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A metamodel‑based flexible 
insulin therapy for type 1 diabetes 
patients subjected to aerobic 
physical activity
Emeric Scharbarg1,2,3*, Joachim Greck1,3, Eric Le Carpentier1, Lucy Chaillous2 & 
Claude H. Moog1,3

Patients with type 1 diabetes are subject to exogenous insulin injections, whether manually or 
through (semi)automated insulin pumps. Basic knowledge of the patient’s characteristics and flexible 
insulin therapy (FIT) parameters are then needed. Specifically, artificial pancreas‑like closed‑loop 
insulin delivery systems are some of the most promising devices for substituting for endogenous 
insulin secretion in type 1 diabetes patients. However, these devices require self‑reported information 
such as carbohydrates or physical activity from the patient, introducing potential miscalculations and 
delays that can have life‑threatening consequences. Here, we display a metamodel for glucose‑insulin 
dynamics that is subject to carbohydrate ingestion and aerobic physical activity. This metamodel 
incorporates major existing knowledge‑based models. We derive comprehensive and universal 
definitions of the underlying FIT parameters to form an insulin sensitivity factor (ISF). In addition, the 
relevance of physical activity modelling is assessed, and the FIT is updated to take physical exercise 
into account. Specifically, we cope with physical activity by using heart rate sensors (watches) with 
a fully automated closed insulin loop, aiming to maximize the time spent in the glycaemic range 
(75.5% in the range and 1.3% below the range for hypoglycaemia on a virtual patient simulator).These 
mathematical parameter definitions are interesting on their own, may be new tools for assessing 
mathematical models and can ultimately be used in closed‑loop artificial pancreas algorithms or to 
extend distinguished FIT.

Type 1 diabetes is a chronic disease characterized by the autoimmune destruction of pancreatic beta cells, which 
are responsible for insulin secretion. Artificial pancreas systems have started to become widely used by a new 
population of patients with type 1 diabetes to mimic natural insulin  production1,2. Other processes, such as 
glucose-responsive insulin patches, have been investigated to mimic pancreatic endocrine functions. Curative 
treatments also form an active field of research, with techniques such as pancreatic islet transplantation and stem 
cell-based  therapies3. The majority of artificial pancreas systems are monohormonal, meaning that they utilize 
insulin only as a control input, but the use of bihormonal devices, including glucagon, as new control inputs 
has been under investigation for the last decade. A bihormonal therapy enables the active control of glycaemia 
whether it needs to be increased (glucagon) or lowered (insulin). Due to the presence of these two antagonistic 
hormones, in principle, it becomes easier to control glycaemia and to prevent hypoglycaemia. Nevertheless, this 
method comes with limitations as glucagon is a less stable molecule than  insulin4. Thus, the bihormonal therapy 
is ignored herein.

Flexible insulin therapy (FIT)5 is the methodology that is accepted worldwide for the monohormonal treat-
ment of type 1 diabetes. The treatment process is personalized according to sensitivity factors and ratios that are 
specific to each individual. These parameters are also related to the parameters of any knowledge-based math-
ematical model of glucose-insulin dynamics. Note that alternative models, such as models derived from deep 
learning, are less transparent with respect to those FIT parameters. Models describing of the effects of ingested 
carbohydrates have been widely worked out. Their management is well understood, and most studies conclude 
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that meal announcement is required to guarantee the performance of a closed-loop system. With regard to taking 
into account physical activity, the situation is quite different as explained below.

Patients with type 1 diabetes should practise regular physical activity, as it reduces the risk of developing 
cardiovascular diseases and significantly decreases their insulin  requirements6. However, this is a difficult situa-
tion to manage because patients with type 1 diabetes usually need to decrease insulin to prevent hypoglycaemia.

At a cellular scale, aerobic exercise uses oxidative processes (which require oxygen) to synthesize adenosine 
triphosphate (ATP) from glucose and thus deliver energy to the organism. These procedures require a constant 
flow of oxygen to be delivered to the body cells; this requirement, can only be satisfied if exercise remains mod-
erate in intensity. Anaerobic refers to exercises corresponding to high-intensity physical activities (weightlift-
ing, sprinting,etc.) and can paradoxically lead to hyperglycaemia. Aerobic physical activity (walking, running, 
swimming, cycling, etc.) is known to be hypoglycaemic and is the main type of physical activity practised by the 
average population. Both types of physical activity are energy-consuming and therefore require glucose to be 
transported to muscle cells to synthesize ATP. GLUT-4 glucose transporters fulfil this role. These transporters are 
mainly distributed in striated skeletal muscle cells as well as in cardiac muscles and adipose tissues where they 
allow glucose to be transported into cells. The translocation process is either insulin-stimulated or contraction-
induced. Three main biological mechanisms lead to increased glucose uptake in muscle tissues: (1) an increase 
in local muscular blood flow is responsible for more insulin being driven towards muscle tissues and thus leads 
to a higher glucose intake level due to insulin-stimulated GLUT-4 whose capacity is reduced but not annihilated 
in patients with diabetes; (2) enhanced insulin receptor (IR)  sensitivity7 ; and (3) an activation of contraction-
induced GLUT-4 due to exertion.

At this stage, a set of open problems can be listed. Although the knowledge of the FIT parameters is crucial 
for medical practitioners, these parameters are usually omitted by the scientific community when deriving 
new models for insulin-glucose dynamics in type 1 diabetes cases. Well-defined FIT parameters would help to 
assess mathematical models and would ultimately enable better control over two major disturbances: meals and 
physical activity.

As explained above, models that take physical activity into account are still works in progress. Today, we 
have an opportunity to detect physical activity due to measured activity variables (heart rate, actimetry, etc.)

In the case of diabetes, exogenous insulin does not adapt in a physiological manner once it has been adminis-
tered, which can lead to hypoglycaemia. Thus, better glycaemic control, even during exertion, is one of the main 
drawbacks to overcome, as it prevents patients with type 1 diabetes from regularly exercising due to the fear of 
 hypoglycaemia6. Multiple precautions must be taken to prevent hypoglycaemia, i.e. physical activity should be 
started close to hyperglycaemia (approximately 1.8 g/l) and the basal insulin flow must be reduced before and 
during activity.

Our findings aim to provide solutions to the above open problems.
A metamodel for glucose-insulin dynamics that is, subject to carbohydrate ingestion and aerobic physical 

activity is derived; it incorporates major existing knowledge-based models. The common core, Bergman’s minimal 
model, is highlighted. Our own new model is challenged with clinical data and in silico testing.

We derive a comprehensive and universal definition of the underlying FIT parameters as the insulin sensi-
tivity factor (ISF). Our approach allows us to extend and specialize these notions to any model regardless of its 
complexity. In addition, the relevance of physical activity modelling is assessed on clinical data.

Ultimately, the list of FIT parameters is enriched to include physical exercise. This involves an extended FIT 
which yields a new control law to be applied. Its feasibility is sound as it is based on new sensor readings as heart 
frequency, or actimeters. We can close the loop by taking real-time physical activity into account, thereby provid-
ing a fully automated closed insulin loop while maintaining the best performance available. The corrections in 
the insulin infusion rate are updated with respect to the standard FIT. Specifically, we cope with physical activity 
by using sensors leading to the maximization of the time spent in the glycaemic range (76% of time in the range 
from 70 to 180 mg/dl and 1.3% of hypoglycaemic time on a virtual patient simulator).

Results
The metamodel based Flexible Insulin Therapy parameters. Figure 1 displays a metamodel that is 
focussed on physical activity and three models that are available in the current literature. Further disturbance 
input channels may be added to complete the scheme. A comprehensive and universal definition of the sensitiv-
ity factors (to external inputs) is given next.

FIT aims at personalizing the treatment provided to each individual patient based on sensitivity factors that 
enable the quantification of specific exogenous insulin needs in response to specific external disturbance inputs 
(i.e., carbohydrates, stress, or physical activity). This medical approach is the cornerstone of our work, as we aim 
to capture real-life clinical practice. To this end, we design a new mathematical model derived from the so-called 
FIT model, or the Minimal Model Control-oriented11, including the hypoglycaemic action of aerobic physical 
activity. A new physical activity sensitivity factor is introduced and shown to be instrumental to tune the amount 
of injected insulin according to the type and intensity of physical activity performed.

Physical activity models from the  literature8–10,12 are merged into a single metamodel, which is sketched in 
Fig. 1. Notably, the various contributions are not consistent in terms of the biological processes to be modelled 
and specifically in regard to the definitions of sensitivity factors.

This metamodel in Fig. 1 is completed by the following mathematical metamodel which includes major 
continuous time models that are available in the literature. By slightly abusing the notation, we write:
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where G denotes the blood plasma glucose concentration, Xj
i denotes the p intermediate insulin compartments 

and Xk
c  represents the q intermediate carbohydrate digestion compartments. The notations Xi and Xc stand for the 

vectors Xi = (X1
i , ...,X

p
i ) and Xc = (X1

c , ...,X
q
c ) , respectively. When physical activity is involved, a new subsystem 

is added with a variable XHR and driven by the heart rate uHR , which is considered an external input. Further 
developments are found in the Supplementary Information (Section 1). Figure 1 displays the metamodel built 
around a common core which is the Bergman minimal  model13. Therein, R. Bergman gave the first mathemati-
cal definitions of glucose Effectiveness E and insulin sensitivity ISF. ’Glucose effectiveness’ refers to the ability of 
glucose to suppress endogenous glucose production and stimulate glucose uptake. It is computed as E = − ∂Ġ

∂G
.

In medical terms, insulin sensitivity is a factor that mitigates the decrease in glycaemia caused by the injec-
tion of one unit of insulin. For the Bergman model, it is the insulin capacity required to lower the blood glucose 
concentration and is expressed as ISF = − ∂2Ġ

∂I∂G under steady-state conditions. The latter is only valid for a Berg-
man-like model structure that consists of a cascade of two insulin compartments and which introduces insulin-
dependent glucose uptake as a bilinear term between G(t) and X(t), some intermediate insulin compartment.

With mathematical models becoming more complex, including several remote insulin compartments as 
shown in Fig. 1B, the above formula for the ISF is no longer valid. A generic definition that is able to cope with 
(1), and thus is usable with almost any mathematical model is crucially needed. Analogous sensitivity factors 
with respect to any type of external disturbance input are worth defining accurately, whether the disturbance is 
embodied by the ingested carbohydrates uc by some physical activity uHR or any other external input.

(1)







Ġ = Ġ(G,X1
i , ...,X

p
i , ui , ...,X

1
c , ...,X

q
c , uc)

Ẋi = Ẋi(Xi , ui)
Ẋc = Ẋc(Xc , uc)

Figure 1.  Metamodel of the glucose dynamics subject to insulin injection and physical activity. (A) Top: A 
metamodel based on the Bergman minimal model. The black bold scheme represents the core that is common 
to three specific models, namely Roy and  Parker8 in blue,  Breton9 in red and  Alkhateeb10 in green. The most 
exhaustive model in terms of biological processes considers the factthat physical activity increases hepatic 
glucose production, also causes a depletion of glycogen stocks leading to a decrease in the glycogenolysis rate 
and finally increasing the glucose uptake of working tissues. Other models synthesize these three mechanisms 
in one module by considering only the increase in the glucose uptake. The ingested carbohydrates can be easily 
added to these schemes as a third input channel. (B) Bottom: A multicompartment metamodel for the diffusion 
of carbohydrates, insulin and physical activity and their effects on glycaemia. These multiple compartments act 
as a ’buffer’ for the diffusion of the primary input. Their behaviours are described in mathematical diffusion 
equations, which are linear in the case of injected insulin diffusion or in the case of carbohydrates digestion. 
However, they are nonlinear for some physical activity models.
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In the special case of carbohydrates, it is quite obvious that meals with different glycaemic indices have their 
glucids assimilated by blood plasma at different digestion compartments. The model structure shown in Fig. 1B 
is relevant.

When defining a sensitivity factor, we consider the relative variation in the output Ġ with respect to an exter-
nal input, (or eventually with respect to the glucose concentration to capture glucose effectiveness as well). This 
general formulation allows us to consider not only the injected or ingested quantities but also the amounts of 
each that, are still active in intermediate compartments. The insulin sensitivity factor derived from the meta-
model becomes

where dĠ is the differential (or gradient) of Ġ and the column vector consists of the static or instantaneous gains 
of the p insulin diffusion compartments. This definition takes not only the explicit inputs on the right-hand side 
of Ġ , but also the total quantity contained in all diffusion compartments into account.

Further details are found in the Supplementary Information of this article, which includes the formal defini-
tions of the sensitivity factors. They are computed in the special case of some renowned models according to 
(2). Applying this definition to the new FIT model (or extended FIT model) introduced in this paper yields an 
ISF expressed in [mg/dl/U].

The methodology is exactly the same for every sensitivity factor with respect to any other input, taking the 
static diffusion subsystem gains of interest into account. In the same way, the new physical activity sensitivity 
factor PSF is defined in terms of the static or instantaneous gains of the q digestion compartments:

The PSF is expressed in [mg/dl/bpm/min] and characterizes the glycaemia decrease induced by exertion. A 
physical activity to insulin ratio (PIR) results from the ratio between the ISF and the PSF. The PIR is expressed 
in [bpm/U]. This ratio is used in the design of a new control law to compute the units of insulin to be removed 
from the injected insulin due to physical activity.

The main findings at this stage are summarized as follows. Whatever the metamodel consists of, whatever the 
model is, and whatever the control inputs or disturbance inputs of interest are, the sensitivity factor w.r.t a specific 
input is the scalar product of the gradient of Ġ and the static gains vector (of all compartments) w.r.t. this input.

Now, we are ready to consider any model and any input (stress, external temperature, any coinfection...) to 
characterize the associated sensitivity factors. This general definition remains valid for general structures of the 
metamodel, including couplings in the diffusion subsystems. This result is of technical interest.

In silico assessment of the new model and associated control. The extended FIT model consists 
of 6 ordinary differential equations with four main dynamics, as shown in Fig. 2C. Insulin diffusion dynamics 
are modelled with a two-compartment subsystem including: a subcutaneous compartment and a blood plasma 
compartment. A two-compartment model is also chosen to model the digestion subsystem, including the stom-
ach and the duodenum. These second order models are consistent with the pharmacokinetics of insulin and the 
appearance rate of glucose in blood plasma after a meal. Finally, physical activity is assumed to have a delayed 
impact on blood glucose concentration; therefore, additional first-order dynamics, which are driven by the heart 
rate input and define a physical activity variable, are introduced. The mathematical term describing the impact of 
physical activity on blood glucose synthesizes three biomechanisms that occur during exertion in type 1 diabetes 
patients. Exogenous insulin is unable to physiologically adapt to physical activity. Muscular tissue increases its 
glucose consumption and a counter-regulation action is inhibited by excessive insulin levels in the circulatory 
system. This is summarized in one unique additional term in the glycaemia dynamics model, with a hypoglycae-
mic effect (see Supplementary Information).

The behaviour of the extended FIT model (4) is first assessed with simulations in Fig. 2A. This model is 
restricted to the case of aerobic exercise as this is the main type of physical activity performed within our cohort 
of patients. The test scenario is initialized with a glycaemia level that is within the homeostasis target with a 
well tuned basal rate. This means that the blood glucose level remains constant at 110 mg/dl. A meal situation is 

(2)ISF = dĠ ·
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evaluated with an adequate number of concomitant insulin bolus units. Before a physical exertion, each patient 
ingests 15 g of carbohydrates without any insulin injection prior to starting physical activity in an acceptable 
glycaemic range. Then, a medium intensity exercise lasts for 30 min and causes glyacemia to decrease.

A control law is now computed from the previous model. Its goal is to maintain glycaemia around a reference 
value while compensating for meals and physical activity. Heart rate readings are used to detect physical activity 
and enable a faster response for the control. In Fig. 2B, we compare the responses of two control laws, one that 
utilizes only a regulation-like process that compares the glycaemia output with a reference value and another 
that utilizes the heart rate readings. In some cases, especially when the patient’s sensitivity to physical activity 
is low, the regulation control takes an extra 20 min to become effective, whereas the control process accounting 
for physical activity lowers the insulin flow in a couple of minutes. The need for a control law that takes physi-
cal activity into account becomes even more blatant when modelling a Continuous Glucose Monitor (CGM). 
Ultimately, including a 15 min delay in the model of the CGM sensor, we are able to mitigate the decrease of 
glycaemia by approximately 10% , with respect to the case where insulin remains at its basal level during exer-
tion. In nondeclarative control algorithms, such as the one developed herein, it is imperative to detect exertion 
as soon as possible (as in real-life conditions). A patient is advised to lower his basal insulin rate at least 20 min 
before performing exercise.

The control law is intended to perform well as long as the patient prepares himself/herself appropriately. 
For example, if the patient starts exercising with low glycaemia or without any prior carbohydrate  intake14. The 
control law will be able to slow down the decrease in blood glucose concentration but will not be able to reverse 
the trend as long as exercise continues. The ultimate goal is to guarantee more security regarding hypoglycaemia 
and enable longer physical activity periods.

Model parameter identification from clinical data. We perform an identification procedure on clini-
cal data to demonstrate the fitting performance of our model (Fig. 3).

After defining a new mathematical model, we verify that accounting for physical activity is essential for cap-
turing the insulin-glucose dynamics of an individual. An identification procedure is implemented on clinical 
data obtained under free-living conditions to answer this first question. The patient of interest is a 50 year-old 
male practising for a triathlon. Physical activity is detected when the aerobic threshold (approximately 50% of 
VO2max ) is reached.

Identification is used to validate modelling assumptions and assess the different models that are available 
in the current literature. We test multiple configurations with either nonlinear terms or parameters designed 
to represent the long-term effect of physical activity on the ISF. It is observed that the selected FIT model (4), 

Figure 2.  The extended FIT model and control law behaviour in the simulation. (A) Simulation scenario used 
to assess the extended FIT model behaviour in reaction to different disturbances. Ui stands for the insulin input 
flow and is in [U/min], Uc corresponds to the ingested carbohydrates’ flow in [g/min] and Uhr is the heart rate in 
[beats/min] or [bpm]. (B) Diagram highlighting the benefits of a control law with a physical activity variable (in 
green) and with only a glycaemic regulation term (in blue). In response to aerobic activity, the use of data such 
as heart rate can enable a quicker reactions to glycaemia decreases. (C) The extended FIT model structure, each 
block represents a subsystem of differential equations.
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presented in the Methods section, is the optimal choice in terms of performance and simplicity, as its fitting 
percentages is larger or equal to the fitting percentage of other evaluated models.

By using the sensitivity factor definitions (2, 3) introduced in the Results section, we are able to calculate 
these factors for the patient of interest. In the specific case of the extended FIT model, the ISF equals ki . With 
the identified parameters values, we obtain ISF = 26.05 mg/dl/U.

The PSF is equal to β = 0.03 mg/dl/bpm/min. Finally, the PIR is computed as PIR = ISF/PSF = 868 bpm.
min/U. This coefficient is interpreted as a response to a piecewise constant representing physical activity. More 
precisely, considering a standard physical activity duration of 30 min, the PIR is PIR30min = 29 bpm/U meaning 
that an increase of reference heart rate of 29 bpm over 30 min will have an effect equivalent to that of an injec-
tion of one unit of insulin.

Control law assessment on virtual patients. Here, we present an in silico test of our control law (8) 
with an evaluation of the time spent in the glycaemic range for both our virtualized patient data set and the 
Oregon Health and Science University (OHSU)  simulator15.

After obtaining the first identification results, the control law was tested on our virtualized patient cohort (in 
the simulator based on our model) which consisted of 10 patients in free-living conditions during a 48-h scenario 
including 1 h of medium-intensity physical activity. To do so, an identification procedure was perfomed on the 
10 patients to find a set of fitting parameters. Then, state-feedback (8) was applied, yielding the graph in Fig. 4A. 

Figure 3.  The identification procedure led by clinical data with a physical activity period. The upper panel 
represents the insulin input in [U/min]. These input data are retrieved from the patient’s insulin pump. The 
second panel pictures meal intakes in [g/min] which are declared by the patient. The third graph and last input 
is the heart rate, which is acquired using a smartwatch with a plethysmograph. During the first 15 h, the heart 
rate sensor malfunctions, and we assume that the heart rate remains at a reference value of 55 bpm as the 
actimetry data show no exertion. The fourth panel shows an identification procedure performed over 48 h via a 
model without physical activity equations followed by a crossed-validation of 24 h, showing that the model fails 
and quickly diverges after the onset of exertion. The last graph considers the same 72 h of data while conducting 
identification on the whole data set with the extended FIT model (including physical activity). The four red 
vertical lines the delimit two physical activity periods where exertion is deemed significant.
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This figure shows the patient intervariability levels produced with different responses to meal intake and physical 
activity, along with magnitude changes and time constants; furthermore, the control process behaved consist-
ently for every patient, allowing us to maximize the time spent in the glycaemic range. The mean time spent in 
the glycaemic range by the 10 virtualized patients was 81.8% . The time spent in hyperglycaemia averaged 16.8% 
and the time spent in hypoglycaemia was evaluated at 1.4%.

A similar procedure was performed on the OHSU virtual patients simulator to assess the performance of 
our control law. This OHSU  simulator15 provided a cohort of 99 patients under a single-hormone therapy. 
The default scenario implemented in the simulator was chosen to complete the assessment. This was the same 
scenario as that used in our 10 patient-cohort. Figure 4B displays the performance of the closed-loop on the 
virtual patient cohort. The physical activity period started at 7 pm on the first day. A control-variability grid 
analysis was plotted in Fig. 4C and d for both cohorts to assess the performance of the control law in terms of 
time in the glycaemic range. Because some meals contain significant amounts of carbohydrates and because the 
control law only administers insulin once meal starts, glycaemia tends to increase more in this case than with 
an anticipative bolus injection when the meal is announced in advance. In this scenario, as the patients did not 
start physical activity at an adequate blood glucose concentration (i.e., approximately 180 mg/dl16), the scatter 
plot tended to shift to the right towards the 70 mg/dl hypoglycaemic limit. Despite these limitations, the control 
law demonstrated its ability to control glycaemia with a mean time-in-range (TIR) percentage (i.e., time spent 
between 70 and 180 mg/dl) of 75.5% which met recommendation 6.5b17 of the American Diabetes Association 
that at least 70% of time should be spent in the target range for good glycaemic control, and a mean percentage 
of time spent in hypoglycaemia of 1.3% (recommended: below 4%).

Discussion
Figure 3 shows the necessity of modelling physical activity, as the cross-validated curve was not able to follow the 
true insulin-glucose dynamics as soon as the first exercise period occured. We could tell from the first activity 
period that the patient purposely lowered the insulin bolus associated with his meal as the modelled glycaemia in 
dashed line hardly decreases after the meal; this is contrary to what one might have expected. When identifying 
the 72 h of data with the extended FIT model, we saw that the meal occurring just before the first activity period 

Figure 4.  Control law performance comparison on a cohort of virtual patients and a simulator from the 
literature. (A) Simulation scenario and the results of our 10 virtual patients obtained by using our state-feedback 
controller. The horizontal dashed-lines represent the hypoglycaemia and hyperglycaemia thresholds (resp. 70 
mg/dl and 180 mg/dl), respectively. The red-coloured area corresponds to the physical activity period. The 48-h 
scenario presented here included 3 meals on the first day, followed by an exercise bout and 3 more meals the 
next day. (B) Simulation of the 99-patient cohort from the OHSU simulator using our control algorithm and the 
same scenario as above. The horizontal dashed-lines have the same meanings as those in panel (A). (C) Control-
variability grid analysis for our patient cohort with each black dot representing a patient according to their time 
spent in and out of the glycaemic range with a 95% confidence interval. All patients remained in the B-zone 
meaning that the control law kept glycaemia within the target range. (D) Control-variability grid analysis for the 
OHSU simulator.
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was well-compensated by physical activity, as was the second meal at approximately 62 h. This result strongly 
suggests that modelling of physical activity represents a significant improvement for predicting glycaemia and 
that our model can efficiently describe natural glycaemic variations.

The metamodel introduced above aggregates several models including meal intake and aerobic physical activ-
ity, that are available in the literature. From this metamodel, we provide a universal sensitivity factor definition, 
which represents a crucial step in the modelling of type 1 diabetes, thereby enlightening the hidden outcomes 
of the actual literature  models8–10,12,13 and their inherent links with FIT. To date, some models have hardly been 
related to medical practice; now all the relevant factors can be expressed for every knowledge-based model. The 
properties of the obtained factors and their consistency with clinical FIT parameter values form a way to assess 
the validity of a given model. The definition of the ISF in (2) represents the sensitivity to the injected exogenous 
insulin, which is of interest to diabetes practitioners, and not the sensitivity to the blood plasma insulin concen-
tration which is quite common in current studies.

The proposed model (called the extended FIT model) is completely in line with the FIT theory and the meta-
model definition; it also contains parameters with consistent units in terms of clinical practice.

From identifications conducted on clinical data, it was unclear that the bilinear term chosen by Breton (as 
detailed in the Supplementary Information) was the most relevant term for describing the evolution of glucose 
consumption. Additionally, no biological explanation that could justify a product between the physical activity 
variable and glycaemia was found. In silico tests did not show evidence that physical activity has a major impact 
on the ISF. This impact has been widely documented and accepted; however, to the best of our knowledge, no 
study to date has provided any evidence of the importance of modelling such a mechanism. In fact, all bioengi-
neering articles presenting models and their performances either worked on simulated data or worked on real 
data but focused on small time windows; this does not seem to be appropriate for assessing the importance of 
so-called “long-term” effects on glycaemia. Notably, the new long-term impact parameter in our model enlarges 
the applicable family of models and may yield slight improvements when fitting identification results. Thus, to 
keep the mathematical model as simple as possible, we decided to keep the insulin sensitivity constant during 
physical activity.

The new extended FIT model was validated against clinical data acquired from type 1 diabetes patients 
without any preprocessing apart from synchronizing the different device clocks. A significant enhanced of fit 
was achieved when using the model that accounts for aerobic physical activity. It is also important to stress that 
no CGM device modelling was introduced in this work; consequently, it was assumed that we instantaneously 
acquired the plasmatic glucose levels. However, it is more realistic to consider that such a control law will more 
likely be used with an interstitial glucose sensor such as a CGM. As CGM measures obtained during physical 
activity can lag behind capillary or venous blood glucose measurements by 5 to 28  min14, it is likely that glycae-
mia will be overestimated, leading in our case to an even more delayed control action in terms of reducing the 
insulin flow and making the use of heart rate or actimetry data even more crucial. This further demonstrates 
the importance of both the new control law and of accounting for physical activity, which embodies a new dis-
turbance input that can hardly be neglected.

Based on our cohort of 10 patients, virtual patients were designed to develop our own simulator for testing 
the new control law. Due to communication issues such as CGM signal loss and errors caused either by the 
smartwatch or by the patient when reporting meals, some patients had their parameters identified with a low 
accuracy, but good approximations of the clinical parameters were still obtained. For both our virtualized patient 
cohort and the OHSU simulator, we obtained performances exceeding the recommendations of the American 
Diabetes  Association17. Our patients spent a mean of 81.8% of their time in the glycaemic range (70-180 mg/dl) 
and experienced only 1.4% in hypoglycaemia during a typical day with physical activity under our control law. 
Resalat et al. achieved 78.1% of time spent in glycaemic target range and 3.4% of the time spent below the target 
with the OHSU simulator and the control law developed  in15. As the implemented scenario was the same as that 
experienced by their patients in vivo15, the above percentages can be compared to the actual values of 74.3% and 
2.8% obtained for the real OHSU patients. The authors acknowledged that their simulator tends to overestimate 
time-in-target values, whereas our simulator provides more realistic outcomes with less hypoglycaemia.

A major breakthrough of our work concerns the translation of the mathematical control law to an Extension of 
the Flexible Insulin Therapy (8) providing a new tool for patients and medical practitioners to anticipate aerobic 
physical activity. Due to the PIR which can be evaluated through a standard effort test performed on a treadmill, 
the patient can calculate their insulin flow rate decrease that must be considered to compensate for physical 
activity. The PIR can also be used to forecast the joint effects of pre-exercise carbohydrate ingestion and physical 
activity. One can also convert physical activity into units of insulin by using the Physical activity to Insulin Ratio, 
the PIR, to better understand the effects of physical activity on the body and relate it to a known variation in type 
1 diabetes patients. Nevertheless, these calculations must be handled with caution, as a global understanding 
of each input time-response is necessary to act at the right moment. This approach basically formalizes what 
patients have done this far to prevent hypoglycaemia during sports and strengthens the methodology with some 
theoretical arguments. The design of a validated insulin-glucose dynamics simulator that takes physical activ-
ity into account remains a perspective for a further assessement of our results. The results presented here are 
theoretical results at this stage, and they deserve to be challenged through a clinical trial.

Methods
Mathematical modelling. A mathematical model was developed in this work as an extension of the so-
called flexible insulin therapy  model18, also named the ’Minimal Model Control-oriented’11. The latter has dem-
onstrated its long-term ability to reproduce the insulin-glucose dynamics of type 1 diabetes while remaining 
quite elementary, comprehensive to practitioners, and mathematically consistent in terms of its equilibrium 
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points as well as its a priori  identifiability18 from glycaemia measurements. The series generation approach of the 
GenSSI MATLAB© toolbox was used to show that the parameters were structurally and globally identifiable. A 
structural and practical identifiability analysis was performed on the flexible insulin therapy  model18 by Garcia-
Tirado11, who discussed arguing potential identification issues due to the low sensitivity of the output to certain 
model parameters.

The physical activity equation introduced in our model was inspired by Breton’s work  in9. Nevertheless, some 
modifications were made in order to make the model fully functional on long-term real-life data. We considered 
an exertion threshold at which point glycaemia started to fall during physical activity. This is mandatory when 
utilizing free-living data, as the patient heart rate might increase from the reference value when standing or walk-
ing; however, this does not necessarily come with a significant increase in glucose consumption. We chose the 
aerobic threshold as the limit value to consider noticeable impacts of physical activity on blood glucose concen-
tration. Additionally, we assumed that the increased glucose consumption evolved in a linear fashion with physi-
cal activity, as in the work of Roy and  Parker8 and unlike the work of Breton, who considered a nonlinear term.

The extended flexible insulin therapy model including physical activity consists of six equations, three inputs, 
namely the insulin injection rate ui in [U/min], the carbohydrate ingestion rate uc in [g/min] and the heart rate 
uHR in [bpm] (beats per minute), and one output which is the blood glucose concentration x1 in [mg/dl]:

where the state variable x2 is the plasma insulin flow in [U/min], x3 is the insulin flow in the subcutaneous com-
partment in [U/min], x4 represents the carbohydrate flow in the duodenum in [g/min], x5 is the carbohydrate 
flow in the stomach and x6 denotes the filtered heart frequency in [bpm].

The model parameters include kd – the difference between the endogenous hepatic glucose production value, 
and the insulin independent glucose consumption value, which is expressed in [mg/dl/min]. The parameter kd 
yields hyperglycaemic behaviours of patients with diabetes when all other inputs are zero. The parameter ki is 
the insulin sensitivity factor expressed in [mg/dl/U], kc is the carbohydrate sensitivity factor in [ dl−1 ], and Ti 
and Tc are time constants in [min]. The latter represent the diffusion time in the insulin compartments and the 
diffusion time in the digestion compartments, respectively. Parameter β is the physical activity sensitivity factor 
expressed in [mg/dl/bpm/min]. Finally, τHR is the response time of the heart rate to the onset of physical activity.

Clinical data and identification procedure. In the special case without exercise, i.e. β = 0 and (4) 
reduces to its first five equations. The identifiability of this model was demonstrated in previous  works18 , 19. By 
using the MATLAB GenSSi toolbox, it was shown that (4) fulfilled the multi-experiment identifiability condi-
tions so that the seven parameters could be derived from the measured output, under well chosen scenarios 
(Fig. 1 in the Supplementary information).

When possible, we found that running the optimization algorithm on a two day-long data-set provided that 
were consistent with the parameters observed in clinical practice.

The clinical data used in this study were provided by Nantes University Hospital. They were obtained from 
free-living conditions; the patients had to declare their meals and wear smartwatches that were able to acquire 
heart rate and actimetry data. The maximum heart rate was determined via an estimate given by Gellish et al., 
which is a curvilinear definition linking maximum heart rate with  age20. Ten patients have been included in this 
study to date and one experienced medium-intensity physical activity while the others only exerted mild efforts 
(i.e., walking). The smartwatch sampling time was significantly smaller than the insulin pump or the CGM sam-
pling time which was 5 min. To obtain a unified sampling time, the heart rate values were averaged over a 5-min 
time window. Therefore, to test the model’s ability to reproduce the evolution of glycaemia for a given individual, 
we ran the least-squares identification method offline on n samples of the output error.

Our cost function to minimize was thus:

The optimal value θ∗ was the vector of parameters that minimizes the criterion Jn . The recursive Gauss-Newton 
optimization method was initialized with a plausible set of parameters. With the optimal parameter θ∗ comes 
a minimal criterion Jn(θ∗) , a gradient Gn(θ

∗) and a Hessian Ĥn(θ
∗) . In practice, the Hessian matrix Ĥn(θ

∗) 
appears to be well conditioned. This ensures the practical identifiability. The standard deviation of the parameters 
estimation error is obtained from the norm of the elements on the main diagonal of the estimated covariance 
matrix Var(θ∗).

When calculating the percentage of fit %fit in the identification procedures, we refered to the relative absolute 
difference between the real output and estimated output giving the following equation:

(4)
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The control law. A control law was designed based on the Dynamic Bolus  Calculator19. This control law is 
able to self-deliver prandial boluses to patients without any exterior intervention while ensuring the positivity 
of the control and the system states, and thus preventing hypoglycaemic episodes. A new term was added to 
adapt insulin delivery to physical activity. In this study, physical activity was considered hypoglycaemic. Thus, 
in the event of an exertion, the insulin flow rate must be decreased. The new control law is a state-feedback that 
formalizes and extends the flexible insulin therapy and standard bolus assistants implemented in insulin pumps.

where Gref  is the target reference glycaemia, IOB(t) in [U] is the insulin-on-board, i.e., the quantity of insulin that 
is still active from previous injections, which impacts glycaemia. The carbohydrates-on-board, COB(t) in [g], 
are defined in the same way and represent the amount of active carbohydrates remaining from previous meals. 
CF is the correction factor and CIR is the carbohydrate-to-insulin ratio. PA(t) is the physical activity variable 
and PIR is the physical activity to insulin ratio expressed in [bpm/U]. The coefficient k in [min−1] is a scaling 
factor that enables the adjustment of the insulin injection delivery speed for security. When facing parameter 
underestimation issues that could lead to hypoglycaemia, it may be beneficial to adopt a smooth insulin injection 
profile to assess the decrease in glycaemia and to update the control process accordingly.

By using the notations from the model, (8) can be equivalently restated as:

The tilde symbol denotes the variation in the variables around their reference values. Therefore, 
xi(t) = x̃i(t)+ xiref .

In the event of physical activity, the positivity of the system is no longer guaranteed and it is likely that the 
glycaemia level will fall below Gref  , causing the first term to become negative and the so-called IOB to become 
negative as the insulin flows drop below their basal levels. Such quantities lose their physical significance , but 
all terms are essential for preserving the stability of the control process.

OHSU simulator. Currently, the UVA-Padova  simulator21 is the only FDA-approved simulator for validat-
ing control algorithms for insulin distribution in type 1 diabetes patients. Unfortunately, this simulator does not 
include physical activity data and does not model the effects of physical activity on glycaemia. In 2019, Resalat 
et al. proposed a statistical virtual patient population for the glucoregulatory system in type 1 diabetes patients, 
including physical  activity15. Insulin-glucose dynamics were modelled by using the results of  Hovorka22, and 
physical activity was accounted for with Hernandez  equations12. The data of 20 patients with type 1 diabetes 
obtained under different meals and aerobic activity scenarios were used to generate a virtual patients population. 
The cohort was then validated by creating virtual twins of the 20 real patients and assessing their relative times 
spent in the glycaemic target.

This simulator was used to assess the performance of our control law (8) with a two-day scenario including 
multiple meals and one physical activity period. As Hovorka’s model parameters could not be easily converted 
into the extended flexible insulin therapy model parameters, we first performed an identification procedure on 
the scenario to retrieve the parameters allowing us to use our model and our control law on this patients cohort. 
After that, we ran a simulation for all 99 patients with their glycaemia dynamics according to the simulator 
equations and the control law being calculated from our model state estimates (4). At each sampling time, the 
glycaemia state x1(t) was set to the actual glycaemia value read by the CGM sensor. We finally calculated the 
time spent in the glycaemic range as well as the time in hypoglycaemia and the time spent in hyperglycaemia.

To present the results graphically, we adapted the control-variability-grid analysis displayed by the UVA-
Padova type 1 diabetes patient  simulator23. Each patient was represented with two coordinates, an X-coordinate 
related to the minimum blood glucose value reached during the considered time-period, and a Y-coordinate 
representing the maximum blood glucose value. These values were corrected considering a 95% confidence inter-
val for the blood glucose values. Consequently, different areas of the graph were delineated, each labelled with 
a letter from A to E, where A was an ideal glycaemic control and E corresponded to a life-threatening scenario 
in which the patient spent most of their time in hypoglycaemia or in hyperglycaemia.

Ethics statement. The study was approved by the ethics committee of Nantes Universitary Hospital (ie., the 
French Committee of Protection of Persons) approval number 2020-058B on 2 February 2021 and was success-
fully registered at ClinicalTrial.gov with identification number: NCT04572009 (registration date 01/10/2020). 
All the methods carried out are in accordance with relevant guidelines and regulations. All patients who signed 
their informed consent forms for participation were included in this prospective study.

Data availability
The main data supporting the results in this study are available within the paper and its Supplementary Informa-
tion. The clinical data came from the NCT04572009 study (https:// clini caltr ials. gov/ ct2/ show/ NCT04 572009) 
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which is still in progress. Here we share the raw sample data of one patient and we provide the flexible insulin 
therapy parameters for all patients in the Supplementary Information.

Code availability
The analysis code is available at https:// data. mende ley. com/ datas ets/ x796n k5ysd/ draft?a= f30ed 41b- ca5a- 41d5- 
8f17- 37cd4 0ff83 6e. The model, the control law and the identification method have been released under licence 
CC-BY-4.0.
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