
HAL Id: hal-03670210
https://hal.science/hal-03670210

Submitted on 17 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficiency and Equity in the Multiple Organization
Scheduling Problem

Martin Durand, Fanny Pascual

To cite this version:
Martin Durand, Fanny Pascual. Efficiency and Equity in the Multiple Organization Scheduling Prob-
lem. International Workshop on Project Management and Scheduling, Apr 2021, Toulouse, France.
�hal-03670210�

https://hal.science/hal-03670210
https://hal.archives-ouvertes.fr


1

Efficiency and Equity in the Multiple Organization
Scheduling Problem

Martin Durand, Fanny Pascual

Sorbonne Université, CNRS, LIP6, 4 place Jussieu, 75005 Paris, France
martin.durand@lip6.fr,fanny.pascual@lip6.fr

Keywords: multi agents scheduling, fairness, makespan minimization.

1 Introduction

The Multi Organization Scheduling Problem (MOSP) (Pascual et al. 2007) deals a set
of n organizations {O1, . . . , On} which each owns both a set of identical parallel machines,
and a set of sequential tasks to execute. The objective is to minimize the completion time
of the last task completed on the machines shared by the organizations (the makespan),
under an additional constraint: no organization should increase the last completion time of
its tasks in the shared system, compared to the case where it executes its own tasks on its
own machines. This last constraint is called the rationality constraint, and ensures that all
the organizations have incentive to share their machines. More formally, let us denote by
Ciloc is the makespan of Organization Oi if it schedules its own tasks on its owns machines
- this scheduled is assumed to be given by the organization (it can minimizes the makespan
of Organization Oi ,or not) - and is called the local makespan of Oi. Given any schedule
S of all the tasks on all the machines, we denote by Ci(S) the makespan of Oi, i.e. the
maximum completion time of a task of Oi in S. Our problem is the following one:

minimize Cmax(S) such that, for each i ∈ {1, . . . , n}, Ci(S) ≤ Ciloc.

Interest of cooperation. Let us first show that sharing machines does not only allow or-
ganizations which have many tasks and few machines to decrease theirs makespans by given
tasks to the other organizations, but that each organization may decrease its makespan. Let
us consider the following instance, in which all organizations can benefit from cooperating.

Fig. 1. An example in which each organization benefits from cooperating

There are n = 3 organizations, each one having only one machine. All the tasks are of
length 1. Organization O1 owns 3 tasks, O2 owns 6 tasks, and O3 owns 12 tasks. On figure 1
we can see on the left the local schedules (schedules in which each organization schedules
its own tasks on its owns machines), and on the right a schedule in which the organizations
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share their machines. In this example, sharing the machines allow each organization to
decrease its makespan. This example can be extended for higher values of n. We have shown
that the best improvement which can be obtained for each organization simultaneously is
a factor n, and that this ratio can be obtained on some instances.

Focus of this paper and map of the paper. Besides analyzing the best possible benefit
that organizations can mutually have by sharing their machines, our aim is to focus on the
efficiency of algorithms (where the efficiency is thought in term of makespan – the date
at which all the tasks have been computed), and on the equity of algorithms for MOSP
(it is not suitable that, even if the returned schedule fulfills the rationality constraint, the
machines which are free are used only for the tasks of a single organization while some
tasks of the other organizations are waiting). These two aspects may be antagonist, and
our aim is to see to which extent, since what we want would be a schedule with a small
makespan and in which machines are shared with equity.

In Section 2, we focus on efficiency: we analyze the highest possible increase of a local
makespan which may occur if we want a schedule which minimizes the (global) makespan.
We then look at the problem where each organization agrees to increases its makespan
(compared to its local makespan) by a factor (1 + ε).

In Section 3, we focus on fairness: we introduce a new problem which consists in max-
imizing the minimal gain (decrease of its makespan) of an organization. Before presenting
these results, we start by reviewing existing work on MOSP.

State of art. The Multi Organization Scheduling Problem (Pascual et al. 2007) has
been introduced with parallel rigid tasks (tasks that need to be executed in parallel on
several machines) and has mainly been studied from an approximation viewpoint. The best
approximate algorithm is a 3-approximation algorithm when the organizations schedule
locally the tasks in decreasing order of their heights (the height of a task is the number
of machines needed to execute the task), or a 4-approximation algorithm in the general
case (Dutot et. al. 2011). For sequential tasks (tasks that need to be executed on one
machine only), the best known algorithm is a 2-approximate algorithm (Cohen et. al. 2010)
(in the sequel, all the papers – as well as our results – deal with sequential tasks).

Some papers also consider a relaxed version of MOSP: it is assumed that the organiza-
tions tolerate a bounded degradation on the makespan of their own tasks, and the aim is
to minimize the global makespan. This problem is denoted by (1 + α)-MOSP (Ooshita et.
al. 2009) when it is assumed that each organization accepts to increase the maximum com-
pletion time of its tasks by a factor at most (1+α). A 3

2 -approximate algorithm for 2-MOSP
has been given (Cordeiro et. al. 2011). The closest work in spirit to what we will do in
Section 2 is a study of (1+α)-MOSP on unrelated machines (Ooshita et. al. 2009, Ooshita
et. al. 2012). In this setting, Ooshita et al. show that, when there is no cooperation (α = 0),
the makespan can be m times higher than in the optimal makespan without the rational-
ity constraint. When α > 0, the authors also give a (2 + 2

α )-approximate algorithm for
(1 + α)-MOSP.

2 Efficiency vs. increase of the local makespans

In this section, we study how the aim of minimizing the makespan is in opposition with
the rationality constraint.
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2.1 Necessary trade-off between the (global) makespan and the increase of
local makespans.

We have shown that in an optimal schedule for the makespan minimization, an orga-
nization may increase its makespan up to a factor m, where m is the number of machines
(due to lack of space the proof is omitted). This value, that could be called “the price of
efficiency”, is high. We will now assume that organizations may accept to increase their
makespans in order to get an efficient schedule, but only if this does not increase to much
their makespans. We will now assume that each organization agrees to increase a little bit
its makespan: it will accept a schedule in which its makespan is increased by a factor at
most (1 + ε) compared to its local makespan.

Let ε ≥ 0. We assume that each organization Oi agrees to have a makespan at most
equal to (1 + ε)Ciloc. If ε = 0, this is the MOSP. Otherwise, each organization agrees to
increase a little bit its makespan (the higher α is, the higher an organization agrees to
increase its makespan). We call (1+ ε)-MOSP, the problem where we wish to minimize the
makespan with these relaxed constraints:

minimize Cmax(S) such that, for each i ∈ {1, . . . , N}, Ci(S) ≤ (1 + ε)Ciloc.

Thanks to a specific instance, we give a lower bound on the approximation ratio of any
algorithm for (1 + ε)-MOSP with respect to the optimal makespan when there is no ra-
tionality constraints: this shows what we loose, in term of makespan, due to the relaxed
rationality constraint. When ε = 0, we obtain the following proposition.

Proposition 1 There is no algorithm which returns schedules which fulfill the rationality
constraint, and which is less than 2-approximate with respect to the global makespan.

This bound improves the previous one, 3
2 , which had been given (Pascual et al. 2007)

first for two organizations and then (Cohen et. al. 2010) for more than two organizations.
Furthermore, in (Cohen et al. 2011) the authors show that no approximation algorithm
for MOSP has a ratio asymptotically better than 2 w.r.t. the global makespan (when m
tends towards the infinity) when we add the constraint that on the returned schedule,
each machine schedules the tasks of its organization (if any) before the tasks of other
organizations. This constraint is thus not necessary to obtain the asymptotic ratio of 2.

2.2 A PTAS for the makespan minimization with a bounded increase on the
local makespan

We adapt the polynomial approximation scheme (PTAS) presented (Hall and Shmoys
1989) for a scheduling problem (makespan minimization with delivery times), to get a
PTAS with resource augmentation for our problem. More precisely: given a fixed ε > 0,
and a fixed number of organizations n, we will get a polynomial time algorithm which
returns a schedule with a makespan at most (1 + ε) times the optimal makespan, and
in which the makespan of each organization is at most (1 + ε) times its local makespan.
The rationality constraint may thus be violated, but the increase of the makespans of the
organizations is bounded, and may be acceptable if ε is small.

In the previous sections, we have assumed either that the rationality constraint should
be fulfilled (but we then had as only objective function to minimize the makespan, and the
gains for the organizations – the decrease of their makespans – in the returned schedule
could be very different), or we have even assumed than we can relax (in a bounded way)
the rationality constraint to get a schedule with an even smaller makespan. In the following
section, we focus on fairness issues: we will keep the rationality constraint, and our focus



4

will not be to decrease the makespan, but to get schedule in which all the organizations
decrease their makespans by a factor as large as possible.

3 Maximizing the Minimal Decrease of the Local Makespans

Given a schedule S , the gain gi(S) of Organization Oi represents how much Organi-
zation Oi has decreased its makespan in S in comparison to its local schedule:

gi(S) =
Ciloc
Ci(S)

.

The Maximal Minimal Gain problem, denoted as MaxMinGain, takes the same input
as MOSP. It builds a schedule of all the tasks of all the organizations on the m machines of
the organizations, in order to maximize the minimum gain among the organizations. The
returned schedule is thus S = argmax

S
min

i∈{1,...,N}
gi(S)

Problem MaxMinGain can be solved in polynomial time when all the tasks have the
same length. Moreover, in this case, it is possible to find a schedule S which is optimal
for MaxMinGain and which is optimal for problem (P ||Cmax): the global makespan is
minimized while the minimal gain of an organization is maximized. The algorithm is very
simple: it consists in scheduling the tasks greedily, by increasing local makespans.

When tasks can have different lengths, MaxMinGain is strongly NP-hard and hard to
approximate. We also show that there is no algorithm which is optimal for MaxMinGain
and which has an approximation smaller than 2 for MOSP. Naturally, this implies that
no algorithm can be optimal for MaxMinGain and have an approximation ratio smaller
than 2 for (P ||Cmax).

As seen in the previous section, a list scheduling by increasing local makespan is optimal
for MaxMinGain when tasks all have the same length. However, in the general case, such
a schedule can break the rationality constraint. We complete our results with a heuristic
that aims at returning a schedule as close as possible from a list schedule by increasing
local makespan but respecting the rationality constraint. On tested instances, this heuristic
returns a schedule with an average makespan below 1.07 times the optimal makespan and
an average minimum gain above 0.92 times the optimal one.
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