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Fig. 1. Our discretization of the moving frames method allows us to simultaneously place singularity cones and compute a global parametrization in a single
optimization problem. This figure presents our parametrizations of the Rhino head model computed for a variety of constraints: (a) by preventing cones from
appearing, thus leading to a free boundary parametrization with user-defined cuts, (b) by following the topology of the principal directions of curvature cross
field, (c) by penalizing non-isometric deformations, (d) by minimizing area distortion, (e) by penalizing non-conformal deformations, effectively reducing
stretch distortion. We represent positive 𝜋/2 cones in red and negative −𝜋/2 cones in blue. Distortion measurements are computed as a mean over all triangles
weighted by area.

This article introduces a new representation of surface global parametriza-

tion based on Cartan’s method of moving frames. We show that a system

of structure equations, characterizing the local coordinates changes with

respect to a local frame system, completely characterizes the set of possible

cone parametrizations. The discretization of this system provably provides

necessary and sufficient conditions for the existence of a valid mapping. We

are able to derive a versatile algorithm for surface parametrization, allow-

ing feature constraints and singularities. As the first structure equation is

independent of the global coordinate system, we do not require prior knowl-

edge of cuts or cone positions. So, a single non-linear least-square problem

is enough to place quantized cones while minimizing a given distortion

energy. We are therefore able to take full advantage of the link between

the parametrization geometry and the topology of its cone metric to solve

challenging constrained parametrization problems.
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1 INTRODUCTION
Computing global surface parametrizations is a central problem

of geometry processing due to its numerous applications in mesh

quadrangulation, texture mapping with invisible seams or solving

differential equations. Depending on the problem to solve, specific

constraints are often required, such as alignment with boundary,

feature edges or creases, as-well-as controlled distortion.

A global parametrization can be defined as assigning a flat metric

everywhere except at a few local exceptions called singularities or

cones. These extraordinary points are bound to appear to compen-

sate the topology of non-torus-like surfaces and also have a great

impact on the parametrization distortion: depending on the surface

curvature, the number of cones and their positions can drastically

change the mesh quality. In particular, when singularity indices are

integer multiple of 1/4, finding optimal positions minimizing the

overall distortion is challenging and often leads to sophisticated

integer programming problems.

To overcome this apparent complexity, there exists two broad

classes of algorithms. The first relies on two-steps: first choosing

the singularity locations using a cross field or other proxies and

then compute a global rotationally seamless parametrization. This
procedure, however, loosens the link between cone placement and

the distortion of the final result. As a consequence, a quad-mesh

extracted from this parametrization can present quads that stray

far away from squares because its connectivity was optimized al-

most independently of its geometry. The second type of methodshttps://doi.org/10.1145/3604282
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restricts the parametrization to simpler deformations (typically con-

formal) allowing for simple distortion estimation but ends up using

either greedy algorithms or highly specialized integer optimization

algorithm for cone placement.

This is where differential geometry tools come to the rescue. Car-
tan’s method of moving frames provides a rich theory to design and

describe local deformations. This framework uses local frames as

references, making local coordinates translation and rotation invari-

ant [Lipman et al. 2007]. Furthermore, the first structure equation
provides a necessary and sufficient condition to the existence of an

embedded surface. This equation describes how differential coor-

dinates should change relative to the frame’s motion, effectively

removing all influence of the ambient coordinate systems on the

deformation.

In this paper, we extend Cartan’s method to singular frame fields

and we prove that any solution of the derived structure equations is

a valid cone parametrization. Most importantly, we provide a vertex-

based discretization of the smooth theory which provably preserves

all its properties. The absence of a global coordinate system allows

us to compute parametrizations without prior knowledge of the

cut positions and to automatically place quantized cones optimiz-

ing for a given distortion energy. Moreover, we study useful user

prescribed constraints, such as feature or boundary alignment and

cone locations as shown in Fig. 1.

Our technical contributions include:

(1) A formalization of surface parametrization using Cartan’s

method of moving frames;

(2) An extension of Cartan’s method to cone parametrization;

(3) A versatile tool allowing all types of constraints as-well-as

simple free-boundary parametrization;

(4) An algorithm for simultaneously computing a parametriza-

tion and quantized cone positions without integer variables.

1.1 Related Work
Cartan and Geometry Processing. In geometry processing, Cartan’s

method of moving frames has drawn a lot of attention for its ro-

tation and translation invariant representation of metric and cur-

vature [Lipman et al. 2005]. In a follow-up work, Lipman et al.

[2007] use this representation to design volume preserving and as-

isometric-as possible deformations. However, these works do not

consider the structure equations. Wang et al. [2012] also design

general deformations and provide discrete conditions, akin to the

structure equations, for the existence of a deformation. However,

in practice, frames are computed independently of the deformation

and structure equations are never used. As a consequence, these

methods are limited to suboptimal solutions and if they consider

parametrization as an application, cones are out of scope.

Previous work using moving frame theory mostly focuses on

deformations of volumes or surfaces with normals. In this context,

the second structure equation is non-linear and describing a discrete

equivalent of it is in itself a challenge [Corman and Crane 2019]. In

contrast, we only study intrinsic properties of surfaces where the

second structure equation is a simple linear equation [Crane et al.

2010]. The additional information provided by the first structure

equation, which relates the local frames to the local deformation,

allows us to compute maps from a surface to the plane.

In this work, the discretization of the structure equations is

achieved by decomposing the mesh into disjoint vertex-based charts.

We show that a valid parametrization can be constructed from any

solutions of these discrete equations. No such guaranty can be given

when using the vertex-based discretization of differential operators

proposed by [Liu et al. 2016].

DistorsionMinimizing InjectiveMaps. As our algorithm is a parametri-

zation algorithm, it is interesting to consider our work as a specific

instance of the broader problem of computing distortion minimiz-

ing injective maps [Hormann et al. 2008]. Given a target topology

(disk [Lévy et al. 2002; Tutte 1963], orbifold [Aigerman and Lipman

2015], sphere [Kazhdan et al. 2012] or cone metric [Sawhney and

Crane 2018; Springborn et al. 2008]), standard distortion minimiza-

tion finds an optimal geometry in parameter space. In our setting,

we are able to both find the geometry and act on the topology to

minimize our distortion criterion. Since this problem is particularly

challenging, the most common approach is to first solve for the

topology independently of the geometry using a practical proxy

such as cross fields.

Cross Field Based Parametrizations. A cross field is an extremely

useful tool for seamless parametrization since it has the same sym-

metry as a square and thus fixes the element orientations. Direction

fields generation is generally well understood for surface meshes. A

complete review of the literature is out-of-scope of this paper and

we refer to the relevant surveys [de Goes et al. 2016; Vaxman et al.

2016]. When needed, we will represent symmetric frames by the

𝑛th root of a complex number [Palacios and Zhang 2007; Ray et al.

2008]. Most recent results guarantee that the smoothest cross field

can be computed using a diffusion/renormalization scheme [Vier-

tel and Osting 2019]. However, as shown by our experiments, the

smoothest cross field topology is not necessarily the optimal choice

to minimize the parametrization distortion.

Parametrizations based on cross fields are computed in two steps.

First, the smoothing of a cross field outputs crosses over each

element. This local basis can be interpreted as the rotation part

of the polar decomposition of the parametrization’s Jacobian ma-

trix [Panozzo et al. 2014]. Second, the extraction of the parametriza-

tion boils down to the recovery of the missing part of the Jacobian.

The simplest method is to find the functions whose gradients are

closest to the field directions [Kälberer et al. 2007]. This can also

be done using global periodic functions [Fang et al. 2018; Ray et al.

2006] with the advantage of constraining singularities to integer

coordinates. A more stable approach traces the motorcycle graph

of the field and then solves for the graph edge lengths [Myles et al.

2014]. Local injectivity can be ensured very efficiently using a gen-

eralization of Tutte’s embedding [Bright et al. 2017; Campen et al.

2019].

Fu and Liu [2016] take an ingenious approach: they divide the

input mesh into a set of independent triangles and constrain adja-

cent simplices to be equal up to the cross field rotation. This simple

constraint allows them to compute seamless global parametriza-

tions for triangle-based cross fieldswithout prior knowledge of the
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parametrization cuts. In this paper, we use a similar formulation but

adapted to cross field defined at vertices so that singularities are not

bound to appear at vertices.

While convenient, cross field based approaches have one major

drawback: not all cross fields can generate a valid parametrization.

In particular, some can exhibit limit cycles creating degenerated

triangles in parameter space. Many solutions have been proposed

to circumvent this issue. Limit cycles can be detected and fixed

locally by adding a singularity dipole [Myles et al. 2014]. However,

this solution stays local and does not take into account the global

problem of minimizing the distortion.

Diamanti et al. [2015] provide a system of necessary and sufficient

equations for the existence of a seamless cone parametrization. The

Jacobian of the deformation is expressed in a symmetry invariant

way using the PolyVector representation. Like ours, this representa-

tion allow them to compute a cone parametrization freely placing

1/4-index singularity minimizing a distortion criterion. However, in

practice, the algorithm is prone to add multiple singularities, even

when starting from a cross field with integrable singularities.

Works on Chebyshev Nets have also introduced algorithms able

to place singularities at the same time as computing geometry for

the simple reason that these nets do not always exist on general

surfaces and often require specific cone placement. Sageman-Furnas

et al. [2019] use a PolyVector representation but its integrability

condition depends on the frame field matching, thus requires an

integer optimization. Moreover, a post-processing step is needed

to compute the parametrization as the construction is not exact.

Later works, such as [Liu et al. 2020], alternate between computing

a parametrization and a frame field are able to slowly move the

singular points.

Maybe closer too our representation, Pluta et al. [2021] intro-

duce the so-called "coordinate power fields". This representation

simply relies on the definition of seamless parametrization: edges

of adjacent triangles must be equal up to 𝜋/2 rotations. To avoid

integer variables they raise edge vectors in the complex plane to

the fourth power. In this setup, singularities are unlikely to appear

as it would require creating a new cut along which all the variables

must change. In our setting, singularities can be created easily by

adjusting the frame field local rotations.

Cone Metric Deformation. Overall, a cross field is a convenient way

of placing quantized singularities necessary for quad-meshing, how-

ever, it is not the only way to solve this problem. Most alternatives

rely on conformal deformations as they offer a simple relationship

between area distortion and cone positions. Greedy methods place

singularities in regions of high distortion or curvature [Ben-Chen

et al. 2008], sometimes using a diffusion process [Vintescu et al.

2017]. Myles and Zorin [2012] compute seamless parametrizations

by incrementally flattening regions of smallest Gaussian curvature.

In its follow-up [Myles and Zorin 2013], they enable feature align-

ment using a greedy mixed-integer algorithm operating on loops

angle defect. However, these methods only use an approximation of

the distortion during optimization and the actual parametrization is

only computed in a post-processing step. Again, the link between

distortion and cone placement is weakened. Only Springborn et al.

[2008] actually use the real mapping distortion but ±1/4-index sin-

gularities are again obtained by a rounding procedure after finding
their positions.

Soliman et al. [2018] and Fang et al. [2021] are some of the only

non-greedy approaches available. They also rely on conformal de-

formation and are very efficient for minimizing area distortion.

However, quantized cone points are not considered. In a follow-

up [Li et al. 2022], the authors consider quarter-index cone using an

ad hoc integer optimization scheme but are still limited to conformal

parametrizations.

Levi [2021] proposes to compute distortion minimizing seamless

maps by directly using its definition as a constraint in an integer

programming solver. Unlike [Fang et al. 2021; Myles and Zorin

2013], this approach is greedy and never backtracks on previously

made decisions. We instead propose a set of constraints that can be

solved by any smooth optimization solver with no integer variables

involved, for surfaces with and without boundaries, resulting in

reduced stretch distortion and well distributed singularities.

All these methods suffer from the same problem as cross fields:

not all sets of cones admit a valid parametrization. For surfaces

without boundary, prescribed cones satisfying the Gauss-Bonnet

theorem are always feasible [Campen et al. 2019; Levi 2022] and a

few obstructions exist for controlling non-contractible cycles [Shen

et al. 2022]. However, the existence of boundaries or feature curves

can lead to situations where quantized cones and Gauss-Bonnet

theorem are no longer sufficient conditions. It appears to us that the

only way to be certain that a set of singularities is consistent with a

seamless mapping is to compute the underlying parametrization.

2 SMOOTH FORMULATION
Let us start by describing the theoretical background used to build

our global parametrization technique, which is, at its core, a dis-

cretization of Cartan’s method of moving frames. This simple and

intuitive framework only uses two ingredients: local frames and

Jacobian matrices expressed in local coordinates. The theory pro-

vides two structure equations precisely describing how these two

quantities must relate in order to create a valid parametrization of

the surface.

In all the paper, Euclidean planes, either as parametric spaces

or tangents to a surface, will be identified to the space of complex

numbers C. Orthogonal frames will be represented as elements of

the space U of unit complex number.

2.1 Cartan’s Method of Moving Frames
Although Cartan’s theory is a very broad topic [Sharpe 1997], we

will limit ourselves to the study of a mapping 𝑓 : 𝑀 → C sending a

compact smooth orientable surface 𝑀 to the complex plane. As a

first step, we will further ask that𝑀 has disk topology. The results

of this section can be found in the translation of Cartan’s lecture on

Riemannian geometry [Cartan et al. 2001].

Cartan’s key idea is to assign, at each point of a surface, an or-

thogonal frame represented by a unit complex number 𝑧 : 𝑀 → U
that will be used as a local reference system. The differential map

d𝑓 : 𝑇𝑀 → 𝑇C ≡ C, mapping tangent vectors of 𝑀 to vectors in

parameter space, is itself projected into the local frame leading to
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the complex-valued 1-form 𝜎 : 𝑇𝑀 → C as illustrated in Fig. 2.

Cartan decomposes the differential map as a product of frame and

local deformation:

(d𝑓 )𝑝 = 𝑧𝑝𝜎𝑝 . (1)

The complex-valued 1-form 𝜎𝑝 is nothing more than a represen-

tation of the Jacobian of the deformation at point 𝑝 ∈ 𝑀 in the

coordinate system 𝑧𝑝 .

Obviously, the frame field 𝑧 and the local deformation tensor

𝜎 cannot be chosen arbitrarily and must depend on the frame’s

rotation. Themain results of Cartan [Cartan et al. 2001, Thm. 1. p. 38]

is that there exists a mapping 𝑓 and a frame field 𝑧 solution of the

system Eqs. (1) if and only if a system of two differential equations

is satisfied.

Field of local references. The only requirement on the reference

field 𝑧 is that it should be smooth and unit norm. Thus, locally

there exists a smooth angle function 𝜃 such that 𝑧 = exp(𝚤𝜃 ). The
frame’s speed of rotation in direction 𝑋 is given by differential form

𝜔 (𝑋 ) := d𝜃 (𝑋 ). Therefore, the frame evolution is entirely captured

by the differential equation:

d𝑧 = 𝚤𝜔𝑧. (2)

Eq. (2) is well-known in geometry processing for computing cross

fields [Crane et al. 2010; Ray et al. 2008] or even quad or stripe

patterns [Knöppel et al. 2015; Ray et al. 2006]. As proved in [Cartan

et al. 2001; Sharpe 1997], the frame field is uniquely determined by

its rotation speed 𝜔 .

Local deformations. The evolution of deformation form 𝜎 is by def-

inition deeply related to the evolution of the frame on the surface as

it must compensate for the frame’s rotation. The first structure equa-
tion describes exactly this relationship and, as proved in Thm. 2.1,

it is also a necessary an sufficient condition for the existence of the

mapping 𝑓 defined in Eq. (1).

Theorem 2.1. Given a frame field whose rotation speed is 𝜔 , there
exists a unique solution of the system (1) up to translation/rotation if
and only if 𝜎 is solution of Cartan’s first structure equation:

d𝜎 + 𝚤𝜔 ∧ 𝜎 = 0. (3)

Proof. The structure equation is equivalent to showing that 𝑧𝜎

is a closed-form:

d(𝑧𝜎) = d𝑧 ∧ 𝜎 + 𝑧d𝜎 = 𝑧 (𝚤𝜔 ∧ 𝜎 + d𝜎) .

Since 𝑀 is assumed to be disk-like, 𝑧𝜎 is exact if and only if it is

closed.

A proof in a more general context can be found in [Cartan et al.

2001, Thm. 1, p. 38]. □

Local injectivity. If the differential map and the deformation tensor

𝜎 differ by a rotation, they still share many properties. For instance,

the local change of area is invariant by rotation and can be computed

directly from 𝜎 . For parametrizations, we would like to obtain locally

injective maps, or stated differently that the local areas stay positive.

M

zp

dfp(X )

TpM ≡ C

σp(X )

Fig. 2. Cartan’s method of moving frames projects the differential map d𝑓

at a point 𝑝 ∈ 𝑀 in a local basis (𝑧𝑝 , 𝚤𝑧𝑝 ) to obtain a deformation 𝜎𝑝 in
the local referential.

One way to ensure this is by checking that 𝜎 does not change the

sign of the cross product between tangent vectors:

★Im(𝜎 ∧ 𝜎) > 0. (4)

2.2 Cartan’s Method of Symmetric Moving Frames
So far, Cartan’s method provided us with two integrability con-

ditions for disk-like domains. In this section, we will extend this

method to global parametrizations by allowing cone metrics — met-

rics with zero Gaussian curvature everywhere except at a few singu-

lar points. Wewill show that simply allowing symmetric frame fields

is enough to guarantee parametrization with cone angles matching

the singularity indices.

Field of local references. One obstruction to extending the theory

to general topology is that, in general, we cannot define a regular

reference field everywhere. Thus, we will consider frame with rota-

tional symmetry [Palacios and Zhang 2007]. Two frames are deemed

equivalent if they are equal up to a rotation in the symmetry group

Γ. As shown in [Crane et al. 2010], these symmetric fields still define

a rotation speed 𝜔 and Eq. (1) still admits a solution but this time

within the quotient space U/Γ.

Local deformations. Interestingly, the first structure equation Eq. (3),
obtained by differentiating Eq. (1), does not change as it only de-

pends of the frame’s rotation speed.

Now we can define a global parametrization of a "cut" manifold

𝑀𝑐
. The surface𝑀𝑐

is defined by puncturing𝑀 at singular points

and "cutting" the domain in order to recover a disk topology. We

are able to show, in Thm. 2.2, that any solution of the first structure

equation is a global parametrization of𝑀𝑐
.

Theorem 2.2. Given a 1-from 𝜎 satisfying Eq. (3) and a symmetric
frame field solution of Eq. (2) in the quotient space U/Γ, there exists a
mapping 𝑓 : 𝑀𝑐 → C such that:

d𝑓𝑝 = 𝑧𝑝𝜎𝑝 , ∀𝑝 ∈ 𝑀𝑐 .

Moreover, the image of a pair of vectors tangent to the cuts are equal
up to a rotation of the symmetry group Γ in parameter space.
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We prove Theorem 2.2 in Appendix A. The key idea is that the

frame field 𝑧 is continuous in the quotient spaceU/Γ but discontinu-

ous over the space of rotation U whereas the local deformation 𝜎 is

continuous everywhere away from singularities. As a consequence,

the mapping 𝑓 : 𝑀𝑐 → C exhibits cuts where the frame field is

discontinuous. Moreover, to go from one side of the cut to the other,

we need to apply a rotation equal to the frame field jump.

2.3 Parametrization Design
Following Cartan’s method, computing a parametrization is equiva-

lent to finding local frames 𝑧 with rotation speed 𝜔 and a 1-form

𝜎 satisfying the structure equations. Thus, we can setup an opti-

mization problem aiming at finding 𝑧, 𝜔, 𝜎 minimizing a distortion

energy D and satisfying Eqs. (2), (3) and (4):

min D(𝜎)
𝑧 : 𝑀 → U/Γ d𝑧 − 𝚤𝜔𝑧 = 0

𝜔 : 𝑀 → R s.t. d𝜎 + 𝚤𝜔 ∧ 𝜎 = 0

𝜎 : 𝑇𝑀 → C ★Im(𝜎 ∧ 𝜎) > 0

(5)

The optimization constraints ensure the existence of a global

parametrization of the cut surface𝑀𝑐
but never use the position of

the cuts or the singular points. In fact, cones are determined during

optimization and cuts are discovered during the construction of the

parametrization when solving Eq. (1). This formulation allows for a

great range of possible constraints: boundary constraints, feature

constraints, distortion measure, singularity positions as-well-as a

lot of freedom to let the cone be placed according to the distortion

minimization.

Feasible region. In theory, for a mapping 𝑓 : 𝑀𝑐 → C, there are
an infinite number of pairs 𝑧, 𝜎 satisfying Thm. 2.2. In particular,

one can rotate the frame and the deformation tensor at each point

by a rotation 𝑟𝑝 ∈ U such that 𝑧𝑝 := 𝑟𝑝𝑧𝑝 , 𝜎𝑝 := 𝑟−1

𝑝 𝜎𝑝 does not

alter the deformation — i.e. d𝑓𝑝 = 𝑧𝑝𝜎𝑝 . In order to satisfy Eq. (2)

and Eq. (3), the rotation speed 𝜔̄ of 𝑧 must change according to the

formula 𝜔̄ = 𝜔 − 𝚤𝑟−1
d𝑟 . Thus, for any rotation field, if 𝑧, 𝜔, 𝜎 are

feasible then 𝑧, 𝜔̄, 𝜎 are also feasible with possibly the same distor-

tion energy. Therefore, the feasible region in Eq. (5) is extremely

large and the optimization problem is highly non-convex. In prac-

tice, the size of the feasible set allows us to easily converge to a

feasible solution (expects for some specific configurations discussed

in Sec. 9). However, we cannot guarantee that we will find a global

minimum of the distortion energy.

2.4 Overview
Our goal is to discretize the optimization problem in Eq. (5). We

will first recall definitions necessary for discrete parametrization in

Sec. 3. The constraints on frame rotations will be the topic of Sec. 4

and the first structure equationwill be studied in Sec. 5.Wewill show

in Sec. 6 that the discrete constraints are equivalent to the existence

of a discrete parametrization. Sec. 7 discusses boundary conditions

and feature alignment. Sec. 8 and Sec. 9 describe our numerical

optimization scheme as-well-as our results and applications.

(a) Cone Param. (b) Seamless (c) Adapted + Seamless

Fig. 3. Three parametrization properties used in this paper illustrated by
texture mapping (top) and uv-coordinates (bottom).

3 DISCRETE SETTING
In this section, we give a formal definition to three key proper-

ties of parametrization mappings used throughout the paper: cone

parametrization, rotationally seamless parametrization and feature

adaptation. These properties are illustrated in Fig. 3.

3.1 Discrete Parametrization
A piecewise linear parametrization is a map 𝑓 : M ⊂ R3 → C assign-

ing, to every triangle corner 𝑐 ∈ R3
a coordinate in the (complex)

plane 𝑓𝑡 (𝑐) = (𝑢, 𝑣). Coordinates for points inside a triangle are then
linearly interpolated from its corners. Such a parametrization can

exhibit cuts along some edges, namely adjacent triangles in the ini-

tial mesh are no longer adjacent in the parametrization. The linear

functions 𝑔 relating an edge on one side of the cut to its duplicated

version on the other side of the cut are called transition functions
(see Fig. 3a). Given a closed loop of triangles (𝑡0, 𝑡1, . . . , 𝑡𝑝 , 𝑡0), all
incident to the same vertex 𝑖 ∈ 𝑉 , the vertex is said singular if the
accumulated transition function 𝑔𝑖 = 𝑔𝑡0𝑡𝑝 ◦ . . . ◦ 𝑔𝑡2𝑡1

◦ 𝑔𝑡1𝑡0
is not

identity.

We say that a parametrization is rotationally seamless if duplicated
edge vectors are equal up to a 𝑘𝜋/2 rotation for any two adjacent

triangles (Fig. 3b). More generally, a parametrization has quantized

cones if all transition functions are rotations of angle 2𝑘𝜋/𝑛 for

𝑛 ∈ N+.

Definition 3.1. A parametrization has quantized cones if for two

adjacent triangles 𝑡1, 𝑡2 ∈ 𝑇 sharing an edge 𝑖 𝑗 ∈ 𝐸, their edge

vectors are related by the transition function:

𝑓𝑡1
(𝑝𝑖 )−𝑓𝑡1

(𝑝 𝑗 ) = exp(𝚤2𝑘𝜋/𝑛)
(
𝑓𝑡2

(𝑝𝑖 ) − 𝑓𝑡2
(𝑝 𝑗 )

)
, 𝑘 ∈ {0, . . . , 𝑛−1}.

In particular, a parametrization is rotationally seamless if 𝑛 = 4.

Another important property is that the surface boundaries and

feature edges are isolines of the parametrization (Fig. 3c).

Definition 3.2. A parametrization is adapted to its boundary (or

feature lines) if all boundary edges 𝑖 𝑗 ∈ 𝐸 of a boundary triangle

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.
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𝑡 ∈ 𝑇 have one zero coordinate in parameter space:

∃𝑘 ∈ {1, 2}, ⟨𝑓𝑡 (𝑝𝑖 ) − 𝑓𝑡 (𝑝 𝑗 ), 𝑒𝑘 ⟩ = 0

where 𝑒1 = 1 + 𝚤0, 𝑒2 = 0 + 𝚤 are the plane axes.

3.2 The Cayley Map
During the process of discretizing the integrability equations, we

will see that rotations are represented using the Cayley map [Ko-

bilarov et al. 2009]. By definition this map, noted cay : R → U,
associates to a real value 𝛼 ∈ R a complex fraction equal to the

rotation of angle 2 arctan(𝛼/2) ∈ (−𝜋, 𝜋):

cay(𝛼) :=
1 − 𝚤𝛼/2

1 + 𝚤𝛼/2

= exp

(
2𝚤 arctan

𝛼

2

)
. (6)

The Cayley map is often used as an efficient way of parametrizing

the space of rotations by a polynomial function [Zhang et al. 2021].

Moreover, it defines a single covering of the space of rotations which

is a desirable property for numerical optimization.

4 LOCAL FRAMES
In this section we propose a discretization of our first integrability

equation Eq. (2). To do so, we need to define our local frames and

how to compare them on a curved surface using a parallel transport.

As we consider tangent vectors defined at vertices, the material

exposed in Sec. 4.2 is inspired by [Knöppel et al. 2013].

4.1 Vertex-Based Frame Fields and Singular Triangles
The choice of vertex-based frame fields can come as unusual in

the context of cone parametrization. Indeed, the more common

choice of frames on faces defines singularities at vertices and cuts

along edges which is, in practice, very convenient. However, frames

on vertices give more room for singularity placement as a cone

may appear anywhere inside a triangle. Therefore, our algorithm

succeeds in parametrizing poorly sampled surfaces by adding a new

vertex inside each singular triangle as demonstrated in Fig. 4. Such

parametrizations are inaccessible to face-based algorithms.

Frames on faces are also easy to constrain at boundaries and at

feature curves. Again, these constraints are also easily accessible

Fig. 4. Sampling local frames at vertices creates cones inside triangles.
Our algorithm adds extra vertices inside singular triangles allowing us to
parametrize extremely coarse surfaces. In comparison, a face-based method
is unable to create a valid parametrization due to the lack of degrees of
freedom.

for vertex-based field by adapting the flattening of the local vertex

chart, as we will see in Sec. 7.

Most importantly, we can prove that our framework has to cre-

ate cones of same index as the frame field. This is not guaranteed

in the face-based paradigm due to possible creation of unwanted

"double covering" [Garanzha et al. 2022]. In any case, a face-based

discretization of our integrability equations is also possible.

4.2 Parallel Transport From Levi-Civita connection
Our construction of a vertex-based frame field follows the one by

Knöppel et al. [2013]. A tangent vector 𝑣𝑖 ∈ C is expressed in

the local basis of the vertex 𝑖 . This local basis defines a tangent
space at this vertex. Vertices on a triangulated surface are generally

not flat as the inner angles 𝜃
𝑗𝑘
𝑖

of triangles incident to 𝑖 do not

sum to 2𝜋 . A local coordinate system is constructed by intrinsi-

cally "flattening" each vertex, namely inner angles are normalized:

𝜑𝑖 𝑗𝑎

𝑗𝑎 𝑗0

𝑖

𝑗

𝜑𝑖 𝑗

𝜑 𝑗𝑖

˜𝜃
𝑗𝑘
𝑖

:= 2𝜋𝜃
𝑗𝑘
𝑖
/Θ𝑖

where Θ𝑖 =
∑
𝑖 𝑗𝑘 𝜃

𝑗𝑘
𝑖

is the total inner

angle at vertex 𝑖 . At each vertex, we as-

sign a reference edge 𝑖 𝑗0 whose angle

coordinate 𝜑𝑖 𝑗0 is by definition zero. The

angles of other ordered edges 𝑖 𝑗0, . . . , 𝑖 𝑗𝑛
are obtained by accumulating modified

inner angles:

𝜑𝑖 𝑗𝑎 :=

𝑎−1∑︁
𝑝=0

˜𝜃
𝑗𝑝 𝑗𝑝+1

𝑖
. (7)

To compare adjacent vectors, we define the parallel transport

𝜌 : 𝐸 → R as the rotation angle aligning the basis at 𝑗 to the one at

𝑖:

𝜌𝑖 𝑗 := 𝜑 𝑗𝑖 − 𝜑𝑖 𝑗 + 𝜋,
by comparing the angles of the shared edge 𝑖 𝑗 . The change of basis

is then 𝑟𝑖 𝑗 = exp(𝚤𝜌𝑖 𝑗 ). By construction, this parallel transport is

associated to the Levi-Civita connection. As shown by Knöppel et al.

[2013], its integrated Gaussian curvature 𝐾 ∈ (−𝜋, 𝜋] defined as

exp(𝚤𝐾𝑖 𝑗𝑘 ) = 𝑟𝑘𝑖𝑟 𝑗𝑘𝑟𝑖 𝑗
satisfies the Gauss-Bonnet theorem (for meshes without bound-

aries).

4.3 Discrete Frame Field Condition
We are now ready to discretize the frame equation Eq. (2) using

Discrete Exterior Calculus [Hirani 2003].

A frame field is an assignment of unit complex number 𝑧 per

vertex. So, the exterior derivative of the frame is simply the frames

difference corrected by the parallel transport:

(d𝑧)𝑖 𝑗 = 𝑧 𝑗 − 𝑟𝑖 𝑗𝑧𝑖 .

For the second part of the equation, we integrate a wedge product

between a 1-form and a 0-form along a primal edge following [Hirani

2003; Ptáčková and Velho 2021]:

(𝜔𝑧)𝑖 𝑗 = 𝚤𝜔𝑖 𝑗 (𝑧 𝑗 + 𝑟𝑖 𝑗𝑧𝑖 )/2.
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Combining these two equations, the discrete frame constraint

Eq. (2) reads:

(1 + 𝚤𝜔𝑖 𝑗/2)𝑟𝑖 𝑗𝑧𝑖 = (1 − 𝚤𝜔𝑖 𝑗/2)𝑧 𝑗 . (8)

Eq. (8) implies that the frame at vertex 𝑖 is equal to the frame at

vertex 𝑗 up to a multiplication by cay(𝜔𝑖 𝑗 ). So adjacent frames are

equal up to a rotation of angle 2 arctan(𝜔𝑖 𝑗/2). This is precisely the

intuition behind the continuous equation.

4.4 Quantized Singularity Cones Fields
According to Thm. 2.2, we can define a cone parametrization if

the local bases admit quantized cone singularities. This property is

satisfied exactly by discrete symmetric frame fields [Ray et al. 2008].

A rotationally symmetric 𝑛-direction field (𝑛-RoSy field [Vaxman

et al. 2016]) assigns at each vertex a set of 𝑛 directions:

{exp(𝚤2𝑘𝜋/𝑛) 𝑧𝑖 , 𝑘 = 0, . . . , 𝑛} .
A key insight is that, when raised to the𝑛th power, this set reduces

to a single complex value:

𝑣𝑖 := 𝑧𝑛𝑖 .

Thus, it can be uniquely represented by a unit complex number

whose 𝑛th roots gives the 𝑛 directions [Palacios and Zhang 2007; Ray

et al. 2008]. For 𝑣 to represent a 𝑛-RoSy direction field, we simply

raise Eq. (8) to the power 𝑛:��� (1 + 𝚤𝜔𝑖 𝑗/2)𝑛𝑟𝑛
𝑖 𝑗
𝑣 𝑗 = (1 − 𝚤𝜔𝑖 𝑗/2)𝑛𝑣𝑖 . (F𝑛)

The symmetric field may be smooth over the surface, it can still

represent a discontinuous frame field. Taking the𝑛th root of Eq. (F𝑛),
we can quantify the rotation jumps in the frames by an integer

𝑘𝑖 𝑗 ∈ Z per edge:

𝑧 𝑗 = exp

(
2𝚤𝜋𝑘𝑖 𝑗/𝑛

)
cay(𝜔𝑖 𝑗 )−1𝑟𝑖 𝑗𝑧𝑖 .

We will see with Theorem 6.1 that a rotation jump by an angle

2𝜋𝑘𝑖 𝑗/𝑛 in the frame field will create a cut with the same transition

functions in the parametrization.

5 FIRST STRUCTURE EQUATION
We are now ready to discretize the other equation needed for inte-

grability a.k.a. the first structure equation Eq. (3).

5.1 Vertex Charts
The 1-form 𝜎 expresses a deformation of the mesh in the coordinates

of a local frame. Thus, we need to define a neighborhood or chart
affected by this local basis.

As singularities may appear inside triangles, the charts must

include a point inside each triangle physically representing the (po-

tential) cone. For this reason, we build our charts as the intersection

of mesh M with its dual. Namely, each triangle is split into three

quads, as in Fig. 5b, by adding three edges linking the triangle center

to edge midpoints. We explicitly build the chart C𝑖 at vertex 𝑖 as the
union of quads containing 𝑖 . In this construction, adjacent charts

are disjoint but share two types of duplicated edges: primal edges

from the input mesh and dual edges linking edge centers to triangle

centers. Both types of edges are highlighted in red in Fig. 5b. We

define the chart collection M𝑐 = ∪𝑖∈𝑉 C𝑖 as the set of all charts

kl l l

i

j

k

(a) M

kl l l

i

j

k

(b) M𝑐

kl l l

i

j

k

(c) M𝑝

Fig. 5. The initial mesh (a) is subdivided in a chart collection (b) used for
imposing integrability constraints. Edge midpoints are denoted with letter
𝑒 and triangle center point with the letter 𝑠 . We do not parametrize the
initial mesh but a subdivision of it where singularities 𝑠 are inserted inside
singular triangles (c).

emanating from the subdivision of the input mesh. Effectively, we

will parametrize the mesh M𝑝 exactly equal to the initial mesh

except at singular triangles which will be split into three to insert

singular points (Fig. 5c).

In the DEC formalism, 1-forms are discretized using their inte-

grated values along edges. By definition, the deformation of an edge

vector 𝑢 of M is given by 𝜎 (𝑢) ∈ C. To ease the notations, we

directly use the deformed edges as variables by using specific letters

for each point type of the deformed mesh. The letter 𝑝 denotes the

vertex coordinates (with a complex number) of the input mesh in

parameter space, the letter 𝑒 is the midpoint of an edge and 𝑠 the

center of the triangle and thus a potential singularity. Moreover,

under-scripts are reserved to make explicit the membership of a

vector to a chart. For example, 𝑠
𝑗𝑘
𝑖

− 𝑒 𝑗
𝑖
is a deformed dual edge in

the chart C𝑖 whereas 𝑠𝑘𝑖𝑗 − 𝑒𝑖
𝑗
is its copy in the chart C𝑗 .

5.2 Discrete Structure Equation

𝜎𝑖

𝜎 𝑗

𝜔 𝑗𝑖𝜔𝑖 𝑗

C𝑖

C𝑗

In order to discretize Eq. (3), we use Discrete

Exterior Calculus [Hirani 2003] on "lens" com-

plexes as introduced in [Soliman et al. 2021].

A lens complex is obtained by gluing opposite

halfedges of adjacent charts. Note that 𝜎𝑖 is ex-

pressed in the basis 𝑧𝑖 , thus, in order to compare

two 1-forms living in adjacent charts, we must

compensate for the basis rotation by multiplying

by the inverse parallel transport. So, along a dual
edge, the integral exterior derivative reads:

(d𝜎)𝑖 𝑗 := 𝑟 𝑗𝑖 (𝑠 𝑗𝑘𝑖 − 𝑒 𝑗
𝑖
) − (𝑠𝑘𝑖𝑗 − 𝑒𝑖𝑗 ) .

The wedge product between a primal 1-form 𝜔

and a lens complex can be thought of as a wedge product on a

virtual quadrangle made of primal and dual edges where the frame

rotations 𝜔 on dual edges are zero. Using the wedge product on a
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quadrilateral element defined in [Krantz and Parks 2008; Ptáčková

and Velho 2021], we obtain:

(𝜔 ∧ 𝜎)𝑖 𝑗 = 𝚤𝜔𝑖 𝑗 (−𝑟 𝑗𝑖 (𝑠 𝑗𝑘𝑖 − 𝑒 𝑗
𝑖
) − (𝑠𝑘𝑖𝑗 − 𝑒𝑖𝑗 ))/2.

When applied to both the primal and dual edges of a chart, we

obtain the system of equations:������
(
1 + 𝚤𝜔𝑖 𝑗/2

) (
𝑒𝑖
𝑗
− 𝑝 𝑗

)
= −

(
1 − 𝚤𝜔𝑖 𝑗/2

)
𝑟 𝑗𝑖

(
𝑒
𝑗
𝑖
− 𝑝𝑖

)
, ∀𝑖 𝑗 ∈ 𝐸(

1 + 𝚤𝜔𝑖 𝑗/2

) (
𝑠𝑘𝑖
𝑗
− 𝑒𝑖

𝑗

)
=

(
1 − 𝚤𝜔𝑖 𝑗/2

)
𝑟 𝑗𝑖

(
𝑠
𝑗𝑘
𝑖

− 𝑒 𝑗
𝑖

)
. ∀𝑖 𝑗𝑘 ∈ 𝐹

(E)
Again, we notice that any edges shared by two adjacent charts

are equal up to a rotation but this time it involves the inverse Cayley

transform cay(𝜔𝑖 𝑗 )−1
and the inverse parallel transport.

Note that Eqs. (E) are written only in term of the chart edges. So,

without loss of generality, we can reduce the number of variables

by fixing the charts translations and setting 𝑝𝑖 = 0, ∀𝑖 ∈ 𝑉 .

5.3 Local Injectivity
To obtain a valid parametrization, we also need to ensure local

injectivity. In other words, triangle areas must remain positive in

parameter space. This boils down to two different constraints. First,

the orientation of primal edges in vertex charts should be preserved:��� det(𝑝𝑖 − 𝑒 𝑗𝑖 , 𝑝𝑖 − 𝑒
𝑘
𝑖
) > 0. (I1)

Second, the singularity point 𝑠𝑖 𝑗𝑘 should stay inside triangle 𝑖 𝑗𝑘 :����� det(𝑝𝑖 − 𝑒 𝑗𝑖 , 𝑝𝑖 − 𝑠
𝑗𝑘
𝑖
) > 0,

det(𝑝𝑖 − 𝑠 𝑗𝑘𝑖 , 𝑝𝑖 − 𝑒𝑘𝑖 ) > 0.
(I2)

6 QUANTIZED CONE PARAMETRIZATION
Now that we have all integrability conditions in hand, we are ready

to reconstruct the parametrization from local bases and chart coor-

dinates. Furthermore, assuming that the charts satisfy the system

of equations in Eqs. (E) and Eq. (F𝑛), we can show that it defines a

valid quantized cone parametrization.

6.1 Parametrization Reconstruction
Recovering a parametrization from the chart collection M𝑐

, is very

simple as we just need to integrate Eq. (1). This equation states that

parametrized edges are simply the chart edges but rotated by the

basis 𝑧:

(d𝑓 )𝑖 = 𝑧𝑖𝜎𝑖 .
Since edges of two adjacent charts C𝑖 , C𝑗 and two adjacent frames

𝑧𝑖 , 𝑧 𝑗 are both equal up to a rotation of cay(𝜔𝑖 𝑗 )𝑟𝑖 𝑗 , the rotated

charts 𝑧𝑖C𝑖 , 𝑧 𝑗C𝑗 can be stitched together by finding a translation.

However, when using a reconstruction based on vertex charts, sin-

gular triangles will be split into three quads and parametrization

cuts will follow dual edges. Thus, in order to minimize connectivity

changes, it is better to first reconstruct triangles from quads and

then build the parametrization from triangles.

To do so, we need to recover the local bases 𝑧 from their power

representation 𝑣 . As shown by Thm. 2.2, the discontinuities of the

frame field determine the position of the parametrization cuts. Since

there are 𝑛 vectors satisfying 𝑣 = 𝑧𝑛 , the choice of the root of unity

should not be random. Thus, we compute the bases along a spanning

tree on quads prioritizing coherent bases on triangles so that cuts

will appear on primal edges and changes in mesh topology will be

minimal.

Then, we rotate the quads according to their bases 𝑧 and we

reconstruct all triangles independently by applying the appropri-

ate translation to each quad. Singular triangles are triangulated

by adding edges linking the singular point 𝑠 and triangle vertices.

However, if the singularity position is known in parameter space, its

position on the surface mesh is not yet determined. To overcome this

issue, we place the point 𝑠𝑖 𝑗𝑘 on the surface using the barycentric

coordinates in parameter space.

The parametrization is then reconstructed by recursively stitching

triangles along the spanning tree. This guarantees that cuts only

appear at primal edges except for singular triangles who are split

into three quads.

In summary, the parametrization is computed by following the

steps:

(1) Recover a basis 𝑧 per quads from the power vector 𝑣 by finding

the smallest symmetry rotation along a tree;

(2) Rotate each quad with their respective basis;

(3) Reconstruct triangles and remesh singular ones;

(4) Recursively stitch adjacent triangles along the tree.

This reconstruction process is summarized in Fig. 6.

6.2 Theoretical Guarantees
Crucially, we can prove that if Eqs. (E), (I1), (F𝑛) and (I2) are satis-

fied, the reconstruction leads to a valid quantized parametrization

whose transition functions are equal to the rotational discontinuity

of the frame field 𝑧. Fig. 1 shows an example of parametrization

obtained by solving Cartan’s structure equation.

Theorem 6.1. If a set of charts, a frame field and its rotations sat-
isfy the system of Eqs. (E), (F𝑛), (I1) and (I2), then we can recover
a locally injective parametrization with quantized cones whose tran-
sition functions are rotation equal to the frame field discontinuities.

The proof can be found in App. B.

7 BOUNDARY AND FEATURE EDGE CONSTRAINTS
Another requirement we discussed in Sec. 3 is that the parametriza-

tion should be adapted to the mesh boundary and features edges

(Fig 3c). Additional constraints are therefore required on the cross

field and on vertex charts. We process feature edges extracted from

a boundary or user specified in the same way. We assume that the

user provides us, at each vertex of a feature curve, with the target

angle Ω𝑖 = 2𝜋𝑘𝑖/𝑛 in parameter space.

Single vertex corner. We define a vertex corner as a set of adjacent

triangles incident to the same vertex 𝑖 and delimited by two feature

edges 𝑖 𝑗0 and 𝑖 𝑗𝑎 . In this paragraph, we consider a single vertex

corner. We assume that target corner angles Ω
𝑗0 𝑗𝑎
𝑖

integer multiple

of 2𝜋/𝑛 are provided as input. At a corner 𝑖 𝑗0 𝑗𝑎 , inner angles are

normalized to match the prescribed angle:

˜𝜃
𝑗𝑝 𝑗𝑝+1

𝑖
:=

(
Ω
𝑗0 𝑗𝑎
𝑖

/Θ𝑗0 𝑗𝑎
𝑖

)
𝜃
𝑗𝑝 𝑗𝑝+1

𝑖
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Fig. 6. Reconstruction of a parametrization from frames and charts. A triangle mesh (a) is divided into a set of vertex charts (b) satisfying the integrability
conditions of Eqs. (E), namely duplicated edges are equal up to the cross field rotation cay(𝜔 )−1. The triangles are assembled independently (c). The
triangle 𝑖 𝑗𝑘 is singular so the vertex 𝑠𝑖 𝑗𝑘 is added along with new edges in red. The angle Ω𝑖 𝑗𝑘 at the cut matches the discontinuity of the frame field. The
parametrization (d), obtained by gluing adjacent triangles, corresponds to the mesh (e) where the singular point is inserted in triangle 𝑖 𝑗𝑘 using its barycentric
coordinates in parameter space.

where Θ
𝑗0 𝑗𝑎
𝑖

is the total inner angle between edges 𝑖 𝑗0 and 𝑖 𝑗𝑎 . The

edge angles in the tangent plane are obtained by accumulating the

modified inner angles as in Eq. (7). The representation vector 𝑣𝑖 is

constrained to be equal to 𝑒𝑛𝚤𝜑𝑖 𝑗
0 so that one of its root agrees by

construction with the feature edge direction. An illustration of this

procedure is given in Fig. 7.

The corresponding vertex corner in chart C𝑖 must also be con-

strained to the corner angle. To do so, the primal edge vector corre-

sponding to a feature edge must remain orthogonal to the feature

edge normal. Therefore, at a vertex corner, we enforce three con-

straints linear with respect to the chart coordinates and the cross

field: ������
𝑣𝑖 = exp(𝑛𝚤𝜑𝑖 𝑗0 ),
⟨𝑝𝑖 − 𝑒 𝑗0𝑖 , 𝚤 exp(𝚤𝜑𝑖 𝑗0 )⟩ = 0,

⟨𝑝𝑖 − 𝑒 𝑗𝑎𝑖 , 𝚤 exp(𝚤𝜑𝑖 𝑗𝑎 )⟩ = 0.

(B)

Note that since the frame field is constrained on feature vertices,

the rotation 𝜔 is also known along feature edges.

Singular vertices. Let us consider the case where an interior vertex
𝑖 is incident to multiple feature edges (𝑖 𝑗𝑎0

, 𝑖 𝑗𝑎1
, . . . , 𝑖 𝑗𝑎𝑛 ) forming

𝑛 + 1 corners. If the sum of all corner angles Ω𝑖 =
∑𝑛−1

𝑝=0
Ω
𝑗𝑎𝑝 𝑗𝑎𝑝+1

𝑖
+

Ω
𝑗𝑎𝑛 𝑗𝑎

0

𝑖
is an integer multiple of 2𝜋 , then the flattening of each

corner creates a valid vertex chart. However, when Ω𝑖 ≠ 2𝑘𝜋 , vertex

𝑖 is singular and an additional seam is necessary to lay out edges in

the tangent plane. Thus, we cut open the vertex neighborhood at

edge 𝑖 𝑗𝑎0
introducing a duplicated edge 𝑖 𝑗 ′𝑎0

. For the parametrization

of chart C𝑖 to remain valid, edges on each side of the cut must be

equal in length, yielding an additional linear constraint:��� ⟨𝑝𝑖 − 𝑒
𝑗𝑎

0

𝑖
, exp(𝚤𝜑𝑖 𝑗𝑎

0

)⟩ = ⟨𝑝𝑖 − 𝑒
𝑗 ′𝑎

0

𝑖
, exp(𝚤𝜑𝑖 𝑗 ′𝑎

0

)⟩. (B)

Fig. 8 illustrates the computation of the tangent plane at a cube

corner where Ω𝑖 = 3𝜋/2.

8 NUMERICAL OPTIMIZATION
So far, we have defined a system of necessary equations for com-

puting valid global parametrizations. In this section, we describe

our optimization process in order to compute the vertex charts,

j0ja

Fig. 7. Boundary edges, depicted in black, are laid out in the tangent complex
plane so that they match the provided corner angle Ω 𝑗0 𝑗𝑎

𝑖
.

ja0

ja2

ja1

Fig. 8. Three feature edges, depicted in black, are laid out in the tangent
complex plane. A seam is introduced at edge 𝑖 𝑗𝑎0 because the sum of the
corner angles Ω is not an integer multiple of 2𝜋 .

the frame field rotations 𝜔 and local bases 𝑧 (represented, when

necessary, by its power vector 𝑣) which are solutions of this system.

8.1 Non-Linear Least-Squares
Like the smooth optimization problem of Eq. (5), we would like

to find the chart vertices (𝑥,𝑦), the frame rotation 𝜔 and the field

power vector 𝑣 solution of the constrained optimization problem:

min

𝜔,𝑣,𝑥,𝑦
D(𝑥,𝑦)

s.t. (E), (F𝑛), (B), (I1), (I2),
(9)
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2535 Cones | Scale=1.077 | Stretch=1.496

Random init.
107 Cones | Scale=1.017 | Stretch=1.251

Curvature init.
37 Cones | Scale=1.014 | Stretch=1.223

Smooth init.
39 Cones | Scale=1.010 | Stretch=1.160

Zero init.

77 Cones | Scale=1.013 | Stretch=1.147

Random init. + ARAP
35 Cones | Scale=1.013 | Stretch=1.140

Curvature init. + ARAP
33 Cones | Scale=1.013 | Stretch=1.139

Smooth init. + ARAP
33 Cones | Scale=1.013 | Stretch=1.139

Zero init. + ARAP

Fig. 9. Parametrization of the Stanford Bunny with different frame field initializations. From left to right: random frame per vertex, principal curvature
direction, smooth frame field [Viertel and Osting 2019] and zero except on boundary vertices. The top row is optimized without any distortion energy and
converges to the same singularities than the frame field. The second row minimizes the ARAP distortion (defined in Sec.8.2). For reasonable initializations,
results of these optimizations share very similar cone distribution and distortion metrics. For the random initialization, undesirable singularities still cluster
around the boundary with distortion minimization.

Fig. 10. Influence of the initialization of the cross field rotations on a sharp
corner parametrization. Left: Initialization with zeros rotation. Right: Initial-
ization with modified parallel transport prevents a dipole of singularities to
appear and reduces overall distortion. Singularities 𝜋

2
are depicted in red,

− 𝜋
2
in blue and boundary corners in yellow.

where D : M𝑐 → R is any given distortion energy. Note that to

solve the optimization problem in Eq. (9), we do not need to know

in advance the position of the cones or the cuts; everything will be

decided during optimization.

To simplify the problem, the inequality constraints of Eqs. (I1)

and (I2) are enforced using the continuously differentiable barrier

function 𝐵𝜂 : R>0 → R:

𝐵𝜂 (𝑥) =


+∞ 𝑥 ≤ 0,

log( 𝑥𝜂 ) 0 < 𝑥 ≤ 𝜂,
0 𝜂 ≤ 𝑥 .

Given a determinant 𝑑 whose initial value is 𝑑0, we set the thresh-

old to 𝜂 = 𝑑0/2.

Furthermore, we enforce non-linear constraints as a sumof squares

energy. Abusing the notations, let E and F𝑛 denote the vectors

formed by the differences of left and right hand sides in equations

(E) and (F𝑛). Let I1 and I2 be the vectors of determinants appearing

in equations (I1) and (I2). We reformulate the constraints as the

energy:

𝑅(𝜔, 𝑣, 𝑥,𝑦) = ∥E∥2

2
+ 𝜆𝐹 ∥F𝑛 ∥2

2
+ 𝜆

det
∥𝐵𝜂 (I1)∥2

2
+ 𝜆

det
∥𝐵𝜂 (I2)∥2

2
,

where the function 𝐵𝜂 is applied componentwise. This leads to a

non-linear least-squares optimization with linear constraints:

min

𝜔,𝑣,𝑥,𝑦
𝜀D(𝑥,𝑦) + 𝑅(𝜔, 𝑣, 𝑥,𝑦) s.t. (B). (10)

We use the Levenberg-Marquardt algorithm, an optimizer tailored

for solving non-linear least squares with zero as global minimum,

to minimize this objective function. Each optimization step consists

in solving a quadratic optimization problem with linear constraints

involving the function’s Jacobian matrices. We follow the imple-

mentation of [Marumo et al. 2020] whose evolution of the damping

parameter ensures global convergence toward a local minimum

and a second order rate of convergence near a zero of the objective

function.



The Method of Moving Frames for Surface Global Parametrization • 1:11

𝜆𝐹 = 0.01
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Scale = 1.007

Stretch = 1.086

𝜆𝐹 = 0.1
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Scale = 1.006
Stretch = 1.085

𝜆𝐹 = 1

6 Cones

Scale = 1.011

Stretch = 1.201

𝜆𝐹 = 2
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Stretch = 1.327
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Scale = 1.007
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No Cones

Scale = 1.006
Stretch = 1.470

Fig. 11. Influence of the parameter 𝜆𝐹 on the singularity configurations when we optimize for the constraints without distortion. Small values of 𝜆𝐹 produce
more singularity cones and minimum stretch. In contrast, large values create smoother frame fields and higher stretch.

The problem in Eq. (10) is solved several times for decreasing

values of 𝜀. For our distortion minimizing experiments, we start at

𝜀 = 10
2
and divide by a factor of 10 until 𝜀 = 10

−4
, before solving

one last time with 𝜀 = 0. This penalty scheme does not provide

strong guarantee of convergence toward a global minimum of the

distortion. However, in practice the choice of distortion energy

greatly impacts singularity positions (see for example Figs. 1 and 9)

and distortion measure is indeed lower and competitive with other

methods (Figs. 20 or 12).

Note that for surfaces with boundary or feature edges, we do not

need to force 𝑣 to be unit norm: it suffices that the frame field is

constrained somewhere so that whenever Eqs. (8) are satisfied, the

field has unit norm everywhere. For surfaces without features, we

constrain 𝑣 at a random vertex to avoid the trivial zero solution.

8.2 Distortion Energy
Many differentiable distortion metrics can be optimized to obtain

interesting parametrizations. In our experiments, we consider three

of these metrics.

As-Rigid-As-Possible distortion. The first way to prevent charts

distortion is to impose an isometric map between initial and final

charts. This boils down to minimizing the so-called As-Rigid-As-

Possible energy [Sorkine and Alexa 2007] which forces the map

Jacobians to be orthogonal matrices:

DARAP (𝑥,𝑦) =
∑︁
𝑖∈𝑉

∑︁
𝑡 ∈𝑇C𝑖

∥ 𝐽𝑇𝑡 𝐽𝑡 − 𝐼2∥2

We refer to this energy as the ARAP or isometric energy.

Conformal distortion. One important application of seamless para-

metrizations is quad remeshing. In this context, it is often desirable

to avoid shearing i.e. quads with non-orthogonal edges as much as

possible . The simplest way to promote these square-like quads is

to penalize parametrizations whose parameter gradients are non-

orthogonal. Thus, as a distortion energy, we use the LSCM [Lévy

et al. 2002] energy summed over all charts:

DLSCM (𝑥,𝑦) =
∑︁
𝑖∈𝑉

∑︁
𝑡 ∈𝑇C𝑖

∥∇𝑦𝑡 − R∇𝑥𝑡 ∥2,

where (𝑥,𝑦) are the chart vertex coordinates and R is the 90
◦

counter-clockwise rotation around the normal. The gradient opera-

tor is computedwith respect to the initial isometric chart parametriza-

tion described in Sec. 8.3.

Area distortion. Finally, one can require that the quad elements

present the same overall size everywhere, which can be achieved by

penalizing the change in chart area. This boils down to a constraint

on the determinants of the Jacobian matrices, which should be

as close as possible to 1. However, this class of area preserving

deformations is not sufficient on its own as it also contains solutions

with dramatic shearing. We therefore balance our area distortion

term with the previously defined DLSCM:

DAREA (𝑥,𝑦) =
∑︁
𝑖∈𝑉

∑︁
𝑡 ∈𝑇C𝑖

∥ det(𝐽𝑡 ) − 1∥2 + 𝜇DLSCM (𝑥,𝑦)

We set 𝜇 to 0.1 in our experiments.

Metrics comparison. Fig. 1 illustrates the influence of DARAP,

DLSCM and DAREA on cone positions and overall parameterization

geometry.We quantitatively compare the resulting parametrizations

using three criteria: the number of cones, the scale and the stretch
distortion.

The scale distortion, defined over each triangle as (det 𝐽+det 𝐽 −1)/2,

quantifies how much triangles’ area changes between initial geome-

try and parameter space. The stretch distortion, defined as the ratio

𝜎2/𝜎1 of the sorted singular values (𝜎2 > 𝜎1) of the Jacobian ma-

trices, quantifies the deformation of angles. Both metrics have an

optimal value of 1. We usually present them as a integrated quantity

over the entire model.

In Fig 12, we run our algorithm with distortion minimization

on a large dataset of models and plot the resulting scale distortion
against stretch distortion. As expected, DLSCM reduces the stretch

distortion, at a cost of a greater variation on the scaling of triangles

thus producing parametrizations that are more conformal. On the

other hand, minimizing DAREA leads to parametrizations with little

to no scale distortion. DARAP yields a good compromise between

the previous two.
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Fig. 12. Scatter plot of total stretch vs total scale observed on each models
provided by [Diamanti et al. 2015]. We consider three optimization scenarios:
minimization of DARAP, DLSCM and DLSCM.

8.3 Initialization
As for any non-convex optimization, the question of a good initial-

ization arises and initial values for our variables 𝑥,𝑦, 𝜔 and 𝑣 should

be chosen carefully.

Charts. The charts coordinates are initialized using the tangent

plane flattening introduced in Secs. 4 and 7. Given the normalized

triangle inner angles, the chart primal edges are laid out in the

plane with their initial edge lengths. The chart is completed by

initializing points 𝑠 at the triangle barycenters. These initial charts

keep the triangle edge lengths unchanged so they can be seen as

an isometric parametrization of the input triangle mesh. Since the

system is invariant by chart translation, the central vertex is set to

zero and all coordinates in a chart are given in relation to the origin.

Rotations. For surfaces without boundaries or feature edges, the
frame rotations 𝜔 are simply initialized to zero. In some cases, this

initialization can lead to highly distorted solutions. Typically, for

CAD models where feature edges meet at very acute angles, a singu-

larity appears directly inside the sharp triangle. Inspired by Desobry

et al. [2021], we compute an initial frame rotation 𝜔 by forcing the

cross field to be regular on all triangles 𝑇 (𝑝) belonging to 3-ring of

a sharp corner 𝑝 . In practice, we solve the quadratic problem:

min

𝜔∈R|𝐸 |
∑
𝑖 𝑗∈𝐸 ∥𝜔𝑖 𝑗 ∥2

2

s.t. 𝜔𝑖 𝑗 + 𝜔 𝑗𝑘 + 𝜔𝑘𝑖 = −𝐾𝑖 𝑗𝑘 , ∀𝑖 𝑗𝑘 ∈ 𝑇 (𝑝)
𝜔𝑖 𝑗 fixed on feature edges

Fig. 10 illustrates how this initialization drastically changes the

parametrization and reduces the distortion.

Frame field. Many different frame field initializations are possi-

ble as long as they respect boundary and feature edges constraints

(see Sec. 7). In Fig. 9 (and Fig. 1 of the supplemental), we compare

four initializations: a random cross field, the principal curvature

directions obtained with [Cohen-Steiner and Morvan 2003], the

smoothest cross field computed via [Viertel and Osting 2019] or

zero everywhere except at boundary and feature vertices. When no

distortion is minimized, the algorithm converges to the singularity

configuration specified by the cross field which is the closest valid
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Fig. 13. Running time (in seconds) with respect to triangle count for surfaces
with (142) and without (132) features.

parametrization. On the other hand, any reasonable initialization

will allow our algorithm to converge to a very similar cone distri-

bution as soon as a distortion energy is minimized. This is due to

the fact that the distortion energy dominates the optimization in

early iterations and guides the charts towards finding the position

minimizing it. The cross field and its rotations will conform with

the charts when the distortion weight decreases.

8.4 Parameter Choice
Since our objective function of Eq. (9) is a sum of several terms, their

balance influences the final solution.While every global parametriza-

tion is a zero of the energy ∥E∥2

2
+ 𝜆𝐹 ∥F𝑛 ∥2

2
, the cone distribution

depends on the value of 𝜆𝐹 . For small 𝜆𝐹 , the chart term ∥E∥2

2
con-

verges first. The optimizer prioritizes the validity of the parametriza-

tion over the quantization of singularities to multiple of 2𝜋/𝑛. This
results in parametrizations with more cones, and often smaller dis-

tortion. On the other hand, for large 𝜆𝐹 , the optimization prioritizes

the convergence of the frame field variables and the quantization

of rotations. The final parametrization exhibits fewer singularity

cones and a smoother frame field. This phenomenon is illustrated

in Fig. 11, where the same mesh is parametrized for six values of

𝜆𝐹 . As Myles and Zorin [2012], we observe that adding well-placed

singularities tend to decrease the distortion. In our experiments

in Sec. 9, our default value is 𝜆𝐹 = 10 representing an interesting

trade-off. The other weighting term 𝜆
det

is set to 1.

9 APPLICATIONS AND EVALUATION
In this section, we present results obtained with our method on a

large selection of models and comparison with previous works.

Database and implementation. Our results are obtained on a data-

base of 274 triangular meshes. This includes 131 models without
feature edges gathered from [Myles et al. 2014] and [Levi 2021] or

created manually for specific test cases (like the model of Figure 14).

Additionally, we collected 143 CAD models with correct feature edge

flagging from the Mambo CAD dataset
1
as well as models with

1
https://gitlab.com/franck.ledoux/mambo

https://gitlab.com/franck.ledoux/mambo
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(a) Typical failure case of our method.

(b) Changing the energy weights allows our method to place a dipole of
singularities and retrieve a correct parametrization.

Fig. 14. On this model our method fails to find a valid parametrization
(𝜆𝐹 = 10) (a). By setting 𝜆𝐹 = 0.01, we are able to find a valid solution (b).

sharp edges from [Myles et al. 2014]. A complete gallery of our

results is available in the supplemental material.

All our experiments were conducted on a Ubuntu 18.04 worksta-

tion with a eight-core, 2.6-GHz Intel Core i5. Our implementation

was done in python and accelerated with Numba [Lam et al. 2015].

We solve the quadratic programming problems inside the Levenberg-

Marquardt algorithm using the open source solver OSQP [Stellato

et al. 2020] linked to the Pardiso linear solver [Alappat et al. 2020;

Bollhöfer et al. 2019, 2020]. Computation times for the optimization

without distortion are displayed in Fig. 13.

9.1 Seamless Parametrization
We first setup our algorithm to compute a rotationally seamless

parametrization for all of the 274 models. Comprehensive results

are available in supplemental materials including 3D models with

uv-coordinates as well as renders and distortion evaluation. For the

131 models with no features, we output a valid parametrization for

123 of them. Since we need to avoid the trivial zero solution, we

initialize our optimization with a smooth frame field (as described

in Section 8.3). For the 143 models with feature edges, we obtain

132 valid results. We initialize those models with fixed frames on

feature edges and zero elsewhere.

The 19 failure cases observed in the whole database are of two

types.

1. Low quality triangles. 17 of the 19 failed models present flat

or nearly-flat triangles, with angles as low as 1e-4 radians. This

55 Cones

Scale=1.019

Stretch=1.206

(a) Rhino, 𝑛 = 3

138 Cones

Scale=1.004

Stretch=1.087

(b) Rhino, 𝑛 = 6

160 Cones

Scale=1.019

Stretch=1.295

(c) Casting, 𝑛 = 6

166 Cones

Scale=1.006

Stretch=1.143

(d) Casting, 𝑛 = 8

Fig. 15. Results of our algorithm on two models for different singularity
cones quantized to ±2𝜋/𝑛 for 𝑛 = 3, 6 and 8. On the bottom row, the
parametrization of the Casting model is aligned with its feature edges, on
which odd values of 𝑛 are incompatible due to 𝜋 not being a valid corner
angle. When 𝑛 is multiple of 3, we represent the parametrizations using a
hexagonal pattern, instead of the classical checker pattern.

creates numerical instabilities or infinite values in the log-barrier

𝐵𝜂 (Eq. (8.1)). A simple local remeshing to get rid of bad quality

elements was sufficient to ensure convergence.

2. Limit Cycles. The two remaining cases are due to topological

failure preventing the convergence of the optimization scheme.

This is typically created by a frame field with a limit cycle whose
parametrization is degenerated. Fig. 14a shows an example of such

a configuration. In this case, the algorithm is not able to converge

towards a zero of the objective function but tries to reach a global

minimum at infinity. Standard parameters of our optimization are

not able to escape this situation. However, we can lower the weight

on the frame field constraint (F𝑛) to 𝜆𝐹 = 0.01, so that the edge

constraint (E) dominates the energy (see Section 8.4). This way

our algorithm converges to a global minimum and introduces new

singularities as in Fig. 14b.

9.2 Other Applications
Besides seamless parametrization, we now demonstrate the versatil-

ity of our method through a series of other applications.

Cone placement of arbitrary indices. Using Equation (F𝑛), we can
constrain cone singularities to any user-chosen value of ±2𝜋/𝑛 by
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Stretch = 1.093

(a) Fixed singularities

12 Cones

Scale = 1.001
Stretch = 1.698

(b) Minimizing DAREA
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(c) Minimizing DARAP
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Stretch = 1.018
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Fig. 16. Comparison between a parametrization with fixed cone singularities
from a smooth frame field [Viertel and Osting 2019] and the one obtained by
optimizing cones placement. Minimizing distortion leads to different cone
placements. (b) Minimizing DAREA effectively reduces the scale distortion (c)
Minimizing the ARAP energy results in a tradeoff with a different topology.
(d) Minimizing the LSCM energy outputs a parametrization that is almost
conformal.

changing the parameter𝑛. While choosing𝑛 = 4 leads to rotationally

seamless maps used for quad remeshing, higher order can be easily

computed by our method with minimal change. On Figure 15, we

present two models, one with feature and one without, that are

parametrized using 𝑛 = 3,6 and 8. Higher values of 𝑛 naturally result

in a greater number of singularity cones, as well as less distorted

parametrizations at the expense of more cones and seams.

Fixed topology parametrization. Finally, it is possible to lock the

frame field and rotations variables 𝑣 and 𝜔 during optimization in

order to compute parametrization with a user prescribed cone distri-

bution and alignment constraints. Fig. 1b shows a parametrization

of Rhino’s head based on the principal curvature directions.

This allows us to investigate the benefits of simultaneously op-

timizing for the cone distribution and the parametrization geome-

try. In Figure 16, we run our algorithm with the fixed frame field

generated by Viertel and Osting [2019]. We compare the resulting

parametrization to our full algorithm using the three distortions

of Section 8.2. We observe that, by minimizing LSCM, our method

outputs a parametrization with less cones that better minimizes the

stretch distortion at the price of more scale distortion. The opposite
holds when minimizing the area energy. Again, the ARAP energy

yields the most isometric deformation and thus balances both distor-

tions. Interestingly, a smooth frame field is also an excellent proxy

to obtain area-preserving maps.

Fig. 17. Free boundary parametrization using our algorithm on disk-shaped
models (top), or models with user-prescribed seams (bottom).

Free boundary parametrization. So far, we focused on computing

a parametrization with a cone metric where cones are constrained

to have 2𝜋/𝑛 curvature, with 𝑛 > 1. By setting 𝑛 = 1 in Eq. (F𝑛),
cones are therefore forced to take values of either 2𝜋 , which implies

that at least one chart will be flattened or flipped, thus contradicting

the injectivity condition of Eq. (I1), or −2𝜋 , which implies a "double

covering" which is impossible in our setting (see App. B). Therefore,

no singularity can appear in a parameterization that satisfies Eq. (F𝑛)
for 𝑛 = 1. Besides, by omitting boundary constraints of Eq. (B) in

the optimization, our algorithm is able to produce free boundary

parametrization with minimal distortion for disk-shaped models.

Fig. 17 presents four of such parametrizations.

9.3 Comparison With Other Methods
We now provide comparisons with previous works computing rota-

tionally seamless maps for 𝑛 = 4 by considering our two distortion

metrics scale and stretch. For a more precise analysis than just an

integrated value, we plot distortion histograms in log scale of the

triangle count. When quad meshes are provided, they are obtained

by computing an integer grid map using [Bommes et al. 2013] and

by then extracting quads with [Ebke et al. 2013]. Most importantly,

they have the same singularities (positions and indices) as the input

parametrizations. More results and comparisons can be found in

the supplemental material.

Comparison with Levi [2021]. Levi directly computes a seamless

parametrization from a triangle mesh using a greedy algorithm.

However, this method seems very dependent on its initialization:

for the Dilomodel in Fig. 20, the singularities appear on a single side

of the mesh and seem unrelated to the geometry. The parametriza-

tions provided by the author minimize the maximum stretch over

all triangles. This can be observed in Fig. 19 where the stretch is

bounded. In comparison, our method yields a higher maximal value
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Fig. 18. Quad remeshing comparison with Fang et al. [2018] on the Dilo
model. Our parametrization was initialized using principal curvature direc-
tion and optimized without distortion. Our quads have less stretching and
have angles closer to 90

◦.
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Scale = 1.025

Stretch = 1.422

(a) Sculpt model, [Levi 2021]

16 Cones

Scale = 1.146

Stretch = 1.185

(b) Sculpt model, ours (min LSCM)

Fig. 19. Comparison with Levi [2021] on the sculpt model. Both methods
minimize the stretch distortion. As shown by the heat map and the his-
togram, our method achieves comparable triangle stretch with ten times
less cone singularities.

but a smaller stretch for a majority of triangles (see histograms),

as well as a reduced number of cone singularities – 16 against 217.

Our optimization does not attempt to reduce triangle scaling in this

case, thus our scale distortion is not as competitive.

More in depth comparisons are available in supplemental mate-

rial.

Comparison with Diamanti et al. [2015]. The integrable Polyvector
field method takes an initial frame field and optimizes it to guarantee

its integrability. However, this process is prone to introduce new

singularities. In Fig. 12, we compare our method on the 62 meshes

provided by the authors. The integrable Polyvector field method

performs very well for scale minimization. However, we are able to

outperform them while placing 15% less cones on average.

Comparison withMyles and Zorin [2012]. Myles and Zorin propose

a greedy algorithm for cone placement along with a post-processing

procedure to obtain 𝑛𝜋/2 singularity cones. Cones tend to be placed

in high curvature regions which can be suboptimal. In Figs. 20, our

method is shown to match their scale distortion and outperform

their stretch distortion on the Dilo model.

Comparison with Fang et al. [2018]. Finally, we compare our re-

sults to a method producing quad-meshes without the quantization

step. Fang et al. [2018] use periodic functions to integrate a frame

field directly into an integer seamless parametrization. This type of

methods generally output a high quality mesh on most of the input

surface. However, some localized regions need to be repaired which

often introduce new singularities.

Fig. 18 shows the repartition of quad angles and stretch for our

respective quad meshes of the Dilo model. Our quads are more or-

thogonal and suffer less from stretching, while our meshes present

fewer singular vertices. An additional comparison of quad genera-

tion is provided in Sec. 2 of the supplemental material.

10 CONCLUSION AND FUTURE WORKS
By discretizing Cartan’s structure equations, we were able to con-

struct a general algorithm for global parametrization where cones

and seams do not need to be known in advance, but can instead be

computed along with the geometry. This all-in-one optimization

of the topology and the geometry enables us to find cone points

whose positions minimize any given distortion energy. Unlike most

previous methods our solver is not greedy and does not rely on

integer variables.

In the perspective of quad meshing, the main limitation of our

work is that it does not handle integer coordinates of cone points.We

still rely on a post-processing quantization step which impacts the

overall distortion distribution. While the cone placement is optimal

for the seamless parametrization, there is no guarantee of optimality

for the final quadmesh.

A second limitation is that our current implementation is slower

than previous methods because of the a higher number of variables –

2|𝐹 | +4|𝐸 | for vertex charts coordinates, |𝐸 | for the parallel transport
and 2|𝑉 | for the cross field.

Finally, since Cartan’s method of moving frame is not limited to

two-dimensional geometry, the structure equations can be written

for higher dimension meshes. This opens the door to future works

for computing valid seamless parametrization for tetrahedral meshes

in the context of hexahedral remeshing.
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[Myles and Zorin 2012] [Diamanti et al. 2015] [Levi 2021] Ours (No distortion) Ours (LSCM distortion)

82 cones 140 cones 204 cones 78 cones 68 cones
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Fig. 20. Comparison of three baseline methods with our results on the dilo model. Top row: texture mapping with highlighted seams and singularities . Second
row: stretch distortion distribution over the model from 1 (blue) to 3 or higher (red). Third row: histogram of stretch distortion on triangles. Our method is best
at minimizing the stretch distortion even compared to the conformal algorithm [Myles and Zorin 2012].
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A PROOF OF THEOREM 2.2
The proof will follow three steps: 1) we demonstrate that there is a

mapping 𝑓 satisfying Eq. (1) in𝑀𝑐
, 2) we show that 𝜎 is continuous

away from singular points even though the frame field is discon-

tinuous in U and 3) the vector tangent to the cuts are equal up to a

rotation due to the discontinuity in the frame 𝑧.

First, we show the existence of a mapping 𝑓 solution of Eq. (1).

By construction, there exists a smooth frame field 𝑧 : 𝑀𝑐 → U
whose Darboux derivative is 𝜔 . Since Eq. (3) holds true, the form

𝑧𝜎 is closed. Using the Poincaré lemma, we conclude that 𝑧𝜎 is

exact on𝑀𝑐
as it is simply connected. Therefore, there exists a map

𝑓 : 𝑀𝑐 → C solution of:

d𝑓𝑝 = 𝑧𝑝𝜎𝑝 , ∀𝑝 ∈ 𝑀𝑐 .

Secondly, we are going to prove that, even though 𝑧 is discontin-
uous in U, there always exists a form 𝜎 satisfying the first structure

equation Eq. (3) which is smooth away from singularities and inde-

pendent of 𝑧 and 𝜔 . To do so, we restrict ourselves to conformal

deformations by choosing 𝜎 = 𝑒𝑢d𝑥 where d𝑥 = d𝑥1 + 𝚤d𝑥2 is a local

1-form orthonormal basis. Injecting this into Eq. (3), we show that

the log-scale factor 𝑢 is solution of the system of equations:

d𝑢 ∧ d𝑥1 + 𝜔 ∧ d𝑥2 = 0,

d𝑢 ∧ d𝑥2 − 𝜔 ∧ d𝑥1 = 0.

The only solution of this system is: 𝜔 = −★ d𝑢. The frame field

rotation𝜔 uniquely defines the frames up to global rotation [Sharpe

1997] and can be related to the Gaussian curvature 𝐾 and the frame

cones points Ω by the equation [Corman and Crane 2019; Crane

et al. 2010]:

d𝜔 = −𝐾 + Ω.

Therefore, 𝑢 is solution of the Poisson’s equation:

Δ𝑢 = 𝐾 − Ω. (11)

Eq. (11) always has a smooth solution away from singular points.

Thus, 𝜎 is locally smooth away from singularities and is independent

of the frame field discontinuities.

Third, we are going to study the properties of the parametrization

cuts. Let 𝑝 ∈ 𝑀 be a point at a cut and 𝑝+, 𝑝− are the corresponding

points on each side of the cut in𝑀𝑐
. By construction, there exists a

https://doi.org/10.1007/s12532-020-00179-2
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frame field 𝑧 : 𝑀𝑐 → U whose rotation speed 𝜔 is smooth on 𝑀𝑐

but discontinuous on𝑀 . At a discontinuity, there exists a transition

rotation 𝑔𝑝 ∈ Γ, such that: 𝑧𝑝− = 𝑔𝑝𝑧𝑝+ . Since 𝜎 is continuous on

𝑀𝑐
, we have: 𝜎𝑝− = 𝜎𝑝+ . Therefore, a tangent vector 𝑋 ∈ 𝑇𝑝𝑀 has

two limit images by the differential map: d𝑓𝑝+ (𝑋𝑝 ) = 𝑧𝑝+𝜎𝑝 (𝑋𝑝 )
and d𝑓𝑝− (𝑋𝑝 ) = 𝑧𝑝−𝜎𝑝 (𝑋𝑝 ). Using the continuity of 𝜎 , we have:

d𝑓𝑝+ (𝑋𝑝 ) = 𝑔𝑝d𝑓𝑝− (𝑋𝑝 ), 𝑔𝑝 ∈ Γ.

Therefore, vectors tangent to the cut are mapped to vector equal

up to a rotation defined by the frame field discontinuity.

B PROOF OF THEOREM 6.1
In order to show that our constraints define a valid parametrization

with quantized cone points in the sense of Def. 3.1. We will follow

four steps. 1)Wewill show the validity of the triangle reconstruction

(Sec. 6) and that transition functions are rotations of angle 2𝑘𝜋/𝑛.
2) The parametrization is locally injective. 3) The parametrization’s

angle defects are equal to the singular indices of the frame field up

to a subtraction of an integer multiple of 2𝜋 . 4) Due to the Gauss-

Bonnet theorem, parasite singularities cannot appear.

Triangle reconstruction. First, we will show that the parametriza-

tion cuts appear at the frame field discontinuities and that the rota-

tion jumps match those of the frames. Since the power field satisfies

Eq. (F𝑛), the bases 𝑧 rotations are given by the formula:

𝑧 𝑗 = exp

(
2𝚤𝜋𝑘𝑖 𝑗/𝑛

)
cay(𝜔𝑖 𝑗 )−1𝑟𝑖 𝑗𝑧𝑖 ,

where 𝑘𝑖 𝑗 is the jump index at edge 𝑖 𝑗 .

Let 𝜎𝑖 ∈ C, 𝜎 𝑗 ∈ C be duplicated primal edge vectors of adjacent
charts C𝑖 , C𝑗 and 𝑎 = 𝑧𝑖𝜎𝑖 , 𝑏 = 𝑧 𝑗𝜎 𝑗 their coordinates in parameter

space. Using Eqs. (E) and Eq. (8), we see that they are opposite in

parameter space:

𝑏 = 𝑧 𝑗𝜎 𝑗 ,

=

(
exp

(
2𝚤𝜋𝑘𝑖 𝑗/𝑛

)
cay(𝜔𝑖 𝑗 )−1𝑟𝑖 𝑗𝑧𝑖

) (
− cay(𝜔𝑖 𝑗 )𝑟−1

𝑖 𝑗 𝜎𝑖

)
,

= − exp

(
2𝚤𝜋𝑘𝑖 𝑗/𝑛

)
𝑧𝑖𝜎𝑖 ,

= − exp

(
2𝚤𝜋𝑘𝑖 𝑗/𝑛

)
𝑎.

The same reasoning can be be applied to dual edges. Thus, primal

and dual edges are equal up to the frame rotational discontinuity

𝑑𝑖 𝑗 := exp

(
2𝚤𝜋𝑘𝑖 𝑗/𝑛

)
. Therefore, our parametrization transition

functions are rotation quantized by the frame field. In particular,

our parametrization is seamless whenever 𝑛 = 4.

To achieve our triangle reconstruction of the parametrization,

three cases can occur. 1) A triangle is not traversed by a cut and it

will be reconstructed as a triangle in the parametrization. 2) A non-
singular triangle is traversed by a cut, thus the cut can be displaced

on primal edges to recover a non-singular triangle. 3) A singular
triangle is reconstructed with a cut appearing in one of the dual edge

linking the point 𝑠 . By displacing the cut, we recover a triangulation

of the singular triangle with the cut linking 𝑠 to one of the vertex as

in Fig. 6.

Injectivity and feature constraints. Eqs. (I1) ensure local injectivity

as all triangles (𝑝𝑖 , 𝑝 𝑗 , 𝑠𝑖 𝑗𝑘 ) composing the parametrization must

have positive area.

Parametrization angle defects.We are now going to precisely relate

the parametrization angle defects with the frame singular indices.

𝛼𝑖
𝛼 𝑗

𝛼𝑘

𝛼𝑖

𝛼 𝑗

𝛼𝑘

𝛽𝑖 𝛽 𝑗

𝛽𝑘

𝜔̃ 𝑗𝑘

𝜔̃𝑘𝑖

𝜔̃𝑖 𝑗

𝑐

𝜋 − 𝑐

𝑎𝜋 − 𝑎

𝜋 − 𝑏

𝑏

C𝑖

C𝑘

C𝑗

C𝑖

C𝑘

C𝑗

Fig. 21. The triangle 𝑖 𝑗𝑘 is decomposed into the three charts C𝑖 , C𝑗 and C𝑘
satisfying Eqs. (E). Left: the angles 𝛼 denote the triangle angle and 𝛽 the
angle at the singularity point. Right: primal edges of the charts are equal
up to the rotation cay(𝜔 ) whose angle is 𝜔̃ = 2 arctan(𝜔/2) (see Eq. (6)).

We showed that the parametrization transition functions match the

frame field jumps. Therefore, the parametrization angle defect at a

singular point is equal to the total rotation angle of the frame up to

an integer multiple of 2𝜋 . We will show that this additional parasite

angle corresponding to integer singularities can only be negative.

Let us consider a triangle 𝑖 𝑗𝑘 and its chart decomposition as

illustrated by Fig. 21. Let Ω𝑖 𝑗𝑘 be the frame field total rotation

around the triangle, that is to say the singularity index prescribed

by the frame field:

Ω𝑖 𝑗𝑘 = 𝜔̃𝑖 𝑗 + 𝜔̃ 𝑗𝑘 + 𝜔̃𝑘𝑖 ,

where 𝜔̃ = 2 arctan(𝜔/2) are the angle of the rotation between two

frames, parametrized by the Cayley transform (Eq. (6)).

Let Θ𝑖 𝑗𝑘 be the angle defect of triangle 𝑖 𝑗𝑘 in parameter space,

by definition:

Θ𝑖 𝑗𝑘 = 2𝜋 − (𝛽𝑖 + 𝛽 𝑗 + 𝛽𝑘 )
Because of constraints (I1) and (I2), the three charts C𝑖 , C𝑗 and C𝑘 ,

decomposing triangle 𝑖 𝑗𝑘 , are non self-intersecting quadrilaterals.

Thus, their four inner angles, defined in Fig. 21 (left), must sum to

2𝜋 :

𝛼𝑖 + 𝛽𝑖 + 𝑐 + 𝜋 − 𝑎 = 2𝜋,

𝛼 𝑗 + 𝛽 𝑗 + 𝑎 + 𝜋 − 𝑏 = 2𝜋,

𝛼𝑘 + 𝛽𝑘 + 𝑏 + 𝜋 − 𝑐 = 2𝜋.

Moreover, by summing these three equations, we obtain a link

between the angle defect Θ and the triangle angles 𝛼 :

Θ𝑖 𝑗𝑘 = 𝛼𝑖 + 𝛼 𝑗 + 𝛼𝑘 − 𝜋.

We are now ready to relateΘwith the frame field singularity angle

Ω. Let us consider the hexagon formed by extending primal edges

of charts until intersection, as in Fig. 21 (right). This hexagon can

be self-intersecting but remains star-shaped around its singularity

point 𝑠 . We can express the sum of its inner angles in term of its

turning number 𝑘 > 0:

𝛼𝑖 + 𝛼 𝑗 + 𝛼𝑘 + 3𝜋 − 𝜔̃𝑖 𝑗 − 𝜔̃ 𝑗𝑘 − 𝜔̃𝑘𝑖 = 𝜋 (6 − 2𝑘).

Rearranging the terms, the parametrization angle defect Θ is

equal to the frame field total rotation Ω up to a negative integer
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multiple of 2𝜋 :

Θ𝑖 𝑗𝑘 = Ω𝑖 𝑗𝑘 − 2𝜋𝑘, 𝑘 ∈ N. (12)

Double coverings.We are now going to prove that the parametriza-

tion singularities are exactly those prescribed by the frames. Eq. (12)

shows that inside triangles the parametrization angle defect can dif-

fer from the frame field singularities by a negative integer multiple

of 2𝜋 . Vertices of the input mesh also have prescribed singularity

indices: 0 for inner vertices and user prescribed on feature edges. At

these vertices, unwanted negative integer index singularities could
also appear even if all triangles have positive area (see Fig. 22).

However, due to the Gauss-Bonnet theorem, an additional nega-
tive singularity can appear only if it is compensated by an additional

positive singularity. This is impossible because only negative parasite
singularities can appear at both triangles and vertices.

Fig. 22. Two versions of the same vertex rings: one with an angle defect of
0 and the other with an angle defect of 2𝜋 , both have only positive area
triangles.
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