
HAL Id: hal-03670518
https://hal.science/hal-03670518

Submitted on 17 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Structure of iso-scalar sets
M. Gauding, F. Thiesset, E. Varea, Luminita Danaila

To cite this version:
M. Gauding, F. Thiesset, E. Varea, Luminita Danaila. Structure of iso-scalar sets. Journal of Fluid
Mechanics, 2022, 942, pp.A14. �10.1017/jfm.2022.367�. �hal-03670518�

https://hal.science/hal-03670518
https://hal.archives-ouvertes.fr


Under consideration for publication in J. Fluid Mech. 1

Banner appropriate to article type will appear here in typeset article

Structure of iso-scalar sets1

M. Gauding1, F. Thiesset1:, E. Varea1, L. Danaila22

1CORIA, UMR 6614, CNRS, Normandy Univ., UNIROUEN, INSA Rouen, 76000 Rouen,3
France4
2M2C, UMR 6143, CNRS, Normandy Univ., UNIROUEN, 76000 Rouen, France5

(Received xx; revised xx; accepted xx)6

An analytical framework is proposed to explore the structure and kinematics7

of iso-scalar fields. It is based on a two-point statistical analysis of the phase8

indicator field which is used to track a given iso-scalar volume. The displacement9

speed of the iso-surface, i.e. the interface velocity relative to the fluid velocity,10

is explicitly accounted for, thereby generalizing previous two-point equations11

dedicated to the phase indicator in two-phase flows. Although this framework12

applies to many transported quantities, we here focus on passive scalar mixing.13

Particular attention is paid on the effect of Reynolds (the Taylor based Reynolds14

number is varied from 88 to 530) and Schmidt numbers (in the range 0.1 to15

1), together with the influence of flow and scalar forcing. It is first found that16

diffusion in the iso-surface tangential direction is predominant, emphasizing the17

primordial influence of curvature on the displacement speed. Second, the appro-18

priate normalizing scales for the two-point statistics at either large, intermediate19

and small scales are revealed and appear to be related to the radius of gyration,20

the surface density and the standard deviation of mean curvature, respectively.21

Third, the onset of an intermediate ’scaling range’ for the two-point statistics22

of the phase indicator at sufficiently large Reynolds numbers is observed. The23

scaling exponent complies with a fractal dimension of 8/3. A scaling range is24

also observed for the transfer of iso-scalar fields in scale-space whose exponent25

can be estimated by simple scaling arguments and a recent closure of the Corrsin26

equation. Fourth, the effects of Reynolds and Schmidt numbers together with flow27

or scalar forcing on the different terms of the two-point budget are highlighted.28

Key words:29

1. Introduction30

There exist a large variety of physical situations in which a description in terms31

of curved surfaces or interfaces instinctively emerges. Leaving aside some fields of32

physics such as soft-matter physics (De Gennes et al. 2013), heterogeneous ma-33

terials (Torquato 2002) or biological/chemical-physics (Garcia-Ruiz et al. 2012),34
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this concept applies naturally to fluid flows. A two-phase flow is the first case35

that comes to mind since the surface formed by the liquid-gas interface can36

even be observed with the naked eye (Dumouchel 2008). A description in terms37

of curved surfaces is also widely encountered in reacting flows (diffusion and38

premixed flames), where the chemical reactions occur in thin layers. This has39

inspired the flamelet model (Peters 1988) which considers reacting zones as a40

collection of thin layers, whose inner structure is identical to a laminar flame,41

propagating normal to themselves in the direction of the unburned turbulent42

mixture. In single-phase non-reacting flows, there are situations where a thin43

interface separates some zones of irrotational motion to some zones of strong44

vortical intensity (da Silva et al. 2014). This layer, which can be observed in45

many archetypal flow configurations such as wakes, jets or boundary layers, is46

referred to as the turbulent/non-turbulent interface, abbreviated TNTI. Mixing47

can also be treated using some geometric measures of iso-scalar surfaces (Catrakis48

& Dimotakis 1996; Dimotakis & Catrakis 1999). There are also a variety of49

natural situations, related to e.g. clouds and precipitations, dunes, coasts erosion,50

ocean mixing, ice melting, aquifers which can properly be described through a51

morphological analysis of moving interfaces.52

For all such situations, the macroscale features of the interface are of great53

interest. In two-phase flows, the surface area or surface density (surface area per54

unit volume) of the liquid-gas interface is generally the parameter one seeks to55

optimize by resorting to the creation of a spray (Ashgriz 2011). This parameter56

also controls the evaporation rate in flows with phase change (Lebas et al. 2009;57

Jay et al. 2006). It is also a key parameter in climate change studies for which58

the processes taking place at the air-sea interface are primordial (Liss & Johnson59

2014). In premixed flames, the flame surface area is an important parameter60

as it appears in the expression of the volume integrated burning rate and heat61

release (e.g. Trouvé & Poinsot 1994). For the TNTI, the surface area allows the62

rate of entrainment of irrotational zones into the turbulent flow to be estimated63

(Sreenivasan et al. 1989; Krug et al. 2015).64

The versatility of the notion of curved surface finds its foundation on some65

mathematical grounds. Given any field variable ξ (e.g. temperature, concen-66

tration, enstrophy, etc) that varies in space, one can take any iso-value ξ0 to67

define an interface which separates the regions where ξpxq ą ξ0 from the regions68

where ξpxq ă ξ0. The kinematic equations for both the interface position and69

its geometrical features (surface density, curvatures) are known (Pope 1988;70

Drew 1990; Vassilicos & Hunt 1996) thereby embedding in a single mathematical71

framework single- or two-phase, reacting or non-reacting flows, in presence or72

absence of phase change.73

The wrinkling of the interface is related to intrinsic instabilities and to in-74

homogeneities (specifically the turbulence) of the carrier environment which75

itself reveals some multi-scale fluctuations. This means, not only the macroscale76

features (i.e. measured at scales larger than a typical integral correlation length-77

scale) are important, but also the microstructural characteristics (measured at78

a scale r) are worth being explored. In this respect, it is now well known that79

interfaces that one may find in turbulence and turbulent mixing (Sreenivasan &80

Meneveau 1986; Sreenivasan et al. 1989; Catrakis & Dimotakis 1996; de Silva et al.81

2013), turbulent premixed flames (Gouldin 1987; Gouldin et al. 1989), two-phase82

flows (Le Moyne et al. 2008; Dumouchel & Grout 2009; Grout et al. 2007), and83

material lines evolving in turbulent flows (Villermaux & Gagne 1994) reveal some84
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”fractal facets”. The fractal dimension of interfaces was predicted analytically85

(Mandelbrot 1975; Constantin et al. 1991; Grossmann & Lohse 1994; Iyer et al.86

2020). For instance, Mandelbrot (1975) proved that the fractal dimension of iso-87

scalars is 2.5 for Burgers turbulence and 8{3 for Kolmogorov turbulence. Using88

tools from geometric measure theory, Constantin et al. (1991) showed that the89

fractal dimension of iso-scalars might evolve between 7{3 near the TNTI to 8{390

in fully turbulent regions. Later, Constantin (1994b,a) showed that a value of91

8{3 holds for iso-scalars in the limit of small molecular diffusivities (high Schmidt92

numbers) while flame fronts exhibit a fractal dimension of 7{3. The dimensional93

analysis of Hawkes et al. (2012); Thiesset et al. (2016a) showed that premixed94

flame fronts have a fractal dimension of 7{3 (8{3) in low (high) Karlovitz number95

combustion regimes. The Prandtl (or Schmidt) number dependence of the fractal96

dimension of iso-scalars is predicted by Grossmann & Lohse (1994). The fractal97

dimension of clouds were also investigated (Lovejoy 1982; Hentschel & Procaccia98

1984). Using numerical data of scalar mixing with an imposed mean gradient99

at relatively high Reynolds numbers, Iyer et al. (2020) recently showed that the100

fractal dimension is 2 (8{3) for scalar iso-values far away from (close to) the mean.101

Note that we omitted here the possibility that the fractal dimension might be102

scale-dependent as argued in the review by Dimotakis & Catrakis (1999). Note103

also that what is here simply referred to as a fractal dimension may recover104

different mathematical definitions (Hausdorff dimension, Kolmogorov capacity105

(Vassilicos & Hunt 1991; Vassilicos 1992)).106

Characterizing and predicting the microscopic scale-dependent features (= the107

microstructure) of interfaces requires the coupling between the interface and the108

surrounding medium to be well understood. In this goal, one needs to identify109

the range of scales over which some characteristic physical parameters (e.g.110

surface tension, fluid viscosity, scalar diffusivity, etc) or some physical processes111

(turbulent straining, production by mean scalar gradient or interface reactivity,112

etc), have an influence. It is also worth drawing the connections between the113

typical length-scales of the dynamical or scalar field (integral, Taylor, Corrsin,114

Kolmogorov, Batchelor, Obukhov length-scales) to those of the interface (inner115

and outer cutoff scales, radius of curvature, surface density length-scale). All116

these questions necessitate a scale-by-scale description of the processes at play117

in the kinematic evolution of contorted iso-surfaces or iso-volumes. To the best118

of our knowledge, there does not exist such a theoretical framework that may119

be valid at all scales, irrespectively of the flow configuration and flow regime.120

The present study is an attempt to fill this gap. We propose an analytical121

description that relies on a two-point statistical analysis (correlation and/or122

structure functions) of the phase indicator function. The latter field variable123

is used as a ’marker’ or ’localizer’ of the fluid iso-volume formed by a given124

iso-scalar value. Such two-point statistics are employed in different branches125

of physics, generally to gain information about the morphological content (the126

microstructure) of heterogeneous materials (Adler et al. 1990; Torquato 2002;127

Teubner 1990; Kirste & Porod 1962; Frisch & Stillinger 1963; Berryman 1987)128

or fractal aggregates (Sorensen 2001; Morán et al. 2019). In fluid mechanics,129

there are only few papers dealing with these aspects (Hentschel & Procaccia130

1984; Vassilicos & Hunt 1991; Vassilicos 1992; Vassilicos & Hunt 1996; Lu &131

Tryggvason 2018, 2019; Elsas et al. 2018).132

Here, the main originality of the present work is that this morphological133

descriptor is supplemented by an exact transport equation which allows the134



4 M. Gauding, F. Thiesset, E. Varea, L. Danaila

different physical process acting on the iso-scalar volumes to be characterized. It135

generalizes the equation proposed by Thiesset et al. (2020, 2021) firstly dedicated136

to two-phase flows, to cases where the interface possesses an intrinsic displacement137

speed (as for premixed flames or diffusive scalars). The machinery for obtaining138

two-point statistical equations is the same as the one used to derive the scale-by-139

scale budgets of the dynamical or scalar field (see Hill 2002; Danaila et al. 2004,140

among others). We will also resort to some analytical studies emanating from the141

fields of heterogeneous materials (Adler et al. 1990; Torquato 2002; Teubner 1990;142

Kirste & Porod 1962; Frisch & Stillinger 1963; Berryman 1987) and aggregates143

(Sorensen 2001; Morán et al. 2019) allowing the phase indicator structure function144

to be related to some integral geometric measures of the interface (surface den-145

sity, mean and Gaussian curvatures) and some fractal characteristics. Although146

the proposed theory may apply to very different situations, we focus here on147

passive scalar mixing which is explored using Direct Numerical Simulation data148

covering a wide range of Reynolds and Schmidt numbers. By doing so, we expect149

emphasizing the key physics that ought to be accounted for e.g. a geometrical150

closure to the turbulent scalar flux in the equation for the mean scalar.151

The present study has four objectives. Firstly, it aims at generalizing the152

equations firstly derived by Thiesset et al. (2020, 2021) to the case of diffusive153

scalars. The new set of equations reveals the importance of the interface displace-154

ment speed which embeds different physics depending on the flow configuration.155

The second objective of our work is to characterize the influence of some non-156

dimensional numbers (Reynolds and Schmidt numbers) and some geometrical157

features (e.g. the mean curvature) on the different components of the interface158

displacement speed. Thirdly, it aims at identifying the characteristic length-scales,159

asymptotic scaling and normalizing quantities of the phase indicator structure160

functions. Fourthly, it intends to explore the effect of Reynolds and Schmidt161

numbers together with other effects (decay, mean scalar/velocity gradient) on the162

different processes revealed by the scale-by-scale budgets of the phase indicator163

field.164

The paper is organized as follows. The equations for the transport of the165

iso-scalar surface and the corresponding phase indicator structure functions are166

derived in section 2. We also derive the asymptotic limits at either large or small167

scales revealing the link between two-point statistics of the phase indicator and168

some integral geometric measures of the iso-surface (volumes, surface area, mean169

and Gaussian curvature). The numerical database and post-processing procedures170

are portrayed in section 3. Results are presented in 4. Technicalities are gathered171

in the Appendix. Conclusions are drawn in a last section.172

2. Analytical considerations173

2.1. Kinematics of iso-scalar excursion sets174

Consider the scalar field ξpx, tq whose transport equation is175

Btξ `∇x ‚ uξ “∇x ‚D∇xξ `Ξ ` 9ωξ. (2.1)176

Here, u is the fluid velocity, D the scalar diffusivity and 9ωξ is the scalar reaction177

rate. Ξ represents any other source term such as production by a mean gradient.178

The iso-scalar ξ0 forms an interface which separates the zones where ξpx, tq ą ξ0179

and ξpx, tq ă ξ0. It is then worth defining the phase indicator function φ “180

Focus on Fluids articles must not exceed this page length



Structure of iso-scalar sets 5

Hpξ ´ ξ0q, where H denotes the Heaviside function. We then simply have:181

φpx, tq “

"

1 when ξ ą ξ0
0 elsewhere.

(2.2)182

φpx, tq is sometimes referred to as the excursion set of ξpx, tq ą ξ0, i.e. the183

probability that ξpx, tq ą ξ0 (Elsas et al. 2018). The transport equation for φpx, tq184

writes (Hirt & Nichols 1981; Drew 1990; Vassilicos & Hunt 1996):185

Btφ` u ‚ ∇xφ “ Sd|∇xφ|. (2.3)186

|∇x ‚ | denotes the norm of the gradient of any quantity ‚ and Sd is known as187

intrinsic displacement speed of the interface. Note that Eq. (2.3) is valid only in188

the sense of distributions (Drew 1990), i.e. outside from the interface both Btφ and189

∇xφ are zero, while they are equal to the Dirac delta function at the interface.190

Similarly, Sd is defined only at the surface ξpxq “ ξ0. Eq. (2.3) shows that in the191

laboratory coordinate system, the observer sees the interface moving at a speed192

w “ u` Sdn where n “ ´∇xξ{|∇xξ| is the unit vector normal to the iso-scalar193

surface. When Sd “ 0 (as in two-phase flows in absence of phase change), the194

velocity of the interface w is equal to the fluid velocity at the interface u.195

The displacement speed Sd is defined by (Gibson 1968; Pope 1988; Gran et al.196

1996; Peters et al. 1998):197

Sd “
∇x ‚D∇xξ

|∇xξ|
loooooomoooooon

Sdd

`
Ξ

|∇xξ|
loomoon

Ssd

`
9ωξ

|∇xξ|
loomoon

Srd

. (2.4)198

Recall that Sd is defined only at ξpxq “ ξ0. Eq. (2.4) shows that the displacement199

speed can be decomposed into a scalar diffusion component Sdd , a scalar reaction200

rate contribution Srd, and a scalar source term part Ssd. Gran et al. (1996); Peters201

et al. (1998) further showed that the diffusion component of the displacement202

speed Sdd can be further decomposed by projecting the diffusion term along the203

iso-scalar surface normal and tangential directions:204

Sdd “
n ‚ ∇xpn ‚D∇ξq

|∇xξ|
loooooooooomoooooooooon

Snd

` 2DH
loomoon

Scd

, (2.5)205

where Snd and Scd are the normal and tangential diffusion contributions to the206

displacement speed. H “ ∇x ‚ n{2 is the mean curvature of the iso-surface.207

It is negative when the surface is concave in the direction of ξpxq ą ξ0 and208

convex in the opposite case. The rightmost term in Eq. (2.5) reveals that Scd209

depends linearly on the mean curvature of the scalar iso-surface. In presence210

of heat release, it may be more convenient to define Sd in a density weighted211

formulation (Giannakopoulos et al. 2019; Gran et al. 1996; Peters et al. 1998).212

Yu et al. (2021) derived the transport equations for the different components of213

the displacement speed.214

2.2. General two-point equations215

The machinery for obtaining the two-point equations of the phase indicator field216

when Sd “ 0 is described in details by Thiesset et al. (2020, 2021). Here, we217

aim at generalizing such equations for cases where the displacement speed is218
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x`

x´

X

r
2

´ r
2

Figure 1: Schematic representation of two points x` and x´, the midpoint
X “ pX,Y, Zq and the separation vector r “ prx, ry, rzq.

not zero. In this goal, we start by writing the transport equations for φpx, tq219

at a point x` and x´, arbitrarily separated in space (Fig. 1). Hereafter, the `220

and ´ superscripts denote the quantity at the point x` and x´, respectively.221

Multiplying the equation at x` by φ´ and the one at x´ by φ`, yields:222

φ´Btφ
` ` u` ‚ φ´∇x`φ` “ φ´S`d |∇xφ|

`, (2.6a)223

φ`Btφ
´ ` u´ ‚ φ`∇x´φ´ “ φ`S´d |∇xφ|

´. (2.6b)224

Since for any quantity r‚s, we have ∇x`r‚s´ “∇x´r‚s` “ 0, one obtains:225

φ´Btφ
` ` u` ‚∇x`φ`φ´ “ φ´S`d |∇xφ|

`, (2.7a)226

φ`Btφ
´ ` u´ ‚∇x´φ`φ´ “ φ`S´d |∇xφ|

´. (2.7b)227

Summing up these two equations gives,228

Btφ
`φ´ ` u` ‚ ∇x`φ`φ´ ` u´ ‚ ∇x´φ`φ´229

“ φ´S`d |∇xφ|
` ` φ`S´d |∇xφ|

´. (2.8)230

We now define the mid-point X “ px``x´q{2 and separation vector r “ x`´x´231

(see Fig. 1). Using the relations ∇x` “ 1
2
∇X `∇r and ∇x´ “ 1

2
∇X ´∇r (Hill232

2002; Danaila et al. 2004), we obtain:233

Btφ
`φ´ “´∇X ‚ pσuqφ`φ´ ´∇r ‚ pδuqφ`φ´

` φ´S`d |∇xφ|
` ` φ`S´d |∇xφ|

´

` 2φ`φ´pσt∇x ¨ uuq

(2.9)234

Eq. (2.9) is the transport equation for the correlation function of the phase235

indicator field where Sd can take any values. pσ‚q “ p‚` ` ‚´q{2 and pδ‚q “236

p‚`´‚´q. Note that Eq. (2.9) also considers flows in which the velocity divergence237

may not be zero. This is accounted for in the rightmost term on right-hand side of238

Eq. (2.9) which reads as the product of φ`φ´ and the average of ∇x ¨ u between239

the two-points x` and x´.240
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The squared increment of φ, i.e. pδφq2 “ pφ` ´ φ´q2 is related to φ`φ´ by241

φ`φ´ “

ˆ

φ` ` φ´

2

˙2

´

ˆ

φ` ´ φ´

2

˙2

242

“ pσφq2 ´
pδφq2

4
243

“
1

2

´

pφ`q
2
` pφ´q

2
¯

´
pδφq2

2
244

“ pσφq ´
1

2
pδφq2. (2.10)245

For obtaining Eq. (2.10), use was made of the relation φ2 “ φ as φ can take246

only 0 or 1 values. Substituting Eq. (2.10) into Eq. (2.9), and noting that the247

transport equation for pσφq is248

Btpσφq “ ´∇X ¨ pσuqpσφq ´∇r ¨ pδuqpσφq

` σtSd|∇φ|u ` 2pσφqpσt∇x ¨ uuq,
(2.11)249

we end up with the transport equation for pδφq2250

Btpδφq
2 “´∇X ‚ pσuqpδφq2 ´∇r ‚ pδuqpδφq2

` 2pσtSd|∇φ|uq ´ 2pφ´S`d |∇xφ|
` ` φ`S´d |∇xφ|

´q

` 2pδφq2pσt∇x ¨ uuq.

(2.12)251

Eq. (2.12) is the general expression for the unaveraged squared increments252

pδφq2. It generalizes the equation derived by Thiesset et al. (2020, 2021) to the253

case where Sd ‰ 0 and/or ∇x ¨ u ‰ 0. Compared to the equations detailed by254

Thiesset et al. (2020, 2021), where only the unsteady and the two transfer terms255

(in r and X space) were present, Eq. (2.12) reveals an additional source term256

which notably depends on the correlation between a quantity related to the bulk257

phase φ and a surface quantity, namely Sd|∇xφ|. When estimated numerically,258

this type of correlation requires a specific treatment which will be described later.259

The right-hand side of Eq. (2.12) also contains an additional non-linear forcing260

term which depends on the velocity divergence. In incompressible flows, this term261

vanishes.262

Eq. (2.12) can be applied to very different types of scalar, either passive, active263

or reacting, in either decaying or forced turbulence, representative of either single264

or two-phase flows:265

‚ In two-phase flows with no phase change, Sd “ 0 and one recovers the266

equation first derived by Thiesset et al. (2020, 2021). Material surfaces share267

also the property Sd “ 0 (Pope et al. 1989).268

‚ In case of a passive scalar with no forcing, only Sdd contributes to Sd. When269

e.g. a scalar mean gradientGξ in a given direction α is superimposed, then another270

contribution emerges from Ssd “ uαGξ{|∇xξ|.271

‚ The present framework also applies to premixed flames. Then, ξ can be272

associated to the fuel or oxidizer mass fraction or to the temperature field. In this273

situation, Sd incorporates both Sdd and Srd. Diffusion flames can also be analyzed274

using the present framework. In either premixed or diffusion flames, one generally275

define Sd in the density weighted manner (Giannakopoulos et al. 2019). Note also276
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that due to heat release, one should also account for the additional term due to277

∇x ¨ u.278

‚ In two-phase flows with phase change, ξ can for instance represent the liquid279

volume fraction and Srd relates to the evaporation rate. Here again, one should280

account for the term due to non-zero velocity divergence. The velocity jump281

across the interface that originates from the evaporation rate and the density282

jump between the two-phase should also be accounted for.283

‚ Eq. (2.12) also applies to the enstrophy field. In this situation, Sd contains284

a contribution due to diffusion effects and an additional forcing term due to285

vortex stretching (Krug et al. 2015). The present framework is thus likely to help286

scrutinizing the structure and kinematics of the turbulent/non-turbulent interface287

which is often defined through a given iso-enstrophy value.288

To summarize, the new framework proposed here is very general and enables289

to treat a variety of different scalars (passive or reacting scalars, with or with-290

out forcing) in different flow situations (single or two-phase flows, in forced or291

decaying turbulence, in presence of phase change).292

Because the flows under consideration can be turbulent, it is worth supplement-293

ing Eqs. (2.9) and (2.12) by some averaging operators. The choice of a specific294

average generally depends on the flow situations (Hill 2002; Thiesset et al. 2020,295

2021). One can simply apply an ensemble average operator, noted x‚yE, which296

has the advantage of commuting with time t, spatial X and scale r derivatives.297

Hence, the ensemble average of Eq. (2.12) is:298

Btxpδφq
2yE “´∇X ‚ xpσuqpδφq2yE ´∇r ‚ xpδuqpδφq2yE

` 2xσtSd|∇φ|uyE ´ 2pxφ´S`d |∇xφ|
`yE ` xφ

`S´d |∇xφ|
´yEq

` 2xpδφq2pσt∇x ¨ uuqyE.

(2.13)299

In the present study, we further exploit the statistical symmetry of the flow (see300

section 3.2) and we will consider a spatial average over a periodic domain of301

volume Vbox:302

x‚yR “
1

Vbox

¡

X

‚ dX. (2.14)303

Spatial averages commute with time t and r derivatives, but not with the304

X divergence operator. However, by periodicity, the fluxes pσuqpδφq2 normal305

to the domain boundaries vanish (Hill 2002; Thiesset et al. 2020). Hence, the306

transfer term with respect to spatial position X is zero. Assuming a divergence307

free flow yields xpδφq2pσt∇x ¨ uuqyE,R “ 0. Statistical homogeneity leads to308

2xσtSd|∇φ|uyE,R “ xSd|∇φ|yE,R and xφ´S`d |∇xφ|
`yE “ xφ`S´d |∇xφ|

´yE. With309

these simplifications, Eq. (2.12) then writes as:310

Btxpδφq
2yR

loooomoooon

Unsteady

“ ´∇r ‚ xpδuqpδφq2yR
looooooooooomooooooooooon

Transfer´r

` 2xSdysΣ ´ 4xφ`S´d |∇xφ|
´|yR

loooooooooooooooooomoooooooooooooooooon

Sd´Term

. (2.15)311

where Σ “ x|∇xφ|yR is the surface density of the iso-scalar surface, i.e. the area312

of the iso-scalar surface divided by Vbox. x‚ys denotes the area weighted average.313

At this stage, Eq. (2.15) depends on time t and the separation vector r (a 4D314

space). The problem can further be reduced supposing isotropy, i.e. statistical315

invariance by rotation of the separation vector r, i.e. x‚yRprq “ x‚yRp|r|q. In316

case of anisotropic flows, one can apply an angular average, noted x‚yΩ, over all317



Structure of iso-scalar sets 9

orientations of the vector r (Thiesset et al. 2021):318

x‚yΩ “
1

4π

ĳ

Ω

‚ sin θdθdϕ, (2.16)319

where the set of solid angles Ω “ tϕ, θ | 0 ď ϕ ď π, 0 ď θ ď 2πu with320

ϕ “ arctanpry{rxq and θ “ arccosprz{|r|q (rx, ry, rz denotes the components of321

the r vector in x, y, z directions, respectively). Spatially and angularly averaged322

statistics depend on time t and scale r, i.e. the four dimensional problem was323

reduced to two dimensions.324

2.3. Asymptotic limits at large and small scales325

At this stage, it is worth recalling that employing two-point statistics of the phase326

indicator field is not new. It is widely employed for characterizing the micro-327

structure of heterogeneous material such as porous media, composite material,328

fractal aggregates, and colloids. The reader can refer to the book by Torquato329

(2002) who discusses in great details these aspects.330

Among this wide corpus of literature, it is worth mentioning the work by331

Kirste & Porod (1962); Frisch & Stillinger (1963) who proved that for isotropic-332

homogeneous media, and by further assuming that the interface separating the333

two phases is of class C2, the limit of xpδφq2yR at small scales is given by:334

lim
rÑ0
xpδφq2yR “

Σ r

2

„

1´
r2

8

ˆ

xH2ys ´
xGys

3

˙

. (2.17)335

Here, H and G are the mean and Gaussian curvatures, respectively. x‚ys is used336

to denote the surface area weighted average. Berryman (1987); Thiesset et al.337

(2021) proved that Eq. (2.17) remains valid in anisotropic media by applying an338

additional angular average to xpδφq2yR. When |r| Ñ 8, Thiesset et al. (2020,339

2021) showed that:340

lim
rÑ8

xpδφq2yR “ 2xφyRp1´ xφyRq. (2.18)341

The limit of xφ`|∇xφ|
´yR as |r| tends to zero can be expressed as follows (Teubner342

1990):343

lim
rÑ0
xφ`|∇xφ|

´yR “
Σ

2

”

1`
r

2
xHys

ı

. (2.19)344

As far as we are aware, the next terms of the small scale expansion of xφ`|∇xφ|
´yR345

are not known. In the limit of large separations, we have (Teubner 1990)346

lim
rÑ8

xφ`|∇xφ|
´yR “ xφyRΣ. (2.20)347

The special case xφyR “ 0.5 yields xφ`|∇xφ|
´yRprq “ Σ{2. Eq. (2.19) suggests348

that, when |r| Ñ 0, xφ`S´d |∇xφ|
´yR writes:349

lim
rÑ0
xφ`S´d |∇xφ|

´yR “
Σ

2

”

xSdys `
r

2
xHSdys

ı

, (2.21)350

while at large scales one may write:351

lim
rÑ8

xφ`S´d |∇xφ|
´yR “ xφyRxSdysΣ. (2.22)352
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As discussed by Thiesset et al. (2021), Eq. (2.17) and similarly Eqs. (2.19) and353

(2.21) apply up to a separation r, which is twice the ’reach’ of surface. The354

’reach’ is a notion that pertains to non-convex bodies. It is defined as the minimal355

normal distance between the surface and its medial axis (see e.g. Federer 1959).356

The medial axis of a given body is the set of all points having more than one357

closest point on the object’s boundary. It can also be seen as the location of358

centers of all bi-tangent spheres, i.e. the spheres that are tangent to the surface359

in at least two points on the surface. The reach is thus given by the minimal360

radius of these bi-tangent spheres. In some special situations (in absence of361

narrow throats or necks), it can be related to the minimal radius of curvature.362

Otherwise, it relates to the smallest narrow throat or neck. For scales larger than363

the reach, xpδφq2yR contains information about the morphology of the structures364

under hand. In this respect, Adler et al. (1990); Torquato (2002); Thiesset et al.365

(2021) showed that the scale distribution xφ`φ´yR or xpδφq2yR widens when the366

morphological content (or its tortuousness) of a given set increases. Similarly, the367

fractal facets of aggregates are often appraised by use of correlation function of368

the phase indicator at intermediate scales (see e.g. Sorensen 2001). In particular,369

Morán et al. (2019) showed that when increasing the ratio between the largest370

scales (the aggregate radius of gyration) and the smallest scales (the radius of371

the primary particle), the correlation function reveals an increasing range of372

scales complying with a fractal scaling (a power law). Vassilicos & Hunt (1991);373

Vassilicos (1992); Vassilicos & Hunt (1996) showed that xpδφq2yE might reveal374

a power law behavior whose exponent is related to the fractal dimension (more375

precisely the Kolmogorov capacity) of iso-scalar surfaces. This was investigated376

in great details by Elsas et al. (2018) for the enstrophy, dissipation and velocity377

gradient invariants. When several structures are present, xpδφq2yE,R also depends378

on the way the different fluid structures are organized in space. The reach of379

the surface plays an important role here since it is the scale which separates the380

zones in scale space where xpδφq2yR depends only on integral geometric measures381

(Σ, xH2ys, xGys) and the range of scales for which two-point statistics become382

a morphological descriptor (Torquato 2002) for which both the geometry and383

the additional information about the medial axis is required for the structure to384

be characterized. For scales larger than the reach, the separation r cannot be385

interpreted as the size of the structure under consideration (as it will be seen386

later the correlation xφ`φ´yR tends to 0 when the scale r is similar to the size of387

the structure), but should rather be referred to as the morphological parameter388

as it is generally done in morphological analysis using e.g. integral geometrical389

measures (the Minkowski functional) of parallel sets (Arns et al. 2004; Dumouchel390

et al. 2022).391

Given the asymptotic limits detailed in previous section, it seems natural to392

examine the limit at small and large-scales of Eq. (2.12) (or Eq. (2.9)). In Thiesset393

et al. (2021), it was demonstrated that Eq. (2.12) naturally converge to the394

transport equation for the surface density when |r| Ñ 0. The latter can be written395

in the form (Pope 1988; Candel & Poinsot 1990; Drew 1990; Blakeley et al. 2019):396

BtΣ `∇x ‚ xuysΣ “ pKT `KCqΣ, (2.23)397

where the stretch rate K “ KT`KC measures the relative time increase of surface398

density. KT denotes the tangential strain rate that may include compressibility399

effect, and KC “ ´2xSdHys is the curvature component of the stretch rate.400

Thiesset et al. (2021) considered the case where Sd “ 0 (a material surface401

Rapids articles must not exceed this page length
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as in two-phase flows) and showed that, in the limit of small separations, the402

X-transport term in Eq. (2.12) asymptotes the convection process of the surface403

density Σ (the rightmost term on LHS Eq. (2.23)) while the unsteady term in Eq.404

(2.12) obviously tends to the unsteady term in Eq. (2.23). Thiesset et al. (2021)405

argued that by difference, the r-transfer term is proportional to the strain rate406

KT , viz.407

lim
rÑ0

“

´∇r ‚ xpδuqpδφq2yR
‰

“ KTΣ
r

2
. (2.24)408

Note that here again, this holds true in anisotropic configuration by using an409

additional angular average. When the interface displacement speed is not zero,410

the RHS in Eq. (2.12) has the following asymptotic limit:411

lim
rÑ0

“

2 pσxSd|∇φ|yRq ´ 2
`

xφ´S`d |∇xφ|
`yR ` xφ

`S´d |∇xφ|
´yR

˘‰

412

“ 2xSdysΣ ´ 2Σ
´

xSdys ` xSdHys
r

2

¯

413

“ ´2xSdHysΣ
r

2
414

“ KCΣ
r

2
. (2.25)415

Consequently, the additional term in the two-point budget due to the presence416

of an interface displacement speed asymptotes, in the limit of small separations,417

to the curvature component of the stretch rate.418

Similarly, given that at large scales, the r-transfer term tends to zero, Eq. (2.12)419

should provide insights into the excursion set volume equation. We indeed obtain420

that at large scales, the budget simplifies to421

lim
rÑ8

Btxpδφq
2yR “ 2p1´ 2xφyRqBtxφyR422

“ 2p1´ 2xφyRqxSdysΣ, (2.26)423

where use was made of the equation for the volume (Drew 1990):424

BtxφyR “ xSdysΣ. (2.27)425

Note that the volume of the excursion set xφyR reads as the probability that426

ξpxq ą ξ0. It is thus related to the cumulative distribution of ξpxq. Assuming a427

Gaussian distribution for the scalar field ξpx, tq, xφyR can be written analytically428

as429

xφyR “
1

2

ˆ

1´ erf

ˆ

ξ0
?

2ξrms

˙˙

(2.28)430

where the subscript ”rms” stands for the standard deviation of the considered431

quantity. To dig a little deeper in the interpretation of xpδφq2yR, we can resort to432

some tools from mathematical morphology. This analysis is carried in Appendix433

A, where we provide a handy demonstration that at intermediate scales, xpδφq2yR434

measures the morphological content of the sets under consideration. The structure435

function is thus here aptly named since it is a function that depends on the436

structure (actually the micro-structure) of the fluid elements. It allows some437

geometrical features of iso-scalar sets to be inferred such as its volume, the438

surface area, mean and Gaussian curvatures and its transport equation naturally439

approaches the transport equations of surface density and volume at respectively440
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small and large scales. Note that by virtue of the Gauss-Bonnet theorem, the441

presence of xGys in Eq. (2.17) indicates that xpδφq2yR depends also on the topology442

(the Euler characteristic) of the field under consideration.443

Consequently, the present set of equations allows not only the morphology of444

scalar excursion sets to be described, it also accounts for its kinematic evolution445

through Eqs. (2.9) or (2.12). The interface retains through its geometry and446

kinematics the signature of the flow dynamics and, in some instances (e.g. two-447

phase flows, TNTI), may even influence the whole flow dynamics. Therefore, we448

like referring this framework to as a morphodynamical theory since it is likely to449

provide insights into the morphological evolution of fluid elements.450

3. Numerical database and post-processing451

3.1. Direct Numerical Simulation of scalar mixing in decaying turbulence452

The present analytical framework is appraised using data from Direct Numerical453

Simulations (DNS). We studied two flow configurations, i.e. forced turbulence454

(denoted by the ”F” letter in Table 1) and decaying turbulence (denoted by the455

letter ”D” in Table 1). We have also one case, noted ”T”, which was used for tests456

and validation purposes. Table 1 gathers all important simulation parameters and457

related statistical quantities, where N denotes the number of grid points along458

one coordinate axis, ν is the kinematic viscosity, and459

Rλ “
urmsλ

ν
(3.1)460

is the Reynolds number based on the Taylor micro-scale λ “
a

15νu2
rms{xεy,461

where urms is the root-mean-square velocity, xky “ xuiuiy{2 is the mean kinetic462

energy, and xεy “ 2νxSijSijy is the mean energy dissipation rate, with the strain463

rate tensor given by Sij “ pBui{Bxj `Buj{Bxiq{2. Further, xξ2y denotes the mean464

scalar variance, xεξy “ 2DxpBξ{Bxiq
2y is the mean scalar dissipation rate and λξ “465

a

6Dxξ2y{xεξy denotes the Corrsin length-scale. Lt and Lξ denote the integral466

length scales of the velocity and scalar fields, respectively. The Kolmogorov and467

the Batchelor length scales are defined as468

η “

ˆ

ν3

xεy

˙1{4

and ηB “

ˆ

νD2

xεy

˙1{4

“
η

Sc1{2
, (3.2)469

respectively. The turbulent Péclet number Peλξ is defined in Section 4.5.470

‚ The forced turbulence database encompasses 6 different values of Taylor471

based Reynolds numbers Rλ (cases F0 to F5 in Table 1) from 88 to 530. For the472

lowest Reynolds number (F0, Rλ “ 88), we carried out another simulation with473

four different scalar fields with different diffusion coefficients D, which correspond474

to Schmidt number variations from Sc “ 0.1 to 1.0. The numerical database for475

case F0 (Sc “ 1.0) to F5 is the same as the one used in Gauding et al. (2015,476

2017). To maintain a statistically steady state, an external stochastic forcing is477

applied to the velocity field (Eswaran & Pope 1988). The forcing is statistically478

isotropic and limited to low wave-numbers to avoid the small scales to be affected479

by the forcing scheme. The passive scalar field is fed by a uniform mean scalar480

gradient Gξ which is applied on the y-direction. Hence, the scalar field ξ̃ can be481
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decomposed into a mean field Gξy and a fluctuating field ξ, i.e.,482

ξ̃ “ Gξy ` ξ . (3.3)483

The value of the mean scalar gradient Gξ is set to unity without loss of generality.484

The indicator function is defined on the fluctuating field ξ, which is statistically485

homogeneous but not isotropic. The statistical anisotropy that is induced by the486

mean scalar gradient is further discussed in appendix F. A resolution condition487

of κmaxη ą 2.5 (where κmax is the maximum wavenumber achievable on the488

numerical grid and η the Kolmogorov length-scale) is maintained for all cases. As489

a consequence, the number of grid points has been increased to as high as N “490

40963 for case F5. The statistics presented in Table 1 and throughout the paper491

correspond to spatial and ensemble averages over M statistically independent492

snapshots. M varies between 6 for case F5 to 106 for case F0. We have checked493

that the number of indepedent snapshots M was sufficient for two-point statistics494

to be converged. Some tests are reported in Appendix G495

‚ For the decaying turbulence case, we explored two distinct situations, the496

first where the uniform imposed mean scalar gradient is maintained (case D0)497

and another where both the velocity and scalar field are decaying (case D1).498

For both D0 and D1, we have carried out DNS for two values for the Schmidt499

number (0.2 and 1.0). The initial velocity field is generated in spectral space to500

be random and statistically isotropic. It satisfies incompressibility and obeys a501

prescribed energy spectrum, i.e.,502

Epκ, t “ 0q9κ4 exp

˜

´2

ˆ

κ

κp

˙2
¸

, (3.4)503

where κp is the wave-number at which the initial energy spectrum has its peak.504

We chose κp “ 15 as a compromise between limiting confinement effects and the505

goal of reaching a high Reynolds number. The initial mean kinetic energy xky506

equals 10 leading to an initial Reynolds number, defined as urmspt “ 0q{pνκpq,507

as large as 689. For case D0, the scalar field is initialized to zero, allowing scalar508

structures to develop naturally from the injection of energy through the imposed509

mean scalar gradient. For case D1, the scalar field decays freely from a prescribed510

spectrum, which is identical to the energy spectrum of the velocity field given by511

Eq. (3.4) with the same initial peak wave-number κp. Values reported in Table512

1 and throughout the paper were obtained at time t “ 10, which is about one513

decade after the onset of the exponential decay of the kinetic energy. At this time,514

turbulence is highly resolved with a resolution condition κmaxη “ 12.5. For more515

details on the setup of the simulations, see Gauding et al. (2019).516

‚ The test case T0 corresponds to decaying turbulence, but with a mesh517

size of 5123. This allowed us to test the appropriateness of the post-processing518

procedures. These validations are presented in the Appendix B and C and519

discussed hereafter in the paper.520

The present DNS data were obtained by solving the Navier-Stokes equations521

and a scalar advection-diffusion equation using a dealiased pseudo-spectral ap-522

proach. For dealiasing, a filter procedure proposed by Hou & Li (2007) is used,523

which ensures stability and inhibits spurious oscillations in real space. For cases524

F0-F5, a second order semi-implicit Adams-Bashforth/Crank-Nicolson method is525

used for temporal integration. For the decaying turbulence simulations D0-D1,526

a low-storage, stability preserving, third-order Runge-Kutta scheme is employed,527
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where for stability, the viscous and diffusive terms are treated by an integrating528

factor technique. For all cases, the numerical domain is a triply periodic box with529

length Lbox “ 2π. The simulations have been carried out with an in-house hybrid530

MPI/OpenMP parallelized simulation code on the supercomputer JUQUEEN at531

research center Jülich, Germany.532

We show some typical snapshots of the ξpxq “ 0 iso-surface for different values533

for the Schmidt and Reynolds numbers in Fig. 2. We show only a 2π ˆ 2π ˆ π{2534

subset of the simulated domain. The interface is colored by the displacement535

speed Sd which is normalized by the velocity standard deviation urms “ 2xky{3.536

The color scale covers the range ´1 ď Sd{urms ď 1. Note that although Fig. 2537

gives another impression (remember that only a subset of the domain is presented538

here), the volume fraction formed by the iso-scalar ξpxq “ 0 is the same for all539

cases and is equal to 0.5. We note that while keeping Rλ constant (the three540

leftmost figures in Fig. 2), a Schmidt number variation from 1 to 0.1 yields a541

substantial decrease of surface density. The interface is less wrinkled and the542

corrugation covers a narrower range of scales. This highlights the role of diffusion543

on the iso-surface geometrical quantities. On the other hand, an increase of the544

Reynolds number from (the four rightmost figures in Fig. 2) is followed by the545

creation of smaller and smaller wrinkles and an increase of the morphological546

content of the iso-scalar volume. xpδφq2yR,E is thus believed to widen with Rλ.547

Fig. 2 also reveals that the displacement speed Sd varies mostly in zones of high548

curvature. This suggests that the curvature of the interface might play a crucial549

role for understanding the variations of the displacement speed and its different550

components.551

3.2. Post-processing procedure552

The computation of two-point statistics is challenging as it involves the execution553

of a convolution operation. We compute two-point statistics accurately in real554

space by a hybrid MPI/OpenMP parallelization employing the two-dimensional555

pencil domain decomposition of the DNS code. The partial angular average is556

approximated by averaging over the rx-, ry-, and rz-directions. Special attention557

is required for the transfer term, which involves the divergence of a two-point558

quantity. To avoid the assumption of isotropy, the transfer term is approximated559

by a second-order finite difference scheme. For instance, in rx-direction, the560

transfer term reads561

∇r ‚ xpδuqpδφq2yRprx, 0, 0q «

1

2∆rx

“

xpδuxqpδφq
2yRprx `∆rx, 0, 0q ´ xpδu1qpδφq

2yRprx ´∆rx, 0, 0q
‰

`

1

2∆ry

“

xpδuyqpδφq
2yRprx, ∆ry, 0q ´ xpδu2qpδφq

2yRprx,´∆ry, 0q
‰

`

1

2∆rz

“

xpδuzqpδφq
2yRprx, 0, ∆rzq ´ xpδu3qpδφq

2yRprx, 0,´∆rzq
‰

,

(3.5)562

where ∆ri is the grid spacing and ux, uy, uz are the velocity component in x,563

y, and z directions, respectively. The transfer terms in ry- and rz-directions are564

obtained by a similar procedure.565

Some two-point statistics were also computed over the whole r space using566

the routines available through the increments library of the project pyarcher567

(Thiesset & Poux 2020). Because six nested loops are needed to cover the568
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whole pX, rq-space, we make use of an openMP parallelization for enhancing569

the calculation speed. Full 3D two-point distributions were estimated only for570

case F0 and T0 and limited to the range of scales ´96dx ď prx, ry, rzq ď 96dx571

where most of the processes take place. By doing so, we are able to check that the572

partial angular average operated only over rx-, ry-, and rz-directions was leading573

to similar results than those obtained from the full angular average over whole574

set of solid angles. These tests are presented in Appendix C and show that the575

partial angular average yields similar results as the full angular average. In what576

follows, only the results for the partial angular average will be presented.577

Compared to the equation derived by Thiesset et al. (2020), the influence of578

the interface displacement results in an additional source term in Eq. (2.12).579

The latter highlights a correlation of the bulk phase φ with the surface quantity580

Sd|∇xφ|. Hence, this term requires a special treatment. Here, we adapt and581

develop a procedure inspired by the method of Seaton & Glandt (1986). The582

reader is advised to refer to Appendix B for a description and a validation of the583

method.584

The geometrical properties of the iso-surface (local surface area, mean and585

Gaussian curvatures, surface conditional statistics) are extracted using the586

surface operators routines of pyarcher. These are earlier versions of the587

routines described by Essadki et al. (2019); Di Battista et al. (2019), now588

available through the project Mercur(v)e.589

http://docs.mercurve.rdb.is/
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Figure 2: Iso-surface colored by the displacement speed Sd for increasing
Schmidt numbers or Reynolds numbers. (a) F0, Sc “ 0.1, (b) F0, 0.4, (c) F0,

1.0, (d) F2, (e) F4, (f) F5.

4. Results590

4.1. Surface conditional statistics591

The analytical section presented above reveals that the displacement speed Sd592

contains many of the key physics in the behavior of iso-scalar surfaces. Depending593

on the situation, it may incorporate different processes such as diffusion, chemical594

reactions or any other source terms acting on the scalar field. It is thus important595

to understand how Sd evolves along the iso-surface when Rλ and/or Sc are varied.596

In our situation, the displacement speed contains up to three components, one597

due to diffusion in the normal direction noted Snd , another due to diffusion in598

the tangential direction Scd “ 2DH and a last contribution associated with599

the imposed mean scalar gradient noted Ssd. Their respective expressions are600

summarized in Table 2.601

As it is generally done in reacting flows (Gran et al. 1996; Peters et al. 1998),602

the variations of Sd along the surface ξpx, tq “ ξ0 are analyzed through surface603

weighted average of its different components conditioned on the mean curvature604

H. These surface conditioned statistics are noted xSid|Hys (i “ tc, n, su denotes the605

contribution to the displacement speed). Such conditional statistics are relevant606

notably for providing insights into the curvature component of the stretch rate607

KC , which reads as the mean product of the displacement speed Sd by the mean608

curvature H.609

We first analyze the effect of Rλ on Sd and its components. Surface conditioned610
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Total Sd “ Ssd ` S
d
d

= Source Ssd “
uyGξ
|∇xξ|

+ Diffusion Sdd “ Scd ` S
n
d “

∇x‚D∇xξ
|∇xξ|

= Tangential diffusion Scd “ 2DH

+ Normal diffusion Snd “
n‚∇xpn‚D∇ξq

|∇xξ|

Table 2: Expression of the different components of the displacement speed in
forced turbulence with a mean scalar gradient Gξ.
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Figure 3: Surface averaged displacement speed and its components conditioned
on the mean curvature H for ξ0 “ 0. From dark to light, case F0 (Sc “ 1.0) to
F4. In (a) Sd (full lines), Sdd (dashed lines) and Scd (dotted lines) are portrayed

while Snd (dashed lines) and Ssd (full lines) are displayed in (b).

statistics of Sd, S
d
d and Scd are portrayed in Fig. 3(a), while those of Snd and Ssd are611

displayed in Fig. 3(b). We consider here an iso-value of ξ0 “ 0. Note that in Fig.612

3(a), the ordinate axis is ten times larger than the one of Fig. 3(b), which shows613

that the source term and normal diffusion contributions of Sd are much smaller614

than the tangential diffusion component. Therefore, assuming Sd « 2DH appears615

as a reasonable assumption irrespectively of the Reynolds number. In Fig. 3(b),616

we also note that variations of Ssd decrease in amplitude when Rλ increases. This617

suggests that the contribution due to the mean scalar gradient might become618

negligible at sufficiently large Rλ. It is worth noting that the normal diffusion619

component of the displacement speed Snd reveals a non-monotonic evolution with620

respect to the mean curvature H. When the surface is only slightly curved (|H|621

is small), Snd is negative (positive) for positive (negative) values of H, while the622

contrary is observed for highly curved regions. The variations of Snd with the623

mean curvature does not depend on the Reynolds number for small values of H.624

The results for different Schmidt number are displayed in Fig. 4. One notes625

again that the tangential diffusion component of the displacement speed Scd,626
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Figure 4: Surface averaged displacement speed and its components conditioned
by the mean curvature H for ξ0 “ 0. From dark to light, case F0, Sc “ 1.0 to
Sc “ 0.1. In (a) Sd (full lines), Sdd (dashed lines) and Scd (dotted lines) are
portrayed while Snd (dashed lines) and Ssd (full lines) are displayed in (b).

is predominant thereby emphasizing the role played by curvature. All curves627

collapse relatively well when the mean curvature is scaled by the scalar diffusivity628

D. When the Schmidt number decreases, the contribution due to the source term629

Ssd increases and so does the normal diffusion contribution Snd .630

The different components of the displacement speed xSid|Hys for a different iso-631

scalar value ξ0 “ ξrms are plotted in Figs. 5 and 6, respectively. We note here632

again that Ssd and Snd are about 3 to 10 times smaller in amplitude than Sdd633

and Scd. In contrast with ξ0 “ 0, Snd appears positive for all values of curvature634

and irrespective of the Schmidt and Reynolds numbers. Although the trends are635

quantitatively different from what was observed for ξ0 “ 0, we note that Sd636

remains strongly dependent to H. In addition, a carefull examination of Fig. 5637

reveals that when Rλ increases, the contribution of Ssd and Snd decreases which638

leads to a better correlation between Sd and 2DH. We can speculate that at639

asymptotically large Rλ, the assumption Sd « 2DH holds true irrespectively of640

the iso-scalar value. At constant Rλ, the contribution of Ssd and Snd increases641

when the scalar diffusivity increases (Fig. 6). This suggests that the different642

contributions to Sd for different iso-level ξ0, should be better be studied in terms643

of Péclet number. In this context, we expect Sd « 2DH to hold with better644

accuracy when the Péclet number increases.645

It is worth finally stressing that our conclusion that the tangential diffusion646

dominates over the other components of the displacement speed, is built upon647

the observations of surface weighted averaged values conditioned by the mean648

curvature H. This observable cannot reveal how Sd and its components are649

statistically distributed for a given H. There is nothing precluding that locally,650

for a given value of mean curvature, the normal diffusion and/or the source term651

contributions to Sd dominate over the tangential diffusion. This is likely to be652

observed for low amplitudes of H where the probability density function of H653

is generally concentrated. More insights into this aspect could be provided by654

studying the joint probability density function of Sid and H. This is far beyond655

the scope of the present work and is left of future investigations.656
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Figure 5: Surface averaged displacement speed and its components conditioned
on the mean curvature H for ξ0 “ ξrms. From dark to light, case F0 (Sc “ 1.0)

to F4. In (a) Sd (full lines), Sdd (dashed lines) and Scd (dotted lines) are
portrayed while Snd (dashed lines) and Ssd (full lines) are displayed in (b).
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Figure 6: Surface averaged displacement speed and its components conditioned
by the mean curvature H for ξ0 “ ξrms. From dark to light, case F0, Sc “ 1.0 to
Sc “ 0.1. In (a) Sd (full lines), Sdd (dashed lines) and Scd (dotted lines) are
portrayed while Snd (dashed lines) and Ssd (full lines) are displayed in (b).

4.2. Second-order structure functions657

The present framework is first invoked to explore the dynamics of iso-scalars658

with an imposed mean scalar gradient in stochastically forced turbulence. In this659

situation, both the flow and scalar characteristics are statistically stationary and660

the displacement speed has two components, one arising from the diffusive term661

Sdd , and one due to the imposed mean gradient Ssd. We focus on the particular662

effect of the Reynolds and Schmidt numbers.663

The Reynolds number dependence of xpδφq2yR,E,Ω for different values of the664

iso-scalar is first considered. Results are presented in Fig. 7 for Rλ ranging665

from 88 to 530 and for two values for the iso-scalar, i.e. ξ0 “ 0 (Fig. 7(a))666

and ξ0 “ ξrms (Fig. 7(b)). xpδφq2yR,E,Ω is normalized by its asymptotic value at667

large scales, i.e. 2xφyE,Rp1´xφyE,Rq while the separation r is normalized by LΣ “668
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Figure 7: Evolution of xpδφq2yE,R,Ω{2xφyE,Rp1´ xφyE,Rq with increasing Rλ. The
separation r is normalized by LΣ “ 4xφyE,Rp1´ xφyE,Rq{Σ. The local scaling

exponent is also plotted in the inset. The dotted gray lines represent the
asymptotic theoretical limits at large and small scales. (a) ξ0 “ 0, (b) ξ0 “ ξrms.

4xφyE,Rp1´xφyE,Rq{Σ. Using the normalization with LΣ “ 4xφyE,Rp1´xφyE,Rq{Σ,669

the asymptotic limits at large and small scales intersect at r{LΣ “ 1. Our670

definition for LΣ finds its inspiration in Lebas et al. (2009); Thiesset et al.671

(2020). A somehow similar definition for LΣ was conjectured by Peters (1992)672

for premixed flames. In the context of the Bray-Moss-Libby model (Bray & Moss673

1977; Libby & Bray 1980), LΣ is known as the wrinkling scale (Kulkarni et al.674

2021), although the surface density is defined differently by the latter authors.675

One observes that all curves collapse at small scales where xpδφq2yR,E,Ω Ñ Σr{2676

and at large scales where xpδφq2yR,E,Ω Ñ 2xφyE,Rp1 ´ xφyE,Rq. The most expert677

readers will probably notice that this behavior is also observed when two-point678

statistics of the velocity (or scalar) field are normalized by the Taylor (or Corrsin)679

microscale (Thiesset et al. 2014). Speculatively, this indicates that LΣ plays for680

xpδφq2yR,E,Ω the same role as the Taylor (Corrsin) microscale for normalizing the681

two-point statistics of the velocity (scalar) field.682

At intermediate scales, the influence of the Reynolds number is perceptible. It683

is observed that a pseudo ’inertial range’ is forming whose extent increases with684

Rλ. The local scaling exponent B logpxpδφq2yR,E,Ωq{B logprq is plotted in the inset685

of Fig. 7 and reveals that a power law with an exponent of about ζ « 0.36´ 0.38686

applies over about one decade at Rλ “ 530. As shown by Vassilicos & Hunt687

(1996); Elsas et al. (2018), the distribution of xpδφq2yR,E at intermediate scales688

contains information about the fractal characteristics of iso-scalar surfaces. The689

scaling exponents relate to the fractal dimension of the iso-surface by Df “690

3´ ζ. The same relation is used in the community of fractal aggregates (see e.g.691

Sorensen 2001; Morán et al. 2019). Note that what we call here a fractal dimension692

should rather be identified to a Kolmogorov capacity (Vassilicos & Hunt 1991;693

Vassilicos 1992). We also exclude the possibility that the fractal dimension of694

the intersection of the iso-scalar volume with a line (what we actually measure695

using two-point statistics of the phase indicator) may be different from the fractal696

dimension of the iso-volume itself (Vassilicos 1992).697

The numerical value for Df is found to be in the range t2.62´ 2.64u, in quite698

good agreement with the DNS value reported by Iyer et al. (2020) in the exact699
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same numerical configuration (they find Df “ 2.67 at Rλ “ 650 for ξ0 “ 0 using700

the box-counting method) and the theoretical analysis of Mandelbrot (1975) or701

Grossmann & Lohse (1994) (also reproduced by Iyer et al. (2020)) providing a702

value of 8{3. When ξ0 “ ξrms, the value for the fractal dimension is roughly the703

same although Iyer et al. (2020) showed that the fractal dimension decreases when704

the threshold ξ0 is moved away from the mean value ξ0 “ 0. It is also worth noting705

that the scale dependence of the local slope in the range LΣ ď r ď 10LΣ does706

not exceed 5%. This is in contrast with the results presented by Iyer et al. (2020)707

(see their Fig. 2) where there is no distinct scaling range for ξ0 “ 0. This suggests708

that, in agreement with the observations of Elsas et al. (2018), measuring the709

fractal dimension using the second-order structure function of the iso-scalar field710

is probably more robust that the one inferred from the box counting method.711

The flow under consideration is anisotropic due to the presence of the mean712

scalar gradient. We here coped with this by employing the partial angular average713

along three coordinates of r. It is thus worth evaluating if the above features for714

xpδφq2yE,R are retrieved along the different directions of the separation vector715

r. This point is addressed in Appendix F where similar trends are observed,716

irrespectively of the direction. Only some small differences between the directions717

parallel and perpendicular to the mean scalar gradient appear at the large scales.718

In appendix D, we also consider normalizing the separation r by the radius of719

gyration Rg. The latter can be computed directly from xpδφq2yR,E,Ω by (Sorensen720

2001; Yon et al. 2021):721

R2
g “

1

2

ş8

0
r4Aprqdr

ş8

0
r2Aprqdr

(4.1)722

where Aprq is the correlation function normalized in such a way that Aprq “ 1 at723

r “ 0 and Aprq “ 0 at large scales, viz.724

Aprq “ 1´
xpδφq2yR,E,Ω

2xφyE,Rp1´ xφyE,Rq
(4.2)725

The results presented in Fig. 20 of appendix D show that the radius of gyration726

is a characteristic scale of the distribution xpδφq2yR,E,Ω at large scales. Hence, Rg727

plays for xpδφq2yR,E the same role as the integral length-scale for normalizing the728

two-point statistics of the velocity (or scalar) field.729

In Appendix E, we also test the appropriateness of using the standard deviation730

of mean curvature Hrms as a similarity variable. This type of normalization is731

expected to hold at small scales. Indeed, going back to Eq. (2.17), and further732

assuming xGys ! xH2ys, we have733

xpδφq2yE,R,Ω
ΣH´1

rms

“
1

2
rHrms

˜

1´
prHrmsq

2

8

¸

, (4.3)734

which is thus expected to be independent of Reynolds and Schmidt numbers735

when plotted in terms of rHrms. The evolution of xpδφq2yE,R,Ω for different Rλ736

when the separation r is normalized by rHrms is presented in Fig. 24 of Appendix737

E. It appears that rHrms plays for the phase indicator field the same role as the738

Kolmogorov (or Batchelor) length-scale for normalizing the two-point statistics739

of the velocity (scalar) field.740

The effect of Schmidt number on xpδφq2yE,R,Ω is plotted in Fig. 8 for Rλ “741
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Figure 8: Evolution of xpδφq2yE,R,Ω{2xφyE,Rp1´ xφyE,Rq with increasing Sc. The
separation r is normalized by LΣ “ 4xφyE,Rp1´ xφyE,Rq{Σ. The dotted gray

lines represent the asymptotic theoretical limits at large and small scales. (a)
ξ0 “ 0, (b) ξ0 “ ξrms.
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Figure 9: Evolution of the transfer term ´x∇r ¨ xpδuqpδφq
2
yE,RyΩ normalized by

2KT xφyE,Rp1´ xφyE,Rq with increasing Rλ. The separation r is normalized by
LΣ . The local scaling exponent is also plotted in the inset. The dotted gray

lines represent the asymptotic theoretical limits at small scales. (a) ξ0 “ 0, (b)
ξ0 “ ξrms. The color legend is the same as in Fig. 7.

88 and Sc ranging from 0.1 to 1 and ξ0 “ 0 (Fig. 8(a)) and ξrms (Fig. 8(b)).742

We observe again that normalizing the separation r by LΣ and xpδφq2yE,R,Ω by743

2xφyE,Rp1´xφyE,Rq yields a convincing collapse of the different curves at both small744

and large scales. The Schmidt number effects are perceptible only at intermediate745

scales where the scale distribution widens with increasing Sc. This means that746

increasing the diffusivity of the scalar tends to decrease the morphological content747

of the iso-scalar fields. This is the first evidence that diffusion acts as a restoration748

effect which counteracts the influence of turbulent straining. More details on this749

aspect will be given later when examining the budgets of xpδφq2yE,R,Ω.750
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4.3. Transfer term751

We now address the influence of Reynolds and Schmidt numbers on the transfer752

term ´x∇r ¨ xpδuqpδφq
2yE,RyΩ. In Fig. 9, we consider the case where Rλ is ranging753

from 88 to 530 and Sc “ 1.0. The transfer term is normalized by 2KT xφyE,Rp1´754

xφyE,Rq while the separation is divided by LΣ. This normalization is found to yield755

a good collapse of all curves at small scales. The specific evolution of the strain756

rate KT with respect to Rλ and Sc will be discussed later. Although visible, the757

influence of the iso-value ξ0 is rather limited, at least when the latter is moved758

from ξ0 “ 0 to ξ0 “ ξrms.759

In Fig. 21 of appendix D, we also report that the transfer term is independent760

of Rλ in the large-scales limit when the separation is normalized by Rg while x∇r ¨761

xpδuqpδφq2yE,RyΩ is divided by a sort of turbulent strain felt at a scale Rg which762

can be written as
a

xky{Rg (xky is the turbulent kinetic energy). Consequently,763

Rg and
a

xky{Rg are appropriate for normalizing the transfer term in the large764

scale limit. Fig. 25 of appendix E proves that the small-scale similarity variables765

for the transfer term are H´1
rms and KTΣH´1

rms which plays for φ the same role as766

the Kolmogorov (Batchelor) scales for the velocity (scalar) field.767

In Fig. 9, we also show the local scaling exponent of the transfer term. Although768

the scaling range appears more restricted than the one observed for second-769

order moments, there seems to be a plateau forming around a value of about770

t´0.21;´0.23u at the larger Rλ. Let us naively assume that, at intermediate771

scales, the flux can be written as:772

xpδuqpδφq2yE,R „ xpδu||q
2y

1{2
R,Expδφq

2yR,E „ rζu{2`ζ . (4.4)773

Here, δu|| “ δu ¨ r{|r| is the longitudinal increment of velocity. If we further774

state that ζu, the scaling exponent for the velocity structure function, is equal775

to ζu “ 2{3, we obtain that the transfer term should scale as rζ´2{3 “ r7{3´Df776

which for ζ “ t0.36; 0.38u gives a scaling exponent of t´0.29; ´ 0.31u. Our777

numerical data indicate a value around t´0.21; ´0.23u for the transfer term778

scaling exponent which is in reasonable agreement with this crude scaling analysis.779

If we account for internal intermittency, i.e. ζu ą 2{3, the predicted exponent of780

the transfer term is closer to the numerical value. Note that this reasoning holds781

also in the small scale limit, where xpδu||q
2y1{2 „ xpδφq2y „ r1 and hence the782

transfer term should scale as r1, which is numerically observed. To give this783

scaling analysis a bit more strength, we use the closure proposed by de Divitiis784

(2014, 2016, 2020) which has the advantage of not relying on a parametrized785

turbulent diffusion hypothesis. When adapted to xpδφq2yE,R, the latter writes,786

´x∇r ¨ xpδuqpδφq
2yE,RyΩ “

1

2
xpδu||q

2y
1{2
E,R,Ω Brxpδφq

2yE,R,Ω. (4.5)787

Assuming again that xpδu||q
2yE,RyΩ scales as r2 at small scales and r2{3 at in-788

termediate scales, we obtain that the transfer term should scale as r1 and789

rζ´2{3 “ r7{3´Df at small and intermediate scales, respectively. This reasoning790

is in agreement with the numerical data.791

While the Kolmogorov four-fifth law and Yaglom four-third law are known792

to provide a r0 scaling for the transfer term of either velocity or scalar in the793

inertial range, the one pertaining to the phase indicator is substantially different794

and is proved to relate to the fractal dimension of the iso-surface. According to795

our elaborations, a fractal dimension of 8{3 translates into a r´1{3 scaling for796
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Figure 10: Evolution of the transfer term ´x∇r ¨ xpδuqpδφq
2
yE,RyΩ normalized

by 2KT xφyE,Rp1´ xφyE,Rq with increasing Sc. The separation r is normalized by
LΣ . The dotted gray lines represent the asymptotic theoretical limits at small

scales. (a) ξ0 “ 0, (b) ξ0 “ ξrms. The color legend is the same as in Fig. 8.

the transfer term of iso-volumes while a fractal dimension of 7{3 results in a r0797

scaling.798

The effect of Schmidt number on the transfer term is displayed in Fig. 10(a) for799

ξ0 “ 0 and Fig. 10(b) for ξ0 “ ξrms. In both cases, Rλ “ 88. When Sc increases800

from 0.1 to 1.0, all curves collapse well at small scales thereby complying with801

the tLΣ, 2KT xφyE,Rp1´xφyE,Rqu scaling. It is further observed that decreasing the802

diffusivity of the scalar field (i.e. increasing the Schmidt number) acts in widening803

the range of scales over which the transfer term operates. The same trend was804

observed for increasing Reynolds numbers. This suggests that the appropriate805

non-dimensional number for characterizing the phase indicator scale distribution806

and its transfer is likely to be the Péclet number. This assertion will be discussed807

in more details later in this paper.808

4.4. Two-point budget809

The different terms of the angularly averaged budget Eq. (2.15) for Sc “ 1.0,810

88 ď Rλ ď 530 and for two values for the iso-scalar ξ0 “ 0 and ξ0 “ ξrms811

are presented in Fig. 11. Here again, the different terms are normalized by812

2KT xφyE,Rp1´ xφyE,Rq while the separation is divided by LΣ. The normalization813

by the large-scale quantities Rg and
a

xky{Rg is reported in Fig. 22 of Appendix814

D while the one based on Hrms and KTΣ{Hrms is plotted in Fig. 26 of Appendix815

E.816

Fig. 11 reveals that the transfer term is positive which means that, as expected,817

the action of turbulence stirs, stretches and folds the scalar field thereby increas-818

ing its tortuousness and its morphological content. The diffusive component of the819

interface propagation term, i.e. the term due to Sdd , is negative and thus acts in820

smoothing the interface. Peters (1992) used to refer to the process associated821

with Sd as a kinematic restoration effect which appears indeed aptly named822

as it tends to counteract the influence of turbulent strain by smoothing the823

interface. The term in the two-point budget associated with the imposed mean824

gradient, i.e. the term due to Ssd, is negative for an iso-scalar value ξ0 “ 0 and825

positive for ξ0 “ ξrms. This indicates that the imposed mean gradient decreases826
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Figure 11: Budget of xpδφq2yE,R,Ω with increasing Rλ. Full lines: transfer term,
dashed lines: Sdd -term, dash-dotted lines: Ssd-term. All contributions are

normalized by 2KT xφyE,Rp1´ xφyE,Rq while the separation r is normalized by
LΣ . (a) ξ0 “ 0, (b) ξ0 “ ξrms. The color legend is the same as in Fig. 7.

the morphological content of the iso-scalar close to the ξ0 “ 0 iso-value and827

redistributes it to the scalar iso-values away from the mean.828

The influence of Rλ is also visible in Fig. 11. When normalized by 2KT xφyE,Rp1´829

xφyE,Rq, the different terms collapse at small scales and decrease in amplitude in830

the intermediate range of scales. WhenRλ increases, the range of scales over which831

the different terms of the budget are contributing, increases. Using the large-scale832

normalization (see Fig. 22 in appendix D), the terms collapse at large scales and833

their respective amplitude increases with Rλ. The evolution of the different terms834

of the budget using the small-scale similarity variables is presented in Fig. 26 of835

Appendix E. It is also worth noting that, at small, up to intermediate scales,836

the relative influence of the Ssd-term compared to e.g. the transfer term decreases837

when Rλ increases. This suggests that in the limit of very large Rλ, the strain rate838

and the diffusion terms balance while the source term due to the imposed mean839

gradient remains concentrated only at the large scales. In other words, at large840

Rλ, the strain rate KT and the curvature component of the stretch rate due to841

Sdd , i.e. Kd
C “ ´2xSddHys balance, whilst the curvature component of the stretch842

rate due to Ssd, i.e. Ks
C “ ´2xSsdHys tends to zero. For ξ0 “ 0, the area weighted843

averaged displacement speed is zero. Fig. 11(a) confirms that all terms tend to844

zero at large scales in agreement with Eq. (2.22). For ξ0 “ ξrms, only the transfer845

term approaches zero when r Ñ 8 while the Sdd - and Ssd-terms balance. The846

limit of the Sdd -term at large scales is also in agreement with Eq. (2.22) which is847

displayed by the horizontal gray dotted lines in Fig. 11(b). The balance between848

the Sdd - and Ssd-terms at large scales suggests that the volume of the excursion849

set which naturally decreases due to diffusion effect is exactly compensated by850

the imposed mean gradient.851

The effect of Schmidt number on the different terms of the budget at constant852

Rλ “ 88 is displayed in Fig. 12(a) for ξ0 “ 0 and Fig. 12(b) for ξ0 “ ξrms. Here853

again, the normalization using LΣ and KT yields a good collapse of all curves854

in the limit of small separations. For ξ0 “ 0, decreasing the Schmidt number855

from 1.0 to 0.1, i.e. increasing the scalar diffusivity by a factor of 10, leads to856

a smaller amplitude of the diffusion term in the intermediate range of scales. In857
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Figure 12: Budget of xpδφq2yE,R,Ω with increasing Sc. Full lines: transfer term,
dashed lines: Sdd -term, dash-dotted lines: Ssd-term, dotted lines: ´Sdd -term. All

contributions are normalized by 2KT xφyE,Rp1´ xφyE,Rq while the separation r is
normalized by LΣ . (a) ξ0 “ 0, (b) ξ0 “ ξrms. The color legend is the same as in

Fig. 8.

the same range of scales (i.e. up to r « LΣ), the transfer term normalized by KT858

appears rather insensitive to Schmidt number variations. The influence of Sc on859

the transfer term is perceptible only at large scales where it is observed that the860

scale at which the transfer term approaches zero decreases with increasing scalar861

diffusivity. The third term in the budget due to the imposed mean gradient is862

plotted as dash-dotted lines. When ξ0 “ 0, the latter is negative, progressively863

tends to zero when Sc decreases, and becomes even slightly positive for Sc “ 0.1.864

This means that when Sc “ 0.1, the scalar is so diffusive that the imposed865

mean gradient becomes a gain in the budget for this particular iso-value. For866

ξ0 “ ξrms, the term due to the imposed mean gradient acts at rather large scales,867

is positive and increases in amplitude when Sc decreases. At large scales the868

budget is composed of only the diffusion and imposed mean gradient terms, while869

the transfer term is zero.870

4.5. Strain and curvature components of the stretch rate871

We now investigate the evolution of the different normalizing quantities with872

respect to Rλ and Sc. When both Rλ and Sc vary, it may be more appropriate873

to define the turbulent Péclet number:874

Peλξ “

a

2xky{3λξ
D

(4.6)875

With this definition, the Péclet number is related to the Schmidt and Reynolds876

number by877

Peλξ “

ˆ

6R

10

˙1{2

RλSc
1{2 (4.7)878

where R is the scalar to mechanical time-scale ratio, i.e.879

R “
xξ2y

xεξy

xεy

xky
(4.8)880
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which may also vary with Rλ and Sc.881

We first characterize the influence of the Péclet number on KT , Kd
C and Ks

C .882

KT is inferred from Eq. (2.24), i.e. from the slope of the transfer term in the limit883

of small scales. Similarly, Eq. (2.25) reveals that Kd
C and Ks

C can be obtained884

from the slope of the Sdd and Ssd terms, respectively, when r approaches zero.885

Results are portrayed in Fig. 13 where all quantities are made non-dimensional886

by multiplying by the Kolmogorov time scale τη “ pν{xεyq
1{2.887

For Peλξ ą 50, the normalized strain rate KT τη is nearly constant around a888

value of about 0.25. Since this observation holds for both ξ0 “ 0 and ξ0 “ ξrms,889

this means that the different iso-scalars experience nearly the same turbulent890

straining. The value of 0.25τη is in agreement with the finding of Yeung et al.891

(1990) who report a value of 0.28 for material surfaces. It is also consistent892

with the phenomenological model of Thiesset et al. (2016b) which gives roughly893

the same value of 0.28. It is argued by Girimaji & Pope (1992) that the strain894

rate experienced by propagating surfaces is smaller than that acting on material895

surfaces since there will be less time for the iso-surface to align with strain. Our896

value of 0.25 for KT τη instead of 0.28 is thus consistent with this argument. In897

addition, when the scalar diffusivity is increased so that Peλξ ă 50, we note a898

substantial decrease of KT τη which drops down to 0.2. This indicates that the899

higher the diffusivity, the larger is the displacement speed, and the smaller the900

time for the iso-surface to align with strain. The constancy of KT τη at large Péclet901

numbers is also predicted by the closure of de Divitiis (2014, 2016, 2020) given902

by Eq. (4.5). Indeed, Kolmogorov’s first similarity hypothesis implies for r Ñ 0:903

xpδu||q
2yE,R,Ω „

xεy

ν
r2, (4.9)904

which by virtue of Eqs. (2.17) and (2.24) gives KT τη “ const..905

A careful analysis of Fig. 13 further shows that Kd
Cτη is always negative and906

thus counteracts the effect of turbulent straining. It also approaches a constant907

value when Péclet increases, but at a smaller rate than KT . The influence of908

the imposed mean gradient on the source component of the stretch rate Ks
Cτη is909

perceptible at finite Péclet number and it is observed to be negative for ξ0 “ 0 and910

positive for ξ0 “ ξrms. Here again, this suggests that the imposed mean gradient911

acts in redistributing the surface density from the mean iso-value ξ0 “ 0 to iso-912

values away from the mean. Ks
Cτη approaches zero at the highest Péclet number.913

This indicates that in the limit of very high Peλξ , the imposed mean gradient914

does not influence the evolution of the iso-scalar surface density, the latter being915

driven only by diffusion and straining effects.916

4.6. Characteristic length-scales917

The previous analysis of two-point statistics highlighted the existence of three918

characteristic length-scales for the excursion set φ. The first one, LΣ, is relevant919

for normalizing the two-point statistics at both small and large scales. The second920

Rg applies in the large scale limit while the third H´1
rms is relevant at small up to921

intermediate scales. Some speculations about the connection between LΣ (H´1
rms)922

and the Corrsin (Batchelor) microscales have already been stated earlier in this923

paper. We now provide more rigorous evidence for this.924

First, it is worth recalling that, for isotropic media, the surface density Σ925

is related to the number of zero-crossings of the field ξpxq ´ ξ0 (Torquato926

2002). On the other hand, there exist numerous studies that highlight a close927



Structure of iso-scalar sets 29

20 40 70 100 200
Peλξ

−0.2

0.0

0.2

(a)

KT τη

Kd
Cτη

Ks
Cτη

20 40 70 100 200
Peλξ

(b)

KT τη

Kd
Cτη

Ks
Cτη

Figure 13: Scaling of the different components of the stretch rate K “ KT `KC
with respect to Rλ.(a) ξ0 “ 0, (b) ξ0 “ ξrms.

relation between the Taylor microscale and the number of zero-crossings of928

turbulent signals (see e.g. Liepmann 1949; Sreenivasan et al. 1983; Mazellier &929

Vassilicos 2008, among others). Hence, there are reasons to expect that LΣ and930

the Corrsin microscale λξ are intimately linked. Recall that the Corrsin microscale931

is here defined by λ2
ξ “ 6Dxξ2yE,R{xεξyE,R. Second, given that Rg is the relevant932

normalizing scale in the large scale limit, it seems natural to associate Rg with933

the integral length-scale of the scalar field noted Lξ. Here, Lξ is computed from934

the scalar fluctuations spectrum Eξpκq, i.e.935

Lξ “
π

2

ş8

0
κ´1Eξpκqdκ
ş8

0
Eξpκqdκ

(4.10)936

These arguments are tested against numerical data in Fig 14(a). While Peλξ is937

multiplied by roughly 20, the ratioRg{Lξ and λξ{LΣ remain close to 0.5 with some938

small departures which do not exceed ˘20%. Hence, it appears that LΣ „ λξ and939

Rg „ Lξ are good approximations. The small departures in the scaling betweenRg940

and Lξ can be due to several effects. First, some confinement due to the finite ratio941

between Lξ and the simulation box size can be at play. Second, the scaling between942

Rg and Lξ can also be altered by some finite Péclet numbers effects. The latter943

are likely to reveal themselves in the evolution of Rg{Lξ which is first decreasing944

before reaching a plateau for Péclet numbers above 50. Such finite Péclet number945

effects were also noticed by Shete & de Bruyn Kops (2020). As far as the scaling946

between LΣ and λξ is concerned, it is first worth recalling that the Rice’s theorem947

is valid only if both ξ and ∇ξ have Gaussian probability density functions and are948

statistically uncorrelated. While ξ is normally distributed, internal intermittency949

leads to significant departure from Gaussian distributions for the scalar gradient.950

At finite Reynolds or Péclet numbers, the assumption of statistical independence951

between ξ and its derivatives is not likely to hold. As a consequence, all data952

from the literature (e.g. Sreenivasan et al. 1983) indicate that the Rice theorem953

is a good approximation for turbulent signals verified within 20%. Departures are954

thus of same magnitude here. Finally, we explored here only two scalar iso-values.955

It is not excluded that the proportionality between LΣ and λξ ceases to apply956

for some higher iso-values of ξ0.957



30 M. Gauding, F. Thiesset, E. Varea, L. Danaila

20 40 70 100 200
Peλξ

0.0

0.2

0.4

0.6

0.8

1.0

(a)

Lξ/Rg (ξ0 = 0)

λξ/LΣ (ξ0 = 0)

HrmsηB (ξ0 = 0)

Lξ/Rg (ξ0 = ξrms)

λξ/LΣ (ξ0 = ξrms)

HrmsηB (ξ0 = ξrms)

101 102

RgHrms

101

102

L
b
ox
Σ

(b)

ξ0 = 0

ξ0 = ξrms

Figure 14: (a) Ratio of the length-scales Lξ{Rg, λξ{LΣ and HrmsηB , with
respect to Peλξ for both ξ0 “ 0 and ξ0 “ ξrms. The dotted lines represent a

ratio of 0.5 and 0.22. (b) Surface density Σ versus RgHrms. The lines represent
the expectations using a fractal dimension Df “ 2.62.

Let us now focus on the scaling of Hrms. It is first worth recalling that the958

relation KT « Kd
C „ τη holds relatively well, except maybe at the smallest Péclet959

numbers (Fig. 13). On the other hand, the analysis performed in section 4.1960

indicates that Sd « 2DH is a rather safe approximation. With these relations,961

one can easily conclude that the standard deviation of the mean curvature962

is proportional to the inverse of the Batchelor length-scale ηB. This result is963

tested with success in Fig. 14(a) which proves that the standard deviation964

of mean curvature is indeed proportional to the Batchelor length-scale (Due965

to computational limitations, we were unable to estimate Hrms for case F5.966

Hereafter, we will assume Hrms “ 0.22{ηB for this case). It is worth noting967

that DNS data give ηBHrms “ const. even at low Péclet numbers where the968

approximation KT « Kd
C „ τη does not hold anymore. We thus believe that969

the relation between the Batchelor length-scale and the standard deviation of970

mean curvature is likely to be a general result which does not necessarily requires971

KT « Kd
C „ τη. We have also tested the scaling of Hrms with the Obukhov-Corrsin972

length-scale ηOC “ pD
3{xεyq1{4 “ η{Sc3{4 (not shown), but the latter was found to973

be inappropriate. This conclusion is consistent with the findings of e.g. Antonia974

& Orlandi (2003); Donzis et al. (2005) which prove that the Batchelor length-975

scale is the appropriate normalizing the scalar fluctuations scale distributions976

irrespective of the Schmidt number.977

To conclude, for the values of ξ0 investigated here, the geometrical characteris-978

tics scales Rg, LΣ and H´1
rms of the iso-scalar fields can be related to the somehow979

more ’usual’ characteristic scales of the scalar field: the integral, Corrsin and980

Batchelor length-scales, respectively. There thus exists an intimate connection981

between the geometrical and hydrodynamic characteristic scales.982

In the appendix, we plot the local scaling exponent of xpδφq2yR,E,Ω when the983

separation is made non-dimensional using either Rg (Fig. 20) or H´1
rms (Fig. 24).984

We observe in Fig. 24 that the onset of the fractal scaling range starts at a scale985

proportional to H´1
rms. On the other side (Fig. 20), the end of the scaling range986

appears at a scale proportional to Rg. Therefore, the inner cutoff of the fractal987

range is related to H´1
rms (and hence ηB) while the outer cutoff is given by Rg (and988

hence Lξ). Note that Sreenivasan et al. (1989) conjectured that for small Schmidt989

number, the inner cutoff should be related to the Obukhov-Corrsin length-scale990
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ηOC . Our findings indicate that the inner cutoff should better be scaled with the991

Batchelor length-scale.992

A fractal scaling should result in (Sreenivasan et al. 1989),993

LboxΣ “ kf

ˆ

Rg
H´1

rms

˙Df´2

, (4.11)994

where kf is the fractal prefactor and Lbox “ 2π is used for normalization995

as in Shete & de Bruyn Kops (2020). Figure 14(b) portrays the evolution of996

surface density Σ with respect to RgHrms for all Péclet numbers. The log-log997

representation clearly indicates that a power-law is at play with an exponent in998

very close agreement with Df “ 2.62 and Df “ 2.64 for ξ0 “ 0 and ξ0 “ ξrms999

respectively. Surprisingly, Eq. (4.11) holds even at the lowest Péclet numbers,1000

although there is no clear scaling range for xpδφq2yR,E,Ω. We also note that the1001

fractal prefactor kf in Eq. (4.11) depends on particular the choice of the iso-scalar1002

but not on the Péclet number.1003

Expressing Rg and Hrms in terms of Lξ and ηB in Eq. (4.11) yields:1004

Σ „

ˆ

Cε
Lξ
Lt
Pe

3
2

λSc
´1

˙Df´2

(4.12)1005

where Cε is the kinetic energy dissipation constant and Peλ is the Taylor based1006

Péclet number Peλ “ RλSc. When expressed in terms of Peλξ , Eq. (4.12) writes:1007

Σ „

ˆ

Cε
Lξ
Lt
R´3{4Pe

3
2

λξ
Sc´1{4

˙Df´2

(4.13)1008

Eq. (4.12) indicates that for Sc “ 1, and further omitting the dependence of Cε1009

and Lξ{Lt to Rλ, the surface density of iso-scalars Σ should grow as Pe
3
2 pDf´2q

λ “1010

Pe
3
2 pDf´2q

λξ
“ R

3
2 pDf´2q

λ . If Df “ 8{3, we have Σ „ Peλ „ Peλξ „ Rλ while1011

Df “ 7{3 leads to Σ „ Pe
1{2
λ „ Pe

1{2
λξ

„ R
1{2
λ . The Peλ scaling derived in1012

Eq. (4.12) is different from the one observed by Shete & de Bruyn Kops (2020)1013

in a configuration similar to the present one (although the velocity forcing and1014

dealiasing procedures were different). They obtained that Σ „ Pe
1{2
λ over an1015

impressive range of Péclet numbers. This result was obtained by averaging the1016

surface areas over 20 different iso-levels covering the range of scalar fluctuations.1017

Since the fractal dimension Df is known to vary for different iso-levels (Iyer et al.1018

2020), lumping together the values for 20 iso-surface areas could have resulted in1019

a different scaling with respect to the Péclet number. Further investigations are1020

required to confirm whether or not Eq. (4.12) holds true for the data of Shete &1021

de Bruyn Kops (2020).1022

4.7. Decaying turbulence1023

We now proceed to the analysis of the scale-by-scale budgets in decaying turbu-1024

lence. In this situation, the time derivative term in Eq. (2.15) contributes to the1025

budget. We consider two cases where the production term associated with the1026

imposed mean scalar gradient is either retained or deactivated. For each situation,1027

a Schmidt number of 1.0 and 0.2 is analyzed.1028

We start with the case where the kinetic energy is freely decaying but the1029

imposed mean scalar gradient is maintained. Therefore, the time derivative term1030
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Figure 15: Budget of xpδφq2yE,RΩ with increasing ξ0 in decaying turbulence with
imposed mean scalar gradient. Full lines: transfer term, dashed lines: Sdd -term,

dash-dotted lines: Ssd-term, dotted lines: dt-term. All contributions are
normalized by 2KT xφyE,Rp1´ xφyE,Rq while the separation r is normalized by
LΣ . (a) Sc “ 1, (b) Sc “ 0.2. Three values of ξ0 “ 0, 0.5ξrms, ξrms are displayed

from dark to light.

in Eq. (2.15) is not zero but the displacement speed Sd has a source term1031

contribution Ssd. The different terms of the scale-by-scale budgets are presented1032

in Fig. 15 for the two Schmidt number values and for three different values of ξ01033

from 0 to ξrms. We observe that when normalized by 2KT xφyE,Rp1 ´ xφyE,Rq and1034

LΣ, the transfer term is almost independent of the choice of the iso-scalar value.1035

This means that the different iso-surfaces experience the same scale dependent1036

turbulent straining. The Schmidt number variations are similar to the one already1037

documented in the previous section. The contribution due to scalar diffusion is1038

always negative which means that the restoration effect acts in counteracting the1039

turbulent straining. At large scales, increasing ξ0 and decreasing Sc is followed by1040

a increasing amplitude of the Sdd -term which is consistent with an increase of Sd1041

and D. The term associated with the imposed mean scalar gradient, is positive,1042

acts at larger scales and its amplitude increases with ξ0. The balance between all1043

these terms yields the time variations of xpδφq2yE,RΩ. This term has a rather small1044

amplitude compared to the three others. We note however that at large scales1045

and for ξ0 ą 0, the time variations of xpδφq2yE,RΩ are positive meaning that the1046

volume xφyE,R tends to increase with time. This is consistent with the observation1047

that in decaying turbulence in presence of an imposed mean scalar gradient, the1048

variance of ξ grows in time. We also note that at large scales, all terms of the1049

budget tend to zero when ξ0 “ 0 meaning that the volume xφyE,R for ξ0 “ 0 is1050

conserved.1051

Deactivating the source term leads to Ssd “ 0. In this situation, the time1052

variations of xpδφq2yE,R,Ω is due to the unbalance between the transfer term and1053

diffusion term. Results for Sc “ 1.0 and 0.2 and for ξ0 “ 0, 0.5ξrms and ξrms are1054

presented in Fig. 16. Here again, we observe that the particular choice of ξ0 does1055

not change drastically the transfer term when the latter is scaled in terms of1056

2KT xφyE,Rp1´ xφyE,Rq. Influence of ξ0 and Sc are much more perceptible on the1057

diffusion term and consequently the time derivative term. There is a systematic1058

decrease of the Sdd -term at both intermediate and large scales when ξ0 increases1059
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Figure 16: Budget of xpδφq2yE,R,Ω with increasing ξ0 in decaying turbulence
without imposed mean scalar gradient. Full lines: transfer term, dashed lines:
Sdd -term, dash-dotted lines: Ssd-term, dotted lines: dt-term. All contributions are

normalized by 2KT xφyE,Rp1´ xφyE,Rq while the separation r is normalized by
LΣ . (a) Sc “ 1, (b) Sc “ 0.2. Three values of ξ0 “ 0, 0.5ξrms, ξrms are displayed

from dark to light.

from 0 to ξrms. We also observe that the slope of the time derivative term at1060

small scales is negative meaning that the surface density is decreasing in time.1061

At large scales, the unsteady term is negative, asymptotes the diffusion term and1062

increases in amplitude with ξ0 and Sc.1063

In summary, forced and decaying turbulence share some common behaviors:1064

‚ The transfer term is positive in both case, meaning that turbulent straining1065

acts in increasing the morphological content of iso-scalar sets.1066

‚ The contribution due to diffusion (the Sdd -term) is always negative. It thus1067

plays a restoration effect that counteracts the effect of turbulent straining.1068

‚ Increasing scalar diffusivity (decreasing Sc) always leads to a decrease of1069

the iso-scalar morphological content. This is mainly due to the above-mentioned1070

restoration effect, where the latter increases with D, which is consistent with the1071

assumption Sdd « 2DH.1072

In contrast, there are key differences between forced and isotropic turbulence1073

which are summarized below:1074

‚ In forced stationary turbulence, the time derivative term in Eq. (2.15) is by1075

definition zero for all scales.1076

‚ In decaying situations, depending on the iso-scalar value and the presence or1077

absence of mean scalar gradient, the time derivative term can be either positive1078

or negative as detailed below:1079

˝ In decaying turbulence, in absence of mean scalar gradient, the time deriva-1080

tive term is systematically negative, meaning that both the surface density1081

and iso-scalar volume are decreasing.1082

˝ In presence of mean scalar gradient, the time derivative term can be either1083

positive or negative depending on the iso-scalar value.1084



34 M. Gauding, F. Thiesset, E. Varea, L. Danaila

5. Conclusion1085

A new theory is proposed to characterize the time evolution of iso-scalar volumes.1086

It is based on the two-point transport equation of the phase indicator field.1087

The main analytical tools that are convoked emanate from two, apparently1088

disconnected, fields of physics. On the one hand, using known analytical results1089

from the field of heterogeneous media and fractal aggregates, we have shown that1090

two-point statistics of the phase indicator allow some integral geometric quantities1091

(volume, surface area and curvatures) and some morphological characteristics1092

(reach, inner/outer cutoff, fractal dimension) to be measured. On the other hand,1093

we invoked the machinery of the scale-by-scale budgets which is adapted to1094

the kinematic equation of iso-volumes. Combining such two approaches allows1095

not only the geometry, morphology and topology of the fluid structures to be1096

assessed; it also embeds their scale/space/time evolution. As a consequence, we1097

like referring to this framework as a morphodynamical theory. It also naturally1098

degenerates to the transport equations for the volume and surface density in the1099

limit or large and small scales, respectively, thereby offering promising perspec-1100

tives for modelling either scalar mixing (Catrakis & Dimotakis 1996), two-phase1101

flows (Lebas et al. 2009) or combustive flows (Trouvé & Poinsot 1994) using a1102

volume-surface density approach. The new set of equations derived in the present1103

work generalizes some previous analysis by Thiesset et al. (2020, 2021). It is now1104

possible to cope with diffusive and/or reactive scalars, in presence or absence of1105

source terms. All these processes are embedded in the interface displacement1106

speed that may possess different contributions and different physical origins1107

depending on the flow situation. It is an exact framework and has the potential1108

of being applied to different flow variables in different flow situations. Hence, it1109

is believed to offer promising perspective to probe the physics of interfaces in a1110

broad sense.1111

In the present work, light is shed on scalar mixing in either forced or decaying1112

turbulence using state-of-the-art DNS data covering a large range of Reynolds1113

and Schmidt numbers. We paid attention to the correlation between the different1114

components of the displacement speed and the mean curvature of the interface.1115

It is shown that the tangential diffusion contribution dominates, meaning that,1116

as a first approximation, Sd is proportional to the scalar diffusivity D and the1117

mean curvature H. This is a result of major importance which proves that there1118

exists an intimate relation between the geometry of interface and some dynamical1119

processes such as diffusion. Further, the geometry of the interface at a microscale1120

(i.e. at a scale r) has an influence on some macroscopic (i.e. when r Ñ 8)1121

processes such as the conservation of scalar iso-volumes.1122

The search for the appropriate similarity variables have shown that there1123

exists three important characteristic length-scales for the second-order structure1124

function of the phase indicator field.1125

‚ The first one corresponds to the inverse of the mean curvature standard1126

deviation H´1
rms. This scale together with ΣKT are the similarity variables at small1127

scales up to intermediate scales. The existence of this normalizing scale is justified1128

by the small-scale expansion of xpδφq2yE,R,Ω (Eq. (2.17)). We also discovered that1129

the scale beyond which a fractal scaling range starts to appear is proportional1130

to H´1
rms suggesting that the inner cutoff is related H´1

rms. It was also observed1131

that HrmsηB “ const. over the range of Péclet numbers investigated here. An1132

explanation for this observation when KT „ KC „ τ´1
η is provided. However, the1133
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proportionality between H´1
rms and ηB is a likely more general result which holds1134

even at low Péclet numbers. This means that the assumption KT „ KC „ τ´1
η is1135

not likely to be a necessary condition.1136

‚ The second set of normalizing scales can be expressed in terms of surface1137

density Σ and volume xφyR,E. They arise very naturally from the small-scale1138

expansion (Eq. (2.17)) and the large scale limit of xpδφq2yE,R,Ω, respectively. It was1139

previously identified by Thiesset et al. (2020). These quantities are appropriate1140

for normalizing two-point statistics in the limit of either small and large scale.1141

It was found that, for the range of ξ0 investigated here, LΣ is proportional to1142

the Corrsin length-scale, in agreement with previous analysis based on the Rice’s1143

theorem.1144

‚ The last set of normalizing scales is provided by Rg, the radius of gyration1145

and the strain felt at scale Rg, viz. xky1{2{Rg. These are the characteristic1146

quantities of the large scale processes. It is found that Rg is proportional to the1147

integral length-scale of the scalar field Lξ. The local scaling exponent of xφyR,E1148

was further shown to depart from a constant scaling exponent at a scale similar1149

to Rg. Hence, the outer cutoff is related to Rg and thus Lξ.1150

At sufficiently large Rλ, the distribution xpδφq2yE,R,Ω was shown to behave1151

according to a power law in the intermediate range of scales. The corresponding1152

scaling exponent is related to the fractal dimension that is found to be close1153

to 8{3 in agreement with the theoretical analysis of Constantin et al. (1991);1154

Mandelbrot (1975); Grossmann & Lohse (1994). The fractal dimension together1155

with the inner and outer cutoff allows the surface area of the iso-scalars to be1156

estimated. Surprisingly, it was observed that this applies even at low Péclet where1157

a fractal scaling range is not likely to hold. The transfer term was also shown to1158

possess a scaling range, and we provided the value for the scaling exponent by1159

resorting to the closure proposed by de Divitiis (2014, 2016, 2020).1160

The effect of Reynolds and Schmidt number on the different contributions of the1161

stretch rate, viz. the strain rate KT , the curvature term associated with diffusive1162

effect Kd
C and the curvature term associated with the forcing Ks

C is explored. It1163

is shown that in forced turbulence with an imposed mean scalar gradient, KT is1164

positive and compensated by both Kd
C , which is systematically negative, and Ks

C1165

whose sign depends on the iso-scalar value ξ0. In the limit of large Rλ, Ks
C Ñ 01166

which proves that the geometry of the interface at the smallest scales tends to be1167

independent of the type of forcing. The closure of de Divitiis (2014, 2016, 2020)1168

was also invoked to prove that KT is proportional to τ´1
η .1169

Finally, we examined the scale distribution of the different terms of the scale-1170

by-scale budget, see Eq. (2.15), for different values of Rλ and Sc, in either forced1171

or decaying turbulence. It was shown that the transfer term, which measures the1172

interaction between the interface and velocity field at scale r, is systematically1173

positive. This means that turbulence acts in increasing the morphological content1174

of the interface. On the other hand, the term associated with the diffusive1175

component of the displacement speed is always negative, meaning that diffusion1176

acts in counteracting turbulent straining through a so-called kinematic restoration1177

effect. Although this conclusion appears rather intuitive, it is here significantly1178

strengthened by a quantitative and analytical framework based on two-point1179

statistical equations. The last term is due to the forcing imposed by a mean1180

scalar gradient. The latter can be either positive or negative depending on the1181

iso-scalar value. This term tends to zero in the small and intermediate range of1182



36 M. Gauding, F. Thiesset, E. Varea, L. Danaila

scales when Rλ increases and its contribution is progressively pushed towards the1183

largest scales. This proves again that the geometry of the interface tends to be1184

independent of the type of forcing at sufficiently large Rλ. We also explored the1185

case of decaying turbulence, with and without the imposed scalar gradient. We1186

showed that the transfer term remains roughly independent to the iso-scalar value1187

meaning that the different iso-scalars experience the same turbulent straining.1188

The time-evolution of the phase indicator structure function is thus given by1189

the balance between the Sdd and Ssd terms. Without the imposed mean gradient,1190

the unsteady term was found negative meaning that both the surface density,1191

morphological content and volume are decreasing during the decay.1192

The present work opens up attractive perspectives. First, given the amount1193

of computational time needed to post-process this database, we have restricted1194

ourselves to a limited range of iso-scalar values. A more systematic study of the1195

evolution of xpδφq2yE,R,Ω and the different terms of the budget with respect to ξ01196

is now needed. Second, we have explored the effect of Reynolds and Schmidt1197

numbers independently. However, our database does not address the case of1198

varying Sc and Rλ while keeping the Péclet number Peλξ constant. This would1199

allow one to conclude about the similarity of two-point statistics with respect1200

to the Péclet number. Third, the flow configuration explored here is statistically1201

homogeneous and hence, the scale-by-scale budgets are independent on the flow1202

position. The next step for addressing some complex flow configurations will thus1203

consist in better characterizing the effect of inhomogeneities and anisotropy.1204

We have focused here only on Schmidt numbers Sc ď 1. For very high Schmidt1205

numbers, we expect results to be quite different. Indeed, for Sc " 1 and Rλ " 1,1206

scalar spectra are expected to reveal two distinct scaling ranges: the inertial-1207

convective scaling range with an exponent close to ´5{3 which extends up to the1208

Kolmogorov scale followed by a viscous-convective scaling range with an exponent1209

of ´1 which ends at the Batchelor scale. Consequently, for high Schmidt numbers,1210

we expect the structure function of φ to reveal two distinct scaling ranges: the1211

first with an exponent of 3 ´ Df,1 which corresponds to the inertial-convective1212

range, preceded by a scaling range with an exponent 3 ´Df,2 corresponding to1213

the viscous-convective range. At very small-scales, the local scaling exponent of1214

xpδφq2yR,Ω should approach 1 as shown by Eq. (2.17). Therefore, it would be of1215

great interest in this context to measure the values for Df,1 and Df,2 together with1216

their respective inner and outer cutoff length-scales using the present framework.1217

However, numerical data at high Schmidt numbers are particularly challenging1218

to obtain since one faces numerical issues to achieve both high Reynolds (for1219

the inertial-convective range to establish) and high Schmidt numbers (for the1220

diffusive-convective range to be sufficiently large). We hope that in the future,1221

such a dataset will be available so that to test the ability of the present framework1222

to infer the scaling and the terms of the transport equation of xpδφq2yR,E.1223

Finally, besides turbulent mixing, the present mathematical framework should1224

now be harnessed for giving insights into the physics of other type of interfaces1225

such as reacting fronts, turbulent/non-turbulent layers, or two-phase flows in1226

presence of evaporation.1227
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Appendix A. Interpretation of xpδφq2yR in terms of boolean operations1244

We here reproduce the reasoning of Thiesset et al. (2021) which allows interpret-1245

ing xpδφq2yR in terms of boolean operations.1246

Consider the set of points tx P R | φpxq “ 1u and its translated version at a1247

distance r, tx P R | φpx ` rq “ 1u. These are displayed as the blue and yellow1248

sets in Fig. 17. The spatially averaged correlation function xφ`φ´yR then writes1249

as the intersection (the convolution) of the sets φ´ and φ`, as represented by1250

http://docs.mercurve.rdb.is/
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green sets in Fig. 17. Given Eq. (2.10), the spatially averaged structure function1251

xpδφq2yR is thus given by the volume of φpxq, plus the volume of φpx` rq, minus1252

two times the intersection. It thus reads as the disjunctive union (or symmetric1253

difference) of φ´ and φ` which is graphically represented by the orange sets in1254

Fig. 17.1255

For small values of the separation vector, one sees that the orange set in Fig. 171256

delineates the contours of the excursion set while for large scales, the disjunctive1257

union writes as twice its volume. For intermediate scales, the correlation and1258

structure function might depend on the morphology of the structures under hand.1259

Therefore, the graphical representation of xpδφq2yR in Fig. 17 allows one to easily1260

grasp that for small values of the separation |r|, xpδφq2yR is proportional to the1261

area of the ξ0 iso-surface, while for large scales, xpδφq2yR depends on the volume1262

of the excursion set. For intermediate scales, xpδφq2yR becomes a morphological1263

descriptor where the scale r plays the role of a morphological parameter.1264

Appendix B. Numerical method for computing xφ´S`
d |∇xφ|

`yR1265

The additional source term in Eq. (2.12) highlights the correlation of φ with1266

Sd|∇xφ|. Before describing the procedure we employed for computing this term,1267

we first recall available methods to infer numerically the surface-bulk correlation1268

xφ´|∇xφ|
`yR. One method is presented in Seaton & Glandt (1986) which is1269

also briefly described in Ma & Torquato (2018). It consists in computing the1270

correlation function xφ`ε φ
´
ε yRpr, εq of the fields φεpxq which denotes either the1271

dilated (when the scale ε ą 0) or eroded (when the scale ε ă 0) version of φpxq.1272

Here the eroded/dilated objects can simply be defined from the excursion set, i.e.1273

φpx, εq “ HpΥ pxq ´ εq, where Υ pxq is the level-set field of the iso-scalar under1274

consideration. Then, the surface-bulk correlation function can be proven to be1275

equal to1276

xφ´|∇xφ|
`yR “ lim

εÑ0

1

2

xφ`ε φ
´
ε yRpr, εq

ε
(B 1)1277

Numerically, this translates into1278

xφ´|∇xφ|
`yR “

xφ`ε φ
´
ε yRpr, εq ´ xφ

`
ε φ

´
ε yRpr,´εq

4ε
, (B 2)1279

where ε should be chosen sufficiently small for the eroded/dilated sets remain1280

topologically equivalent to the actual set. In practice, we found that when ε1281

remains in the range 2dx ď ε ď 4dx, results are very similar and the surface-bulk1282

correlation function is in very good agreement with the theoretical limits at large1283

and small scales.1284

The method for computing xφ´S`d |∇xφ|
`yR is somehow similar. It relies on1285

the idea that one can define a local dilatation/erosion scale that depends on local1286

values of Sd. At a fictive time t`τ , the level-set field will be given by Υ px, τq`Sdτ1287

while the one obtained at time t´ τ is Υ px,´τq ´ Sdτ . Sdτ plays here the same1288

role as ε which thus corresponds to the special case where Sd “ const. Then, one1289

can compute xφ´S`d |∇xφ|
`yR as1290

xφ´S`d |∇xφ|
`yR “ lim

τÑ0

1

2

xφ`τ φ
´
τ yRpr, τq

τ
(B 3)1291
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Figure 18: (a) Comparison of the spatially and angularly averaged Sid-terms for
different values of τ , from max |Sd|τ “ 1 to max |Sd|τ “ 4dx. Case F0

Sc “ 1.0, ξ0 “ 0. (b) Spatially and angularly averaged Sid-term as estimated
from the level-set or its approximation using Eq. (B 5). Case T0

Sc “ 1.0, ξ0 “ ξrms. In (a) and (b), the Sid-terms are normalized by KT and the
grey dotted lines represent the theoretical asymptotic limits at large and small

scales.

or numerically1292

xφ´S`d |∇xφ|
`yR “

xφ`τ φ
´
τ yRpr, τq ´ xφ

`
τ φ

´
τ yRpr,´τq

4τ
(B 4)1293

where φτ pxq “ HpΥ pxq ´ Sdτq. Here again, τ should be chosen sufficiently small1294

for the dilated/eroded system to remain topologically equivalent to the original1295

set. Elaborating on the same reasoning as for ε, we have chosen τ in such a way1296

that maxp|Sd|τq remains of few dx. Fig. 18(a) displays the Sd-term for different1297

values of maxp|Sd|τq ranging from 1 to 4dx. We considered the forced turbulence,1298

forced scalar case (F0-Sc “ 1.0) for which Sd is constituted of both a diffusion1299

component Sdd and a source component Ssd. Results show that the computed1300

Sd-term is identical irrespective of the chosen value for τ . They also follow the1301

expected asymptotic limit at small scales. Throughout the present study, we have1302

chosen maxp|Sd|τq “ 3dx.1303

Instead of the level-set function Υ , whose computation from our data might be1304

particularly expensive, we have used the following approximation of the level-set1305

in the vicinity of ξ0:1306

Υ pxq “
ξpxq ´ ξ0
|∇xξ|pxq

(B 5)1307

We have compared the results obtained for the Sd-term by using a level-set field1308

or the ansatz given by Eq. (B 5). The level-set field is computed from the scalar1309

field ξ by use of the reinitialization procedure of Sussman et al. (1994). We start1310

with Eq. (B 5) as an initial condition and the algorithm was run over a sufficiently1311

large number of iterations for the level-set to be a signed distance over the whole1312

domain. The reinitialization procedure was solved using the two-phase flow solver1313

archer (Ménard et al. 2007).1314

Results are presented in Fig. 18(b) where the Sd-term estimated either from1315

the level-set or its approximation (Eq. (B 5)) are compared. Here we consider1316

the T0 dataset where there is no forcing for either the dynamical or scalar field.1317
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Figure 19: Comparison of the different terms of Eq. (2.15) using either a full
(lines) or partial angular average (symbols). (a) F0 Sc “ 1.0, ξ0 “ 0. (b) T0.

No noticeable differences are observed, and both curves compare well with the1318

asymptotic theoretical limits at either large and small scales. This proves that1319

our method for computing xφ´S`d |∇xφ|
`yR either from the real or approximated1320

level-set is accurate.1321

Appendix C. Validation of the partial angular average1322

We checked that results obtained by operating a partial angular average over1323

only the three directions rx, ry, rz were similar to the ones issued from the full 3D1324

angular average. We considered here the case F0, Sc “ 1.0, ξ0 “ 0 (Fig. 19(a))1325

and the T0 case (Fig. 19(b)).1326

A careful analysis of Fig. 19 reveals that the budget is accurately closed even1327

if one employs the partial angular average. Some very slight differences are1328

perceptible which are due to a small anisotropy. Note that, in absence of mean1329

scalar gradient, the anisotropy should be interpreted as a statistical effect. Indeed,1330

the number of structures formed by the scalar excursion set ξpxq ą ξ0 is typically1331

around 50-100 which might not be enough for the two-point statistics of iso-1332

volumes to be fully converged. Increasing the number of independent simulations1333

will very likely improve the statistical convergence and the degree of isotropy (a1334

similar situation was encountered in Thiesset et al. (2020)). This effect is however1335

considered to be marginal in the present analysis. The small values of the budget1336

residuals shown in Fig. 19 is a further evidence of the appropriateness of our post-1337

processing procedure for computing the triple correlation xφ´S`d |∇xφ|
`yR. The1338

transfer and unsteady term also compare favorably well with their asymptotic1339

theoretical expressions at small and large scales. To conclude Fig. 19 provides1340

the validation of altogether the theory (Eq. (2.15)), the DNS data and the post-1341

processing procedures.1342

Appendix D. Large-scale similarity1343

Here, we present the appropriate normalization of two-point statistics in the1344

large-scale limit.1345

In Fig. 20, the second-order structure function xpδφq2yE,R,Ω is normalized by1346

its asymptotic large-scale value 2xφyE,Rp1 ´ xφyE,Rq while the separation r is1347

normalized using the radius of gyration Rg. We observe that the different curves1348
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Figure 20: Evolution of xpδφq2yE,R,Ω{2xφyE,Rp1´ xφyE,Rq with increasing Rλ.
The scale r is normalized by Rg. The local scaling exponent is also plotted in

the inset. (a) ξ0 “ 0, (b) ξ0 “ ξrms.
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Figure 21: Evolution of the transfer term ´x∇r ¨ xpδuqpδφq
2
yE,RyΩ normalized

by 2xφyE,Rp1´ xφyE,Rqxky
1{2
E,R{Rg with increasing Rλ. The local scaling exponent

is also plotted in the inset. (a) ξ0 “ 0, (b) ξ0 “ ξrms.

corresponding to the different Rλ collapse well for scales above r “ 0.1Rg. When1349

Rλ increases, the scale distributions widen when Rλ increases and moves towards1350

the small scales. It is further worth noting that the fractal scaling ends at a scale1351

r « Rg which means that Rg plays the role of the outer cutoff of the fractal1352

scaling.1353

We also carried out the same analysis for the transfer term ´x∇r ¨1354

xpδuqpδφq2yE,RyΩ which is normalized using 2xφyE,Rp1 ´ xφyE,Rqxky
1{2
E,R{Rg. This1355

quantity can be understood as the strain acting at a scale Rg. In Fig. 21, we1356

observe that this normalization leads to a good collapse of the different curves1357

in the large scales r ą 0.1Rg. For smaller scales, the different curves depart from1358

each other and as Rλ increases, the transfer rate term acts over a wider range of1359

scales while its peak value moves towards smaller scales.1360

The different terms of the budget Eq. (2.15), normalized by the same quantities1361
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Figure 22: Budget of xpδφq2yE,R,Ω with increasing Rλ. Full lines: transfer term,
dashed lines: Sdd -term, dash-dotted lines: Ssd-term. All contributions are

normalized by 2xφyE,Rp1´ xφyE,Rqxky
1{2
E,R{Rg. (a) ξ0 “ 0, (b) ξ0 “ ξrms.
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Figure 23: Budget of xpδφq2yE,R,Ω with varying Sc. Full lines: transfer term,
dashed lines: Sdd -term, dash-dotted lines: Ssd-term. All contributions are

normalized by 2xφyE,Rp1´ xφyE,Rqxky
1{2
E,R{Rg. (a) ξ0 “ 0, (b) ξ0 “ ξrms.

obey the same trend, i.e. the different curves collapse relatively well for scales1362

larger than 0.1Rg and move towards smaller scales when Rλ is increased.1363

We also plot the budget for different Schmidt numbers in Fig. 23 using the1364

large-scale similarity variables. Noticeable is the shift of the transfer term towards1365

smaller r{Rg when the Schmidt number increases from 0.1 to 1.0. In contrast,1366

the diffusive term moves towards larger scales and increases in amplitude. A final1367

observation of Fig. 23 is that, for ξ0 “ ξrms, the forcing term due to the mean1368

scalar gradient increases when Sc decreases from 1.0 to 0.1. For ξ0 “ 0, the budget1369

for Sc “ 0.1 is composed of the transfer term and diffusive term while the forcing1370

term is almost negligible.1371
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Figure 24: Evolution of xpδφq2yE,R,Ω{ΣH´1
rms with increasing Rλ. The scale r is

normalized by H´1
rms. The local scaling exponent is also plotted in the inset. (a)

ξ0 “ 0, (b) ξ0 “ ξrms. The gray dash-dotted lines denote the Batchelor type
parametrization given by Eq. (E 1)

Appendix E. Small-scale similarity1372

We here report the evolution of xpδφq2yE,R,Ω{ΣH´1
rms with increasing Rλ while the1373

separation r is normalized by H´1
rms. This scenario is tested in Fig. 24, where one1374

observes a remarkable degree of similarity for both ξ0 “ 0 and ξ0 “ ξrms. The1375

range of scales over which this small scale similarity applies tends to increase with1376

increasing Rλ. It is further worth noting that the fractal scaling starts at a scale1377

r « 20H´1
rms (see the inset in Fig. 24). Hence, H´1

rms appears to be proportional the1378

inner cutoff of the fractal scaling.1379

We have observed that xpδφq2yE,R,Ω can be well represented by the following1380

parametric expression1381

xpδφq2yE,R,Ω
ΣH´1

rms

“
r̃

2

„

1`
´

r̃
η̃i

¯2
pζ´1q{2

„

1`
´

r̃
η̃o

¯2
ζ{2

(E 1)1382

where ‚̃ “ ‚{H´1
rms. This parametrization is inspired by the one proposed by1383

Batchelor (1951) for representing the two-point statistics of the velocity field.1384

The main interest in deriving Eq. (E 1) is that it allows the fractal exponent ζ,1385

the outer and inner cutoff ηo and ηi to be estimated using non-linear least-square1386

curve fitting. By doing so, these parameters are gathered in an unambiguous way1387

which does not imply any degree of arbitrariness, notably in the estimation of the1388

best range of scaling. This is even more relevant for low to moderate Reynolds1389

numbers. A similar approach was employed by Thiesset et al. (2016a); Krug et al.1390

(2017). The appropriateness of this parametric expression is demonstrated in Fig.1391

24 at the largest and smallest Reynolds numbers. We obtain ηi « 10ηB which is1392

in close agreement with the prediction of Thiesset et al. (2016b).1393

The small-scale similarity is now tested for the transfer term x∇r ¨1394

xpδuqpδφq2yE,RyΩ which is normalized by KTΣH´1
rms while r is divided by H´1

rms.1395

Results are presented in Fig. 25 confirming this small-scale similarity for both1396



44 M. Gauding, F. Thiesset, E. Varea, L. Danaila

10−1 100 101 102

rHrms

10−2

10−1

(a)

10−1 100 101 102

rHrms

(b)10−1 100 101
−1

0

1

−0.21

10−1 100 101
−1

0

1

−0.23

Figure 25: Evolution of the transfer term ´x∇r ¨ xpδuqpδφq
2
yE,RyΩ normalized

by KTΣH´1
rms while r is divided by H´1

rms. Dark to light represent F0 to F5. The
local scaling exponent is also plotted in the inset. (a) ξ0 “ 0, (b) ξ0 “ ξrms.
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Figure 26: Budget of xpδφq2yE,R,Ω with increasing Rλ. Full lines: transfer term,
dashed lines: Sdd -term, dash-dotted lines: Ssd-term. All contributions are

normalized by KTΣH´1
rms while r is divided by H´1

rms. (a) ξ0 “ 0, (b) ξ0 “ ξrms.

ξ0 “ 0 and ξ0 “ ξrms. In particular, we note that it applies, at least up to the1397

scale where the transfer term is maximum, and the range of scales over which1398

the small scale similarity applies widens with increasing Rλ. The maximum of1399

the transfer term given in terms of KTΣH´1
rms is roughly constant and equals to1400

0.38.1401

The different terms of the budget Eq. (2.15) normalized using the small-1402

similarity variables are presented in Fig. 26. Here again, we see that the transfer1403

term complies well with a small-scale similarity when plotted using KTΣH´1
rms and1404

H´1
rms as similarity variables. However, the similarity holds only at the smallest1405

scales for the Sdd -term, where the term associated with Ssd is negligible. When Rλ1406

increases, this term progressively tends to zero thereby leading to a closer degree1407

of similarity for the Sdd -term.1408

In conclusion, H´1
rms and KTΣ{Hrms play the same role as the Kolmogorov (or1409
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Figure 27: Anisotropy of xpδφq2yR,E between the direction parallel (full lines)
and perpendicular (dashed lines) to the mean scalar gradient. The insets

represent the local scaling exponent. For the sake of clarity only case F1, F3
and F5 are presented. (a) ξ0 “ 0, (b) ξ0 “ ξrms. The small scale similarity

variables have been used for normalization.

Batchelor) scales for normalizing the two-point statistics of the velocity (scalar)1410

field.1411

Appendix F. Anisotropy effects due to the mean scalar gradient1412

The present numerical configuration leads to statistical anisotropy due to the1413

presence of a mean scalar gradient Gξ. Since the latter is active in the y direction,1414

two-point statistics are invariant by rotation around the ry axis. Here, we infer1415

anisotropy from the variations of xpδφq2yR,E along the different orientations of the1416

separation vector r.1417

In Fig. 27, we plot xpδφq2yR,E along the direction parallel and perpendicular1418

to the mean scalar gradient. The parallel direction corresponds to ry while the1419

contributions along rx and rz were averaged because of axisymmetry. We observe1420

that the curves corresponding to the parallel and perpendicular directions collapse1421

at small up to intermediate scales, meaning that the second-order statistics of φ1422

are locally isotropic. The previously discussed scaling with respect to Hrms (and1423

Σ) holds. The scaling exponent remains the same irrespective of the orientation of1424

the separation vector r. This means that the estimation of the fractal dimension1425

of the present iso-scalar surfaces is quite robust and is not affected by the mean1426

scalar gradient. Differences between parallel and perpendicular directions (viz.1427

anisotropy) are perceptible only at the end of the scaling range and at large1428

scales. It is seen that the scaling range is systematically wider in the direction1429

perpendicular to the mean scalar gradient.1430

Appendix G. Estimation of statistical errors1431

We here address the question of statistical errors. We attribute such errors to a1432

lack of statistical convergence. For the forced turbulence cases explored here, any1433

spatially averaged quantity x‚yR is also averaged over M independent snapshots1434

which constitute our ensemble E.1435
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Figure 28: Statistical errors for case F5. Error bars for each quantity x‚yR,E
correspond to ‚rms{

?
M . (a) xpδφq2yR,E and its local scaling exponent (inset),

(b) the different terms of the budget.

The statistical error on the calculation of the mean x‚yR,E is then computed1436

from ‚rms{
?
M where ‚rms is the standard deviation computed from M snapshots.1437

We repeated this for xpδφ2qyR, its scaling exponent, and the different terms of its1438

transport equation.1439

Case F5 is the most prone to numerical errors since it is the one for which we1440

dispose of the smallest number of snapshots (M “ 6, see Table 1). Hence, we1441

infer errors for this particular case only.1442

Statistical errors are displayed in Fig. 28 as the blue error-bars while the mean1443

value x‚yE,R is plotted as the green curves. We observe that these errors are1444

particularly small. The typical statistical errors on each of the plotted quantities1445

are 1-2% for xpδφq2yR,E and its scaling exponent, and 3-4% for the terms of1446

its transport equation. For the other forced cases (F0-F4), statistical errors are1447

expected to be smaller. It is thus rather safe to conclude that statistical errors1448

are marginal in our study.1449
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