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ARTICLE OPEN

Differential transcript usage unravels gene expression
alterations in Alzheimer’s disease human brains
Diego Marques-Coelho 1,2, Lukas da Cruz Carvalho Iohan1,2, Ana Raquel Melo de Farias1,3, Amandine Flaig3 and The Brainbank
Neuro–CEB Neuropathology Network*, Jean-Charles Lambert 3 and Marcos Romualdo Costa 1,3✉

Alzheimer’s disease (AD) is the leading cause of dementia in aging individuals. Yet, the pathophysiological processes involved in AD
onset and progression are still poorly understood. Among numerous strategies, a comprehensive overview of gene expression
alterations in the diseased brain could contribute for a better understanding of the AD pathology. In this work, we probed the
differential expression of genes in different brain regions of healthy and AD adult subjects using data from three large
transcriptomic studies: Mayo Clinic, Mount Sinai Brain Bank (MSBB), and ROSMAP. Using a combination of differential expression of
gene and isoform switch analyses, we provide a detailed landscape of gene expression alterations in the temporal and frontal lobes,
harboring brain areas affected at early and late stages of the AD pathology, respectively. Next, we took advantage of an indirect
approach to assign the complex gene expression changes revealed in bulk RNAseq to individual cell types/subtypes of the adult
brain. This strategy allowed us to identify previously overlooked gene expression changes in the brain of AD patients. Among these
alterations, we show isoform switches in the AD causal gene amyloid-beta precursor protein (APP) and the risk gene bridging
integrator 1 (BIN1), which could have important functional consequences in neuronal cells. Altogether, our work proposes a novel
integrative strategy to analyze RNAseq data in AD and other neurodegenerative diseases based on both gene/transcript expression
and regional/cell-type specificities.

npj Aging and Mechanisms of Disease (2021) 7:2 ; https://doi.org/10.1038/s41514-020-00052-5

INTRODUCTION
Changes in gene expression characterize a multitude of human
diseases and have been successfully used to predict molecular
and cellular mechanisms associated with pathological processes1.
Alzheimer’s disease (AD) is the most prevalent type of dementia
and causes a progressive cognitive decline, for which there is no
effective treatment or cure. Although expression analyses in brain
diseases are generally limited by tissue availability, RNA sequen-
cing (RNAseq) data have been generated from postmortem brain
samples of healthy and AD individuals2–4. However, a compre-
hensive description of the gene expression alterations in the AD
brain remains elusive.
Recent work has begun to address this important gap in the

study of AD pathology using bulk brain tissue RNA sequencing
(RNAseq)5 or single-cell RNA sequencing (scRNAseq)6,7. However,
these studies have focused on samples obtained from different
brain regions, namely the dorsolateral prefrontal5,7 and entorhinal
cortices6, which could lead to important discrepancies in the
results. In fact, AD pathology shows a progressive impact on
different brain regions, characterized at early stages by the
presence of TAU protein inclusions in the locus coeruleus, the
transentorhinal and entorhinal regions (stages I and II). This is
followed by the presence of TAU inclusions in the hippocampal
formation and some parts of the neocortex (stages III and IV),
followed by large parts of the neocortex (stages V and VI)8. This
temporal progression of AD pathology could differently impact
gene expression in those brain areas. Accordingly, a recent study
has shown that changes in protein expression are much more
prominent in areas affected at early and intermediate stages, such
as the hippocampus, entorhinal cortex, and cingulate cortex in the

temporal lobe, compared to other brain regions affected at later
stages of AD pathology, such as sensory cortex, motor cortex, and
cerebellum9.
Another important aspect to consider is the descriptive

relevance of gene expression analysis based solely on the
identification of differentially expressed genes (DEG), which
fails to detect dynamics in the expression of multiple related
transcripts10. Recently, new approaches using transcripts-level
analysis, so-called differential transcript usage (DTU), enables
identification of alternative splicing and isoform switches with the
prediction of functional consequences11,12. Therefore, important
gene expression modifications in the AD brain could occur at the
transcript level and be overlooked in classical DEG analyses.
Here, we took advantage of three available RNAseq datasets,

generated using samples from different brain regions, to system-
atically probe gene expression changes (DEG and DTU) in AD. In
Mayo’s clinic study, both the temporal cortex and cerebellum were
used to obtain bulk RNAseq2. In the Religious Orders Study (ROS)
and Memory and Aging Project (MAP), henceforth called ROSMAP,
the dorsolateral prefrontal cortex was used3. Finally, in the Mount
Sinai/JJ Peters VA Medical Center Brain Bank (MSBB), four different
Brodmann areas of the brain were studied: areas 22 and 36 from
the temporal lobe, areas 10 and 44 in the frontal lobe4. We also
added another level of complexity using an indirect approach to
assign DEGs and gDTUs to unique cell types in order to identify
AD gene expression signatures for neural cells, microglia, and
endothelial cells. Finally, we linked these alterations with AD
causal and risk genes, identifying novel isoform switches in
BIN1 and APP genes of potential functional consequences for
pathology progression.

1Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro, 2155 Natal, Brazil. 2Bioinformatics Multidisciplinary Environment (BioME), Federal University
of Rio Grande do Norte, Natal, Brazil. 3Unité INSERM 1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, University of Lille,
Lille Cedex, France. *A list of authors and their affiliations appears at the end of the paper. ✉email: marcos.costa@pasteur-lille.fr

www.nature.com/npjamd

Published in partnership with the Japanese Society of Anti-Aging Medicine

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41514-020-00052-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41514-020-00052-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41514-020-00052-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41514-020-00052-5&domain=pdf
http://orcid.org/0000-0002-9465-1327
http://orcid.org/0000-0002-9465-1327
http://orcid.org/0000-0002-9465-1327
http://orcid.org/0000-0002-9465-1327
http://orcid.org/0000-0002-9465-1327
http://orcid.org/0000-0003-0829-7817
http://orcid.org/0000-0003-0829-7817
http://orcid.org/0000-0003-0829-7817
http://orcid.org/0000-0003-0829-7817
http://orcid.org/0000-0003-0829-7817
http://orcid.org/0000-0002-4928-2163
http://orcid.org/0000-0002-4928-2163
http://orcid.org/0000-0002-4928-2163
http://orcid.org/0000-0002-4928-2163
http://orcid.org/0000-0002-4928-2163
https://doi.org/10.1038/s41514-020-00052-5
mailto:marcos.costa@pasteur-lille.fr
www.nature.com/npjamd


RESULTS
Regional gene expression alterations in the AD brain correlates
with pathological progression
Several consortia have generated RNAseq data from brains of
individuals with a clinical and/or pathological diagnostic of AD2–4.
Considering the regional progression of AD pathology8, we set out
to identify and compare differentially expressed genes (DEG) in
the temporal lobe (TL), encompassing brain regions affect at early
stages of the AD such as the hippocampus and entorhinal cortex,
and in the frontal lobe (FL), affect at more advanced stages of
the pathology (Fig. 1). Comparisons between control and AD
individuals were performed independently for each dataset and
only genes with fold change >1.3 and FDR > 0.01 were considered
as DEGs. We found 3348 (1244 down- and 2104 upregulated
genes) and 2172 (1170 down and 999 upregulated genes in BM22
and BM36; three genes regulated in opposite directions in these
two areas) DEGs in the TL of AD individuals compared to their
respective controls in the MSBB_TL and Mayo datasets, respec-
tively (Fig. 2A, B and Supplementary Table 1). Of those DEGs, 734
genes (145 down and 520 up) were commonly regulated in both
Mayo and MSBB_TL (88.4% of genes altered in the same direction;
15.33% of overlap; P= 8.56 × 10−59, hypergeometric test). In
contrast, only 327 (113 down and 214 up) and 209 (97 down
and 112 up) DEGs were detected in the MSBB_FL and ROSMAP,
respectively. Of those, 31 genes (18 down and 13 up) were found
in both datasets (7.34% of overlap; P= 1.67 × 10−14, hypergeo-
metric test) (Fig. 2A, B and Supplementary Table 1). This small
number of DEGs in the FL is in agreement with previous data
obtained from the DLPFC (106 down- and 158 upregulated genes
with FC > 1.3)13. Among DEGs detected in the FL, 62.5% were also
detected in the TL (Fig. 2B), suggesting that similar molecular
changes occur in these brain areas, but at different stages of the
disease progression. The differences in the number of DEGs

detected in the FL and TL can neither be attributed to lack of
statistical power nor potential biases due to tissue processing,
since the number of samples in the FL is larger than in the TL
groups (Fig. 1) and differences are observed even in samples
obtained from the same donors (compare MSBB_TL and MSBB_FL
in Fig. 2). Thus, changes in gene expression are much more
prominent in brain areas affected at the early stages of AD
pathology.
To select genes consistently altered in AD brains, considering

the several sources of measurement variations in RNAseq
experiments14, we decided to focus only on DEGs replicated in
at least two independent datasets obtained from related brain
areas. This resulted in a set of 734 DEGs detected in both Mayo
and MSBB TL (temporal lobe intersection—TLI), and 31 DEGs
shared between ROSMAP and MSBB FL (frontal lobe intersection
—FLI) (Supplementary Table 2). Among TLI DEGs, we observed
ABCA1 and 2 (ATP-binding cassette subfamily A member 1 and 2),
primarily involved in the maintenance of normal brain home-
ostasis and associated with AD and other neurological diseases15;
Complement C1R and C1S, involved in the immune/inflammatory
response and previously shown to be upregulated in the brain of a
3 × Tg mouse model of AD when Aβ plaques start to accumu-
late16; RE1 silencing transcription factor (REST), which regulates
neural circuit activity during aging17; glutamate decarboxylase 1
and 2 (GAD1 and 2), solute carrier family 32 GABA vesicular
transporter, member 1 (SLC32A1), calbindin 1 (CALB1), parvalbu-
min (PVALB), somatostatin (SST), and vasoactive intestinal peptide
(VIP), all expressed in GABAergic neurons and involved in
cognitive decline in AD and other neurological diseases18. Among
the few DEGs common to TLI and FLI, we observed a significant
downregulation of the neurosecretory protein VGF (VGF nerve
growth factor inducible), recently suggested as a key regulator of
Alzheimer’s disease19.

Fig. 1 Schematic summary of the methodology. A Datasets obtained from three consortia (Mayo, MSBB, and ROSMAP) were grouped
according to the brain region sampled in the frontal lobe (FL) or temporal lobe (TL). Next, RNAseq data were pseudo-aligned using Kallisto.
Clinico-pathological classifications were included as metada. B scRNAseq data from the midle temporal gyrus (MTG, Allen Brain Atlas) were
analyzed using the R package SEURAT. C Gene expression analyses were performed using the R packages DESeq2, IsoformSwitchAnalyzeR
(ISAR), and gene set enrichment analysis (GSEA). Assignment of differentially expressed genes or isoform switches to specific cell types/
subtypes was performed indirectly using scRNAseq signatures obtained from the MTG (B).
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Next, we used gene set enrichment analyses (GSEA) to assess
the functional profile of the DEGs identified in our analysis. Again,
we used only genes commonly altered in two datasets (TLI or FLI)
to avoid inaccurate results associated with the use of large gene
sets in functional analysis20. We found that TLI DEGs were
significantly enriched for terms (GO:BP, GO:CC and KEGG)
associated with generic biological processes, such as cell-
signaling pathways and cell-cell signaling, whereas the small
number of DEGs in the FLI were not significantly enriched for any
term (Fig. 2C and Supplementary Table 3). The limited number of
significant gene set enrichment observed in our analysis after
inputting DEGs is in disagreement with results reported by Canchi
et al.13. This discrepancy can likely be explained by the use of
stringent criteria to detect TLI DEGs in our study (only genes
detected in at least two independent datasets with FC > 1.3 and

FDR < 0.01), which significantly reduce the number of genes used
in the GSEA.

Differential transcript usage analysis reveals novel genes
associated with AD pathology
Gene-level expression analysis lacks the sensitivity to detect
possible changes at the transcript-level caused, for example, by
alterations in alternative splicing10,21. To overcome this limitation,
we used differential transcript usage (DTU) analysis to identify
additional alterations of gene expression in the AD brains
compared to controls. We observed 2509 and 1843 genes with
differential transcript usage (gDTU) in the temporal lobe of AD
brains studied in the Mayo and MSBB datasets, respectively
(Fig. 3A, B and Supplementary Table 1). Similar to what we
observed for DEGs, a much smaller number of gDTUs were

Fig. 2 Gene expression alterations are more prominent in the temporal than the frontal lobe of AD patients. A Volcano plots showing
differentially expressed genes (DEG, red dots; FC > 1.3 and FDR < 0.01) in the frontal lobe (ROSMAP and MSBB FL - BM10 and BM44) and
temporal lobe (Mayo and MSBB TL - BM22 and BM36). B Upset plot showing the total number of DEGs identified in each dataset (horizontal
bars) and the number of DEGs exclusive of one dataset (first four vertical bars) or shared by different datasets (other vertical bars). Black dots
below vertical bars indicate datasets quantified. Venn diagram illustrates the same results in colors and circle sizes. C Gene ontology terms
enriched for DEGs identified in the TL or FL intersections (TLI and FLI, respectively).
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detected in the frontal lobe, both in ROSMAP and MSBB studies (59
and 855 genes with transcripts altered, respectively). We found 435
gDTUS in TLI (11.1% of overlap; P= 6.16 × 10−25, hypergeometric
test) and 13 gDTUs in FLI (1.47% of overlap; P= 2.56 × 10−3,
hypergeometric test) (Supplementary Table 2). In TLI, most gDTUs
did not overlap with DEGs (TL—34 gDTUs that are DEGs out of 435
gDTUs, Fig. 4A), whereas in FLI, we found no overlap at all.
Consistent with this small overlap, GSEA using only DEGs, only
gDTUs or both showed complementary results (Fig. 4B). GSEA
using gDTUs (alone or in combination with DEGs) showed
significant enrichment for vesicle-mediated transport and other

synapse-related terms, which were not observed while inputting
only DEGs (Figs. 3C and 4B; Supplementary Table 3). The functional
enrichment annotation using both DEGs and gDTUs is in agreement
with previous studies using scRNAseq to identify gene expression
alterations in unique cell types6,7 and clearly improves the
annotation observed using only DEGs, suggesting that the use of
DTU analysis could contribute to unraveling gene expression
alterations overlooked in the classical DEG analysis.
Among genes with isoform switches enriched in synaptic-

related terms, we observed the AD causal gene APP, previously
associated with regulation of synapse transmission and long-term

Fig. 3 Differential transcript usage analysis identifies gene expression alterations in AD associated with synapse transmission. A Volcano
plots showing genes with differential transcript usage (gDTU, yellow dots; Differential isoform fraction (dIF) >0.05 and FDR < 0.05) in the
frontal lobe (ROSMAP and MSBB_FL - BM10 and BM44) and temporal lobe (Mayo and MSBB_TL - BM22 and BM36). B Upset plot showing the
total number of gDTUs identified in each dataset (horizontal bars) and the number of gDTUs exclusive of one dataset (first four vertical bars)
or shared by different datasets (other vertical bars). Black dots below vertical bars indicate datasets quantified. Venn diagram illustrates the
same results in colors and circle sizes. C Synapse-related terms enriched for gDTUs in the TLI are not observed in the FLI.
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plasticity in AD22; neuronal vesicle trafficking associated 1 (NSG1),
which has been implicated in the regulation of AMPA receptors
(AMPAR) and APP trafficking, thus affecting synaptic transmission,
plasticity, and Aβ production23,24; RELN (Reelin) that plays
important role in synaptic transmission and has been associated
with AD25; gamma-aminobutyric acid type A receptor subunit
alpha 1 (GABRA1), which encodes for a subunit of the main
ionotropic GABA receptor in the brain and has previously been
shown to be downregulated in the AD brain26.

Alternative splice events in AD brains and functional
consequences
To identify the causes subjacent to gene isoform switches in the
AD brain, we quantified the frequency of splicing events

associated with the isoform switches detected in AD compared
to control brains (Fig. 5 and Supplementary Table 4). We found
that alternative transcription start site (ATSS), alternative transcrip-
tion termination site (ATTS), and exon skipping (ES) were the most
frequent splicing events in AD brains (Fig. 5B). Other common
splicing events observed were alternative 3′ or 5′ splice sites (A3
and A5, respectively), multiple exons skipping (MES) and intron
retention (IR) (Fig. 5B). These observations suggest that changes in
alternative splicing could be implicated in AD pathogenesis,
corroborating previous analyses in the ROSMAP cohort using
intronic usage ratios to identify abnormal splicing events in the
AD brain5.
Alternative splicing events may have diverse functional

consequences for protein expression, such as shifting the
frequency of transcripts containing introns (noncoding) or mRNA

Fig. 4 Differential transcript usage analysis in AD brains reveals gene expression alterations overlooked in DEG analysis. A Venn diagram
showing DEGs and gDTUs identified in the TLI. B Comparison of GO and KEGG terms enriched for DEG, gDTU, or DEG+ gDTU identified in
the TLI.
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stability (nonsense-mediated decay) or leading to gain/loss of
protein domains, intrinsically disordered regions, or signaling
peptides12. Quantification of these consequences revealed some
interesting differences between Mayo and MSBB BM36 (Fig. 5C),
the two datasets with the largest numbers of gDTUs. Whereas in
the Mayo dataset, a high number of isoforms showed loss of
coding potential and protein domains, in the MSBB BM36 isoforms
showed an even distribution of loss and gain of coding potential
or protein domains (Fig. 5B). These differences could be at least
partly explained by the larger number of gDTUs detected in the
Mayo compared to MSBB TL (Fig. 3) and are likely related to the
different median read depth of these datasets (Mayo—12.58
billion bases; MSBB BM22—3.23 billion bases; MSBB BM36—3.56
billion bases)27.

Differential expression of genes involved in alternative splicing
correlates with isoform switches during disease progression
To evaluate whether the emergence of gDTUs could be correlated
with AD pathology hallmarks, we quantified the total of gDTUs
observed at different disease stages in the MSBB dataset using the
Braak classification (Fig. 6 and Supplementary Table 5). For this

purpose, we subdivided samples into three groups: low Braak (0, 1,
and 2)— 196 samples (clinical diagnosis: 15 AD and 181 controls);
mid-Braak (3 and 4)—133 samples (clinical diagnosis: 58 AD and
75 controls); and high Braak (5 and 6)—308 samples (clinical
diagnosis: 305 AD and 3 controls). Next, we evaluated the number
of gDTUs when comparing individuals at these different stages
(Fig. 6). We observed that most gDTUs were detected only while
comparing high with either low or mid-Braak stages (Fig. 6A–D).
This pattern was observed both in the FL (BM10 and BM44) and TL
(BM22 and BM36), suggesting that gene isoform switches
positively correlate with AD pathology progression.
Next, we set out to evaluate alterations in the expression of

genes encoding for proteins of the splicing machinery between
the same Braak stages. We found that among 441 genes related to
“splicing” or “spliceosome” terms (Supplementary Table 6), 79
were DEGs at high compared to low or mid-Braak stages (Fig. 6E).
In contrast, we could not detect any DEG in the comparison of mid
vs low Braak stages. Among DEGs detected in the comparison
between high and low/mid-Braak stages, we observed that several
genes specifically associated with the neuronal splicing regulatory
network28, such as RBFOX1 and 2 (RNA binding Fox-1 homolog 1
and 2), ELAVL2 (ELAV like RNA binding protein 2), MBNL3

Fig. 5 Alternative splicing mechanisms associated with isoform switches and consequences for protein expression. A Schematic showing
different splicing events that can lead to gene isoform switches. B Quantification of the number of isoforms showing more or less splicing
events in AD compared to controls for each dataset. C Quantification of the number of isoforms showing (i) gain or loss of coding potential,
domains/signal peptides identified, intrinsically disordered regions (IDR), intron retention, open-reading frame (ORF) sequencing similarity; (ii)
switch (simultaneous gain and loss) of domains identified or IDR; (iii) sensitive or insensitive to nonsense-mediated decay (NMD); and (iv)
longer or shorter ORF sequencing similarity.
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Fig. 6 Coincidence between altered expression of splicing-related genes and gDTUs in advanced pathologic stages of AD. A–D Upset
plots showing the total number of gDTU identified in the comparison between different Braak stages (low vs. high, low vs. mid, and mid vs.
high) in BM10 (A), BM44 (B), BM22 (C), or BM36 (D). Horizontal bars show the total number of gDTUs identified in each comparison (low vs.
high, low vs. mid, and mid vs. high), whereas vertical bars indicate the gDTUs exclusive or common to different comparisons. Black dots below
vertical bars indicate stages analyzed. E, F Differential expression of genes associated with splicing/spliceosome after comparison of different
Braak stages (E) or AD vs controls in different datasets (F). Red and blue squares indicate, respectively, up- and downregulated genes. Gene
symbols highlighted in red indicate genes belonging to the neuronal splicing machinery.
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(muscleblind like splicing regulator 3), PTBP1 (polypyrimidine tract
binding protein 1), and NOVA2 (NOVA alternative splicing
regulator 2) (Fig. 6E, highlighted in red). A similar correlation
between pathological burden and differential expression of the
same 441 splice-related genes was observed in the comparison
between all AD versus control subjects of the different datasets
(Fig. 6F). Changes in the expression of those genes were hardly
observed in FL (low number of gDTUs—Fig. 3), but were frequent
in TL samples (high number of gDTUs—Fig. 3), albeit to a lesser
extent than that observed in the comparison between different
Braak stages (likely due to the effects of combining low, mid and
high Braak stages in the AD group). Remarkably, the majority of
the splicing-related genes with altered expression in the Mayo
dataset was not reproduced in the MSBB BM36 dataset, and vice
versa (Fig. 6F). This could help to explain the dissimilar
consequences of alternative splicing events observed in those
datasets (Fig. 5C) and suggest that a myriad of proteins could be
involved in altered splicing in the AD brains.

Differential gene expression in separate cell types of the human
brain
Considering the cellular diversity in the brain, we took an indirect
approach to sort DEGs and gDTUs according to individual cell
types. To that, we used scRNAseq data obtained from the adult
human brain to identify cell types expressing the genes altered in
our DEG/gDTU analysis (Fig. 7 and Supplementary Fig. 1). We
found that, out of the 1135 genes with altered expression, i.e.,
gDTU + DEG, in the TLI (Figs. 2 and 3), 839 were found in at least
one cell-type using as cutoff the expression in more than 10% of
cells assigned for a specific cell-type (Supplementary Table 7).
From these, 239 were identified in unique cell-types/subtypes, 396
in multiple (2–4 cell-types), and 211 in all cell-types analyzed
(Fig. 7A, Supplementary Figs. 1 and 2, Supplementary Table 7).
Confirming the efficacy of our strategy, GO analyses using cell-
type-specific genes revealed that DEGs/gDTUs in the TLI of AD
patients were significantly enriched for biological processes
associated with inflammation in microglial cells, whereas those
associated with cell adhesion were enriched in endothelial cells
(Fig. 7B and Supplementary Table 8). Similarly, DEGs/gDTUs
identified in neuronal cells were enriched for GO terms such as
synaptic signaling, synaptic plasticity, and synapse vesicle cycle
(Fig. 7C). Notably, these enrichments were more significant in
GABAergic neurons, which could suggest a more pronounced
pathological burden on these cells compared to glutamatergic
neurons (Fig. 7C). Comparison of the cell-type gene expression
signatures identified in our work with previous studies using
scRNAseq in AD6,7 showed a similar degree of overlap (Supple-
mentary Figs. 3 and 4; Supplementary Table 9), further supporting
the effectiveness of our strategy to assign gene expression
alterations to unique cell types in the AD brain.

DEG/gDTU analyses identify cell-type-specific alterations in AD
risk/causal genes
Genomic association studies have revealed about 45 loci contain-
ing variants related to an increased or decreased probability of
developing AD29,30. However, the functional variants and their
target genes remain mostly elusive31. To contribute to the
identification of target genes, we first evaluate the expression of
176 genes located within the 45 loci associated with the AD risk
(Supplementary Table 10)31 and 3 causal AD genes—PSEN1,
PSEN2, and APP—in individual cell types of the adult human brain.
We found that 116 out of the 179 AD risk/causal genes were
expressed by at least one of the major cell types identified in
the brain (Fig. 8A and Supplementary Table 11). Subsets of these
genes were exclusively expressed either in microglial cells (14 out
of 116), neurons (12), astrocytes (2), oligodendrocytes (6), or

endothelial cells (6), suggesting cell-type specific roles for these
AD risk/causal genes.
Next, we set out to evaluate the differential expression or

transcript usage for these genes. Out of the 116 AD risk/causal
genes expressed by brain cell types (Fig. 8A), we observed that 54
were also DEGs/gDTUs in at least one of the bulk RNAseq datasets
analyzed. Among those genes, two were exclusively identified in
the FL (Fig. 8B). We, therefore, decided to focus on the 52 AD risk/
causal genes identified in the temporal lobe for further analyses.
In this region, we identified 27 and 17 DEGs/gDTUs in the MSBB_TL
and Mayo datasets, respectively, including some well-characterized
AD risk genes, such as ADAM10 (ADAM metallopeptidase domain
10), BIN1, CLU (Clusterin), and TREM2 (triggering receptor
expressed on myeloid cells 2), and the causal AD genes APP,
PSEN1 and 2 (presenilin 1 and 2) (Fig. 8A, B). Eight genes were
altered in both datasets (Fig. 8B, yellow box; 15,38% of overlap)
and were selected for further analysis of isoform switch. Using ISAR
to identify the isoforms altered in the AD brains compared to
controls, we observed some patterns of isoform switch that
could have important functional relevance (Fig. 8C, D). For instance,
while BIN1 transcripts ENST00000316724.9 (NP_647593.1—isoform
1) and ENST00000409400.1 (NP_647600.1—isoform 9) were
downregulated, transcripts ENST00000393040.7 (NP_647598.1—
isoform 6) and ENST00000462958.5, ENST0000046611.5 and
ENST00000484253.1 (intron retention) were upregulated (Fig. 8C).
This pattern could lead to a decrease of the neuronal-specific BIN1
isoform 1 expression32, given that retained introns are noncoding
sequences. Using western blotting analysis, we confirmed this
decrease of BIN1 isoform 1 protein in the frontal cortex and
hippocampus of AD brain samples compared to controls (Supple-
mentary Fig. 5).
We also observed isoform switches in the AD causal gene APP

with possible functional consequences in neuronal cells. While
two APP isoforms were downregulated (ENST00000348990 and
ENST00000354192), the isoforms ENST00000346798 and ENST000
00357903 were upregulated in Mayo and MSBB datasets (Fig. 8D).
Noteworthy, significantly downregulated APP isoforms lack exon
7, which contains the Kunitz protease inhibitor (KPI) domain. KPI is
one of the main serine protease inhibitors and increased KPI(+ )
APP mRNA and protein expression levels have been described in
AD brains and are associated with increased amyloid-beta
deposition33–35. At the exception of ENST00000354192, the other
transcripts are mostly expressed in neurons (Marques-Coelho and
Costa, unpublished data), indicating that these cells may have a
selective increase in the expression of KPI(+)APP and, conse-
quently, enhanced production of Aβ1–42.

DISCUSSION
Comprehensive knowledge of gene expression alterations asso-
ciated with the onset and progression of human diseases is a key
step toward the understanding of their cellular and molecular
mechanisms36. In this work, we provide a novel framework to
identify cell-type-specific gene expression alterations in AD using
patient-derived bulk RNAseq. Comparing RNA sequencing data
obtained from distinct brain regions of control and AD patients,
we show that changes in gene expression are more significant in
the temporal than frontal lobe. We also show that a large number
of genes present isoform switches without changes in the global
expression levels. As a consequence, these genes are overlooked
in classical differential expression analysis but can be detected
through differential transcript usage analysis. Gene isoform
switches are mostly evident at late stages of the pathology and
correlate with altered expression of genes encoding for splicing-
related proteins. Using an indirect approach to assign genes to
unique cell types, we are also able to map DEGs/gDTUs to unique
cell populations of the adult brain, and our results are comparable
to previously published scRNAseq data6,7. Finally, we show that a
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subset of AD causal/risk factors such as APP or BIN1 is differentially
expressed in the AD brain. Altogether, our work provides a
comprehensive description of regional and cell-type-specific gene
expression changes in the AD brain and suggests that alternative
splicing could be an important mechanism for pathological
progression.
Despite the availability of RNAseq datasets generated from

healthy subjects and AD patients2–4, a systematic evaluation of the
gene expression changes in the AD brain, as well as comparisons
of these changes in distinct brain regions, was missing. To the best
of our knowledge, only one study aimed at comparing gene
expression levels in different AD brain regions37, but this work
was based on microarray data which has limited gene coverage.

We show, using bulk tissue RNAseq data, that alterations in gene
expression are highly prominent in biological samples obtained
from the temporal lobe, which harbors the first brain regions
affected in the AD pathogenesis8. Conversely, few changes are
present in biological samples derived from the frontal lobe, where
cells are affected only at advanced stages of AD. These
observations are in line with recent data showing that changes
in protein expression levels in AD brains are much more
prominent in the temporal lobe (hippocampus, entorhinal cortex,
and cingulate gyrus) than in the frontal lobe (motor cortex)9. They
can also help to explain the low number of DEGs identified in
scRNAseq data obtained from the frontal lobe7 compared to a
similar study in the entorhinal cortex6.

Fig. 7 Cell-type expression pattern for genes altered in AD brains. A Schematic representation showing our strategy to assign DEGs and
gDTUs identified in the TLI to specific cell types of the adult human brain (see also Supplementary Fig. 1). Out of 839 single-cell TLI genes
(scTLI), 281 were expressed in a unique cell-type, 249 in 2–4 cell-types, and 77 in all cell-types/subtypes analyzed. B Gene ontology terms
enriched for scTLI DEGs, gDTUs, or both per cell type. C Selected GO terms associated with synaptic transmission.
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Fig. 8 Expression of AD risk/causal genes is mostly altered in the TL of patients. A Heatmap showing the expression of predicted AD
risk/causal genes in different cell types of the adult human brain. DEGs and gDTUs in at least one dataset are highlighted in red. B Venn
diagram showing the number of AD risk/causal DEGs or gDTUs identified in the different datasets analyzed. The intersection between
Mayo and MSBB TL is highlighted in yellow, and genes identified are shown in the yellow box. C Representation of the 6 most significant
BIN1 isoforms altered (left) and quantification of the differential isoform fraction (dIF) in AD brains compared to controls (right). Main
protein domains are indicated with different colors. D Similar representation for APP. * dIF >0.05 and FDR > 0.01.
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In order to minimize the variability in RNAseq experiments36,
we here focused on DEGs (genes with FC > 1.3 and FDR < 0.01 in
AD versus control) detected independently in at least two
datasets containing samples of similar brain regions (TLI or FLI).
These stringent criteria limited the number of DEGs used in
subsequent analyses, but still allowed the uncovering of several
genes previously associated with AD pathologies, such as
ABCA1, ABCA2, CALB1, C1R, C1S, GAD1/2, PVALB, REST,
SLC32A1, SST, VGF, and VIP15–19 The reduced number of DEGs
in FLI and TLI likely explains our failure to detect functional
annotations associated with synaptic transmission and immune
response in GSEA, as previously reported13. However, this study
analyzed only the ROSMAP dataset and considered genes with
FDR < 0.05 as significant, regardless of the fold change,
identifying 1722 DEGs in AD versus control brains. Besides the
questionable meaning of DEGs with very small fold changes, the
use of such a large set of genes for GSEA can artificially increase
the number of significantly enriched functional annotations and
is not advised20.
Nevertheless, our failure to detect key functional annotations

associated with AD pathology while inputting TLI DEGs is puzzling
and could suggest that DEG analysis fails to detect relevant
alterations in gene expression in the AD brain. Indeed, classical
DEG analysis using DESeq or edgeR, which rank all gene
transcripts, including noncoding sequences38, are insensitive to
the dynamics of gene expression that could, for example, lead to
isoform switches with important functional consequences21.
Therefore, important gene expression alterations could occur at
the level of transcripts, without significant changes in the global
expression of genes. According to this possibility, we provide
convincing evidence that a high number of genes in the AD brain
show isoform switches (DTU) but are not detected by DEG
analysis, including several genes associated with the regulation of
synapse transmission, such as APP, NSG1, RELN, GABRA122–26.
Moreover, gDTUs identified in two independent datasets (TLI),
alone or in combination with TLI DEGs, were enriched for key
biological processes involved in AD pathogenesis, such as synaptic
communication, immune response, inflammation, endocytosis,
and cell-signaling39. Similar gene set enrichment has been
described using the analysis of co-expression modules in bulk
RNAseq27,40 or DEG analysis DEGs in unique cell types in
scRNAseq6,7. This could suggest that the combination of DEG
and DTU to analyze bulk RNAseq is comparable to scRNAseq
regarding the sensitivity to detect gene expression alteration in
AD brains. In agreement with this possibility, we were able to
assign DEGs and gDTUs to unique cell types and confirm the
similarities among cell-type-specific functional annotations
observed in our work compared to previous scRNAseq studies6,7.
Notably, we show that several DEGs/gDTUs associated with AD

pathogenesis, such as NSG1, CALB1, RELN23–25,41 are exclusively
assigned to GABAergic neurons. These genes may be particularly
relevant for AD pathogenesis, given the central role of GABAergic
neurons for the generation of oscillatory rhythms, network
synchrony, and memory in different animal models of AD42.
Isoform switches in the APP gene could particularly affect
GABAergic neurons, which express high levels of that gene,
contributing to AD pathogenesis. According to this possibility,
conditional knockout of APP/APLP2 only in GABAergic forebrain
neurons using DlxCre mice leads to cognitive deficits in
hippocampus-dependent spatial learning and memory tasks,
associated with altered neuronal morphology and synaptic
plasticity43. It is tempting to speculate that GABAergic neurons
could be particularly vulnerable in AD, contributing to the
increased neuronal activity and synapse downscaling observed
in AD brains39,44.
The high number of gDTUs observed in AD brains compared to

controls can likely be explained by altered expression of genes
encoding for proteins of the splicing machinery, affecting

alternative splicing. According to this interpretation, we show
that a high number of isoform switches is associated with
alternative transcription start site, alternative transcription termi-
nation site, exon skipping, alternative 3′ or 5′ splice sites, multiple
exon skipping and intron retention. Moreover, we show that
several genes encoding for proteins of the splicing machinery
have their expression altered in AD brains, especially those
showing a high degree of pathology (Braak >5). Also in agreement
with the regional differences in gene expression described above,
alterations in the splicing machinery are more prominent in the TL
than in the FL, which could help to explain the low number of
gDTUs in the latter brain region identified in our work and in the
previous study using a different strategy to detect isoform switch5.
Particularly interesting, several genes encoding for proteins

involved in the control of alternative splicing in neurons are
differently expressed in the TL of AD brains. For instance,
RBFOX1 and 2 are downregulated in the MSBB BM36 and could
contribute to the altered rate of exon skipping observed in this
region28,45. Noteworthy, reduced expression of RBFOX1 has
been associated with increased inclusion of exon 7 in the APP
gene, leading to an enhanced expression of APP isoforms 770
and 751 containing the KPI domain45. A similar switch in the APP
isoforms has also been associated with somatic gene recombi-
nation in AD46, indicating that increased ratios of APP isoforms
containing the KPI domain could be detrimental to neurons.
Considering these findings and the well-established associations
between KPI(+)APP expression levels, amyloid plaque deposi-
tion, and AD pathology progression33–35, it is tempting to
speculate that controlling APP isoform switches by manipulating
RBFOX family proteins could be a potential therapeutic strategy
to hamper disease progression.
Altered exon skipping could also help to explain the isoform

switch observed for BIN1, which is a major risk factor for AD29,30.
BIN1 comprises a N-BAR domain involved in membrane curvature
sensing, an SH3 domain that binds to proline-rich motifs, and a
clathrin-binding domain (CLAP) specific of the neuronal isoform
132. We show that the transcript encoding for this latter isoform is
significantly reduced in the temporal lobe, suggesting that
expression of BIN1 isoform 1 in neurons could be reduced. This
observation is in line with decreased BIN1 isoform 1 protein
expression in the AD brain compared with controls (our own
results)47. This would be also in agreement with the observation
that overexpression of the BIN1 isoform 1 may be protective in a
model of Tauopathy48.
Although we cannot formally rule out that a stage-dependent

increase in the number of DEGs and gDTUs could be due to the
loss of neuronal cells in brain regions affected by the pathology,
several lines of evidence indicate that this is not the most
parsimonious explanation for the data described here. First, we
observe that the percentage of up- and downregulated genes in
GABAergic and glutamatergic neurons are close to 50%, ruling out
the possibility that changes in cell numbers could explain these
changes. Secondly, previous scRNAseq studies in AD observed a
consistent fraction of cell types isolated across control and AD
individuals6,7, ruling out significant changes in the cellular
composition of AD brains. Lastly, a large number of genes with
total expression levels unchanged but presenting isoform
switches in the AD brains may likely presuppose a steady cellular
composition of the tissue.
Altogether, our work proposes a novel strategy to analyze bulk

RNAseq data and identify meaningful gene expression alterations
in the diseased brain. It also corroborates previous work
implicating alternative splicing in AD susceptibility5 and suggests
that isoform switches in the gene BIN1 are involved in the reduced
expression of the main neuronal BIN1 isoform 1 in AD brains.
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METHODS
Bulk RNAseq data from human control and disease banks
RNAseq datasets obtained from different brain regions were used (Mayo2;
MSBB3; ROSMAP4). Datasets were downloaded from AMP-AD Knowledge
Portal (https://www.synapse.org) following all terms and conditions to use
the data. The brain area analyzed and the number of individuals per
condition was the following: Mayo - Temporal cortex, which neuroanato-
mically subdivides into the inferior, middle, and superior temporal gyri
(STG), and cytoarchitectonically can be subdivided into Brodmann areas
(BM, instead of BA) 20/21/22/41/4249, N= 160 subjects (82 AD and 78
controls); MSBB - BM22, which is part of the Wernicke’s area in the STG,
N= 159 subjects (98 AD and 61 controls); MSBB BM36, corresponding to
the lateral perirhinal cortex, N= 154 subjects (88 AD and 64 controls);
MSBB BM10, corresponding to the anterior prefrontal cortex, N=
176 subjects (105 AD and 71 controls); MSBB BM44, corresponding to
the inferior frontal gyrus, N= 153 subjects (90 AD and 63 controls); and
ROSMAP - Dorsolateral prefrontal cortex (DLPFC), containing BM46 and
part of BM9, N= 423 subjects (222 AD and 201 controls). Unless stated
otherwise, data obtained from different analyses were grouped in
“temporal lobe” (TL) - Mayo, MSBB BM22 and MSBB BM26; or “frontal
lobe” (FL) - ROSMAP, MSBB BM10 and MSBB BM44.
Metadata obtained from each study was used to classify patients into

Control and Alzheimer’s disease groups (Supplementary Table 12). Briefly,
for the MSBB dataset, we used patients with Neuropathology Category
(NP.1) labeled as “Control” and “definitive Alzheimer”. For the Mayo

dataset, we used the “Diagnosis” column of the metadata, selecting only
“AD” and “Control” patients. For the ROSMAP dataset, we also used the
column “Diagnosis” of the metadata, selecting only “Control” (value = 1)
and “Alzheimer with no other conditions” (value = 4). In all those datasets,
subjects marked as “AD” showed Braak stage values higher than 4. In the
MSBB dataset, CDR scores of AD patients were consistently higher than 2.
In the Mayo and ROSMAP datasets, all AD patients had also a definitive
diagnosis according to NINCDS criteria. Covariates such as “Postmortem
interval (PMI)”, “RNA integrity number (RIN)”, “Age of death”, and “Sex”
were balanced among the different groups (Table 1; Chi-square test, p >
0.05). We used RIN and PMI as covariates in our model to control for
possible “batch effects” (linear regression). For detailed information of
all individual samples used in this study, please refer to Supplementary
Table 13.
For single-cell RNA sequencing (scRNAseq) analyses, we used processed

data obtained from the middle temporal gyrus (MTG), available at the Allen
Brain Atlas consortium (https://celltypes.brain-map.org/rnaseq).

Realignment of human reads into single pseudoaligner pipeline
Using human GRCh38 cDNA release 94 (ftp://ftp.ensembl.org/pub/release-94)
as a reference, we built an index to align all our fastq files. Next, we used
pseudoaligner Kallisto50 (version 0.43.1) with our pre-built index to align
fastq files.

Table 1. Summary of clinical, demographic, and technical variables of samples analyzed from different datasets.

Diagnosis Sex n Braak AOD CDR RIN PMI

Mayo–TL

AD F 49 5.55 ± 0.53 83.33 ± 7.23 – 8.58 ± 0.58 6.34 ± 5.8

AD M 33 5.42 ± 0.55 81.67 ± 8.16 – 8.59 ± 0.5 8.6 ± 5.83

Control F 37 2.03 ± 0.78 84.81 ± 8.04 – 7.59 ± 1 7 ± 7.69

Control M 41 2.36 ± 0.87 80.27 ± 9.13 – 7.64 ± 1.05 5.51 ± 6.42

MSBB–BM10

AD F 86 5.18 ± 1.21 85.94 ± 6 3.17 ± 1.35 6.05 ± 1.64 6.01 ± 3.97

AD M 53 5.48 ± 0.99 79.26 ± 7.67 3.23 ± 1.28 6.19 ± 1.42 7.38 ± 4.73

Control F 52 2.02 ± 1.09 83.04 ± 7.43 0.81 ± 1.1 6.37 ± 1.28 8.69 ± 5.73

Control M 42 1.62 ± 0.94 78.93 ± 8.56 1.23 ± 1.45 6.73 ± 1.14 11.31 ± 7.47

MSBB–BM22

AD F 88 5.25 ± 1.2 85.81 ± 5.95 3.17 ± 1.39 6 ± 1.5 5.34 ± 3.71

AD M 64 5.41 ± 0.97 79.44 ± 7.67 3.48 ± 1.35 5.53 ± 1.28 7.2 ± 4.8

Control F 45 2 ± 1.26 82.09 ± 8.1 0.94 ± 1.29 6 ± 1.23 9.18 ± 6.18

Control M 41 1.72 ± 0.97 79.29 ± 8.66 1.22 ± 1.42 5.72 ± 1.06 11.01 ± 7.29

MSBB–BM36

AD F 95 5.35 ± 1.1 86.79 ± 5.2 3.22 ± 1.28 5.59 ± 1.71 5.96 ± 4.14

AD M 53 5.47 ± 0.91 79.26 ± 7.98 3.42 ± 1.41 5.69 ± 1.61 6.65 ± 4.9

Control F 44 2.14 ± 1.15 83.45 ± 7.23 0.86 ± 1.28 6.15 ± 1.32 8.3 ± 5.66

Control M 40 1.65 ± 0.92 78.28 ± 8.79 0.85 ± 1.18 6.2 ± 1.2 12.47 ± 7.92

MSBB–BM44

AD F 84 5.2 ± 1.29 85.62 ± 6.02 3.11 ± 1.41 6.9 ± 2.51 5.74 ± 3.82

AD M 51 5.49 ± 0.98 79.69 ± 7.59 3.2 ± 1.25 6.57 ± 2.41 7.19 ± 4.58

Control F 45 2.11 ± 1.19 81.82 ± 9.06 0.93 ± 1.26 7.43 ± 2.15 8.19 ± 5.74

Control M 47 1.82 ± 0.95 78.13 ± 8.16 0.96 ± 1.22 7.35 ± 2.14 11.48 ± 7.3

ROSMAP–DLPFC

AD F 147 4.18 ± 0.93 88.55 ± 3.05 – 6.97 ± 0.88 7.25 ± 4.51

AD M 64 3.92 ± 1.28 87.6 ± 3.18 – 7 ± 1.09 6.58 ± 4.24

Control F 118 3.04 ± 1.07 85.66 ± 4.83 – 7.31 ± 0.99 7.25 ± 5.18

Control M 74 2.58 ± 1.4 83.69 ± 5.69 – 7.19 ± 1.08 7.34 ± 4.05

AOD age of death, CDR clinical dementia rate, n number of samples, RIN RNA integrity number, PMI postmortem interval (in hours), AD Alzheimer disease,
F female, M, male.
Values are mean ± SD. See supplementary Table 13 for individual values.
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Differential gene expression analyses. Differentially expressed genes
(DEGs) were identified using differential gene expression at transcript-
level using DESeq2 R library51,52. To facilitate kallisto output import,
transcript-level estimated counts, length, and abundance were extracted
using tximport function53. As described by Michael Love group, transcript-
level differential gene expression enhances analysis resolution52. Using
DESeqDataSetFromTximport, a DESeq2 object was created and filtered
using rows with sum of all counts bigger than 10. Next, DESeq function was
used with default values. Using the results function, we selected all genes
with a false discovery rate (FDR) < 0.01 and fold change (FC) > 1.3. We also
used RIN and PMI as covariates (linear regression).
Differential transcript usage (DTU) analysis was performed using the R

library IsoformSwitchAnalyzeR12. Following pipeline instructions, kallisto
abundance tables were imported using importIsoformExpression and
importRdata functions to create a switchAnalyzeRlist object. Same cDNA
release used in kallisto alignment and correspondent annotation (ftp://ftp.
ensembl.org/pub/release-94/gtf/homo_sapiens/Homo_sapiens.GRCh38.94.
chr_patch_hapl_scaff.gtf.gz) were applied as input. We filtered data using a
gene expression cutoff= 10, isoform expression cutoff= 3, differential
isoform fraction (dIF) cutoff= 0.05 and removed single isoform genes.
Although DEXSeq is recommended to test differential isoform usage, it
does not work efficiently for large datasets (more than 100 samples)11. For
that reason, we chose isoformSwitchAnalysisPart1 function using DRIM-
Seq53 to test differential transcript usage. Using part1 fasta files, all external
analysis was performed and used as input to isoformSwitchAnalysisPart2
function. We used CPC2, Pfam, SignalIP and Netsurfp2 as indicated in the
pipeline. Next, we performed a confirmation stage using stageR14 to
generate isoforms overall false discovery rate (OFDR). We selected all
isoforms with OFDR < 0.01 and dIF >0.05. RIN and PMI metadata were used
as covariates (linear regression).
Statistical significance of the intersections among different datasets was

calculated using the hypergeometric test (phyper).

Splicing events and event consequences
We used extractSplicingSummary and extractConsequenceSummary func-
tions to quantify gain/loss of predicted splicing events (such as exon
skipping and intron retention); and gain/loss (also sensitive/insensitive,
shorter/longer and switch) of predicted functional consequences (such as
coding potential and domain identified), respectively.

Single-cell RNAseq
Using R library seurat54, we created a seurat object (CreateSeuratObject),
normalized data (NormalizeData), found variable genes (FindVariableFeatures),
and rescaled data using a linear model (ScaleData, use.umi= F). After that, we
generated 50 PC’s (RunPCA) but only used 35 of them based on the PC’s
visualization distribution (ElbowPlot). Since Allen data were already anno-
tated, we only used tSNE (RunTSNE) to facilitate visualization. A group
classified as “None” by Allen metadata were removed from our analysis. This
strategy generated 7 main different cell types: Astrocytes, Endothelial cells,
Glutamatergic Neurons, GABAergic Neurons, Microglia, Oligodendrocytes
and oligodendrocyte precursor cells (OPCs). To assign genes to specific cell
types, we used the AverageExpression function. Using pct.exp bigger than
0.1, we created a list of genes that were expressed by each cell type.

Gene set enrichment analysis (GSEA)
For gene ontology analysis, R library gprofiler255 was used. Using gost
function, correction_method= “fdr” and significant=TRUE. To minimize
the enrichment of gene ontologies based on a small set of genes, we used
three conditions for significance assessment: false discovery rate (FDR) <
0.01; intersection size (intersection between gene set vs. a number of
genes in a term) >3; and precision (intersection size divided by gene set)
>0.03. We used Gene Ontology (GO or by branch GO:MF, GO:BP, GO:CC),
Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome (REAC),
WikiPathways (WP), TRANSFAC (TF), miRTarBase (MIRNA), Human Protein
Atlas (HPA), CORUM (CORUM), Human phenotype ontology (HP) as
sources. For improved visualization, we plotted results only for GO:BP,
GO:CC and KEGG and show only FDR related to terms reaching all criteria
of significance.

Selection of splicing-associated genes
To select splicing-related genes, we searched for terms containing the
words “splicing” or “spliceosome” in gProfiler bank (https://biit.cs.ut.ee/
gprofiler/gost). Taking only GO and WP datasets, 25 terms and 441 genes
related to those terms were selected (Supplementary Table 6).

Selection of AD risk/causal genes
The complete list of AD risk/causal genes used in this study is described in
Supplementary Table 10. Briefly, AD risk loci were selected from previous
work using genome-wide association studies and whole exome sequen-
cing29,30. AD risk genes within these loci were determined based on
regional association plots, assuming that the functional risk variants are
located in the vicinity of the SNP producing the top signal and taking into
account the linkage disequilibrium patterns and the recombination peaks
within the loci of interest31. Early-onset AD causal genes used in this study
are APP, PSEN1, and PSEN2.

Western blotting
Frozen brain samples obtained from the frontal cortex (FCx) and
hippocampus (hip) of three non-pathology (age: 80.33 ± 3.78 years;
Braak: 2.66 ± 1.15; PMI: 37.33 ± 22.50 h) and six AD patients (age: 79.57 ±
6.70 years; Braak: 6; PMI: 26.57 ± 13.40 h) were lysed with RIPA buffer and
sonicated at 100% during 10 s before use for the western blotting
analyses. The controls for BIN1 isoforms 1 (Iso1) and 9 (Iso9) were
obtained using HEK cells transiently transfected with 1 µg/ml DNA
solution containing plasmids encoding for BIN1 isoforms mixed with the
transfection reagent FuGENE HD (Promega) at the ratio 1:3. Cells were
lysed using RIPA buffer 48 h after transfection and frozen for further
analyses.
Protein quantification was performed using the BCA protein assay

(Thermo Scientific). In total, 10–20 μg of total protein from extracts were
separated in SDS–polyacrylamide gels 4–12% (NuPAGE Bis-Tris, Thermo
Scientific) and transferred to nitrocellulose membranes (Bio-Rad). Next,
membranes were incubated in milk (5% in Tris-buffered saline with 0.1%
Tween-20, TTBS) to block non-specific binding sites during 1 h at RT,
followed by several washes with TTBS. Immunoblotting was carried out
with primary antibodies anti-BIN1 (Abcam, ab182562), anti-β-ACTIN
(Sigma-Aldrich, A1978), and anti-GAPDH (Millipore, AB2302) overnight at
4 °C on 20 RPM. The membranes were washed three times in TTBS,
followed by incubation with HRP-conjugated secondary antibodies
(Jackson, anti-mouse 115-035-003 and anti-rabbit 111-035-003; Thermo
Scientific, anti-chicken A16054) overnight at 4 °C on 20 RPM agitation. The
membranes were washed three times in TTBS, and the immunoreactivity
was revealed using the ECL chemiluminescence system (SuperSignal,
Thermo Scientific) and imaged using the Amersham Imager 600 (GE Life
Sciences). Optical densities of bands were quantified using “Gel Analyzer”
plugin in Fiji56.
All western blot experiments were performed in compliance with

relevant guidelines provided by the Neuro-CEB - Biological Resources
Platform and the protocols were approved by the National Institute of
Health and Medical Research (INSERM), at the Institut Pasteur de Lille,
University of Lille.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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