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Abstract—In wireless communication systems, in order to
respond to the perception of risks related to electromagnetic
field exposure and allocate radio resources, the estimation of
the received power and exposure map is an essential task and
a challenge. This paper proposes an algorithm for estimating
electromagnetic field exposure maps using U-net architecture
based on convolutional neural networks. The power map es-
timation is transformed into an image reconstruction task by
image color mapping, where every pixel value of the image
represents received power intensity. The designed model learns
wireless signal propagation characteristics in a realistic indoor
environment while considering various positions of the Wi-Fi
access points. Results show that indoor propagation phenomena
and environment models can be learned from data producing an
accurate power map to measure the electromagnetic field.

Index Terms—EMF exposure, convolutional neural network,
image reconstruction, optimization.

I. INTRODUCTION

With the increasing growth of wireless communication
systems, evaluating the radiofrequency electromagnetic field
(RF-EMF) is worthy of further investigation. Wi-Fi com-
munication systems are widely used, especially in indoor
environments. Due to the extensive Wi-Fi deployment, the
assessment of health risk perception of the RF-EMF and radio
resource allocation is essential [1], [2]. Multiple studies were
conducted to measure the exposure level for the RF-EMF
sources radiating within the frequency range 10 MHz to 6
GHz, such as mobile radio networks, Wi-Fi, RF identification
tagging systems, Wireless Local Area Network, radio and
television broadcasting, and cordless phones (DECT) [3].
Sensor networks and on-site measurements are significant, but
they are localized systems causing EMF exposure monitoring
at limited locations. For an indoor environment, locations of
Wi-Fi access points in a building may depend on features like
the building architecture, furniture, or room size. Therefore it
is necessary to build a power map to assess RF-EMF exposure
considering these related aspects.

In [4], considering urban cognitive radio networks, authors
estimate the power spectrum map using a Generative Adversar-
ial Network (GAN) [5], [6] based on convolutional neural net-
works (CNN). Frequencies of 25 MHz and 75 MHz are used
and users are assumed to be uniformly distributed. The power

spectrum is calculated as a deep learning regression task, then
mapped to a color spectrum. These power spectrum maps were
fed into a GAN model based on autoencoders analogy as an
image reconstruction task. In the estimated power spectrum
maps (PSMs), authors were limited to the inverse polynomial
law model to represent propagation phenomena. While in the
present paper, to accurately represent the indoor propagation
characteristics, we additionally considered specific parameters
such as effects of building walls, materials, brick, partitions,
etc.

In this work, RF-EMF exposure is assessed to Wi-Fi access
points at different locations in a realistic indoor environment,
where channel frequencies vary from 2.412 GHz to 2.472
GHz. This is achieved using a CNN-based architecture em-
bedding the popular U-net [7] model used for biomedical
image segmentation. The introduced reconstruction model is
referred to as Exposure Map Estimation Network (EME-Net).
The pixel color in the reference power map image of the
indoor environment represents the power intensity. The EME-
Net model is designed to learn and then predict the indoor
wireless propagation characteristics such as reflection, diffrac-
tion, shadowing, the effect of building walls, and materials.

The paper is organized as follows. In Section II, we describe
the proposed U-net-based RF-EMF exposure power map es-
timation algorithm. Experimental findings are presented and
discussed in Section III. At the end, Section IV concludes the
paper.

II. THE EME-NET MODEL

A. Sensor Measurement Exposure Power Map

Since estimating the EMF exposure map is essentially an
image reconstruction task, the EME-Net model’s input is an
image as a three-dimensional matrix. The dimensions are
the height, width, and color channel. An image is built by
combining four channels, i.e., red, green, blue, and alpha. In
simple words, a channel refers to color intensity and color in
the image. In the original U-net model, input image channel
depth was set to one to predict a single-channel mask. In
contrast, a three-dimensional image tensor with channel depth
four is utilized for our method to reconstruct the output image.
Image properties are described in Table I. The color intensity



of each pixel of the input image represents the sensor measured
value at a corresponding location, making the input sensor
measurement map.

TABLE I: Properties of the image representing the EMF map.

Dimension 3
1st dimension height - 267
2nd dimension width - 665
3rd dimension channel
Channel depth 4

Channel 1 red
Channel 2 green
Channel 3 blue
Channel 4 alpha

B. EME-Net: Exposure Map Estimation Network

The exposure map estimator system, labeled EME-Net, is
composed of two modules in Figure 1. The first module is
the reduction module and consists of convolutional, max-
pooling, and dropout layers that extract the features of the
input images by downsampling. The second module is the
expansion module: a symmetric expanding path consisting of
transposed convolutional layers upsampling the feature matrix.
The architecture follows the structure of auto-encoders. The
model is designed to capture the information from the training
dataset, learn more complex wireless propagation features of
the target area, and reconstruct the power map for exposure
measurement.

Fig. 1: The EME-Net model architecture.

Every layer of the expansion module uses skip connections
by concatenating the output of the convolutional layers and
the feature extraction layer. This is processed through the
contraction module of the same level. The contraction module
of the proposed EME-Net model encodes and learns features
extracted from the input measurement map while keeping the
spatial information of the input image. The proposed model
can then generate the RF-EMF exposure power map from
the input sensor measurement one. The explanations of the
modules are following.

1) Reduction Module: For the EME-Net model, the input
layer takes a three-dimensional sensor measurement image.
The reduction module is a chain of blocks, each of them is
composed of

• Two consecutive convolutional layers with kernel size 3×
3, a stride of 1. The input layer takes a three-dimensional
sensor measurement image, i.e., tensors with size 112×
112×4. This increases the channel number of the feature
map and results in new dimensions with 16 channels.

• The employed activation function is the rectified linear
unit (ReLU). Taking only positive values after convolu-
tion serves to overcome the vanishing gradient problem
during the backpropagation process while updating the
model weights.

• Previous layers are ended with a max-pooling layer. The
largest value in each patch of each feature map is taken
in this layer, downsampling the feature map. This results
in new dimensions: 64× 64× 16.

Layers in the first block are repeated in the reduction
module, where the feature map size gradually reduces while
the depth or channel number increases to 8× 8× 256.

2) Expansion Module: In the expansion module, five sym-
metric blocks of the reduction module are used with a trans-
posed convolutional layer for upsampling. Layers parameters
are set so that the height and width of the feature map are
doubled, whereas the depth (number of channels) is halved.

Two successive convolutions are applied to learn more
definite features from the feature map. The proposed EME-
Net model architecture is symmetric U-shaped and has five
blocks on each module. On a high level, it can be illustrated
as in Fig. 2.

Fig. 2: EME-Net model at a high level.

Next, we compare three U-net-based architectures, namely
EME-Net with 2 blocks, EME-Net with 3 blocks, and EME-
Net with 5 blocks on both modules (i.e., reduction and
expansion). Then, the best model is selected for testing.

C. Training and Testing the Model

The input data are the sensor measurement map images and
the model output are the RF-EMF exposure map images.

The RF-EMF exposure power map estimation is an image
reconstruction task that could be treated as a regression
problem. We minimized the regression loss using the L2 mean
squared error function during both training and validation
to optimize the parameters and update the proposed model
weights.

The reconstructed map images are compared with the ref-
erence RF-EMF maps during the test phase to investigate the
model performance. The test result yields the reconstruction
performance for a lower to a higher number of sensor mea-
surement locations. Visual observations of some samples of
the reconstructed power map will also be provided.



D. Evaluation Metrics

To evaluate the model performance, the structural similarity
index (SSIM) [8] and the peak signal-to-noise ratio (PSNR) are
calculated based on the reconstructed map and the reference
map. SSIM models the perceived change in the structural
information of the image, giving values between -1 and 1,
where 1 indicates perfect similarity. PSNR measures the ratio
between the highest of the maximum pixel intensity to the
power of the distortion.

III. SIMULATION RESULTS

This section describes the indoor propagation environment,
introduces the simulation parameters, and discusses the EMF
map reconstruction results.

A. The Environment Model

For computer simulations, we consider a customized ver-
sion of the environment WINNER-II A1 [9]. It represents a
typical multi-room office environment where the floor area
is 2100 m2, room dimensions are 10 m × 10 m × 3 m,
and the corridor has the dimensions 70 m × 10 m × 3 m.
Windows are located on the north and south side of the office
environment. Each room has a wooden door, and the walls are
constructed with plaster with a thickness of 10cm. The ceiling
and floor are made using reinforced concrete. The indoor
office model layout is illustrated in Fig. 3. Materials used to
construct the rooms and their properties are given in Table
II. They are implemented in ’PyLayers’ for the simulations.
For training the model, 5 Wi-Fi access points are considered
with different location scenarios while keeping two of them
in the corridor and three in the rooms. ’PyLayers’ is an open-
source radio-channel wave propagation simulation tool [10].
Using ’PyLayers’, we simulate the received power maps in a
dense environment; then, we employ them as reference maps.
Figure 4, gives two examples of reference exposure maps with
different Wi-Fi access points locations’. Five pixels in each
room and 26 pixels in the corridor, 96 pixels were taken from
the reference map to generate the sensor measurement maps.
Sensor measurement locations as the incomplete image are
shown in figure 5. We consider 15, 30, 50, 70, 90, and 115
pixels taken from the reference map images for the test sets.
It is worth noting that, for the most optimistic scenario, i.e.,
when 115 measures or pixels are considered, we cover less
than 1% of the reference image area.

Fig. 3: Layout of the indoor scenario.

Description Wall Air Ceiling Floor Door

Material Plaster Air Reinforced
concrete

Reinforced
concrete Wood

Relative
permeability

µr
1 + 0j 1 + 0j 1 + 0j 1 + 0j 1 + 0j

Relative
permittivity

εr
8.0 + 0j 1 + 0j 8.09 + 0j 8.09 + 0j 8.3 + 0.02j

Sigma
conductivity

s/m
0.308 0 0 0 0

Thickness
in cm 10 2 10 10 5

Manning’s
roughness 0.0 0.0 0.012 0.0 0.0

TABLE II: Properties of the environment materials.

(a)

(b)

Fig. 4: RF-EMF exposure reference map

Fig. 5: Input sensor measurement map with 96 pixels from the
reference map.



The Wi-Fi hotspots are omnidirectional with orthogonal
and parallel polarization. Generating the EMF exposure maps
considers the multi-wall and multi-frequency home environ-
ment path loss model [11]. The path loss is calculated taking
into account that the direct line between Tx and Rx crosses
several kinds and amounts of walls added to the free space
log-distance path loss:

PL(d)[dB] = PL0(d0) + 20log10(d/d0) +
M∑
i=1

kiLi +Xσ

where PL(d) is the path loss at a Tx - Rx distance equal
to PL0 at a reference distance d0 equal to 1m is the path
loss, ki is the number of walls of type i crossed by the line-
of-sight, the total number of different kinds of wall is M , Li
is the penetration loss of wall type i, and is Xσ is a zero-
mean gaussian random variable with a standard deviation σ.
The value for PL0(d0) and Xσ for a Wi-Fi radio technology
at frequency band 2.4 − 2.5GHz are 27.75dB and 5.94dB
respectively.

The core objective of this study is to investigate whether the
proposed EME-Net model could learn accurate propagation
characteristics with the given environment architecture. Refer-
ence maps are generated using the features of propagation such
as the multi-wall loss, the type of material used to construct
the wall, the wall penetration loss, the relative permeability
and permittivity, the conductivity, and the thickness of walls.

B. The Results
We evaluate the proposed EME-Net through three different

configurations by varying the number of blocks of the con-
volutional layers in both reduction and expansion modules.
These three configurations were trained and evaluated on the
same datasets. For the input training samples, 96 pixels as
measurement locations are used. Training setup, description
of the derived three models and losses are depicted in tables
III and IV respectively.

Parameters Value
Total number of images 12660
Input samples 10128
Validation set 1266
Test set 100
Optimizer ADAM -Adaptive Moment Algorithm
Learning rate 1× 10−4

Batch size 2
Decay rate 1× 10−6

Epochs 12

TABLE III: Training parameters.

Model (or configuration) Trainable parameters loss
EME-Net 2 blocks 61400 0.0183
EME-Net 3 blocks 114800 0.0102
EME-Net 5 blocks 1942428 0.0017

TABLE IV: Total number of parameters for each reconstruction
model and training loss.

Following the training of the EME-Net derived mod-
els (EME-Net-2 blocks, EME-Net-3 blocks, and EME-Net-5

blocks), the one with the minimum loss was chosen as the
best performing model. Results shown in Table IV.

The best model performance was investigated by increasing
the number of measurement points. This is done by taking
15, 30, 50, 90, 115 pixels as measurement points from the
reference image.

Figure 8 illustrates the reconstructed maps using the pro-
posed EME-Net model based on test sets containing 15, 50,
90 pixels as measurement points.

Figure 6 shows the SSIM value of reference and recon-
structed images increases with the number of measurements
in the input image. When 15 measurements are fed in the
model, the reconstructed images have lower SSIM; while
increasing the number of measurement points, the SSIM value
gradually increases. SSIM value lower means dissimilarity
between reference and reconstructed images.

Figure 7 presents both averages of SSIM and PSNR increase
together with the number of measurement points. About the
slight downfall of the average SSIM at 90 measurements, this
effect is due to the use of raw pixels intensities globally.Same
trend indicating that the reconstruction process is coherent
with respect to similarity and image quality.

Fig. 6: SSIM - reference and reconstructed images.

Fig. 7: Reference Vs. Reconstructed - average SSIM and PSNR.



(a)

(b)

(c)

Fig. 8: Reconstructed maps (rows 2, 4 and 6) and its corresponding
original exposure maps (rows 1, 3 and 5) when (a) 15, (b) 50, (c) 90
pixels used as sensor measurements at random locations.

IV. CONCLUSION

This paper proposed an RF-EMF exposure map estimation
method, called EME-Net, based on the U-net architecture,
for indoor wireless networks. Using a deep convolutional
architecture, the proposed EME-Net was designed to predict
the RF-EMF exposure maps accurately. The results illustrated
that, using the developed model, it is possible to reconstruct
the exposure maps accurately with fewer measurements at
random locations, i.e., with less than 1% of the area of the
reference map. The model learns the complex indoor radio en-
vironment propagation features through a training process and
utilizes them to make accurate predictions rather than making
unreliable or tendentious signal propagation assumptions. The
architecture model could be extended or developed to cover
outdoor or more sophisticated environments.
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