𝑗 , = exp 2𝚤𝜋𝑘 𝑖 𝑗 /𝑛 cay(𝜔 𝑖 𝑗 ) -1 𝑟 𝑖 𝑗 𝑧 𝑖cay(𝜔 𝑖 𝑗 )𝑟 -1 𝑖 𝑗 𝜎 𝑖 , =exp 2𝚤𝜋𝑘 𝑖 𝑗 /𝑛 𝑧 𝑖 𝜎 𝑖 , =exp 2𝚤𝜋𝑘 𝑖 𝑗 /𝑛 𝑎.

The same reasoning can be be applied to dual edges. Thus, primal and dual edges are equal up to the frame rotational discontinuity 𝑑 𝑖 𝑗 := exp 2𝚤𝜋𝑘 𝑖 𝑗 /𝑛 . Therefore, our parametrization transition functions are rotation quantized by the frame field. In particular, our parametrization is seamless whenever 𝑛 = 4.

To achieve our triangle reconstruction of the parametrization, three cases can occur. 1) A triangle is not traversed by a cut and it will be reconstructed as a triangle in the parametrization. 2) A nonsingular triangle is traversed by a cut, thus the cut can be displaced on primal edges to recover a non-singular triangle. 3) A singular triangle is reconstructed with a cut appearing in one of the dual edge linking the point 𝑠. By displacing the cut, we recover a triangulation of the singular triangle with the cut linking 𝑠 to one of the vertex as in Fig. 6.

Injectivity and feature constraints. Eqs. (I 1 ) ensure local injectivity as all triangles (𝑝 𝑖 , 𝑝 𝑗 , 𝑠 𝑖 𝑗𝑘 ) composing the parametrization must have positive area.

Parametrization angle defects. We are now going to precisely relate the parametrization angle defects with the frame singular indices. We showed that the parametrization transition functions match the frame field jumps. Therefore, the parametrization angle defect at a singular point is equal to the total rotation angle of the frame up to an integer multiple of 2𝜋. We will show that this additional parasite angle corresponding to integer singularities can only be negative.

Let us consider a triangle 𝑖 𝑗𝑘 and its chart decomposition as illustrated by Fig. 21. Let Ω 𝑖 𝑗𝑘 be the frame field total rotation around the triangle, that is to say the singularity index prescribed by the frame field:

Ω 𝑖 𝑗𝑘 = ω𝑖 𝑗 + ω 𝑗𝑘 + ω𝑘𝑖 ,
where ω = 2 arctan(𝜔/2) are the angle of the rotation between two frames, parametrized by the Cayley transform (Eq. ( 6)).

Let Θ 𝑖 𝑗𝑘 be the angle defect of triangle 𝑖 𝑗𝑘 in parameter space, by definition:

Θ 𝑖 𝑗𝑘 = 2𝜋 -(𝛽 𝑖 + 𝛽 𝑗 + 𝛽 𝑘 )

Because of constraints (I 1 ) and (I 2 ), the three charts C 𝑖 , C 𝑗 and C 𝑘 , decomposing triangle 𝑖 𝑗𝑘, are non self-intersecting quadrilaterals. Thus, their four inner angles, defined in Fig. 21 Moreover, by summing these three equations, we obtain a link between the angle defect Θ and the triangle angles 𝛼:

Θ 𝑖 𝑗𝑘 = 𝛼 𝑖 + 𝛼 𝑗 + 𝛼 𝑘 -𝜋 .
We are now ready to relate Θ with the frame field singularity angle Ω. Let us consider the hexagon formed by extending primal edges of charts until intersection, as in Fig. 21 (right). This hexagon can be self-intersecting but remains star-shaped around its singularity point 𝑠. We can express the sum of its inner angles in term of its turning number 𝑘 > 0:

𝛼 𝑖 + 𝛼 𝑗 + 𝛼 𝑘 + 3𝜋 -ω𝑖 𝑗ω 𝑗𝑘 -ω𝑘𝑖 = 𝜋 (6 -2𝑘).

Rearranging the terms, the parametrization angle defect Θ is equal to the frame field total rotation Ω up to a negative integer multiple of 2𝜋:

Θ 𝑖 𝑗𝑘 = Ω 𝑖 𝑗𝑘 -2𝜋𝑘, 𝑘 ∈ N.

(12) Double coverings. We are now going to prove that the parametrization singularities are exactly those prescribed by the frames. Eq. ( 12) shows that inside triangles the parametrization angle defect can differ from the frame field singularities by a negative integer multiple of 2𝜋. Vertices of the input mesh also have prescribed singularity indices: 0 for inner vertices and user prescribed on feature edges. At these vertices, unwanted negative integer index singularities could also appear even if all triangles have positive area (see Fig. 22).

However, due to the Gauss-Bonnet theorem, an additional negative singularity can appear only if it is compensated by an additional positive singularity. This is impossible because only negative parasite singularities can appear at both triangles and vertices. 

  Fig. 1. Our discretization of the moving frames method allows us to simultaneously place singularity cones and compute a global parametrization in a single optimization problem. This figure presents our parametrizations of the Rhino head model computed for a variety of constraints: (a) by preventing cones from appearing, thus leading to a free boundary parametrization with user-defined cuts, (b) by following the topology of the principal directions of curvature cross field, (c) by penalizing non-isometric deformations, (d) by minimizing area distortion, (e) by penalizing non-conformal deformations, effectively reducing stretch distortion. We represent positive 𝜋 /2 cones in red and negative -𝜋 /2 cones in blue. Distortion measurements are computed as a mean over all triangles weighted by area.

Fig. 2 .

 2 Fig. 2. Cartan's method of moving frames projects the differential map d𝑓 at a point 𝑝 ∈ 𝑀 in a local basis (𝑧 𝑝 , 𝚤𝑧 𝑝 ) to obtain a deformation 𝜎 𝑝 in the local referential.

Fig. 3 .

 3 Fig. 3. Three parametrization properties used in this paper illustrated by texture mapping (top) and uv-coordinates (bottom).

  Definition 3.2. A parametrization is adapted to its boundary (or feature lines) if all boundary edges 𝑖 𝑗 ∈ 𝐸 of a boundary triangle ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023. 1:6 • Coiffier and Corman 𝑡 ∈ 𝑇 have one zero coordinate in parameter space:

Fig. 4 .

 4 Fig. 4. Sampling local frames at vertices creates cones inside triangles. Our algorithm adds extra vertices inside singular triangles allowing us to parametrize extremely coarse surfaces. In comparison, a face-based method is unable to create a valid parametrization due to the lack of degrees of freedom.

  ) To compare adjacent vectors, we define the parallel transport 𝜌 : 𝐸 → R as the rotation angle aligning the basis at 𝑗 to the one at 𝑖: 𝜌 𝑖 𝑗 := 𝜑 𝑗𝑖 -𝜑 𝑖 𝑗 + 𝜋, by comparing the angles of the shared edge 𝑖 𝑗. The change of basis is then 𝑟 𝑖 𝑗 = exp(𝚤𝜌 𝑖 𝑗 ). By construction, this parallel transport is associated to the Levi-Civita connection. As shown by Knöppel et al. [2013], its integrated Gaussian curvature 𝐾 ∈ (-𝜋, 𝜋] defined as exp(𝚤𝐾 𝑖 𝑗𝑘 ) = 𝑟 𝑘𝑖 𝑟 𝑗𝑘 𝑟 𝑖 𝑗 satisfies the Gauss-Bonnet theorem (for meshes without boundaries).

Fig. 5 .

 5 Fig. 5. The initial mesh (a) is subdivided in a chart collection (b) used for imposing integrability constraints. Edge midpoints are denoted with letter𝑒 and triangle center point with the letter 𝑠. We do not parametrize the initial mesh but a subdivision of it where singularities 𝑠 are inserted inside singular triangles (c).

Fig. 6 .

 6 Fig. 6. Reconstruction of a parametrization from frames and charts. A triangle mesh (a) is divided into a set of vertex charts (b) satisfying the integrability conditions of Eqs. (E), namely duplicated edges are equal up to the cross field rotation cay(𝜔 ) -1 . The triangles are assembled independently (c). The triangle 𝑖 𝑗𝑘 is singular so the vertex 𝑠 𝑖 𝑗𝑘 is added along with new edges in red. The angle Ω 𝑖 𝑗𝑘 at the cut matches the discontinuity of the frame field. The parametrization (d), obtained by gluing adjacent triangles, corresponds to the mesh (e) where the singular point is inserted in triangle 𝑖 𝑗𝑘 using its barycentric coordinates in parameter space.

𝑗 0 𝑖

 0 , 𝚤 exp(𝚤𝜑 𝑖 𝑗 0 )⟩ = 0, ⟨𝑝 𝑖 -𝑒 𝑗 𝑎 𝑖 , 𝚤 exp(𝚤𝜑 𝑖 𝑗 𝑎 )⟩ = 0. (B) Note that since the frame field is constrained on feature vertices, the rotation 𝜔 is also known along feature edges. Singular vertices. Let us consider the case where an interior vertex 𝑖 is incident to multiple feature edges (𝑖 𝑗 𝑎 0 , 𝑖 𝑗 𝑎 1 , . . . , 𝑖 𝑗 𝑎 𝑛 ) forming 𝑛 + 1 corners. If the sum of all corner angles Ω 𝑖 = 𝑛-1 𝑝=0 Ω 𝑗 𝑎𝑝 𝑗 𝑎 𝑝+1 𝑖 + Ω 𝑗 𝑎𝑛 𝑗 𝑎 0 𝑖

  Fig. 9. Parametrization of the Stanford Bunny with different frame field initializations. From left to right: random frame per vertex, principal curvature direction, smooth frame field[START_REF] Viertel | An Approach to Quad Meshing Based on Harmonic Cross-Valued Maps and the Ginzburg-Landau Theory[END_REF] and zero except on boundary vertices. The top row is optimized without any distortion energy and converges to the same singularities than the frame field. The second row minimizes the ARAP distortion (defined in Sec.8.2). For reasonable initializations, results of these optimizations share very similar cone distribution and distortion metrics. For the random initialization, undesirable singularities still cluster around the boundary with distortion minimization.

Fig. 10 .

 10 Fig. 10. Influence of the initialization of the cross field rotations on a sharp corner parametrization. Left: Initialization with zeros rotation. Right: Initialization with modified parallel transport prevents a dipole of singularities to appear and reduces overall distortion. Singularities 𝜋 2 are depicted in red, -𝜋 2 in blue and boundary corners in yellow.

  min 𝜔,𝑣,𝑥,𝑦 𝜀D (𝑥, 𝑦) + 𝑅(𝜔, 𝑣, 𝑥, 𝑦) s.t. (B). (10)

Fig. 11 .

 11 Fig. 11. Influence of the parameter 𝜆 𝐹 on the singularity configurations when we optimize for the constraints without distortion. Small values of 𝜆 𝐹 produce more singularity cones and minimum stretch. In contrast, large values create smoother frame fields and higher stretch.

Fig. 12 .

 12 Fig. 12. Scatter plot of total stretch vs total scale observed on each models provided by[START_REF] Diamanti | Integrable polyvector fields[END_REF]]. We consider three optimization scenarios: minimization of D ARAP , D LSCM and D LSCM .

Fig. 13 .

 13 Fig. 13. Running time (in seconds) with respect to triangle count for surfaces with (142) and without (132) features.

  (a) Typical failure case of our method.(b) Changing the energy weights allows our method to place a dipole of singularities and retrieve a correct parametrization.

Fig. 14 .

 14 Fig. 14. On this model our method fails to find a valid parametrization (𝜆 𝐹 = 10) (a). By setting 𝜆 𝐹 = 0.01, we are able to find a valid solution (b).

  Fig.15. Results of our algorithm on two models for different singularity cones quantized to ±2𝜋 /𝑛 for 𝑛 = 3, 6 and 8. On the bottom row, the parametrization of the Casting model is aligned with its feature edges, on which odd values of 𝑛 are incompatible due to 𝜋 not being a valid corner angle. When 𝑛 is multiple of 3, we represent the parametrizations using a hexagonal pattern, instead of the classical checker pattern.

  Fig. 16. Comparison between a parametrization with fixed cone singularities from a smooth frame field [Viertel and Osting 2019] and the one obtained by optimizing cones placement. Minimizing distortion leads to different cone placements. (b) Minimizing D AREA effectively reduces the scale distortion (c) Minimizing the ARAP energy results in a tradeoff with a different topology. (d) Minimizing the LSCM energy outputs a parametrization that is almost conformal.

Fig. 17 .

 17 Fig. 17. Free boundary parametrization using our algorithm on disk-shaped models (top), or models with user-prescribed seams (bottom).

  Fig. 18. Quad remeshing comparison with Fang et al. [2018] on the Dilo model. Our parametrization was initialized using principal curvature direction and optimized without distortion. Our quads have less stretching and have angles closer to 90 • .

[Fig. 20 .

 20 Fig. 20. Comparison of three baseline methods with our results on the dilo model. Top row: texture mapping with highlighted seams and singularities . Second row: stretch distortion distribution over the model from 1 (blue) to 3 or higher (red). Third row: histogram of stretch distortion on triangles. Our method is best at minimizing the stretch distortion even compared to the conformal algorithm[START_REF] Myles | Global parametrization by incremental flattening[END_REF].

Fig. 21 .

 21 Fig. 21. The triangle 𝑖 𝑗𝑘 is decomposed into the three charts C 𝑖 , C 𝑗 and C 𝑘 satisfying Eqs. (E). Left: the angles 𝛼 denote the triangle angle and 𝛽 the angle at the singularity point. Right: primal edges of the charts are equal up to the rotation cay(𝜔 ) whose angle is ω = 2 arctan(𝜔/2) (see Eq. (6)).

  (left), must sum to 2𝜋:𝛼 𝑖 + 𝛽 𝑖 + 𝑐 + 𝜋 -𝑎 = 2𝜋, 𝛼 𝑗 + 𝛽 𝑗 + 𝑎 + 𝜋 -𝑏 = 2𝜋, 𝛼 𝑘 + 𝛽 𝑘 + 𝑏 + 𝜋 -𝑐 = 2𝜋 .

Fig. 22 .

 22 Fig. 22. Two versions of the same vertex rings: one with an angle defect of 0 and the other with an angle defect of 2𝜋 , both have only positive area triangles.
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