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Zero-Note Samba: Self-Supervised Beat Tracking

Dorian Desblancs, Vincent Lostanlen, and Romain Hennequin

Abstract—Supervised machine learning for music information
retrieval requires a large annotated training set, and thus a high
cognitive workload. To circumvent this problem, we propose to
train deep neural networks to perceive beats in musical recordings
despite having little or no access to human annotations. The key
idea, which we name “Zero-Note Samba” (ZeroNS), is to train
two fully convolutional networks in parallel: the first analyzes
the percussive part of a musical piece whilst the second analyzes
its non-percussive part. These networks learn a self-supervised
pretext task of synchrony prediction (sync-pred), which simulates
the ability of musicians to groove together when playing in the
same band. Sync-pred encourages the two networks to return
similar outputs if the underlying musical parts are synchronized,
yet dissimilar outputs if the parts are out of sync. In practice,
we obtain the instrumental parts from commercial recordings
via an off-the-shelf source separation system: Spleeter. After
self-supervised learning with sync-pred, ZeroNS produces a
sparse output that resembles a beat detection function. When
used in conjunction with a dynamic Bayesian network, ZeroNS
surpasses the state of the art in unsupervised beat tracking.
Furthermore, fine-tuning ZeroNS to a small set of labeled data
(of the order of one to ten songs) matches the performance of
a fully supervised network on 96 songs. Lastly, we show that
pre-training a supervised model with sync-pred mitigates dataset
bias and thus improves cross-dataset generalization, at no extra
annotation cost.

Index Terms—Blind source separation, Multi-layer neural
network, Music information retrieval, Unsupervised learning.

I. INTRODUCTION

UMAN listeners have an intuitive understanding of

rhythm [1]. When exposed to music, our auditory system
seeks to produce an internal representation of the current
“pace” (tempo) of musical events such as notes. This internal
representation, known as meter, aids coordination between
musicians in the same orchestra as well as with non-audible
gestures, such as dancing or marching [2]. Crucially, musical
meter is most often periodic or varies predictably, even though
the underlying auditory stimulus is never twice the same. Thus,
meter may be encoded efficiently by defining a pulse; that is,
a sequence of sparse and evenly spaced activations [3].

A. Beat Induction in Humans versus Machines

Meter is not reducible to a single pulse frequency but, rather,
follows a hierarchical division into prime-numbered subsets.
In this regard, the most salient level of pulse is called tactus
or beat: its rate typically ranges between 60 and 180 beats per
minute (bpm) and matches the clapping of one’s hands or the
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stomping of one’s foot [4]. Admittedly, several musicians may
judge the beat rate to belong to unequal levels of the pulse
hierarchy: for example, one might tap twice or three times
faster than the other [5]. Yet, both will internalize musical
meter in a comparable way, and thus will remain able to play
together. Indeed, they will notice if one’s musical part ever
falls “ahead” or “behind” the collective pulse.

This cognitive ability for mapping sound to coordinated
gestures is widespread, as it does not require musical expertise.
Recent findings have shown that beat induction is active in non-
musician adults and even in sleeping newborns [6]. Besides
humans, the spontaneous sensorimotor synchronization to a
musical beat has been observed in some animals; e.g., parakeets
[7], cockatoos [8] and a California sea lion [9].

The situation is different in machine listening. There is a long-
standing effort towards developing audio processing systems
which analyze a musical stream so as to predict the most
probable beat sequence a human listener would perceive—a task
known as beat tracking [10, chapter 6]. As of today, all state-of-
the-art methods for beat tracking in music information retrieval
(MIR) rely on artificial neural networks: either convolutional
(CNN) [11], recurrent (RNN) [12], or both (CRNN) [13]. These
deep learning models consist of nonlinear units with linear
connections, and hence share some structural similarities with
neurons and synapses in the brain [14].

However, the analogy only goes so far: while living or-
ganisms learn by direct interaction with the real world, deep
learning systems require a long preliminary stage of supervised
training before deployment [15]. The case of beat tracking
is exemplary in that regard: in recent studies, the training
set typically consists of 102 ~ 10% songs, each containing
102 ~ 103 humanly annotated timestamps [16]. Collecting
these timestamps requires a cognitive effort that is costly, time-
consuming, and disconnected from musical practice as such.

B. Problem Statement

Our article addresses the problem of training a deep neural
network for beat tracking with little or no access to annotated
audio data. This problem is interesting for at least three
reasons. First, from the standpoints of artificial intelligence and
music cognition, it reflects the learning process underlying beat
induction in humans better than the current task design, which is
fully supervised. Second, from the standpoint of MIR, solving
this problem raises the opportunity to scale up to massive online
music corpora: i.e., 105 ~ 107 songs [17]. Third, from the
standpoint of digital (ethno)musicology, unsupervised learning
might help to “precondition” the beat tracking system towards
accommodating the rhythmic peculiarities of a given genre,

The source code to reproduce figure and experiments is available at:
https://www.github.com/deezer/zeroNoteSamba.
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even in the absence of human annotation. This third motivation
connects with the overarching goal of diversifying MIR beyond
its historical scope of applicability [18].

What makes the problem of unsupervised beat tracking
difficult resides in the design of an adequate prior for numerical
optimization. Previous publications have formulated this prior
in terms of internal properties of the audio stream such as
periodicity [19], harmonic homogeneity [20], and the presence
of strong percussive onsets at beat locations [21]. Although
these properties are indeed verified in certain genres (e.g.,
electronic dance music), we note that beat induction may
also happen without them [22]. Hence, a new methodological
perspective is needed to meet the challenge of unsupervised
beat tracking—especially in audio streams that are aperiodic,
deprived of tonal harmonic progressions, or highly syncopated.

C. Key Idea: Self-Supervised Synchrony Prediction

In this article, we introduce a method for training deep neural
networks on the beat tracking task with little or no human effort
in terms of audio annotation. Our key idea is to separate the
audio stream into two parts: percussive sources (e.g., drums)
and non-percussive sources (e.g., voice or wind instruments).
Then, we rely upon a simple musical observation: regardless of
the rhythmic pattern in the parts they play, musicians listen to
each other so as to seek synchrony. This observation suggests
that, in the presence of multiple instruments, beat induction
arises not only from listening to the orchestra in full but also
from listening to isolated parts. Hence, in order to mimic human
listening, the machine must return the same beat sequence for
both the percussive and non-percussive parts of a piece.

We encourage alignment between instrument-specific beat
patterns via a new “pretext” task for self-supervised learning
(SSL), named synchrony prediction or sync-pred. Sync-pred
is formulated as a contrastive learning task, where the non-
percussive part serves as an anchor, the percussive part serves
as a positive sample, and randomly lagged versions of the
percussive part serve as negative samples.

D. Scaling Up the Pretext Task with Source Separation

Training a self-supervised beat tracker via sync-pred is
conceptually simple; yet, it would probably have been un-
feasible just five years ago. Indeed, the formulation of the
sync-pred task requires a massive dataset of real-world music
in multitrack format, in which percussive and non-percussive
parts are mapped to separate tracks. On the contrary, recorded
music is most often distributed in stereo format, with all
instruments being mixed. Although the MIR community has
released multitrack datasets (e.g., The Open Multitrack Testbed
[23], MedleyDB [24]), their size is only in the order of 102
songs; i.e., they are too small to justify self-supervised learning.

Fortunately, the recent progress of (supervised) deep learning
for audio source separation now allows researchers to retrieve
the vocal and instrumental parts of stereo mixtures. Of course,
the process of source separation is imperfect and occasionally
presents audible artifacts. However, we postulate that these
artifacts make the task of synchrony prediction between
percussive and non-percussive parts neither unsolvable nor

trivial. We propose to run an off-the-shelf source separation
system (namely, Spleeter [25]) as a pre-processing step to beat
tracking, both during training and deployment.

Some recent publications have done so in a supervised
context, with various applications: sound event detection in
domestic environments [26] and verification of vocal note-event
annotations in polyphonic music [27]. However, to the best of
our knowledge, only one publication so far proposes to combine
source separation with contrastive learning [28]. A noteworthy
difference is that [28] proposes a task of coincidence prediction,
which operates as a “slowness prior”’; whereas, on the contrary,
our task of sync-pred operates as a “transientness prior” for
the learned beat detection function.

E. Contributions

Our paper proposes the first self-supervised approach to beat
tracking in MIR. Its main originality consists in learning not
one but rwo representations for every audio excerpt: one for its
percussive part and another for its non-percussive part. These
representations, hereafter called embeddings, result from two
encoders which have the same architecture but independent
synaptic weights. The hypothesis of our article is that training
these encoders via synchrony prediction (sync-pred, see Section
I-C) reinforces their sensitivity to the musical pulse.

We test this hypothesis in practice by introducing a new
deep learning model named “Zero-Note Samba”!, or ZeroNS
for short. Figure 1 presents the functional diagram of ZeroNS.

Our experiments lead to seven new insights:

1) Our network learns appropriately on the sync-pred task:
after convergence, ZeroNS is able to predict synchrony
between percussive and non-percussive parts beyond its
training set. Musical recordings on which the network
is unable to learn either contain no drums or contain
nothing but drums; these cases are easily detected in
advance. See Section IV-A.

2) Thanks to sync-pred, ZeroNS embeddings tend to be
sparse and periodic in the time domain. This finding
suggests the emergence of a rudimentary form of beat
induction: see Section I'V-B.

3) ZeroNS matches or surpasses previous state-of-the-art
unsupervised methods once coupled with the peak picker
found in [29] or the state-of-the-art dynamic Bayesian
network (DBN) for peak-picking, found in [30]: see
Section IV-C.

4) Sync-pred can serve as self-supervised pre-training before
supervised training. In a k-fold cross-validation setting,
this pre-training has a small effect on the downstream
performance of beat tracking, and the effect is incon-
sistent (beneficial or detrimental) across datasets: see
Section IV-D.

5) Sync-pred is consistently beneficial under the “few-shot”
regime; that is, with limited labeled data. While a fully

'We choose the name “Zero-Note Samba” in homage to the 1960 song “One
Note Samba” (“Samba De Uma Nota S6”), with music by Antonio Carlos
Jobim, Portuguese lyrics by Newton Mendoga, and English lyrics by Jon
Hendricks. The name should not be taken too literally: of course, ZeroNS is
unable to learn in complete silence. A more accurate name, albeit a far less
memorable one, would have been: Zero-Annotation Samba.
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Fig. 1: Functional diagram of Zero-Note Samba (ZeroNS).
The waveform on the top is an unlabeled music recording
from the FMA dataset. Darker colors in the time—frequency
representation reflect higher values of energy. The last row
displays scatter plots between the percussive (x-axis) and
non-percussive (y-axis) embedding. The task of synchrony
prediction (sync-pred) consists in maximizing cosine similarity
in the synchronized case (left), i.e., bringing the scattered
dots close to the orange diagonal line; and minimizing cosine
similarity in the non-synchronized case (right).

supervised model with random initialization requires
32-96 songs to learn beat tracking, ZeroNS reaches
competitive performance after supervised fine-tuning on
1-24 songs: see Section IV-E.

6) Pre-training with sync-pred improves generalization
under a cross-dataset evaluation setting: see Section I'V-F.

7) In all the settings listed above, we demonstrate that
pre-training our beat tracking model with similarity max-
imization [31], [32] does not improve results compared
to a randomly initialized neural network.

II. RELATED WORK

In this section, we present a historical overview of four
research topics: unsupervised beat tracking; feature learning
in the time—frequency domain; self-supervised MIR; and
learning from multitrack audio data. Although they have long
been studied in machine learning and signal processing, the
methodological novelty of our work is to address them in
conjunction.

A. Unsupervised Beat Tracking

The earliest approaches to beat tracking were actually
unsupervised: they did not rely on any annotated data and
only had a few hyperparameters, which the authors adjusted
ad hoc [33]. These approaches assumed the timestamps of
note onsets to be available in symbolic format (e.g., MIDI) or
via motion capture. Besides, they were only applied to a few
melodic sequences that usually came from a single instrument
[34]. Although they enhanced the real-time interaction between
musician and computer [35], these methods were unsuited for
the analysis of polyphonic audio. They did however lay a
foundation for the computational modeling of musical rhythm.

An important milestone in the history of beat tracking resides
in the development of dedicated connectionist models [36].
These models aimed to implement “entrainment”; that is, the
phase-locking and frequency-locking of artificial neurons to
periodic components of incoming rhythmic patterns. This line
of research culminated with the adaptive-frequency neural
network (AFNN), a nonlinear model in which the tempo may
vary according to a Hebbian learning rule [37]. The AFNN
is an instance of neural resonance theory, whose biological
plausibility has received some validation in recent years [38].

B. From Feature Engineering to Feature Learning

Around the year 2000, MIR sprung as an autonomous field
of research and beat tracking as a well-established MIR task
[39]. At the time, the state-of-the-art method [40] involved
non-trainable modules only: spectral flux, median filtering with
half-wave rectification, windowed autocorrelation, and cross-
correlation with an artificial pulse train at the predicted tempo.
By design, this approach returns a beat sequence that is globally
periodic. As such, it is unfit for analyzing musical sections with
time-varying tempo. The same is true of more sophisticated
approaches which were proposed shortly thereafter [41].

In 2007, this assumption of global periodicity was relaxed
by [29], who proposed a dynamic programming formulation
for beat tracking. The key idea is to build a transition cost
function between candidate beats which penalizes deviations
from the globally estimated tempo. In this way, the dynamic
programming algorithm seeks a compromise between picking
timestamps of high onset strength and ensuring that all inter-
beat intervals match the tempo prior approximately. Thus,
assuming that the initial tempo estimate is correct, the method
in [29] can accommodate a small “stretch” in the pulse grid,
as induced by expressive performance. Despite its limited
accuracy, this method remains widely used today because it is
conceptually simple. Moreover, it is implemented by librosa
[42], a free and open-source software library for Python, as:
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tempo, beats =
y, sr=16000,

librosa.beat .beat_track(
hop_length=256, start_bpm=120)
In this article, we use the implementation above as a point
of comparison with our proposed method. We regard [29]
as the current state of the art in unsupervised beat tracking.
Meanwhile, we note that some publications have proposed to
address the beat tracking task via a combination of unsupervised
representation learning and supervised sequence modeling [43].

The renewed interest for deep learning in MIR around
the year 2011 overturned the formulation of beat tracking
[44]. Rather than predict the tempo globally and adjust beat
times accordingly, [45] proposed to train a machine learning
system so as to detect beat times directly from audio data.
Specifically, they trained a long short-term memory network
(LSTM) [46] on a multiscale variant of the short-term Fourier
transform, involving per-channel temporal differentiation and
rectified median filtering. The LSTM produces a beat detection
function (BDF); that is, a univariate signal (sampled at 100 Hz)
which represents the degree of confidence in the presence of a
beat. In [45], the LSTM optimizes its BDF by fitting it to a
“ground truth” sequence in which values of 1 and O respectively
correspond to “beat” and “no beat” events. This is a form of
supervised beat tracking, because such a ground truth must be
provided by a human annotator.

One may improve the accuracy of beat tracking by interfacing
the BDF with a bar-pointer model; that is, “a probabilistic
model of temporal structure in music which allows joint
inference of tempo, meter and rhythmic pattern” [47]. The bar-
pointer model was initially proposed as a Gaussian process and
later revisited as a neural network, under the name of Dynamic
Bayesian Network or DBN [48]. This model comprises: an
observation model, which converts the BDF into probabilities;
a transition model between hidden variables of tempo, beat, and
meter; and an initial distribution for these variables. Crucially,
the DBN is unsupervised: all probability distributions are
estimated from unlabeled BDF observations and some domain-
specific knowledge about music, such as bpm range and the
number of states per second. In this paper, we post-process
our self-supervised BDF with the most recent DBN provided
in [30], as provided by the Python package “madmom” [49].
In [50], the authors (Davies and Bock) use the same DBN
in conjunction with their supervised temporal convolutional
neural network (CNN). We consider their method as the current
state of the art in supervised beat tracking.

C. Self-Supervised Learning in Music Information Retrieval

With a number of publications doubling every year since
2015, the field of self-supervised learning is expanding rapidly
[51]. Thus, a comprehensive review of all pretext tasks for self-
supervised learning in audio processing is beyond the scope of
this paper?. Instead, we limit our review to a few publications
which play a key role in the inspiration of ZeroNS.

Broadly speaking, we may define SSL as a paradigm in
which the machine learns to accomplish a task whose ground

2We refer to the proceedings of the ICML workshop on self-supervised
learning in audio and speech for an insight of emerging topics, especially
pretext tasks: https://icml-sas.gitlab.io

truth is trivially available. This task, known as “pretext”, has
no practical interest per se; however, its resolution supposedly
requires some intelligent auditory processing on the part of the
machine. Hence, SSL aims at a “best-of-both-worlds” approach
between supervised and unsupervised learning. On one hand,
SSL is unsupervised in the sense that it operates without human
annotation: one may simply collect real-world unlabeled data
and alter them at random to produce a ground truth. On the
other hand, since SSL is typically formulated as classification
or regression, it can be implemented like supervised learning;
namely, as empirical risk minimization with stochastic gradient
descent.

A simple but powerful family of pretext tasks for SSL is
found in contrastive learning [52]. Contrastive learning operates
over “batches” of size B, each of which contain three kinds of
data: one anchor, one positive, and several negatives. Intuitively,
the pretext task consists in matching the positive with the anchor
while ruling out all negatives. In practice, this is achieved in
a differentiable way by contrasting anchor—positive similarity
versus anchor—negative similarities.

The main difference between contrastive learning tasks
resides in their definitions of what constitutes “positive” and
“negative” samples with respect to the anchor. In [31], the
anchor and positive (resp. negative) are drawn from the same
(resp. from different) musical recordings: this task is called
similarity maximization. In [32], the authors perform random
digital audio effects (e.g., pitch shifting, reverb, equalization)
to all samples before similarity maximization, thus encouraging
self-supervised invariance to these perturbations. In our beat
tracking experiments, we benchmark sync-pred against this
well-established pretext task [52]. We refer to it as CLMR,
for contrastive learning of musical representations. Although
similarity maximization has proven to be effective for musical
instrument recognition and music tagging, it had never been
evaluated on a beat tracking downstream task up to this paper.

Besides contrastive learning, our work is inspired by self-
supervised pitch estimation (SPICE) [53]. The key idea behind
SPICE is to train a convolutional autoencoder in the time—
frequency domain to discover relative pitch. During training,
two copies of this autoencoder analyze artificially transposed
versions of the same musical recording. The SPICE pretext
task consists in regressing the amount of artificial pitch shift
between the two versions. The authors have shown that, after
limited supervision, relative pitch is mapped to absolute pitch,
and the embedding of SPICE becomes a fundamental frequency
estimator with almost state-of-the-art performance.

D. Learning from Multimodal and Multitrack Data

Recent publications have extended SSL to multimodal data,
such as live music videos [54]. Under a contrastive learning
formulation, the anchor is a video frame; the positive sample,
the matching audio excerpt; and the negative sample, a random
audio excerpt from a different music video. This method
assumes audiovisual correspondence [55]; i.e., that whichever
instruments appear in the frame match those being heard.

In the absence of a side-channel modality such as video, it
remains possible to exploit the coincidence between multiple
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sources within the same modality. In [28], the authors propose
to apply a pre-trained model for “universal sound separation”
[56] to unlabeled polyphonic mixtures; and to train an encoder
to predict the coincidence between a separated source and the
mixture to which it belongs, as a binary classification problem.

In the realm of MIR, the authors of [57] create musical
mash-ups using instrumental and vocal stems. Then, they train
a network to distinguish singers from each other using triplet
learning, each mashup being used to strengthen the network’s
ability to recognize vocals within a song. This work is enhanced
by Spleeter in [58]. By extracting vocals in an automatic
fashion, the triplet learning task can be conducted on more
data, and thus extract higher-performing vocal representations
for the vocal-related downstream tasks.

To the best of our knowledge, two works incorporate source
separation in beat tracking. In [59], the authors leverage source
separation in the same way as us: they create percussive and
non-percussive tracks for each song. From there, three beat
tracking systems are trained on three different types of audio:
mixtures, percussive tracks, and non-percussive tracks. Their
outputs are then fused to enhance performance on the beat
tracking and downbeat estimation tasks. In [60], percussive
and non-percussive tracks are used to augment the training set
and improve the network’s performance for the same tasks.

III. METHODS

In this section, we present: the automatic curation of
our unlabeled training set for self-supervised learning; our
choice of time—frequency representation; the fully convolutional
architecture of the model, named ‘“Zero-Note Samba” (ZeroNS);
synchrony prediction (sync-pred), our self-supervised pretext
task; similarity maximization, which serves as a point of
comparison; and beat tracking, our supervised downstream
task.

A. Automatic Curation

As announced in Section I-C, we train ZeroNS by predicting
the synchrony between percussive and non-percussive parts in
the same song. To this end, we need to curate a large-scale
training set in which every song contains both percussive instru-
ments and non-percussive instruments. Yet, in a digital music
archive, some songs may contain no percussive parts (e.g.,
a cappella choir) while others may contain only percussive
parts (e.g., drum ensemble). Since sync-pred would become ill-
posed on those songs, we must exclude them from our curated
training set beforehand.

In practice, we scrape music data from the Free Music
Archive®. The FMA is one of the largest audio catalogs of
royalty-free music, and was dumped to an immutable web
repository in 2017 [61]. This dump, known as “FMA dataset”,
has frequently been used in MIR research for audio tagging;
e.g., [62]. Yet, our publication is the first to use the FMA
dataset for the beat tracking task. We download the “large”
version of the FMA dataset*. This version contains 107k song
excerpts, each of them lasting 30 seconds.

30Official website of FMA: https://freemusicarchive.org
4Download link: https://os.unil.cloud.switch.ch/fma/fma_large.zip

In order to verify the presence of percussive and non-
percussive sources, we process each of these song excerpts
with Spleeter’. Spleeter is a Python library for audio source
separation, involving several pre-trained deep learning models.
These models were trained on multitrack datasets: MUSDB
[63] and Bean [64]. Spleeter is a supervised model because it
was trained with separated sources as a ground truth. However,
this ground truth is not equivalent to a human annotation of beat
times. Thus, we may still regard our pipeline as unsupervised
with respect to the beat tracking task.

Among the models that are present in Spleeter, we select
4stems: i.e., a four-way separation between drums, vocals,
bass, and other. For drums, the source-to-interference ratio
(SIR) [65] of Spleeter is of the order of 12 dB on the MUSDB18
test set [63]; i.e., within one decibel of the state of the art [25].
In other words, the energy of the drums track as extracted by
Spleeter consists of (1012)/(1 + 1012) a2 94% actual drums
and about 6% other sources, on average. Hence, we judge that
the drums track is sufficiently decorrelated from other tracks
to make the sync-pred task nontrivial.

Given an unlabeled song excerpt x, let us denote by ¢,z
the drums track returned by Spleeter; hereafter called “the
percussive part” of x. Similarly, we denote by ¢_,z the
mixture of vocals, bass and other tracks returned by Spleeter;
hereafter called “the non-percussive part” of x.

We compute the root-mean-square (RMS) value of both
¢,x and ¢_,x over non-overlapping rectangular windows of
duration 46 ms; i.e., 2048 samples at a rate of 44.1 kHz. Then,
we define a temporal criterion of simultaneous presence of
percussive and non-percussive sources via a double inequality
on the ratio between RMS(¢,,) and RMS(¢_,x):

1 RMS(¢,z)(1) - 4) 0
) Y

Criterion(z)(t) = 1 <2 < RMS(¢_,x)(t

where the symbol 1 represents the indicator function. The
lower and upper bound ( % and 4) in the equation above are
chosen ad hoc after a process of trial and error. If the above
is satisfied for over 30% of the RMS frames ¢, we extract a
10-second musical clip within the 30-second excerpt.

In this way, we extract 35,200 pairs (cbp:ci, ¢_,;); from
the fma_large dataset; i.e., around 98 hours of audio.

B. Time—Frequency Representation

Musical onsets are typically easier to detect in the time—
frequency domain than in the time domain [66]. Indeed, musical
notes exhibit a sharp pattern of amplitude modulation at their
onset [67]. For this reason, nearly all deep learning systems for
beat tracking rely on a time—frequency representation, such as
mel-frequency spectrogram [45], chromagram [16], or constant-
Q transform (CQT) [11].

In this paper, we use a variable-Q transform (VQT); i.e., a
variant of the CQT in which the time resolution is improved
in the low-frequency range [68]. This is especially important
for our embeddings, because crucial information about musical
pulse arises below 100 Hz. That being said, we note that

5Source code of Spleeter: https://github.com/deezer/spleeter
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sync-pred has a general definition and could, in principle,
apply to any feature map that is approximately equivariant
with time shifts; not solely the VQT but other time—frequency
representations as well, or even the raw waveform x.

To compute the VQT, we design band-pass filters 1/, indexed
by a log-frequency variable X in octaves which ranges between
0 and (J — 1). Specifically, we design each 1, with a center
frequency of 2*¢ and an effective bandwidth of B(\) = v +
22¢/@Q where v > 0 is a constant offset in Hertz, ¢ is the
center frequency of the bottom-most filter (A = 0) in Hertz,
and @ is a dimensionless number.

We use the VQT implementation of Librosa v0.8.0 [42].
In this implementation, ~ is adjusted via domain-specific
knowledge about psychoacoustics. The bandwidths B()\) are
made proportional to the equivalent rectangular bandwidths
(ERB) of the human cochlea [69]: ERB(\) = 2 ¢a + 3 where
a = 0.108 and 5 = 24.7 Hz. Solving B(\) x ERB(\) with
Q =12 yields v = 8/(aQ) = 19.1 Hz.

Once the filterbank (7)), is built, we compute the VQT of
an audio signal x as its convolutions with every 1, followed
by the application of pointwise complex modulus and pointwise
logarithm, with a constant numerical offset ¢:

Uz(t,\) =log (e + |z * ¥, (1)). (2

Within a discrete-time setting, we take () = 12 evenly spaced
values of A per octave. In this paper, we set the center frequency
of the bottom-most filter to & = 16.35 Hz and the number of
octaves to J = 8; hence @QJJ = 96 values of A in total, up to
28¢ = 4185.6 Hz. We set the hop length of the VQT to 16 ms;
i.e., 256 samples at 16 kHz. We set ¢ = 10719,

C. Fully Convolutional Neural Network

The ZeroNS model comprises two branches which analyze
separate musical parts. Let us denote by f, (resp. f-,) the
branch which operates on the percussive (resp. non-percussive)
part; i.e., ppx (resp. ¢—px), see Section III-A.

We build f,, and f-, as fully convolutional neural networks.
This design choice is inspired by the state of the art in
supervised beat tracking [50]. Although f, and f-, have
identical architectures, their synaptic weights are not shared.

Figure 2 outlines the architecture of our model, given an
input VQT representation with 96 subbands and N = 144
spectrogram frames, i.e., 2304 ms; corresponding to the equiv-
alent receptive field of the last layer. Each branch contains five
convolutional layers. The “channel” dimension grows up to
256 in the third layer before returning to 1 in the last layer.

The first three layers are followed by maximum pooling
over the log-frequency dimension A. In this way, they operate
at multiple scales: one, three, and twelve musical semitones re-
spectively. However, there is no pooling on the time dimension.
Thus, the hop size of the output of f, is the same as that of
U; i.e., 16 ms. The output length is also the same as the size
of the input’s VQT time dimension. Again, this choice of time
resolution is in line with the state of the art in supervised beat
tracking [50]. Each convolutional layer is followed by a ReLLU
activation function and dropout layer with value 0.1. The last
convolutional layer passes through a sigmoid activation.

The fully convolutional nature of our model makes it ap-
proximately equivariant to translation [70]. Once the boundary
effects have been neglected, shifting the input of f, by some
time lag 7 is tantamount to shifting its output by 7; and likewise
for f-,. Let us denote by L, the time shift operator with lag
parameter 7. We extend this definition to two dimensions:
for every matrix u, L,u(t,\) = u(t — 7,)\). We state the
equivariance of f,, in terms of commutation with L,: for all ¢
whose distance is at least (IV 4 7) from both signal boundaries,

fo(Lru)(t) = Ly fp(u)(t) = fp(uw)(t = 7). 3)

Now, we may observe that u is the output of a VQT, which
is itself a convolutional operator followed by an operation
of pointwise complex modulus. This operation demodulates
oscillations and thus produces a form of approximate equivari-
ance to time shifts, even despite setting the hop length to 256

samples (see Section III-B):
UL, x(t,\) = L, Uzx(t,\) = Uz(t — 7, \). 4)

Lastly, the operator ¢, proceeds from the Spleeter U-Net [71]
which, again, satisfies an approximate property of equivariance:

¢pLrx(t) = Lrgpa(t) = dpa(t — 7). (5)

A mathematical idealization of the three equations above may
be expressed in terms of the commutative diagram below:

" oz —Y s Upz —2 s £, Uz
JLT J{LT J{LT J{LT
Loz~ gL —% Up,Lrx —2 f,Up,L.x,

(6)
and likewise with ¢-, and f-,. This property guarantees that
the coincidence between the outputs of f, and f-, reflects the
coincidence between the inputs of ¢, and ¢—,.

Receptive fields grow over the temporal dimension from
11 frames at the first layer to 25 at the last layer. Over the
frequency dimension, their size is as large as 9 rows (27
musical semitones) in the fourth layer. As a result, ZeroNS
has a relatively large number of trainable parameters: 13.4M,
compared to 21.8k in [50]. This is, in part, because [50] resorts
to dilated convolutions so as to increase receptive field size
while maintaining a small parameter budget. We leave as future
work the optimized design of receptive fields in ZeroNS.

D. Pretext Task: Synchrony Prediction (Sync-Pred)

We train the ZeroNS model in a self-supervised way to
predict the synchrony between percussive and non-percussive
parts in a ten-second signal @ of polyphonic music. We begin by
drawing a “batch” of B = 16 independent time lags 71 ...7p
uniformly at random between zero and A = 5 seconds. For
every lag 7; with 1 <4 < B, we extract the five-second clip
in x starting at time 7;, which we denote by L. x. Then,
we apply source separation with ¢, and ¢-, followed by
VQT with U. We feed the batch U¢, L, T to the “percussive
network™ of ZeroNS (f,) and the batch U¢-, L, to its “non-
percussive network” (f-,,). We apply ¢? normalization over the
time dimension; let us denote by y, , and y, _, the resulting
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(3x11) (x13)

(5x15) (9x17)

© 128 128

6464

(1x23) (1x25)

Fig. 2: Specification of our fully convolutional architecture. Red and orange blocks represent pooling and convolutional layers
respectively. Values in parentheses represent the kernel sizes in each convolutional layer, while the value below represents
its number of kernels (not to scale). The symbol I/3 indicates that the first pooling layer reduces the frequency dimension
three-fold while leaving the temporal dimension unchanged; likewise for 1/4 and 1/8 in deeper layers. In this diagram, the
input shape is of size (96 x 144), which corresponds to the equivalent receptive field of the last layer.

embeddings. Given i, the diagram in Equation 6 allows to
interpret y; , as a local renormalization of f,(U¢,x) over the
interval [, ; + Al:

y, (1) = fp(UgpLrx)(t)
S f][,(qupLﬂw)H2

and likewise with every y, _, after having replaced f, and ¢,
by f-p, and ¢, respectively. Intuitively, sync-pred consists in
enhancing the cosine similarity between y; _, and y, ,, while
inhibiting that between y, _, and y; ,, for j # .

Let us adopt the shorthand f for the tuple (f,, f-p). We
propose to formulate sync-pred as the minimization of the
following loss function, named normalized temperature-scaled
cross-entropy or NT-Xent [52]:

Ly(x)= _l zB:log ( exp(%(%,—‘pwi,p)) ) ®
B i=1 Zf:l exp(%<yiﬁp|yj7p>) )

on average over unlabeled signals «. In the equation above,
the bracket notation (y, _,|y; ,) denotes the scalar product
between y, ., and y;,, which corresponds to a cosine
similarity between the outputs of f-, and f, after lagging by
7; and 7; and trimming to A. The constant T’ is a “temperature”
hyperparameter, which we set equal to 0.25.

In practice, we train the ZeroNS model f in PyTorch® with
the Adam optimizer [72] and a learning rate of 106, We
split our unlabeled dataset (see Section III-A) into a training
subset of size 28,800 and a validation subset of size 6,400. We
monitor the validation loss and stop training once it reaches a
minimum; i.e., after 35 epochs.

)

E. Similarity Maximization

During the CLMR pretext task, we train a model f with
the same architecture as f, and f-, on the mixed signals. For
each of the FMA’s 30-second sample, we extract a S5-second

60fficial website: https:/pytorch.org

anchor z; and a randomly time-lagged positive L., x;. We
then compute their VQT to obtain Uzx; and UL, x;, and feed
them each to f. We denote the resulting embeddings by y;
(anchor) and L,,y; (positive). We then create batches with
B = 16 independent anchor and positive pairs and minimize
the following NT-Xent loss:

B 1
N e IO
B > i1 exp( 7 (yil Lryyj)

over unlabelled signals x. The operations and parameters in
the equation 9 are consistent with those found in equation 8.

In practice, we train the CLMR model f in PyTorch with
the Adam optimizer and a learning rate of 10~°. We split our
unlabeled dataset into a training subset of size 81,920, or 5120
batches, and a validation subset of size 20,480, or 1280 batches.
We also shuffle the the training set at the start of each epoch in
order to generate different batches. We monitor the validation
loss and stop training once it is clear that it has reached a
minimum; i.e., after 110 epochs.

F. Downstream Task: Beat Tracking

We evaluate a total of nine systems for the beat tracking
task. The first five of these are unsupervised or self-supervised
and correspond to:

1) Random+DBN': a randomly initialized fully convolutional

network of Section III-C with the unsupervised DBN of
[30] (see Section II-B);

2) CLMR+DBN: the fully convolutional network of Section
III-C trained with similarity maximization on the FMA
dataset (see Section III-E);

3) Spectral Flux+DP: feature engineering (spectral flux)
and dynamic programming [29] (see Section II-B);

4) ZeroNS+DP: fully convolutional network of Section
III-C trained with sync-pred on percussive and non-
percussive parts of the FMA dataset (see Section III-D),
followed by maximum pooling between percussive and
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non-percussive embeddings (see below) and dynamic
programming;

5) ZeroNS+DBN': same as above, dynamic programming
replaced by the unsupervised DBN;

The results of the above can be found in Section IV-C. The
next four rely on human supervision, in part or in full. Their
results can be found in Section IV-D; we outline the beat
tracking training procedure below:

6) Random+DBN: same as (1), trained on each beat tracking

dataset;

7) CLMR+DBN: same as (2), fine-tuned on each beat
tracking dataset;

8) ZeroNS+DBN: same as (5), fine-tuned on each beat
tracking dataset;

9) TCN+DBN: temporal convolutional network with super-
vised training on multiple datasets, followed by the same
DBN used in our experiments [50].

In systems (4), (5), and (8), we merge the two branches

of ZeroNS via maximum pooling between unnormalized
percussive (f,) and non-percussive embeddings (f-,):

y(t) = max (fp (U¢pw) (t), fﬁp (U‘ﬁﬁpm) (t)) .

This allows our system to perform beat tracking when either
the percussive or non-percussive sources are silent; i.e. when x
contains no drums (¢, = 0) or nothing but drums (¢, = 0).
Conversely, in (1), (2), (6), and (7), the model comprises a
single branch f which operates on the VQT of the mixture
Ugx; thus, no merging is necessary.

In (4), we pass y as observation to the dynamic program
of [29] and retain its peaks as predicted beats. In (5), we do
the same with the DBN of [30]. We set the bpm range of the
DBN to [55,215]. Both of these approaches (ZeroNS+DP and
ZeroNS+DBN) combine a supervised source separation model
(Spleeter), a self-supervised acoustic model (ZeroNS), and an
unsupervised sequence model (DBN or DP): hence, they may
be regarded as unsupervised with respect to the beat tracking
task.

In (6), (7), and (8), we convert the human annotation into
a signal y* with the same hop length as y. Following [50],
the value of y*(¢) equals 1 if ¢ is nearest to an annotated beat,
0.5 if ¢ is adjacent to an annotated beat, and O otherwise.

We train the network f to minimize the binary cross-entropy
(BCE) between its prediction y and the ground truth y*:

(10)

—;y Sy () log(y(t) + (1 — y* (1) log(1 — y(1), (1)
t=1

where N, is the duration of y, on average for every y. Because
N, varies across songs y, we use a batch size of 1.

In (8), we pre-train f = (f,, f-p) with sync-pred and fine-
tune it on Equation 11 with the Adam optimizer and a small
learning rate of 5 x 10~8 to prevent catastrophic forgetting. In
(7), we pre-train f (single-branch) with similarity maximization
and fine-tune it on Equation 11 with the Adam optimizer and
a learning rate of 5 x 106, Lastly, in (6), we initialize f at
random with i.i.d. Gaussian weights. We train f on the beat
tracking task in a supervised way, with a larger learning rate of
10~°. These learning rates were established by trial-and-error.

(2/0* norm ratio Gini Coeff. log,o(Kurtosis)
Random 4 ¢ 14 HiH
CLMR —ar+ Hl HiH
ZeroNS (perc.) 1k ) {14
ZeroNS (non-perc.) 1+ H -
ZeroNS (both) 4+ H) LU ]
Supervised 1 { —@h HiH
U.Z](] [).’25 (].:’3() 0.75 (]t[) []1") 1?0 (’] i é
Shannon Ent. Sample Ent. Max. Auto-Corr.
Random - ¥ U I e 2 ]
CLMR 14 4 @—
ZeroNS (perc.) g ] B g 2 |
ZeroNS (non-perc.) 1 L] ik 1
ZeroNS (both) - b L] H
Supervised - i fH —H

0 5 10 15 0.0 05 1.0 15 0.00 0.25 0.50 0.75 1.00

Fig. 3: Comparison of learned embeddings in terms of
information-theoretic measures. Blue diamonds and orange
bars denote means and medians respectively. Box and whisker
edges denote quartiles and deciles respectively.

IV. EVALUATION AND RESULTS

In this section, we evaluate our models, both on the
pretext task (sync-pred) and the downstream task (beat track-
ing). We demonstrate that pre-training with ZeroNS benefits
unsupervised learning, few-shot learning, and cross-dataset
generalization, in comparison with supervised learning from
a random initialization as well as pre-training with similarity
maximization.

A. Convergence on the Pretext Task

The neural network defined in ZeroNS is able to train appro-
priately on the curated dataset. During the first few iterations on
the training set, the cosine similarities between all percussive
and non-percussive embeddings are very close to one, suggest-
ing that the networks are unable to recognize synchronized and
non-synchronized outputs. After 25 epochs, the ZeroNS model
reaches a loss value of 0.634 +0.30. Synchronized embeddings
in the validation set have a mean cosine similarity value of
0.804 £ 0.13 while non-synchronized embeddings have a mean
cosine similarity value of 0.053 £ 0.01.

These results show that both our data curation process
and pretext task definition enable the model to converge
appropriately. This probably would not have been the case
if we had not filtered out songs with very few drums, for
example. In the end, we stopped training after 35 epochs. By
then, the loss on the validation set had not diminished for 10
epochs. We therefore opted to stop training early. The network
that achieved the lowest validation loss during the 35 epochs
of training was selected for our downstream tasks.

For a more comprehensive view of the network’s evolution
during training, we encourage the reader to consult the figures
in the supplementary material of this paper.

B. Emergence of Sparsity and Periodicity

When looking at an ideal beat tracking activation function,
one can immediately notice that it is both very sparse and
resembles a periodic function. Its values are equal to O at
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all points except when a beat occurs. In this case, the value
is equal to 1. These beat values are cyclical, and usually
occur at almost constant time intervals. We therefore use six
information-theoretic measures in order to better understand the
embeddings generated by our pretext task, and their relevance
for beat tracking. Maximizing performance on these measures
is not crucial: in the event of tempo-varying music, the ground
truth beat activation function is not exactly periodic. However,
these cases only apply to a small subset of songs.

For sparsity, we use the following measures: the ¢2 /(!
norm ratio, which is often used to encourage sparsity for
non-convex problems such as non-negative matrix factorization
[73]; the Gini coefficient, which is a common measure of
statistical inequality; the kurtosis, a measure of the amount
of outliers present in the distribution of a real-valued random
variable; and the Shannon entropy, which quantifies the amount
of information contained in our embeddings, the amount
of surprise or uncertainty. A comprehensive overview of
each measure can be found in [74]. We also report the
sample entropy of our embeddings. Originally proposed for
physiological time-series [75], this measure estimates the
amount of regularity present in a signal. Finally, we compute
the maximum autocorrelation value obtained for shifts of 0.25
to 4 seconds. Each embedding mean is subtracted before
measuring the above. All values are also divided by the
un-lagged autocorrelation value. We compute each measure
for six embeddings: a randomly initialized CNN; a CMLR-
initialized CNN; the percussive branch f;, of ZeroNS; the non-
percussive branch f-, of ZeroNS; the maximum of the two
branches, f (see Equation 10); and a supervised CNN trained
on the Ballroom dataset (see Section IV-D). All measures are
computed on the GTZAN dataset.

Figure 3 displays our results for each network. One can
notice that most measures point towards our embeddings being
sparser than the randomly initialized network’s outputs. This
is even more patent for the percussive network. The Gini
coefficient values of the ZeroNS networks are very close
to one, for example, suggesting that a few values in our
embeddings are large whilst the rest are close to zero. The
kurtosis and ¢2/¢' norm ratio are also larger, suggesting a
greater amount of outliers and sparsity. On the other hand, our
pre-training leads to smaller entropy values. This suggests that
our embeddings are both sparser and more regular than the ones
generated by the randomly initialized network. The maximum
normalized autocorrelation values obtained by each of ZeroNS’
branches are also much closer to those of a supervised beat
tracking CNN, and hence much more periodic than those of the
randomly initialized network. Visualizing these embeddings
seems to support this claim: we notice that our embeddings
mostly have values that are close to zero, except for peaks
that occur sporadically. These peaks seem to be synchronized
with periodic musical onsets, and especially drum sounds such
as kicks and claps. More work needs to be done in order to
validate this hypothesis.

When comparing the ZeroNS outputs to a regular beat
tracking network’s outputs, we notice that for the ¢2/¢* norm
ratio, Gini coefficient, and kurtosis, we obtain noticeably
smaller values using the beat tracking network compared to our

Dataset # files length
Ballroom 685 5h57m
Hainsworth | 222 3h19m
GTZAN 1000 8h20m
SMC 217 2h25m

TABLE I: Datasets used for Beat Tracking

ZeroNS embeddings. The entropy values obtained using the
former, on the other hand, are larger than the former’s. Finally,
we observe some overlap between the autocorrelation values
found in each set of embeddings. Although these measures
must not be interpreted as proof that our pretext task is
relevant to our downstream task, they do show a trend: the
generated outputs tend to be sparse and periodic, just like a
supervised network’s outputs. We invite the reader to consult the
supplemental material of this paper in order to better visualize
our embeddings.

In the case of the CLMR network, we observe that the
generated embeddings are highly sparse. This is especially
noticeable when looking at the 02 /81 norm ratio, whose mean
is nearly 0.5; i.e. almost ten times greater than that of the
supervised network and almost five times greater than that
of ZeroNS’ percussive network. The Gini coefficient and
kurtosis values are also higher than with any other embedding
from our benchmark. However, entropy and autocorrelation
are significantly lower, hence suggesting that the CLMR
embeddings have little to no periodicity. From the findings
above, we hypothesize that CLMR initialization is less suitable
for beat tracking than ZeroNS.

C. Unsupervised Representations

We trained and tested our models on four annotated datasets:
the Ballroom dataset’ from [76], [41] and annotated using
[48]® , the Hainsworth dataset [77], the GTZAN dataset from
[78] and annotated in [79], and the SMC dataset [80]. Unlike
in [501, [12], [81], [451°, we report results on each dataset
separately. This was done in order to better study the effects
of pre-training on small datasets. Each is annotated differently
and spans a variety of musical genres. Table I further describes
the datasets we used according to the number of files they
contain and the duration of these files.

We adopt the following evaluation metrics: F1-score, AMLc,
AMLt, CMLc, and CMLt. The CMLc and CMLt metrics
evaluate how continuously correct a beat tracking estimation is
(use of the maximum length of correct predictions). The AMLt
and AMLc metrics are similar but allow offbeat variations of
an annotated beat sequence to be matched with detected beats.
One can read more about each metric in [82].

Let us now explore the effects of pre-training on downstream
task performance. In our first evaluation setting, we test our
models in an unsupervised fashion. Our results can be found
in Figure 4. When looking at the figure, one immediately

7Online repository: https://github.com/CPJKU/BallroomAnnotations

8The duplicates in the Ballroom dataset identified in https://highnoongmt.
wordpress.com/2014/01/23/ballroom_dataset/ were removed.

91n these papers, the SMC, Ballroom, and Hainsworth datasets are mixed
during 8-fold cross validation. They use the GTZAN dataset as a test set.
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Fig. 4: Benchmark of five different unsupervised models on the beat tracking task: our randomly initialized fully-convolutional
network followed by the DBN in [30]; our CLMR network followed by the DBN; Librosa’s speactral flux and dynamic
programming algorithm [29]; ZeroNS followed by the dynamic program; and ZeroNS followed by the DBN. Each row
corresponds to a different dataset (indicated on the right) while each column corresponds to a different evaluation metric (on
the top). Reported figures result from the mean scores for each track.

notices that the randomly and CLMR initialized networks are
greatly outperformed by the Spectral Flux+DP, ZeroNS+DP,
and ZeroNS+DBN methods. The CLMR network only achieves

a maximum mean F1-score of 0.192 on the Ballroom dataset.

Although its F1-score is better, the randomly-initialized network
does not surpass a mean CMLc score of 0.01. This was to be
expected: none of these networks are trained or optimized to

learn a form of musical meter, tempo, or synchrony to a pulse.

Although the CLMR results are on average slightly better than
those of the randomly initialized network for most metrics,
they do not suggest that the similarity maximization pretext
task is appropriate for unsupervised beat tracking.

In contrast, both ZeroNS methods perform just as well, if not
better, than the method in [29]. When used in conjunction with
the latter’s dynamic program, our ZeroNS method outperforms
the Spectral Flux+DP method on 13/15 metrics for the SMC
Mirex, Hainsworth, and Ballroom datasets. It is however
consistently outperformed by the Spectral Flux+DP method
on the GTZAN dataset. We leave as future work to determine
where the ZeroNS method fails compared to it Spectral Flux
counterpart. These results do suggest that the onset functions
output by the ZeroNS network are at the very least on par with
the ones generated by Spectral Flux [29] for beat tracking.

When used in conjunction with the state-of-the-art DBN from
[30], our ZeroNS method outperforms Spectral Flux+DP on all
datasets for every single metric. When using an F1-score metric,
the ZeroNS+DBN method beats the Spectral Flux+DP method
by at least four percentage points. The method also achieves

70% (SMC Mirex), 80.3% (Hainsworth), 82.5% (Ballroom),
and 92.1% (GTZAN) of the performance of its fully-supervised
counterpart (Random+DBN in next section). When using an
AMLc metric, the ZeroNS+DBN method beats the Spectral
Flux+DP method by at least eight percentage points on every
datset. The method also achieves 56.7%, 76.2%, 82.8%, and
92.3% of the performance of its fully-supervised counterpart.
The same effect can be observed for the other three metrics.
These results are, to the best of our knowledge, state-of-the-art
for unsupervised beat tracking.

Before moving on to supervised learning, let us focus on
the SMC Mirex dataset [80]. This dataset is composed of
particularly challenging musical pieces for beat tracking which
were chosen using selective sampling. Some of the most
common musical tags associated with songs from the dataset
include “lack of transient sounds”, ”gradual tempo change,”
and “excerpt is an introduction”. Both our ZeroNS methods
outperform the Spectral Flux+DP method on this set of songs.
All three methods also outperform the mean F1 and AMLt
scores obtained by a pre-selected human jury (0.308 and 0.227).
The results obtained on this dataset are particulary promising:
ZeroNS is capable of outperforming a set of highly competent
humans on songs that may not contain drums whose tempo
may vary in time.

D. Supervised Learning

For the supervised models, we split our datasets into eight
randomly selected folds. Each of these are then used as a test set
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Fig. 5: Benchmark of four different supervised models on the beat tracking task: our randomly initialized fully-convolutional
network followed by the DBN in [30]; our CLMR network followed by the DBN; ZeroNS followed by the DBN; and the
state-of-the-art temporal convolutional network of [50]. Rows, columns, and results follow the same structure as Figure 4.

during cross-validation. During each cross-validation iteration,
the remaining folds’ data is used for either our training or
validation sets. These are selected randomly using a % and
% split. For each 8-fold cross-validation iteration, training is
stopped when the model’s Fl-score on the validation set has
not increased for the past 20 epochs. The randomly initialized
network, the fine-tuned CLMR network, and the fine-tuned
ZeroNS network are all evaluated using the aforementioned
methodology. Figure 5 displays our results on each dataset
according to the five metrics introduced previously. We
also report the results from [50], obtained using a temporal
convolutional network (TCN) and the the DBN from [30].

Fine-tuning our ZeroNS model on each beat tracking dataset
does not yield the same promising results as the unsupervised
learning setting. On all datasets, and for every metric, the
ZeroNS+DBN network’s performance is roughly on par with
the Random+DBN network’s performance. On the SMC and
GTZAN datasets, for example, the fine-tuned network actually
outperforms the randomly initialized network by a slight margin
(maximum ~ (.03) on every single metric. We observe the
opposite phenomenon on the Ballroom and Hainsworth datasets.
This leads us to the following conclusion: in an 8-fold cross-
validation setting, there is enough annotated training data for
both the randomly initialized and ZeroNS model to perform
similarly.

When comparing ZeroNS and CLMR however, we notice that
the ZeroNS+DBN network vastly outperforms the CLMR+DBN
network on the SMC and Hainsworth datasets. Their results are
however roughly on par on the GTZAN and Ballroom datasets.
This is most likely due to the fact that the CLMR network

overfit its training data very quickly on beat tracking datasets.
We tried adjusting the learning rate and dropout values for
better CLMR performance, but these efforts were to no avail.
On larger datasets such as the Ballroom and GTZAN, this
problem is somewhat muted. However, for smaller datasets,
this effect led to performance that is much worse than both the
randomly initialized and ZeroNS networks. We did not observe
the same overfitting when fine-tuning our ZeroNS network,
regardless of the learning rate and dropout values.

Finally, when comparing our models’ performances with the
TCN+DBN network, we notice that the latter’s performance
on the SMC, Ballroom, and Hainsworth datasets is generally
better for every metric. This is particularly striking on the
smaller Hainsworth dataset, where their mean F1-score is
0.874 compared to our maximum of 0.783. On the GTZAN
dataset, however, our ZeroNS+DBN network outperforms their
method for every single metric except AMLc. Our CLMR+DBN
and Random+DBN networks outperform their method for
every single metric except AMLt and AMLc. This makes
sense: 8-fold cross-validation is performed on the combined
SMC, Ballroom, and Hainsworth datasets in [50]. The GTZAN
dataset, on the other hand, is used solely for testing purposes.
We surmise that the TCN+DBN performance would be much
closer to ours had they computed their results on each dataset
individually.

E. Few-Shot Beat Tracking

We also test the effects of pre-training in a few-shot learning
setup. For each dataset, we extract two constant folds for
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Fig. 6: Random+DBN, CLMR+DBN, and ZeroNS+DBN model performances on our few-shot experiments. For all datasets,
points represent scores using 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, and 96 tracks of the available training set. The green curve
denote fine-tuned ZeroNS; the orange curve, a supervised model with random initialization; and the blue curve, a fine-tuned
CLMR model. Dots and shaded areas represent the mean and standard deviation of each metric across ten trials respectively.

testing and validation. These each contain an eighth of the
total dataset. The remaining data is used to train a randomly
initialized model, a ZeroNS model, and a CLMR model on the
beat tracking task. The DBN from [30] is used in conjunction
with all models. However, instead of using all the remaining
data for training, we use subsets of size 1, 2, 3, 4, 6, 8, 12,
16, 24, 32, 48, 64, and 96 tracks. For each subset, we train
our networks on 10 randomly selected subsets of the training
data, so as to maximize the diversity of our few-shot learning
reference examples. We also stop training once performance on
the validation set has not increased for 20 epochs. The model
that performs best on that set is selected for testing.

Figure 6 displays our results. For each size of training set,
we report the mean and standard deviation over 10 trials on
all four datasets and all five evaluation metrics.

One can notice that for all metrics and datasets, the ZeroNS
network significantly outperforms the randomly initialized

network up to 24-32 tracks. Even better, the randomly
initialized network struggles to learn anything until then; we
observe mean Fl-scores of less than 0.33 for a training set of
less than 24 on the SMC dataset. More generally, the fully-
supervised network only starts to match performance using 96
tracks when 32 tracks are used for training.

In contrast, the ZeroNS network obtains an F1-score of 0.401
on the SMC dataset, or more than 77% of the fully-supervised
network’s performance on the 8-fold cross-validation setting of
the previous experiment, with just one track for training. We
observe similar behavior on the other datasets with a training
set size of 1; the ZeroNS network has a mean F1-score of 0.604
on the Hainsworth dataset, 0.729 on the Ballroom dataset, and
0.820 on the GTZAN dataset versus 0.783, 0.911, and 0.847
for the randomly initialized network in the previous, fully-
supervised experiment. As the number of training examples
increases, the randomly initialized network’s performance does
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Fig. 7: Mean and standard deviation scores obtained on GTZAN when training on the SMC, Hainsworth, and Ballroom datasets.
Green points represent the ZeroNS pre-trained model’s performance, blue points represent the CLMR pre-trained model’s
performance, and orange points represent the randomly initialized model’s performance.

catch up with the ZeroNS network’s one.

The exact same behavior is observed using other evaluation
metrics. On the Hainsworth dataset, the AMLc has a mean
value of less than 0.04 when fewer than 12 examples are used
to train a randomly initialized network. In comparison, the
ZeroNS network reaches a value of 0.559 with just one training
example. Both networks only start performing similarly when
24 examples are used (0.659 versus 0.736); the ZeroNS network
still performs more than a standard deviation better in this case.

This leads us to conclude the following: our proposed
pretext task significantly helps our network on the downstream
task under a regime of limited labeled data. Indeed, ZeroNS
embeddings already contain relevant information for beat
tracking, and only a few annotated examples are needed for
the system to perform well. A similar idea is broached in semi-
supervised learning [83], where it is theorized that humans
learn by being exposed to large amounts of unlabeled data,
and a small amount of labeled examples that help guide their
learning. Our network is learning in the same way; a large
catalog of unlabeled data is used to understand the notion of
musical beat, and only a few examples suffice to teach it how
to track the beat.

Finally, for all metrics and datasets, the CLMR network
rarely outperforms the randomly initialized network’s per-
formance. These results further justify our hypothesis that
similarity maximization is not an adequate pretext task for beat
tracking. Said otherwise, the embeddings generated by CLMR
do not lead the network to learn a form of beat induction.

F. Cross-Dataset Generalization

Annotating a song’s beats is a lengthy and time-consuming
process. More importantly, most datasets are annotated using
different techniques [82], which can lead to a form of bias.
In our final evaluation setting, we explore the cross-dataset
generalization capabilities of our our pre-trained models. We
train our randomly initialized, CLMR, and ZeroNS networks
on each of the Ballroom, SMC, and Hainsworth datasets using

8-fold cross-validation. For each fold, the highest performing
model is tested on the GTZAN dataset, our largest and most
diverse dataset. Figure 7 displays our results.

We observe that ZeroNS pre-training drastically improves
our model’s generalization capabilities. The gap in performance
is quite stark: when training on the SMC dataset, the Random
model’s mean Fl-score is 0.638 whereas the ZeroNS model’s
is 0.748; when training on the Hainsworth dataset, the Random
model’s mean AMLt is 0.834 whereas the ZeroNS model’s
is 0.894; when training on the Ballroom dataset, the Random
model’s mean CMLc is 0.584 whereas the ZeroNS model’s is
0.656. On the other hand, CLMR pre-training leads to worse
generalization capabilities on every single metric when training
occurs on the smaller SMC and Hainsworth datasets. When
using the Ballroom dataset, CLMR pre-training is only slightly
beneficial compared to a random network initialization.

These results demonstrate that ZeroNS pre-training helps
mitigate the bias towards certain genres or annotation strategies.
In the future, we hope to use our pre-training to improve beat
tracking results on musical genres or styles with little to no
annotated data, so as to expand the scope of MIR beyond
Western classical music and the U.S. Billboard.

V. DISCUSSION AND CONCLUSION

Unsupervised beat tracking, once a central theme in MIR,
has now lost most of the attention it had two decades ago.
Indeed, the surge of deep learning has shifted the focus towards
supervised representation learning. Yet, the ability to learn a
beat detection function with little or no supervision remains
an urgent need, for various reasons: because humans learn this
way; because the overwhelming majority of recorded music is
unlabeled; and because annotating audio is time-consuming.

In this article, we have proposed to revisit the old problem of
unsupervised beat tracking with new tools: high-quality source
separation, deep convolutional networks in the time—frequency
domain, and most importantly, multitrack contrastive learning.

We have presented a new pretext task in self-supervised
learning, which we named “synchrony prediction” (sync-pred),
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and which consists in distinguishing whether two musical parts
(percussive and non-percussive) are in sync or out of sync.
This is a simple model-agnostic task, involving a single audio
file per batch and no artificial perturbations of the audio data.
Thanks to an off-the-shelf source separation system (Spleeter),
we have scaled up sync-pred to 98 hours of audio; that is, ten
times more data than the largest annotated dataset for beat
tracking (GTZAN, 9 hours). Besides, we have argued that
sync-pred is interesting because it resembles two musicians
grooving to a collective pulse when playing together.

We have implemented sync-pred as part of a deep learning
model, named “Zero-Note Samba” or ZeroNS. In doing so,
we do not claim that the architectural design of ZeroNS is
optimal; only that it showcases some interesting properties of
sync-pred. First, we observe that sync-pred essentially acts as a
“transientness prior” on the learned embeddings. Second, when
used in conjunction with the dynamic programming algorithm
from [29] or the dynamic Bayesian network from [30], the
learned embeddings match or outperform previous state-of-the-
art unsupervised methods. Third, sync-pred offers a form of
pre-training for supervised models that allows to drastically
reduce the quantity of annotated data; typically from 100 songs
down to ten songs or fewer. Fourth, this pre-training mitigates
dataset bias and improves beat tracking metrics on a cross-
dataset evaluation setting by two standard deviations. These
findings lead us to think that sync-pred has potential in beat
tracking, and perhaps other problems in which multiple sources,
agents, or modalities operate in synchrony.

Our main negative finding is that, under a k-fold cross-
validation scenario, pre-training ZeroNS with sync-pred does
not improve beat tracking performance, or marginally so. It
remains unclear how knowledge may be transferred from
pretext to downstream task in a way that favors within-dataset
generalization. In a recent report [84], we have proposed to
do so with coincidence prediction instead of sync-pred, yet
with limited success so far. Variations in the formulation of
multitrack contrastive learning or in the architecture of ZeroNS
might solve this shortcoming in the future.

Beyond the task of beat tracking, it would be valuable to
inquire how sync-pred could be employed at larger musical
time scales: namely, downbeat tracking and structure analysis.
To this end, sync-pred may not only be formulated between
two audio sources, but also between audio and video, audio
and motion, or audio and neurophysiology. Lastly, we note
that sync-pred is not limited to the time domain: it could also
be formulated in the frequency domain, with downstream tasks
such as tonality estimation and chord transcription.
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