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Fig. 1. We propose to solve a single optimization problem for simultaneously computing a frame field and a global seamless parametrization. This allows the
singularity cones to be moved during optimization in order to minimize any differentiable distortion energy. Our results produce less distorted parametrizations
than two-steps methods relying on integrating a precomputed frame field. This figure presents our parametrizations of the Rhino head model computed: (a)
by integrating a smooth frame field, (b) by reducing the shear, (c) by maximizing isometric deformations, (d) by minimizing the LSCM energy [Lévy et al.
2002] effectively reducing the stretch. We represent positive π /2 cones in red and negative −π /2 cones in blue. Distortion measurements are computed as a
mean over all triangles.

The challenge of computing high quality seamless parametrizations is to

account for both the optimal placement of singularity cones and distor-

tion minimization. Existing methods rely either on greedy solvers or on a

simplified two steps problem, first finding the cone positions using a cross

field and second optimizing the parametrization under fixed topology. Both

approaches, however, loosen the link between cone placement and distor-

tion, effectively leading to suboptimal solutions. We instead formulate the

problem of global seamless parametrization as a single continuous optimiza-

tion problem where singularities may appear anywhere inside triangles. To

achieve this, the input mesh is subdivided into charts centered at vertices

whose orientations are related by rotations along edges. We then exhibit a

set of continuous constraints for the parametrization to be seamless, locally

injective and aligned with feature and boundary edges. Formulated as a

non-linear least-squares problem, these constraints can be easily optimized.

We compare our algorithm to previous techniques on a variety of smooth

and CAD models, often achieving lower distortion and more practical cone

placement for subsequent quad remeshing.
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1 INTRODUCTION
Meshes play a crucial role in numerical algorithms for geometry

processing and scientific computing. They decompose the space

into atomic cells allowing to store a discrete approximation of a

continuous process. Depending on the application, meshes with

different properties are needed. Quadrangle meshes have this unique

property that they can tile space in a grid-like manner everywhere

except at a few local exceptions called singularities or cones.

Singularities are bound to appear to compensate the topology of

non-torus-like surfaces. These extraordinary points also have a great

impact on the quad mesh distortion, i.e. how close to a perfect square

are the quads. Depending on the surface curvature, the number of

cones and their positions can drastically increase the mesh quality.

And, on this matter, the fewer is not always the better. In fact, as

singularity indices must be integer multiple of 1/4, finding optimal

positions minimizing the overall distortion is challenging and often

leads to sophisticated integer programming problems.

To overcome this apparent complexity, current quad-meshing

pipelines often relies on two-steps: first choosing the singularity

locations using a cross field or other proxies and then compute a

global seamless parametrization from which quads will be extracted.

This procedure, however, loosens the link between cone placement

and the distortion of the final mesh. As a consequence, quads can
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stray far away from squares because the connectivity of the quad-

mesh is optimized almost independently of its geometry.

This limitation is the starting point of this paper: we propose a

single step seamless parametrization algorithm. In our setup, cones

are positioned based on distortion minimization as part of a global
optimization problem. This approach is in total opposition to greedy

methods used in previous work heavily relying on local considera-

tions. Moreover, we do not need integer variables making our system

of equations solvable by any off-the-shelf continuous optimizer.

To achieve this, we rely on two key ingredients. First, we consider

vertex-based cross field so that singularities can appear and move

inside triangles, making the parametrization more flexible than face

based frame field integration. Second, we unveil a necessary and

sufficient system of equations for seamless parametrization which

is independent of the cross field symmetries. This is done by using

the so-called parallel transport introduced in previous work [Crane

et al. 2010; Knöppel et al. 2013]. This integrability condition allows

us to compute simultaneously a cross field and its parametrization

while minimizing a distortion criterion. To achieve this, we rely on

two key ingredients. First, we consider vertex-based cross field so

that singularities can appear and move inside triangles, making the

parametrizationmore flexible than face based frame field integration.

Second, we unveil a necessary and sufficient system of equations

for seamless parametrization which is independent of the cross field

symmetries. This is done by using the so-called parallel transport
introduced in previous work [Crane et al. 2010; Knöppel et al. 2013].

This integrability condition allows us to compute simultaneously
a cross field and its parametrization while minimizing a distortion

criterion.

Our results demonstrate that cone positions depend on the distor-

tion energy and that we have lower average distortion than previous

work including directly integrating a smooth frame field (see Fig. 1).

Algorithm. The overall algorithm takes as input a triangle mesh

along with boundary and feature constraints and follows the steps:

(1) Cut the input triangle mesh into disconnected charts centered

at vertices (Sec. 3.2);

(2) Flatten the boundary to fit the prescribed boundary and fea-

ture edge angles (Sec. 4.2);

(3) Solve a non-linear least-squares optimization problem to ob-

tain optimal charts, parallel transport and cross field (Sec. 5.5);

(4) Reconstruct the final parametrization by inserting additional

vertices at singular points (Sec. 3.3);

(5) Reposition singular points in the initial mesh (Sec. 5.6).

The final results are a valid seamless parametrization and a vertex-

based cross field with consistent cone points.

1.1 Related Work
As our goal is to build a "single step" seamless parametrization

algorithm, it is interesting to consider our work as a specific in-

stance of the broader problem of computing distortion minimiz-

ing injective maps [Hormann et al. 2008]. Given a target topology

(disk [Lévy et al. 2002; Tutte 1963], orbifold [Aigerman and Lipman

2015], sphere [Kazhdan et al. 2012] or cone metric [Sawhney and

Crane 2018; Springborn et al. 2008]), standard distortion minimiza-

tion finds an optimal geometry in parameter space. In our setting,

we aim to find both the geometry and the optimal topology mini-

mizing our distortion criterion. Since this problem is particularly

challenging, the most common approach is to first solve for the

topology independently of the geometry using a practical proxy

such as cross fields or cone placement. Only a few work attempt to

directly solve for seamless mappings.

Our method falls into the category of direct seamless mapping

with a cross field proxy but proceeds in a single optimization step.

Cross field based parametrizations. A cross field is an extremely

useful tool for seamless parametrization: it has the same symme-

try as a square and thus fixes the element orientation. Direction

fields generation is generally well understood for surface meshes. A

complete review of the literature is out-of-scope of this paper and

we refer to the relevant surveys [de Goes et al. 2016; Vaxman et al.

2016]. In this paper, we will represent crosses by the 4
th
root of a

complex number [Palacios and Zhang 2007; Ray et al. 2008]. Most

recent results guarantee that the smoothest cross field can be com-

puted using a diffusion/renormalization scheme [Viertel and Osting

2019]. However, as shown by our experiments, the smoothest cross

field topology does not necessarily minimize the parametrization

distortion.

More precisely, a cross field is the rotation part of the QR decom-

position of the Jacobian of the parametrization [Panozzo et al. 2014],

so computing a parametrization implies recovering the missing part

of the Jacobian. The simplest method is to find the functions whose

gradient is closest to the field directions [Kälberer et al. 2007]. This

can also be done using global periodic functions [Fang et al. 2018;

Ray et al. 2006] with the advantage of constraining singularities to

integer coordinates. A more stable approach traces the motorcycle

graph of the field and then solves for the graph edge lengths [Myles

et al. 2014].

Fu et al. [2016] take an ingenious approach: they divide the input

mesh into a set of independent triangles and constrain adjacent

simplices to be equal up to the cross field rotation. This simple con-

straint allows them to compute seamless global parametrization for

triangle-based frame field. In this paper, we use a similar formula-

tion but adapted to cross field defined at vertices so that singularities

are not bound to appear at vertices.

While convenient, this proxy has one major drawback: not all

frame fields can generate a valid parametrization. In particular,

frame fields can exhibit limit cycles creating degenerated triangles

in parameter space. Many solutions have been proposed to circum-

vent this issue. Limit cycles can be detected and fixed locally by

adding a singularity dipole [Myles et al. 2014]. However, this solu-

tion stays local and does not take into account the global problem

of minimizing the distortion. Diamanti et al. [2015] promote the

frame field integrability by constraining it to be the Jacobian of a

parametrization, but the distortion minimization has a weak impact

on the solution. Therefore, it seems natural to compute the frame

field and its parametrization at the same time, so that the frame field

constrains the map to be seamless and the map forces the field to

be integrable.

Cone metric deformation. Overall, a cross field is a convenient way

of placing quantized singularities necessary for quad-meshing, how-

ever, it is not the only way to solve this problem. Most alternatives
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rely on conformal deformations as they offer a simple relation-

ship between area distortion and cone positions. Greedy methods

place singularities at places of highest distortion [Ben-Chen et al.

2008], sometimes using a diffusion process [Vintescu et al. 2017].

Myles and Zorin [2012] compute seamless parametrizations by in-

crementally flattening regions of smallest Gaussian curvature. Its

follow-up [Myles and Zorin 2013] enables feature alignment. How-

ever, these methods only use an approximation of the distortion

during optimization and the actual parametrization is only com-

puted in a post-processing step. Again, the link between distortion

and cone placement is weakened. Only Springborn et al. [Spring-
born et al. 2008] actually uses the real mapping distortion but is,

again, incremental. Cone placement with these greedy algorithms is

very local and the global impact of singularities is never considered,

therefore leading to suboptimal solutions. This is especially true for

seamless parametrizations as ±1/4-index singularities are obtained

by a rounding procedure after finding their positions.
Soliman et al. [2018] is one of the only global approach available.

It also relies on conformal deformation and is very efficient for

minimizing area distortion. However, quantized cone points are not

considered.

Moreover, these methods suffer from the same problem as frame

fields: not all sets of cones admit a parametrization. For surfaces

without boundary, prescribed cones satisfying Gauss-Bonnet are

always feasible [Campen et al. 2018; Levi 2021b]. However, the

existence of boundaries or feature curves can lead to situations

where quantized cones and Gauss-Bonnet theorem are no longer

sufficient conditions for valid seamless parametrization.

It appears to us that the only way to be certain that a singular-

ity graph is a consistent with a seamless mapping is to compute
the underlying parametrization. Thus, in this work, we attempt to

simultaneously optimize the topology and the parametrization. Be-

sides, previous work heavily rely on conformal maps which do not

generalize well in higher dimension. Our method opens the door to

a generalization for seamless parametrization of volumes.

Direct seamless parametrization. Very few work have tried to di-

rectly compute seamless maps while minimizing the distortion. To

the best of our knowledge only Levi [2021a] achieves the goal. The

author proposes to compute distortion minimizing seamless maps

by directly using its definition as a constraint in an integer program-

ming solver. An initial parametrization is computed by laying out

triangles along a spanning tree. The seamless parametrization is

then obtained by greedily rounding unvisited edge rotations and

recomputing the triangle layout. The immediate advantage is that

any distortion energy can be used. However, this approach is greedy

and it is impossible to undo previously made decision. Moreover,

the initial parametrization influences the singularity distribution,

making it unsuitable for subsequent quad-remeshing. Instead, we

propose a set of constraints that can be solved by any smooth op-

timization solver with no integer variables involved, for surfaces

with and without boundaries, resulting in reduced stretch distortion

and well distributed singularities.

1.2 Overview
Our main contributions:

(a) Seamless (b) Adapted + Seamless (c) Integer

Fig. 2. Three parametrization properties used in this paper illustrated by
texture mapping (top) and uv-coordinates (bottom).

• We compute a parametrization of a triangular mesh from any

edge-based parallel transport rotation, allowing singularities

to appear anywhere inside triangles;

• We derive a set of necessary and sufficient conditions for

seamless parametrization;

• We propose an algorithm optimizing, at the same time, a cross
field and its parametrization so that singularities can move

in order to reduce the overall parametrization distortion.

Organization. The paper is organized as follow. We first give a

formal definitions and properties of seamless maps (Sec. 2.1). We

then continue, in Sec. 3, by exposing the key construction of this

paper: a constraint for a parametrization to be compatible with a

parallel transport. In Sec. 4, we further constrain the parametrization

to be seamless and adapted to the boundary, leading to a global

optimization problem solved in Sec. 5. The results are evaluated and

compared with previous methods in Sec. 6.

2 GLOBAL PARAMETRIZATIONS
In this section, we give a formal definition to three key properties

of parametrization mappings used throughout the paper: seamless

parametrization, feature adaptation and integer mapping. These

properties are illustrated in Fig. 2.

Let M = (V ,E,T ) be a triangle mesh, consisting of vertices,

edges and triangles. A piecewise linear parametrization is a map

f :M ⊂ R3 → C assigning, to every point x ∈ R3
inside a triangle

t ∈ T , a coordinate in the (complex) plane ft (x) = (u,v) ∈ C.
Such a parametrization can exhibit cuts along some edges, namely

adjacent triangles in the initial mesh are no longer adjacent in the

parametrization. The linear functions д relating an edge on one

side of the cut to its duplicated version on the other side of the cut

are called transition functions (see Fig. 2a). Given a closed loop of

triangles (t0, t1, . . . , tp , t0), all incident to the same vertex i ∈ V ,
the vertex is said singular if the accumulated transition function

дi = дt0tp ◦ . . . ◦ дt2t1
◦ дt1t0

is not identity.
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Fig. 3. Every parallel transport has an associated holonomy. In the dis-
crete case, the holonomy of a loop is just the "rotation defect" of a vector
transported around the loop. When the loop enclose a single triangle, the
holonomy angle is the discrete Gaussian curvature.

We say that a parametrization is seamless if duplicated edge

vectors are equal up to akπ/2 rotation for any two adjacent triangles
(Fig. 2a). Namely, the transition functions are square preserving.

Definition 2.1. (Seamless) We call a parametrization seamless if

for two adjacent triangles t1, t2 ∈ T sharing an edge ij ∈ E, their
edge vectors are related by the transition function:

ft1
(pi ) − ft1

(pj ) = eıkπ /2
(
ft2
(pi ) − ft2

(pj )
)
, k ∈ {0, 1, 2, 3}.

Another important property is that the surface boundaries and

feature edges are isolines of the parametrization (Fig. 2b).

Definition 2.2. (Adapted)Aparametrization is adapted to its bound-

ary if all feature edges and boundary edges ij ∈ E of a boundary

triangle t ∈ T have one zero coordinate in parameter space:

⟨ft (pi ) − ft (pj ), ek ⟩ = 0, k ∈ {1, 2},

where e1 = 1 + ı0, e2 = 0 + ı are the plane axes.

In order to be able to extract quads from a parameterization, we

need boundary vertices to have one integer coordinates and singular

vertices have two integer coordinates [Lyon et al. 2016], as shown

in Fig. 2c. In this paper, we do not aim for integer maps and limit

ourselves to seamless and boundary adapted parametrizations. The

quantization step is seen as an independent problem possibly, solved

by other methods like [Bommes et al. 2013; Campen et al. 2015].

Def. 2.1 is challenging to use in an optimization process: if the

cuts are not given, moving a singularity requires to change the

transition functions of multiple triangles. Instead we propose to

compute seamless map by "spreading" the transition rotations over

the entire mesh, namely integrating the parallel transport of a cross
field.

3 PARAMETRIZATION FROM A PARALLEL TRANSPORT
In this section, we prove a necessary and sufficient system of equa-

tions (Eqs. (E)) for a parametrization to have the same holonomy

as a given parallel transport – an assignment of angle per oriented

edge. This system of constraints is applied to a collection of vertex

chartsMc
(see Fig. 5b), emanating from the intersection of the pri-

mal and the dual mesh ofM. Our output parametrization may have

a different connectivity than the input mesh, since singularities may

appear inside triangles. Therefore, we do not parametrizeM, but

the triangle meshMp where singular triangles are subdivided by

inserting a vertex as represented in Fig. 5c.

This parametrization process is summarized in Fig. 4.

3.1 Discrete Parallel Transport
We consider tangent vectors defined at vertices. As in [Knöppel

et al. 2013], tangent planes are mapped to the complex plane, so

a tangent vector is a complex number in a local coordinate sys-

tem. To compare vectors at neighboring vertices ij, they must be

rotated by an angle ωi j to take into account the change of local

coordinates. Transporting a vector from tangent space to tangent

space along an edge path is called the discrete parallel transport.

i z

eıωi j z

j

ωi j

A parallel transport is nothing more than

the assignment of an angle ω per oriented

edge. Therefore, a vector vi ∈ C at vertex i
is parallel transported to vertex j by the rota-
tion: eωi jvi ∈ TjM. Note that the transport

from j to i is given by the inverse rotation

thus: ωji = −ωi j .
The integrability constraints built in this

section requires only an assignment of a ro-

tation angle per edge. Thus, we do not need

to know how the local bases are constructed

and this discussion is delayed to Sec. 4.1.

Holonomy. The parallel transport is deeply related to the notion

of curvature. Indeed, when transporting a vector around a closed

loop, it will in general not return to its original orientation. The

rotation between the original vector and the transported one is the

called the holonomy [Crane et al. 2010] and is illustrated in Fig. 3.

Given a vertex closed loop γ = (i0, i1, . . . , iN , i0), the holonomy Φω
around γ is simply the composition of all rotations along the path:

Φω (γ ) := exp

(
ıωiN i0

) N−1∏
k=0

exp

(
ıωik ik+1

)
.

When the loop is reduced to a triangle ijk ∈ T , the discrete

Gaussian curvature K is defined as the angle of the holonomy rota-

tion [2013]:

exp(ıKi jk ) = exp(ıωki ) exp(ıωjk ) exp(ıωi j ). (1)

Of course, a valid parallel transport must satisfy the Gauss-Bonnet

theorem: ∑
t ∈F

Kt = 2π χ ,

where χ is the Euler characteristic of M. If this is not the case,

the topology of the parallel transport does not match the one of

the triangle mesh, so a parametrization cannot be defined and our

system of equations (E) does not have a solution. In Sec. 4 we will

show how to build a parallel transport compatible with a cross field

following the steps of Knoppel et al. [2013]
Our goal is to find a parametrization embedding whose transition

functions match a given parallel transport holonomy. Namely, a

triangle with zero Gaussian curvature will be parametrized by a flat
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Fig. 4. Parametrization from a parallel transport ω . A triangle mesh (a) is divided into a set of vertex charts (b) satisfying the integrability conditions of
Eqs. (E), namely duplicated edges are equal up to the cross field rotation ω . The triangles are assembled independently (c). The triangle i jk is singular so the
vertex si jk is added along with new edges in red. The parametrization (d), obtained by gluing triangles to each other, corresponds to the mesh (e) where the
singular point is inserted in triangle i jk .

triangle, whereas a singular triangle (non trivial curvature) must

be cut open by the parametrization with an angle matching the

Gaussian curvature.

3.2 Parametrization Constraints
Vertex charts and chart collection. In order to parametrize an edge

based parallel transport, we must define charts based at vertices. A

chart Ci is a small quad-mesh around vertex i living in parameter

space, in our case the complex plane. Charts are disconnected from

each other. We define the chart collectionMc = ∪i ∈V Ci as the set

of all charts emanating from the subdivision of the input mesh.

As singularities appear inside triangles, the charts must include a

point inside each triangle where a singularity may appear. For this

reason, we build our charts as the intersection of meshM with its

dual. Namely, each triangle is split into three quads, as in Fig. 5b, by

adding three edges linking the triangle center to mid-edge points.

We explicitly build the chart Ci at vertex i as the union of quads

containing i . In this construction, adjacent charts are disjoint but

share two types of duplicated edges: the primal edges from the input

mesh and the dual edges linking edge center to triangle center. They

are highlighted in red in Fig. 5b.

To ease the notation, we use specific letters for each point type.

The letter p denotes the vertex coordinates (with a complex number)

of the input mesh in parameter space, the letter e is the midpoint

of an edge and s the center of the triangle and thus a potential

singularity. Moreover, underscripts are reserved to make explicit

the membership of a vector to a chart. For example, s
jk
i − e

j
i is the

vector connecting the edge midpoint to a triangle center in the chart

Ci whereas s
ki
j − e

i
j is the duplicated edge in the chart Cj .

Parallel Transport Constraints. By definition, a parallel transport

prescribes relative orientation of tangent planes. For a chart to be

consistent with the parallel transport, the transfer of a tangent

vector in Ci to an adjacent chart Cj should undergo a rotation of

angle ωi j . Any edges shared by two adjacent charts are tangent

vectors in two different bases and, therefore, must be equal up to a

rotation by the parallel transport. Overall, the charts must satisfy

kl l l

i

j

k

(a)M

kl l l

i

j

k

(b)Mc

kl l l

i

j

k

(c)Mp

Fig. 5. The initial mesh (a) is subdivided in a chart collection (b) used for
imposing integrability constraints. Edge midpoint are denoted with letter
e and triangle center point with the letter s . We do not parametrize the
initial mesh but a subdivision of it where singularities s are inserted inside
singular triangles (c).

the integrability constraints:������ eij − pj = − exp

(
ıωi j

) (
e
j
i − pi

)
, ∀ij ∈ E

skij − e
i
j = exp

(
ıωi j

) (
s
jk
i − e

j
i

)
, ∀ijk ∈ F (E)

Note that Eqs. (E) are written only in term of the chart edges. So,

without loss of generality, we can reduce the number of variables

by fixing the chart translation and setting pi = 0, ∀i ∈ V .

3.3 Parametrization Reconstruction
In this section, we assume that the charts satisfy the system of

equations in Eqs. (E).Wewill show how to recover a parametrization

from the chart collectionMc
.

Triangle Parametrization. The charts have coordinates in param-

eter space, so to recover the parametrization of a triangle ijk we

simply have to reassemble the three pieces separated into charts

Ci ,Cj and Ck . This is always possible because Eqs. (E) ensure that
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ωji

ωki
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j

k

k′
Kijk

Ci Cj

Ck

sijk

i
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k

sijk

i j

k

Ci

Ck

Cj

ωji

ωki

i j i

j

k

i

j

k

sijk

k

(a) Regular triangle

ωji

ωki

i

j

k

k′
Kijk

Ci Cj

Ck

sijk

i

j

k

sijk

i j

k

Ci

Ck

Cj

ωji

ωki

i j i

j

k

i

j

k

sijk

k

(b) Singular triangle

Fig. 6. Reconstruction of triangle parametrization from vertex charts. Left:
independent charts related by a parallel transport. Middle: synchroniza-
tion of Cj and Ck with Ci . Right: final triangle parametrization. Singular
triangles are remeshed (b).

duplicated edges have same length. Thus, the triangle piece in Cj
can be stitched to the piece in Ci by applying the rigid transforma-

tion x 7→ exp(ıωji )(x − e
i
j ) + e

j
i . Synchronizing Cj and Ck with Ci

leads to a triangle parametrization.

We distinguish two cases: (1) the synchronization creates a valid

triangle and the final parametrization is obtained by removing dual

edges (Fig. 6a), (2) a cut appears so we triangulate the synchro-

nization by adding edges linking the singular point s and triangle

vertices (Fig. 6b).

Mesh Parametrization. Given the parametrization of each triangle,

it is easy to recover the parametrization of the entire meshMp by

gluing adjacent triangles along a dual spanning tree. The overall

algorithm is summarized in Alg. 1 and by Fig. 4.

Crucially, we can prove that if a chart collection satisfies con-

straints Eqs. (E), then the parametrization transition functions are

determined by the parallel transport holonomy. In particular, a reg-

ular triangle (i.e. Ki jk = 0) is mapped to a regular triangle in the

parametrization and singular triangle admits a singularity at point

si jk with an angle defect equal to Ki jk . Interestingly, only the par-

allel transport holonomy matters: changing ω while keeping the

holonomy constant does not change the set of solutions of Eqs. (E).

Theorem 3.1. Given a parallel transport ω, if the vertex charts
satisfy Eqs. (E) then the transition functions of the parametrization
constructed with Alg. 1 are equal to the parallel transport holonomy.

Conversely, given any parametrization whose singular vertices are
of valence three, there exists a parallel transport ω and vertex charts
satisfying Eqs. (E).
In particular, the parametrization is seamless if and only if the

holonomy of ω around any loops is a rotation by an integer multiple
of π/2.

ALGORITHM 1: ParametrizationReconstruction
Input: A parallel transport ω and a chart collectionMc

satisfying

Eqs. E

Output: A meshMp and its parametrization

Mp ← M

forall i jk ∈ T do
Stitch Cj and Ck with Ci .

if Ki jk = 0 then
The parametrization of i jk is a triangle: remove dual edges.

else
Triangulate the charts.

Insert a vertex inside triangle i jk inMp .

end
end
Add an arbitrary initial triangle to a queue.

while Queue not empty do
Find the translation/rotation matching the edge shared with

previous triangle.

Add adjacent triangles to queue.

end

An immediate corollary to Thm. 3.1 is that a parametrization is

seamless if and only if the parallel transport is compatible with an

integrable cross field.
The parallel transport curvature is not explicitly present in Eqs. (F ),

so that the singularity locations are needed only during the recon-

struction. This is the great benefit of our approach, allowing us to

change the curvature while optimizing for the parametrization.

4 SEAMLESSNESS AND BOUNDARY ALIGNMENT
So far, we have found conditions to define a parametrization from

a parallel transport ω. However, we do not have guarantees that

this parametrization is seamless, adapted to the boundary or locally

injective. In this section, we present three additional necessary and

sufficient set of constraints to satisfy these properties.

4.1 Seamlessness Constraints
According to Thm. 3.1, a parametrization is seamless if it is compat-

ible with a parallel transport whose holonomy is square preserving.

This property is deeply related to cross fields.

Discrete Cross Fields. A cross field assigns at each vertex a set of

two orthogonal directions:{
eıkπ /2vi , k = 0, 1, 2, 3

}
.

A key insight is that, when raised to the 4
th
power, this set reduces

to a single complex value:

zi := v4

i

Thus, a cross can be uniquely represented by a unit complex num-

ber whose fourth roots gives the four vectors of the cross [Palacios

and Zhang 2007; Ray et al. 2008].

Since vi ∈ C is a tangent vector, it can be transported to an edge

adjacent vertex by a parallel transport. Conversely, a vector field

defines a parallel transport as the rotation relating any two adjacent

vectors. The same can be said of an arbitrary cross field. When
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represented by the fourth root of a unit vector, it defines a parallel

transport ω as:

zj = exp(4ıωi j )zi . (2)

This parallel transport, associated to a cross field, has the dis-

tinctive property of preserving the cross symmetry. In particular, it

means that its holonomy around any loop are rotations by an angle

of kπ/2.
As the cross field lives in the complex tangent space, Eq. 2 is

purely combinatorial in the sense that the geometry ofM is not

necessary to build it. However, for visualization purposes and for

the stability of our optimization scheme, it is important to build

local bases and give the cross field a geometrical meaning.

φi ja

ja j0

i

j

φi j

φ ji

Parallel transport from Levi-Civita con-
nection. The construction of a vertex-

based frame field follows the one by

Knöppel et al. [Knöppel et al. 2013]. A
tangent vector vi ∈ C is expressed in

the local basis of the vertex i . This local
basis defines a tangent space at this ver-
tex. Vertices on a triangulated surface are

generally not flat as the inner angles θ
jk
i

of triangles incident to i do not sum to 2π .
A local coordinate system is constructed

by intrinsically "flattening" each vertex,

namely inner angles are normalized:

˜θ
jk
i := 2πθ

jk
i /Θi

where Θi =
∑
i jk θ

jk
i is the total inner angle at vertex i . At each

vertex, we assign a reference edge ij0 whose angle coordinate φi j0
is by definition zero. The angles of other ordered edges ij0, . . . , ijn
are obtained by accumulating modified inner angles:

φi ja :=

a−1∑
p=0

˜θ
jp jp+1

i . (3)

To compare adjacent vectors, we define the parallel transport

ρ : E → R as the rotation angle aligning the basis at j to the one at

i:

ρi j := φ ji − φi j + π ,

by comparing the angles of the shared edge ij. The change of basis
is then ri j = exp(ıρi j ). By construction, this parallel transport is

associated to the Levi-Civita connection. As shown by Knöppel

et al. [Knöppel et al. 2013], its Gaussian curvature, as defined in

Eq. (1) satisfies the Gauss-Bonnet theorem (for meshes without

boundaries).

Therefore, any parallel transport can be decomposed into the sum

of the cross field rotation α and the Levi-Civita parallel transport ρ:��� zj = exp(4ıαi j )r
4

i jzi . (F )

In our optimization scheme we use the cross field rotation as a

variable as it can be easily bounded and initialized.

j0ja

Fig. 7. Boundary edges, depicted in black, are laid out in the tangent complex
plane so that they match the provided corner angle Ωj0 ja

i .

4.2 Boundary and feature edge constraints
Another requirementwe discussed in Section 2 is that the parametriza-

tion should be adapted to the mesh boundary and features edges,

so additional constraints are required on the cross field and on the

vertex charts. We process feature edges extracted from a boundary

or user specified in the same manner.

Single vertex corner. We define a vertex corner as a set of adjacent

triangles incident to the same vertex i and delimited by two feature

edges ij0 and ija . In this paragraph, we consider a single vertex

corner. We assume that target corner angles Ω
j0 ja
i integer multiple

of π/2 are provided as input. At a corner ij0ja , inner angles are
normalized to match the prescribed angle:

˜θ
jp jp+1

i := Ω
j0 ja
i θ

jp jp+1

i /Θ
j0 ja
i

where Θ
j0 ja
i is the total inner angle between edges ij0 and ija . The

edge angles in the tangent plane are obtained by accumulating the

modified inner angles as in Eq. (3). The representation vector zi is
constrained to be equal to e4ıφi j

0 , by construction the vectors of this

cross agrees with the feature edge directions. An illustration of this

procedure is given in Fig. 7.

The corresponding vertex corner in chart Ci must also be con-

strained to the corner angle. To do so, the primal edge vector corre-

sponding to a feature edge must remain orthogonal to the feature

edge normal. Therefore, at a vertex corner, we enforce three con-

straints linear with respect to the chart coordinates and the cross

field: �������
zi = exp(4ıφi j0 ),

⟨pi − e
j0
i , ı exp(ıφi j0 )⟩ = 0,

⟨pi − e
ja
i , ı exp(ıφi ja )⟩ = 0.

(B)

Note that since the cross field is constrained on feature vertices,

the rotation α is also known along feature edges.

Singular vertices. Let us consider the case where an interior vertex
i is incident to multiple feature edges (ija0

, ija1
, . . . , ijan ) forming

n+ 1 corners. If the sum of all corner angles Ωi =
∑n−1

p=0
Ω
jap jap+1

i +

Ω
jan ja0

i is a multiple of 2π , then the flattening of each corner creates
a valid vertex chart. However, when Ωi , 2kπ , vertex i is singular
and an additional seam is necessary to lay out edges in the tangent

plane. Thus, we cut open the vertex neighborhood at edge ija0

introducing a duplicated edge ij ′a0

. For the parametrization of chart

Ci to remain seamless, edges on each side of the cut must have equal
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ja0

ja2

ja1

Fig. 8. Three feature edges, depicted in black, are laid out in the tangent
complex plane. A seams is introduced at edge i ja0 because the sum of the
corner angles Ω is not an integer multiple of 2π .

length yielding an additional linear constraint:��� ⟨pi − e ja0

i , exp(ıφi ja
0

)⟩ = ⟨pi − e
j′a

0

i , exp(ıφi j′a
0

)⟩. (B)

Fig. 8 illustrates the computation of the tangent plane at a cube

corner.

4.3 Local injectivity
We need to ee that the final parametrization is locally injective, in

other words triangle areas must remain positive in parameter space.

This boils down to two different constraints. First, the orientation

of primal edges in vertex charts should be preserved:��� det(pi − e
j
i ,pi − e

k
i ) > 0. (D1)

Second, the singularity point si jk should stay inside triangle ijk :����� det(pi − e
j
i ,pi − s

jk
i ) > 0,

det(pi − s
jk
i ,pi − e

k
i ) > 0.

(D2)

4.4 Theoretical guarantees
The constraints introduces in Sections 3, 4.1, 4.2 and 4.3 define a

system of equations whose solution is a boundary adapted seam-

less parametrization. Most importantly all of these constraints are

independent of the cross field symmetries and do not rely on in-

teger variables. Therefore they are readily usable in any standard

continuous solver.

Theorem 4.1. If a set of charts, a cross field and a parallel transport
satisfy the system of Eqs. (E), (F ), (B), (D1) and (D2), then we can
recover a locally injective, boundary adapted seamless parametrization.
Moreover, the singular vertices appear only in singular faces with the
angle defect prescribed by the parallel transport curvature.

5 DISTORTION MINIMIZING MAP
So far, we have defined a system of necessary and sufficient equa-

tions for computing valid global seamless parametrizations. In this

section, we describe our optimization process in order to find vertex

charts, cross field rotations α and representation vector z solutions
to this system.

Fig. 9. Influence of the initialization of the cross field rotations on a sharp
corner parametrization. (1) Initialization with zeros rotation. (2) Initialization
with modified parallel transport prevents a dipole of singularities to appear.
Singularities π

2
are depicted in red, − π

2
and boundary corners in yellow.

5.1 Simplifying constraints using the Cayley transform
One great challenge when numerically solving Eqs. (E) and (F ) is

the presence of a periodic complex exponential. Luckily, there exists

a clever way to parametrize the space of rotations by non-periodic

polynomial functions, thus considerably reducing the complexity

of the problem. The Cayley map [Kobilarov et al. 2009; Zhang et al.

2021], noted cay, is a complex fraction equal to the rotation by an

angle tan(α/2):

cay(α) :=
1 − ıα

1 + ıα
= exp

(
ı tan

α

2

)
Instead of using the cross field rotation angle αi j , we will con-

sider its tangent half angle. So, using the change of variables α i j =
tan(αi j/2), Eqs. (E) and (F ) can be rewritten as polynomial equa-

tions: ����� (1 + ıα i j )(e ji − pi ) = − (1 − ıα i j )ri j (e
i
j − pj )

(1 + ıα i j )(e
j
i − s

jk
i ) = (1 − ıα i j )ri j (e

i
j − s

ki
j )

(
¯E)��� (1 + ıα i j )4zi = (1 − ıα i j )4r4

i jzj (
¯F )

5.2 Log-barrier
The inequality constraints of Eqs. D1 and D2 are enforced using

the continuously differentiable barrier function Bη : R>0 → R:

Bη (x) =


+∞ x ≤ 0,

log( xη ) 0 < x ≤ η,

0 η ≤ x .

Given a determinant d whose initial value is d0, we set the thresh-

old to η = d0/2.

5.3 Optimization
We would like to find the chart vertex coordinates (x ,y), the frame

rotation α and the cross field z solution of the constrained optimiza-

tion problem:

min

α,z,x,y
E(x ,y)

s.t. (
¯E), ( ¯F ), (B), (D1), (D2),

(4)

where E :Mc → R is any given distortion energy.

To make the problem tractable, we enforce non-linear constraints

as a sum of squared energy:

R(α , z,x ,y) = λE ∥( ¯E)∥2+λF ∥( ¯F )∥2+λ
det
∥Bη (D1)∥

2+λ
det
∥Bη (D2)∥

2,
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leading to a non-linear least-squares optimization with linear

constraints:

min

α,z,x,y
εE(x ,y) + R(α , z,x ,y) s.t. (B). (5)

The Levenberg-Marquardt algorithm is tailored for minimizing

non-linear least squares with zero being the global minimum. We

follow the implementation of [Marumo et al. 2020] whose evolution

of the damping parameter ensures global convergence toward a

local minimum and a second order rate of convergence near a zero

of the objective function. Each step involves solving a quadratic

optimization problem with linear constraints. For this, we use the

open source solver OSQP [Stellato et al. 2020].

The problem in Eq. (5) is solved several time for decreasing values

of ε . For our distortion minimizing experiments, we start at ε =
10 and divide by a factor of 10 until ε = 10

−4
. Unless specified

otherwise, we set all weights λ to 1.

Note that for surfaces with boundary or feature edges, we do

not need to force z to be unit norm. It suffices that the cross field

is constrained somewhere so that whenever Eqs. (
¯F ) are satisfied,

the cross is unitary everywhere. For surfaces without boundary or

feature edges, we constrain z at a random vertex to avoid the trivial

zero solution.

5.4 Initialization
As for any non-convex optimization, the initialization should be

chosen carefully.

The charts are initialized using the tangent plane flattening in-

troduced in Secs. 4.1 and 4.2. Given the normalized triangle inner

angles, the chart primal edges are laid out in the plane with their

initial edge lengths. The chart is completed by placing singular

points s at the triangle barycenters. These initial charts keep the

triangle edge lengths unchanged so they can be seen as an isometric
parametrization of the input triangle mesh.

The frame field is set to zero everywhere except at boundary and

feature edges where it is fully constrained (see Sec. 4.2).

For surfaces without boundary or feature edges, the frame rota-

tion α is simply set to zero. However, in some cases this initialization

can lead to highly distorted solutions. Typically, for CAD models

where feature edges meet at very acute angles, a singularity appears

directly inside the sharp triangle. Inspired by [Desobry et al. 2021],

we compute an initial frame rotation α by forcing the cross field to

be regular on all triangles belonging to 3-ringT (i) of a sharp corner

i . In practice, we solve the quadratic problem:

min

α ∈R|E |
∥α ∥2

s.t. αi j + α jk + αki = −Ki jk , ∀ijk ∈ T (i)
αi j = α0

i j , ∀ij ∈ ∂E
where α0

are the frame rotations along feature edges. Fig. 9 illus-

trates how this initialization drastically changes the parametrization

and reduces the distortion.

5.5 Distortion Energy
Among all possible valid seamless parametrizations, we would like

to find the one minimizing a distortion criterion. In theory, we could

use any distortion energy on the charts. In practice, we mostly

Fig. 10. Replacing the singularity inside the triangle meshMp is achieved
by solving an ARAP problem between the split triangle and its representation
in (u, v) space. Left: close-up a naive singularity placement: the barycenter
of the triangle. Right: ARAP places the singularity in order to minimize local
distortion. Middle: overview of the whole half-sphere model.

focus on quad remeshing application, so we would like to avoid as

much as possible shearing i.e. quads with non-orthogonal edges.

The simplest way to promote these square-like quads is to penalize

parametrizations whose parameter gradients are non-orthogonal .

Thus, as a distortion measure, we use the LSCM [Lévy et al. 2002]

energy sum over all charts:

E(x ,y) =
∑
i ∈V

∑
t ∈TCi

∥∇yt − J∇xt ∥
2

2
,

where (x ,y) are the chart vertex coordinates and J is the 90
◦

counter-clockwise rotation around the normal. The gradient opera-

tor is computedwith respect to the initial isometric chart parametriza-

tion described in Sec. 5.4. According to Prop. 5.1, this energy is zero

if and only if the vertex positions (x ,y) are equal to the initial charts
coordinates up to a rotation and a global scaling. Thus, this energy

penalizes shearing and stretching deformations of each vertex rings

while staying quadratic.

Proposition 5.1. The LSCM energy of a flat triangle mesh vanishes
only for rotations and global scaling of the vertex positions.

Unless specified otherwise our results are obtainedwith the LSCM

energy.

5.6 Singularity Repositionning
Once the parametrization is reconstructed, each singular triangle is

split into three (Fig. 6b). However, the position of the singular point

on the surface meshMp is not yet optimally determined. We would

like to find the vertex position si jk on the surface mesh minimizing

the distortion of the three incident triangles (t1, t2, t3). To do so, we

optimize the as-rigid-as-possible (ARAP) energy:

si jk = argmin

x ∈R2

R⊤R=I

3∑
i=1

Ati ∥ Jti (x) − Rti ∥
2

F ,

where At is the triangle area in parameter space and Jt is the Jaco-
bian matrix from uv-coordinates to the surface meshMp . We solve

this problem alternating minimization in x and in the rotation R, as
described by Sorkine et al. [Sorkine and Alexa 2007].
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Model

[Myles and Zorin 2012] [Diamanti et al. 2015] [Levi 2021a] Fixed Frame Field Ours

Singus Stretch Singus Stretch Singus Stretch Singus Stretch Singus Stretch

Airplane 62 1.197 60 1.339 - - 44 1.202 40 1.152
Bunny 50 1.132 56 1.171 - - 34 1.135 32 1.124
Dilo 82 1.331 140 1.397 204 1.314 72 1.347 70 1.241

Dancer 66 1.308 146 1.348 105 1.228 66 1.243 70 1.120
Shark 64 1.199 187 1.522 105 1.202 66 1.280 64 1.283

Rhino 84 1.138 - - - - 60 1.189 62 1.113
Spot 35 1.160 - - - - 40 1.181 42 1.131
Head 93 1.184 - - - - 20 1.276 8 1.085

Table 1. Comparison of the number of singularity cones and the mean stretch distortion for eight models. Dash indicate missing values.

Model

[Levi 2021a] Fixed Frame Field Ours

Singus Stretch Singus Stretch Singus Stretch

Sculpt 217 1.422 16 1.288 16 1.206
Beetle 31 1.505 42 1.358 74 1.215

Metatron 188 1.838 112 1.431 80 1.434
Fandisk 68 1.284 36 1.369 34 1.338

Casting 126 1.512 120 1.423 116 1.512

Hilbert - - 248 1.000 248 1.000
M6 - - 60 1.183 52 1.186

S40 - - 48 1.215 48 1.184
Table 2. Comparison of the number of singularity cones and the mean
stretch distortion for eight models with feature edges. Dash indicate missing
values.

6 EVALUATION AND RESULTS
We evaluate our method on a variety of triangular meshes, both

with and without feature edges. Models were taken from databases

gathered by [Myles et al. 2014], [Levi 2021a] and the Mambo CAD

dataset
1
. All our results are included in supplemental material.

Quantitative results are gathered in Table 1 for model without

features and in Table 2 for CAD models. We choose two evaluation

criterion: the number of cone singularities and the average stretch
distortion. The stretch is a scale-invariant measure computed as

the ratio σ1/σ2 of the largest and the smallest singular value of the

Jacobian matrix (best score is 1). Compared with other methods, we

produce fewer cones, with comparable or smaller average distortion.

In the following section, we provide more in depth comparison

with previous works by considering the scale distortion, defined as

the determinant of Jacobian. This metric is scaled with respect to the

total area so that the optimal value is 1. Moreover, we plot distortion

histograms in log scale of the triangle count. When quad meshes

are provided, they are obtained by computing an integer grid map

using [Bommes et al. 2013] and by then extracting quads with [Ebke

et al. 2013]. Most importantly, they have the same singularities

(positions and indices) as the input parametrizations. More results

and comparisons can be found in the supplemental material.

1
https://gitlab.com/franck.ledoux/mambo

All our experiments were conducted on a Ubuntu workstation

with a height-core, 2.6-GHz Intel Core i5. Our python implementa-

tion takes a few minutes on a thousand triangle mesh and up to an

hour for 30k triangles.

Convergence and local minima. As shown by Thm. 4.1, we have

mathematical guarantees that if our constraints are satisfied, then

we can extract a global parametrization. However, our optimiza-

tion problem in Eq. (5) is non-convex and could get stuck in a local

minimum. In practice, we never encounter this situation. To our un-

derstanding, the objective function can always be locally decreased

by either reducing the norm of z or by making the cross field bet-

ter satisfy Eq. (
¯F ). Thus, assuming ε = 0, our optimization either

converges toward a zero of the objective or tries to reach a global

minimum at infinity.

The latter case is typically created by a frame field with a limit cy-

cle whose parametrization is degenerated. Fig. 17a shows an example

of such a configuration. Our optimization with standard parameters

is not able to escape this limit cycle.

However, we can lower the weight on the cross field constraint

to λF = 0.1, so that the edge constraint dominates the energy, and

switch to the isometric distortion energy:

E(x ,y) =
∑
i ∈V

∑
t ∈TCi

∥ J⊤t Jt − I ∥
2

2
, (6)

where Jt is the Jacobian of the triangle t . This way our algorithm

converges to a global minimum and introduces two new singulari-

ties as in Fig. 17b. Thus, our method does deliver its promises: the

parametrization and the frame field influence each other in order to

create a valid parametrization.

Influence of distortion energies. Fig. 1 illustrates the influence

of distortion energies on singularity positions. The LSCM energy

(Fig. 1d) is compared with the isometric energy in Eq. (6) (Fig. 1c)

and with the shear energy:

E(x ,y) =
∑
i ∈V

∑
t ∈TCi

∥∇y⊤t J∇xt ∥
2

2
,

penalizing orthogonal but possibly stretch quads (Fig. 1b). As ex-

pected the singularity positions depends on the distortion being

optimized. For this model, the LSCM energy is best to minimize

both stretching and shearing of the parametrization.

https://gitlab.com/franck.ledoux/mambo
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[Myles and Zorin 2012] [Diamanti et al. 2015] [Levi 2021a] Fixed Frame Field Ours

82 cones 140 cones 204 cones 72 cones 70 cones
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Fig. 11. Comparison of five methods on the dilo model. Top row: texture mapping with highlighted seams and singularities. Second row: stretch distortion
distribution over the model. A blue indicates a perfect value of 1 while the red color indicates a value of 3 or higher. Third row: histograms of area distortion.
Fourth row: stretch distortion histograms. Our method minimize stretching at the cost of more area distortion.
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[Levi 2021a] Ours

Fig. 12. Comparison with [Levi 2021a] on the sculpt model both methods
minimize the stretch distortion. As shown by the heat map and the his-
togram, our method improves triangle stretch with ten times less cone
singularities.

Comparison with frame field integration. In this experiment, we

investigate the benefits of optimizing for the rotation α along with

the parametrization. To this end, we run our algorithm with a fixed
frame field generated by Viertel et al. [Viertel and Osting 2019].

Although the two parametrizations are optimized for the same

distortion energy, we remark that our free cone placement always
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Fig. 13. Metatron model. Comparison between our parametrization and the
one obtained by integrating a frame field generated with [Viertel and Osting
2019]. For similar distortion patterns we place two singularities instead of
four.

outperforms the fixed frame field method in term of average dis-

tortion (Tables 1 and 2). Thus, we consistently obtain a better sin-

gularity distribution for stretching minimization. For the Metatron,

Fig. 13 shows that reducing the number of cones by 30% leads to an

equivalent stretch distribution over triangles at the price of more

area distortion.
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[Levi 2021a] [Diamanti et al. 2015] [Fang et al. 2018] Fixed Frame Field Ours

105 cones 132 cones 168 cones 109 cones 73 cones
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Fig. 14. Comparison of quadmeshes obtained by five algorithms on the dancer model. Top row: quad meshed. Second row: angles distribution over the model.
Third row: histograms of stretch distortion. Our method yields minimal stretch and most orthogonal quads.
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Fig. 15. Quad remeshing computed from the parametrization of [Levi 2021a]
and ours. Our quads are less stretched and more orthogonal.

Comparison with [Levi 2021a]. Levi [2021a] pursues the same goal

as us: directly computing a seamless parametrization from a triangle

mesh. His method is greedy and is biased by its initialization. For

(a) [Fang et al. 2018] (b) Ours
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Fig. 16. Quad remeshing comparison with [Fang et al. 2018]. Our quads
have less stretching and are have angles closer to 90

◦.

the Dilo model in Fig. 11, the singularities appear on a single side

of the mesh seem unrelated to the geometry. The parametrizations

provided by the author minimize the maximum stretch. This can be

observe in Fig. 12 where the stretch bounded. In comparison, our

method yields a higher maximal value but a smaller stretch for a
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majority of triangles (see histograms), as well as a reduced number

of cone singularities – 16 against 217. Our optimization does not

attempt to reduce triangle scaling thus our area distortion is not as

competitive. Moreover, a great number of triangles tend to be stuck

around 0.5 because of the barrier function threshold.

We also compare quad-meshes computed from our respective

parametrizations in Figs. 15 and 14. In both cases, our quads have

smaller stretch and are more orthogonal.

Comparison with [Diamanti et al. 2015]. The integrable Polyvector
field method [Diamanti et al. 2015] takes an initial frame field and

optimizes it to guarantee its integrability. However, this process

only weakly minimizes distortion and is prone to introduce new

singularities. In Fig. 11, we again exhibit a lower distortion for a

majority of triangles as well as a smaller number of cones – 140

against 70 in this example.

Comparison with Myles and Zorin [2012]. Myles and Zorin [2012]

propose a greedy algorithm for cone placement along with a post-

processing procedure to obtain k/4 singularity indices. Cones tend

to be placed in high curvature regions which can be suboptimal. In

general, we achieve lower stretch for fewer singularities (Table 1)

as typically represented for the Dilo model in Figs. 11.

Comparison with Fang et al. [2018]. We also compare our results

to a method producing quad-meshes without the quantization step.

Fang et al. [2018] use periodic functions to integrate a frame field

directly into an integer parametrization. This type of methods gen-

erally output a high quality mesh on most of the input surface.

However, some localized regions need to be repaired which often

introduce new singularities.

Figs. 16 and 14 show the histograms of our metrics for the Dilo

model. Our quads are more orthogonal and suffer less from stretch-

ing.

7 CONCLUSION AND FUTURE WORKS
By constraining a parametrization to a parallel transport instead

of a cross field, we constructed an algorithm for global seamless

parametrization without prescribing cones in advance. This direct

link between singularities and the parametrization enables us to

find cone points whose position minimize a given distortion energy.

Unlike previous methods our solver is not greedy and does not rely

on integer variables.

In the perspective of quad meshing, the main limitation of our

work is that it does not handle integer coordinates of cone points.We

still rely on a post-processing quantization step which impacts the

overall distortion distribution. So the cone placement is optimal for

the seamless parametrization but suboptimal for the final quadmesh.

A second limitation is that our current implementation is slower

than previous methods because of the a higher number of variables –

2|F |+4|E | for vertex charts coordinates, |E | for the parallel transport
and 2|V | for the cross field. In the future, we would like to remove

the cross field in the parallel transport constraints, to reduce the

number of unknowns.

We believe that this contribution will have a great impact on

future works because the parallel transport integrability constraints

(Sec. 3) can be rewritten for higher dimensionmeshes. This opens the

(a) Typical failure case of our method.

(b) Changing the energy weights allows our method to place a dipole of
singularities and retrieve a correct parametrization.

Fig. 17. On this model our method fails to find a valid parametrization (a).
By using an isometric distortion energy and setting λF = 0.1, we are able
to find a valid solution (b).

door to computing valid seamless parametrization for tetrahedral

meshes which is a currently a major challenge for hexmeshing.
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A PROOF OF THEOREM 3.1
Proof. The parametrization resulting of Alg. 1 can be equiva-

lently obtained by (1) synchronizing charts along a spanning tree on

vertices, (2) triangulating quads by adding an edge between triangle

centers and triangle vertices and (3) isometrically moving pieces

of triangles across the cut so that only singular triangles are split

and the cut follows primal edges. Therefore, the quad parametriza-

tion is equivalent to the parametrization of Alg. 1 in the sense that

they share the same singularity index around loops. For this reason,

we will carry out the proof on the quad parametrization which is

simpler to relate to transport rotations.

Necessary condition. Suppose that there exists charts satisfying
Eqs. (E), we will show that Alg. 1 constructs a parametrization

compatible with the holonomy of ω.
Since the quad parametrization is built by recursively aligning

charts along a (primal) spanning tree, a loop of vertices is obtained

by considering an unvisited edge i0iN and walking back to the tree

root from both side of the edge. Let γ = (i0, . . . , iN , i0) be such a

loop. We denote ri ∈ C the total rotation of chart Ci during the

synchronization. Let ui0 ∈ C,viN ∈ C be duplicated edge vectors

of charts Ci0 ,CiN and u = ri0ui0 ,v = riNviN their coordinates in

the quad parametrization. Applying rotations recursively along the

loop leads to:

u = ri0ui0

= ri1 exp(ıωi0i1 )vi0

= riN

N−1∏
k=0

exp(ıωik ik+1
)vi0

= riN

N−1∏
k=0

exp(ıωik ik+1
) exp(ıωiN i0 )viN

= Φω (γ )v .

Therefore, duplicated edges, which include edge at the quad parametriza-

tion cut, are equal up to the total rotation along the loop. If Φω (γ ) is
a rotation by an angle kπ/2,k ∈ Z for all loops then the parametriza-

tion is seamless.

Sufficient condition. Suppose that we are given a parametrization

whose singular vertices are of valence three. Let us subdivide regular

triangles into three quad and turn the three triangles adjacent to a

singularity into three quads. Bymoving triangle pieces across cuts so

that the cut follows dual edges, we recover a quad-parametrization

with transition rotations r ∈ C, |r | = 1. The choice of ω equal to

arg(r ) on cuts and 0 on regular edges and charts coordinates equal

to the parametrization coordinates obviously satisfies Eqs. (E). □

B PROOF OF THEOREM 4.1
Proof. Since ω is compatible with a frame field (Eqs. (F )), its

holonomy on any loops is constrained to be an integer multiple

of π/2. Since it also satisfies Eqs. E, Thm. 3.1 guarantees that the

reconstructed parametrization is seamless.

Eqs. (D1) ensure local injectivity as all triangles (pi ,pj , si jk ) com-

posing the parametrization must have positive area.

Eqs. (B) force the feature edge in charts to be aligned with the

cross field and corner vertex have kπ/2 total inner angle. Since

https://doi.org/10.1145/1508044.1508091
https://doi.org/10.1007/s12532-020-00179-2
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Fig. 18. Two version of the same vertex rings: one with an angle defect of
0 and the other with an angle defect of 2π , both have only positive area
triangles.

Eqs. E are satisfied the feature edges are reconstructed as straight

lines with possible corners at vertices. Because ω is compatible with

a frame field aligned with feature edges, two disconnected sets of

feature edges linked by a vertex path γ will be related by a total

rotation of kπ/2. Thus, feature edges are (up to a global rotation)

isolines of the parametrization.

Double coverings.We are now going to prove that the parametriza-

tion singularities are exactly those prescribed by the parallel trans-

port. According to Thm. 3.1 the parametrization transition functions

match the parallel transport holonomy. Therefore the parametriza-

tion angle defect at vertices is equal to the parallel transport Gauss-

ian curvature modulo 2π . We will show that this additional parasite

angle corresponding to integer singularities cannot appear in our

parametrization.

By construction, singular vertices have only three incident edges,

thus the angle defect is strictly bounded by −π and 2π – other-

wise triangles are invalid. So, angle defects of singular triangles are

exactly equal to the prescribed Gaussian curvature.

Vertices of the input mesh also have prescribed singularity indices:

0 for inner vertices and user prescribed on feature edges. At these

vertices, unwanted negative integer index singularities could appear
even if all triangles positive areas (see Fig. 18). However, since ω
satisfies Eqs. (E), its total Gaussian curvature is constraint by the

Gauss-Bonnet theorem. Thus, any additional singularities must have

indices summing to 0 to maintain feasibility of the parametrization.

As a consequence, any strictly negative index singularities appearing

at a vertex must be compensated by positive singularities. As we

have shown, these singularities cannot appear inside triangles and

vertices only accept negative singularities. Thus, double coverings

cannot happen. □

C PROOF OF PROPOSITION 5.1
Proof. Let us show that if there exists two piece-wise linear

functions f ,д ∈ R |V | on a flat triangle mesh such that ∇f = J∇д
then they must be a rotation and a global scaling of the vertex

positions.

By construction of piece-wise linear finite elements, the gradient

operator is continuous in the direction tangent to an edge:

⟨∇fi jk , ei j ⟩ = ⟨∇fi jl , ei j ⟩.

The function д satisfies the LSCM equation, so that ∇f is also

continuous in the direction normal to the edge:

⟨∇fi jk ,Jei j ⟩ = ⟨J
⊤∇fi jk , ei j ⟩

= −⟨∇дi jk , ei j ⟩

= −⟨∇дi jl , ei j ⟩

= ⟨∇fi jl ,Jei j ⟩.

As ∇f and ∇д are continuous across all edges, they must be

constant over the entire mesh. Therefore, there exists a,b, c,d ∈ R2

such that f and д are affine functions:

fi = a⊤
(
xi
yi

)
+ b, дi = c

⊤

(
xi
yi

)
+ d .

Using the LSCM equation again, the vectors a and c are such that

c = Ja, therefore f ,д are scaled-rotation of the vertex coordinates.

□
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