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Zero-Note Samba: Self-Supervised Beat Tracking
Dorian Desblancs, Vincent Lostanlen, and Romain Hennequin

Abstract—Supervised machine learning for music information
retrieval requires a large annotated training set, and is thus
an expensive and time-consuming process. To circumvent this
problem, we propose to train deep neural networks to perceive
beats in musical recordings despite having little or no access
to human annotations. The key idea is to train two fully
convolutional networks in parallel, which we name “Zero-Note
Samba” (ZeroNS): the first analyzes the percussive part of a
musical piece whilst the second analyzes its non-percussive part.
These networks learn a self-supervised pretext task of synchrony
prediction (sync-pred), which simulates the ability of musicians
to groove together when playing in the same band. Sync-pred
encourages the two networks to return similar outputs if the
underlying musical parts are synchronized, yet dissimilar outputs
if the parts are out of sync. In practice, we obtain the instrumental
parts from commercial recordings via an off-the-shelf source
separation system: Spleeter. After self-supervised learning with
sync-pred, ZeroNS produces a sparse output that resembles a beat
detection function. When used in conjunction with a dynamic
Bayesian network, ZeroNS surpasses the state of the art in
unsupervised beat tracking. Furthermore, fine-tuning ZeroNS
to a small set of labeled data (of the order of one to ten songs)
matches the performance of a fully supervised network on 96
songs. Lastly, we show that pre-training a supervised model with
sync-pred mitigates dataset bias and thus improves cross-dataset
generalization, at no extra annotation cost.

Index Terms—Blind source separation, Multi-layer neural
network, Music information retrieval, Unsupervised learning.

I. INTRODUCTION

HUMAN listeners have an intuitive understanding of
rhythm [1]. When exposed to music, our auditory system

seeks to produce an internal representation of the current
“pace” (tempo) of musical events such as notes. This internal
representation, known as meter, aids coordination between
musicians in the same orchestra as well as with non-audible
gestures, such as dancing or marching [2]. Crucially, musical
meter is most often periodic or varies predictably, even though
the underlying auditory stimulus is never twice the same. Thus,
meter may be encoded efficiently by defining a pulse; that is,
a sequence of sparse and evenly spaced activations [3].

A. Beat Induction in Humans versus Machines

Meter is not reducible to a single pulse frequency but, rather,
follows a hierarchical division into subsets [4]. In this regard,
the most salient level of pulse is called tactus or beat: its rate
typically ranges between 60 and 180 beats per minute (BPM)
and matches the clapping of one’s hands or the stomping of
one’s foot [5]. Admittedly, several musicians may judge the
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beat rate to belong to unequal levels of the pulse hierarchy:
for example, one might tap twice or three times faster than
the other [6]. Yet, both will internalize musical meter in a
comparable way, and thus will remain able to play together.
Indeed, they will notice if one’s musical part ever falls “ahead”
or “behind” the collective pulse.

This cognitive ability for mapping sound to coordinated
gestures is widespread, as it does not require musical expertise.
Recent findings have shown that beat induction is active in non-
musician adults and even in sleeping newborns [7]. Besides
humans, the spontaneous sensorimotor synchronization to a
musical beat has been observed in some animals; e.g., parakeets
[8] and a California sea lion [9].

The situation is different in machine listening. There is
a long-standing effort towards developing audio processing
systems which analyze a musical stream so as to predict the
most probable beat sequence a human listener would perceive—
a task known as beat tracking [10, chapter 6]. As of today,
all state-of-the-art (SOTA) methods for beat tracking in music
information retrieval (MIR) rely on artificial neural networks:
either convolutional (CNN) [11], recurrent (RNN) [12], or both
(CRNN) [13]. These deep learning models consist of nonlinear
units with linear connections, and hence share some structural
similarities with neurons and synapses in the brain [14].

However, the analogy only goes so far: while living or-
ganisms learn by direct interaction with the real world, deep
learning systems require a long preliminary stage of supervised
training before deployment [15]. The case of beat tracking
is exemplary in that regard: in recent studies, the training
set typically consists of 102 ∼ 103 songs, each containing
102 ∼ 103 humanly annotated timestamps [16]. Collecting
these timestamps requires a cognitive effort that is costly, time-
consuming, and disconnected from musical practice as such.

B. Problem Statement

Our article addresses the problem of training a deep neural
network for beat tracking with little or no access to annotated
audio data. This problem is interesting for at least three
reasons. First, from the standpoints of artificial intelligence and
music cognition, it reflects the learning process underlying beat
induction in humans better than the current task design, which is
fully supervised. Second, from the standpoint of MIR, solving
this problem raises the opportunity to scale up to massive online
music corpora: i.e., 106 ∼ 107 songs [17]. Third, from the
standpoint of digital (ethno)musicology, unsupervised learning
might help to “precondition” the beat tracking system towards
accommodating the rhythmic peculiarities of a given genre,
even in the absence of human annotation. This third motivation

The source code to reproduce figure and experiments is available at:
https://www.github.com/deezer/zeroNoteSamba.
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connects with the overarching goal of diversifying MIR beyond
its historical scope of applicability [18].

What makes the problem of unsupervised beat tracking
difficult resides in the design of an adequate prior for numerical
optimization. Previous publications have formulated this prior
in terms of internal properties of the audio stream such as
periodicity [19], harmonic homogeneity [20], and the presence
of strong percussive onsets at beat locations [21]. Although
these properties are indeed verified in certain genres (e.g.,
electronic dance music), we note that beat induction may
also happen without them [22]. Hence, a new methodological
perspective is needed to meet the challenge of unsupervised
beat tracking—especially in audio streams that are aperiodic,
deprived of tonal harmonic progressions, or highly syncopated.

C. Key Idea: Self-Supervised Synchrony Prediction

In this article, we introduce a method for training deep neural
networks on the beat tracking task with little or no human effort
in terms of audio annotation. Our key idea is to separate the
audio stream into two parts: percussive sources (e.g., drums)
and non-percussive sources (e.g., voice or wind instruments).
Then, we rely upon a simple musical observation: regardless of
the rhythmic pattern in the parts they play, musicians listen to
each other so as to seek synchrony. This observation suggests
that, in the presence of multiple instruments, beat induction
arises not only from listening to the orchestra in full but also
from listening to isolated parts. Hence, in order to mimic human
listening, the machine must return the same beat sequence for
both the percussive and non-percussive parts of a piece. We
encourage alignment between instrument-specific beat patterns
via a new “pretext” task for self-supervised learning (SSL),
named synchrony prediction or sync-pred, which is formulated
as a contrastive learning task.

D. Scaling Up the Pretext Task with Source Separation

Training a self-supervised beat tracker via sync-pred is
conceptually simple; yet, it would probably have been un-
feasible just five years ago. Indeed, the formulation of the
sync-pred task requires a massive dataset of real-world music
in multitrack format, in which percussive and non-percussive
parts are mapped to separate tracks. On the contrary, recorded
music is most often distributed in stereo format, with all
instruments being mixed. Although the MIR community has
released multitrack datasets (e.g., The Open Multitrack Testbed
[23], MedleyDB [24]), their size is only in the order of 102

songs; i.e., they are too small to justify self-supervised learning.
Fortunately, the recent progress of (supervised) deep learning

for audio source separation now allows researchers to retrieve
the vocal and instrumental parts of stereo mixtures. Of course,
the process of source separation is imperfect and occasionally
presents audible artifacts. However, we postulate that these
artifacts make the task of synchrony prediction between
percussive and non-percussive parts neither unsolvable nor
trivial. We propose to run an off-the-shelf source separation
system (namely, Spleeter [25]) as a pre-processing step to beat
tracking, both during training and deployment.

Some recent publications have done so in a supervised
context, with various applications: sound event detection in
domestic environments [26] and verification of vocal note-event
annotations in polyphonic music [27]. However, to the best of
our knowledge, only one publication so far proposes to combine
source separation with contrastive learning [28]. A noteworthy
difference is that [28] proposes a task of coincidence prediction,
which operates as a “slowness prior”; whereas, on the contrary,
our task of sync-pred operates as a “transientness prior” for
the learned beat detection function.

E. Contributions

Our paper proposes the first self-supervised approach to beat
tracking in MIR. Its main originality consists in learning not
one but two representations for every audio excerpt: one for its
percussive part and another for its non-percussive part. These
representations, hereafter called embeddings, result from two
encoders which have the same architecture but independent
synaptic weights. The hypothesis of our article is that training
these encoders via synchrony prediction (sync-pred, see Section
I-C) reinforces their sensitivity to the musical pulse.

We test this hypothesis in practice by introducing a new
deep learning model named “Zero-Note Samba”1, or ZeroNS
for short. Figure 1 presents the functional diagram of ZeroNS.

Our experiments lead to six new insights:
1) Our network learns appropriately on the sync-pred task:

after convergence, ZeroNS is able to predict synchrony
between percussive and non-percussive parts beyond its
training set. Musical recordings on which the network is
unable to learn either contain no drums or contain nothing
but drums; these cases are easily detected in advance. See
Section IV-A.

2) Thanks to sync-pred, ZeroNS embeddings tend to be
sparse and periodic in the time domain. This finding
suggests the emergence of a rudimentary form of beat
induction: see Section IV-B.

3) ZeroNS matches or surpasses previous SOTA unsuper-
vised methods once coupled with the peak picker found
in [29] or the SOTA dynamic Bayesian network (DBN)
for peak-picking, found in [30]: see Section IV-C.

4) Sync-pred can serve as self-supervised pre-training before
supervised learning. In a k-fold cross-validation setting,
this pre-training has little effect on downstream beat track-
ing performance, and the effect is inconsistent (beneficial
or detrimental) across datasets: see Section IV-D.

5) Sync-pred is consistently beneficial under the “low-data”
regime; that is, with limited labeled data. Our results
demonstrate that a fully supervised model with random
initialization requires 32–96 songs to learn beat tracking,
while ZeroNS reaches competitive performance after
supervised fine-tuning on 1–24 songs: see Section IV-E.

1We choose the name “Zero-Note Samba” in homage to the 1960 song “One
Note Samba” (“Samba De Uma Nota Só”), with music by Antonio Carlos
Jobim, Portuguese lyrics by Newton Mendoça, and English lyrics by Jon
Hendricks. The name should not be taken too literally: of course, ZeroNS is
unable to learn in complete silence. A more accurate name, albeit a far less
memorable one, would have been: Zero-Annotation Samba.
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Fig. 1: Functional diagram of ZeroNS. The waveform on the top
is an unlabeled music recording from the FMA dataset. Darker
colors in the time–frequency representation reflect higher values
of energy. The last row displays scatter plots between the
percussive (x-axis) and non-percussive (y-axis) embedding. The
task of synchrony prediction consists in maximizing cosine
similarity in the synchronized case (left), i.e., bringing the
scattered dots close to the orange diagonal line; and minimizing
cosine similarity in the non-synchronized case (right).

6) Pre-training with sync-pred improves generalization under
a cross-dataset evaluation setting: see Section IV-F.

II. RELATED WORK

In this section, we present a historical overview of four
research topics: unsupervised beat tracking; feature learning in
the time–frequency domain; self-supervised MIR; and learning
from multitrack audio data. Although they have long been
studied in machine learning and signal processing, the novelty
of our work is to address them in conjunction.

A. Unsupervised Beat Tracking
The earliest approaches to beat tracking were actually

unsupervised: they did not rely on any annotated data and

only had a few hyperparameters, which the authors adjusted
ad hoc [31]. These approaches assumed the timestamps of
note onsets to be available in symbolic format (e.g., MIDI) or
via motion capture. Besides, they were only applied to a few
melodic sequences that usually came from a single instrument
[32]. Although they enhanced the real-time interaction between
musician and computer [33], these methods were unsuited for
the analysis of polyphonic audio. They did however lay a
foundation for the computational modeling of musical rhythm.

An important milestone in the history of beat tracking resides
in the development of dedicated connectionist models [34].
These models aimed to implement “entrainment”; that is, the
phase-locking and frequency-locking of artificial neurons to
periodic components of incoming rhythmic patterns. This line
of research culminated with the adaptive-frequency neural
network (AFNN), a nonlinear model in which the tempo may
vary according to a Hebbian learning rule [35].

B. From Feature Engineering to Feature Learning

Around the year 2000, MIR sprung as an autonomous field
of research and beat tracking emerged as one of its well-
established tasks [36]. At the time, the SOTA method [37]
involved non-trainable modules only: spectral flux, median
filtering with half-wave rectification, windowed autocorrelation,
and cross-correlation with an artificial pulse train at the
predicted tempo. By design, this approach returns a beat
sequence that is globally periodic. As such, it is unfit for
analyzing musical sections with time-varying tempo.

In 2007, the assumption of global periodicity was relaxed
by [29], who proposed a dynamic programming formulation
for beat tracking. The key idea is to build a transition cost
function between candidate beats which penalizes deviations
from the globally estimated tempo. In this way, the dynamic
programming algorithm seeks a compromise between picking
timestamps of high onset strength and ensuring that all inter-
beat intervals match the tempo prior approximately. Thus,
assuming that the initial tempo estimate is correct, the method
in [29] can accommodate a small “stretch” in the pulse grid,
as induced by expressive performance. Despite its limited
accuracy, this method remains widely used today because it is
conceptually simple. Moreover, it is implemented by librosa
[38], a free and open-source software library for Python, as:

tempo, beats = librosa.beat.beat_track(
y, sr=16000, hop_length=256, start_bpm=120)

In this article, we use the implementation above as a point
of comparison with our proposed method. We regard [29] as
the current state of the art in unsupervised beat tracking. All
algorithmic parameters were tuned to our audios’ specifications,
such as sample rate, to maximize performance.

The emergence of deep learning in MIR overturned the
formulation of the beat tracking task. Rather than predict
the tempo globally and adjust beat times accordingly, [39]
proposed to train a machine learning system that detects beat
times directly from audio data. Specifically, they trained a
long short-term memory network (LSTM) on a multiscale
variant of the short-term Fourier transform, involving per-
channel temporal differentiation and rectified median filtering.
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The LSTM produces a beat detection function (BDF); that
is, a univariate signal (sampled at 100Hz) which represents
the degree of confidence in the presence of a beat. In [39],
the LSTM optimizes its BDF by fitting it to a “ground truth”
sequence in which values of 1 and 0 respectively correspond
to “beat” and “no beat” events. This is a form of supervised
beat tracking, because such a ground truth must be provided
by a human annotator.

One may improve the accuracy of beat tracking by interfacing
the BDF with a bar-pointer model; that is, “a probabilistic
model of temporal structure in music which allows joint
inference of tempo, meter and rhythmic pattern” [40]. The bar-
pointer model was initially proposed as a Gaussian process and
later revisited as a neural network, under the name of Dynamic
Bayesian Network or DBN [41]. This model is comprised of: an
observation model, which converts the BDF into probabilities;
a transition model between hidden variables of tempo, beat, and
meter; and an initial distribution for these variables. Crucially,
the DBN is unsupervised: all probability distributions are
estimated from unlabeled BDF observations and some domain-
specific knowledge about music, such as BPM range and the
number of states per second. In this paper, we post-process
our self-supervised BDF with the most recent DBN provided
in [30], as provided by the Python package “madmom” [42].
In [43], the authors (Davies and Böck) use the same DBN
in conjunction with their supervised temporal convolutional
neural network (CNN). We consider their method as the current
state of the art in supervised beat tracking. Note that updated
beat tracking results can be found in [44] and involve joint
beat and downbeat estimation using a transformer architecture.

C. Self-Supervised Learning in Music Information Retrieval

With a number of publications doubling every year since
2015, the field of self-supervised learning is expanding rapidly
[45]. Thus, a comprehensive review of all pretext tasks for self-
supervised learning in audio processing is beyond the scope of
this paper. Instead, we limit our review to a few publications
which play a key role in the inspiration of ZeroNS.

Broadly speaking, we may define SSL as a paradigm in
which the machine learns to accomplish a task whose ground
truth is trivially available. This task, known as “pretext”, does
not necessarily have any practical interest per se; however,
its resolution supposedly requires some intelligent auditory
processing on the part of the machine. Hence, SSL aims
at a “best-of-both-worlds” approach between supervised and
unsupervised learning. On one hand, SSL is unsupervised in
the sense that it operates without human annotation: one may
collect real-world unlabeled data and alter them at random
to produce a ground truth. On the other hand, since SSL is
typically formulated as classification or regression, it can be
implemented like supervised learning; namely, as empirical
risk minimization with stochastic gradient descent.

A simple but powerful family of pretext tasks for SSL
is found in contrastive learning [46]. Generally, contrastive
learning operates over “batches” of size B, each of them
containing three kinds of data: one anchor, one positive,
and several negatives. Intuitively, the pretext task consists

in matching the positive with the anchor while ruling out all
negatives. In practice, this is achieved in a differentiable way by
contrasting anchor–positive similarity versus anchor–negative
similarities. The main difference between contrastive learning
tasks resides in their definitions of what constitutes “positive”
and “negative” samples with respect to the anchor. In [47], the
anchor and positive (resp. negative) are drawn from the same
(resp. from different) musical recordings: this task is called
similarity maximization. In [48], the authors perform random
digital audio effects (e.g., pitch shifting, reverb, equalization)
to all samples before similarity maximization, thus encouraging
self-supervised invariance to these perturbations.

Besides contrastive learning, our work is inspired by self-
supervised pitch estimation (SPICE) [49]. The key idea behind
SPICE is to train a convolutional autoencoder in the time–
frequency domain to discover relative pitch. During training,
two copies of this autoencoder analyze artificially transposed
versions of a same musical recording. The pretext task consists
in regressing the amount of artificial pitch shift between both
versions. After limited supervision, relative pitch is mapped to
absolute pitch; the embedding of SPICE becomes a fundamental
frequency estimator with almost SOTA performance.

D. Learning from Multimodal and Multitrack Data

Recent publications have extended SSL to multimodal data,
such as videos with audio [50]. Under a contrastive learning
formulation, the anchor is a video frame; the positive sample,
the matching audio excerpt; and the negative sample, a random
audio excerpt from a different music video. This method
assumes audiovisual correspondence; i.e., that whichever
instruments appear in the frame match those being heard. In the
absence of a side-channel modality such as video, it remains
possible to exploit the coincidence between multiple sources
within the same modality. In [28], the authors propose to apply
a pre-trained model for “universal sound separation” [51] to
unlabeled polyphonic mixtures; and to train an encoder to
predict the coincidence between a separated source and the
mixture to which it belongs, as a binary classification problem.

In the realm of MIR, the authors of [52] create musical
mash-ups using instrumental and vocal stems. Then, they train
a network to distinguish singers from each other using triplet
learning, each mashup being used to strengthen the network’s
ability to recognize vocals within a song. This work is enhanced
by Spleeter in [53]. By extracting vocals in an automatic
fashion, the triplet learning task can be conducted on more
data, and thus extract higher-performing vocal representations
for the vocal-related downstream tasks.

Finally, in the realm of source separation in beat tracking,
the following two works inspired this paper. In [54], the authors
leverage source separation in the same way as us: they create
percussive and non-percussive tracks for each song. From there,
three beat tracking systems are trained on three different types
of audio: mixtures, percussive tracks, and non-percussive tracks.
Their outputs are then fused to enhance performance on the
beat tracking and downbeat estimation tasks. In [55], percussive
and non-percussive tracks are used to augment the training set
and improve the network’s performance for the same tasks.



TRANS. ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. X, NO. Y, SUBMITTED SEPTEMBER 2022, REVISED JUNE 2023, ACCEPTED JULY 2023 5

III. METHODS

In this section, we present: the automatic curation of
our unlabeled training set for self-supervised learning; our
choice of time–frequency representation; the fully convolutional
architecture of the model, named “Zero-Note Samba”; and beat
tracking, our supervised downstream task.

A. Automatic Curation

As noted in Section I-C, we train ZeroNS by predicting the
synchrony between percussive and non-percussive parts in the
same song. To this end, we need to curate a large-scale training
set in which every song contains both percussive instruments
and non-percussive instruments. Yet, in a digital music archive,
some songs may contain no percussive parts (e.g., a cappella
choir) while others may contain only percussive parts (e.g.,
drum ensemble). Since sync-pred would become ill-posed on
those songs, we exclude them from our training set beforehand.

In practice, we use music data from the Free Music Archive.
The FMA is one of the largest audio catalogs of royalty-free
music, and was dumped to an immutable web repository in
2017 [56]. This dump, known as “FMA dataset”, has frequently
been used in MIR research for audio tagging; e.g., [57]. Yet,
our publication is the first to use the dataset for beat tracking.
We download the “large” version of the FMA dataset2. This
version contains 107k song excerpts, each of them lasting 30
seconds, and spans a 161, mostly Western, genre hierarchy.

In order to verify the presence of percussive and non-
percussive sources, we process each of these song excerpts
with Spleeter3. Spleeter is a Python library for audio source
separation, involving several pre-trained deep learning models.
Spleeter is a supervised model because it was trained with
separated sources as a ground truth. However, this ground
truth is not equivalent to a human annotation of musical beats.
Thus, we may still regard our pipeline as unsupervised with
respect to the beat tracking task. Among the models that
are present in Spleeter, we select 4stems: i.e., a four-way
separation between drums, vocals, bass, and other. For drums,
the source-to-interference ratio (SIR) [58] of Spleeter is of the
order of 12 dB on the MUSDB18 test set [59]; i.e., within
one decibel of the state of the art [25]. In other words, the
energy of the drums track as extracted by Spleeter consists
of (101.2)/(1 + 101.2) ≈ 94% actual drums and about 6%
other sources, on average. Hence, we judge that the drums
track is sufficiently decorrelated from other tracks to make the
sync-pred task nontrivial.

Given an unlabeled song excerpt x, let us denote by ϕpx
the drums track returned by Spleeter; hereafter called “the
percussive part” of x. Similarly, we denote by ϕ¬px the
mixture of vocals, bass and other tracks returned by Spleeter;
hereafter called “the non-percussive part” of x.

We compute the root-mean-square (RMS) value of both
ϕpx and ϕ¬px over non-overlapping rectangular windows of
duration 46ms; i.e., 2048 samples at a rate of 44.1 kHz. Then,
we define a temporal criterion of simultaneous presence of

2FMA repository link: https://github.com/mdeff/fma
3Source code of Spleeter: https://github.com/deezer/spleeter

percussive and non-percussive sources via a double inequality
on the ratio between RMS(ϕpx) and RMS(ϕ¬px):

Criterion(x)(t) = 1

(
1

2
<

RMS(ϕpx)(t)

RMS(ϕ¬px)(t)
< 4

)
, (1)

where the symbol 1 represents the indicator function. The lower
and upper bound (12 and 4) in the equation above are chosen ad
hoc after a process of trial and error. If the above is satisfied for
over 30% of the RMS frames t, we extract a 10-second musical
clip within the 30-second excerpt. This 10 second duration
was selected due to computational constraints, in order to later
scale our pretext task to a batch size of 16 (see Section III-D).
In this way, we extract 35,200 pairs (ϕpxi,ϕ¬pxi)i from the
fma_large dataset; i.e., around 98 hours of audio.

B. Time–Frequency Representation
Musical onsets are typically easier to detect in the time–

frequency domain than in the time domain [60]. Indeed, musical
notes exhibit a sharp pattern of amplitude modulation at their
onset [61]. For this reason, nearly all deep learning systems for
beat tracking rely on a time–frequency representation, such as
mel-frequency spectrogram [39], chromagram [16], or constant-
Q transform (CQT) [11].

In this paper, we use a variable-Q transform (VQT); i.e., a
variant of the CQT in which the time resolution is improved
in the low-frequency range [62]. This is especially important
for our embeddings, because crucial information about musical
pulse arises below 100 Hz. That being said, we note that
sync-pred has a general definition and could, in principle,
apply to any feature map that is approximately equivariant
with time shifts; not solely the VQT but other time–frequency
representations as well, or even the raw waveform x.

To compute the VQT, we design band-pass filters ψλ

indexed by a log-frequency variable λ in octaves which ranges
between 0 and (J − 1). Specifically, we design each ψλ

with a center frequency of 2λξ and an effective bandwidth
of B(λ) = γ + 2λξ/Q where γ ≥ 0 is a constant offset
in Hertz, ξ is the center frequency of the bottom-most
filter (λ = 0) in Hertz, and Q is a dimensionless number.
We use the VQT implementation of Librosa v0.8.0 [38].
In this implementation, γ is adjusted via domain-specific
knowledge about psychoacoustics. The bandwidths B(λ) are
made proportional to the equivalent rectangular bandwidths
(ERB) of the human cochlea [63]: ERB(λ) = 2λξα+β where
α = 0.108 and β = 24.7 Hz. Solving B(λ) ∝ ERB(λ) with
Q = 12 yields γ = β/(αQ) = 19.1 Hz.

Once the filterbank (ψλ)λ is built, we compute the VQT of
an audio signal x as its convolutions with every ψλ followed
by the application of pointwise complex modulus and pointwise
logarithm, with a constant numerical offset ε:

Ux(t, λ) = log
(
ε+

∣∣x ∗ψλ

∣∣(t)). (2)

Within a discrete-time setting, we take Q = 12 evenly spaced
values of λ per octave. In this paper, we set the center frequency
of the bottom-most filter to ξ = 16.35 Hz and the number of
octaves to J = 8; hence QJ = 96 values of λ in total, up to
28ξ = 4185.6 Hz. We set the hop length of the VQT to 16ms;
i.e., 256 samples at 16 kHz. We set ε = 10−10.
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C. Fully Convolutional Neural Network

The ZeroNS model comprises two branches which analyze
separate musical parts. Let us denote by fp (resp. f¬p) the
branch which operates on the percussive (resp. non-percussive)
part; i.e., ϕpx (resp. ϕ¬px), see Section III-A. We build fp and
f¬p as fully convolutional neural networks. This design choice
is inspired by the state of the art in supervised beat tracking
[43]. Although fp and f¬p have identical architectures, their
synaptic weights are not shared.

Each branch contains five convolutional layers. The “channel”
dimension grows up to 256 in the third layer before returning
to 1 in the last layer. The first three layers are followed by
maximum pooling over the log-frequency dimension λ. In this
way, they operate at multiple scales: one, three, and twelve
musical semitones respectively. However, there is no pooling
on the time dimension. Thus, the hop size of the output of
fp is the same as that of U; i.e., 16ms. The output length is
also the same as the size of the input’s VQT time dimension.
Again, this choice of time resolution is of the same order
as the state of the art in supervised beat tracking [43]. Each
convolutional layer is followed by a ReLU activation function
and dropout layer with value 0.1. The last convolutional layer
passes through a sigmoid activation.

The fully convolutional nature of our model makes it ap-
proximately equivariant to translation [64]. Once the boundary
effects have been neglected, shifting the input of fp by some
time lag τ is tantamount to shifting its output by τ ; and likewise
for f¬p. Let us denote by Lτ the time shift operator with lag
parameter τ . We extend this definition to two dimensions:
for every matrix u, Lτu(t, λ) = u(t − τ, λ). We state the
equivariance of fp in terms of commutation with Lτ : for all t
whose distance is at least (N +τ) from both signal boundaries,

fp(Lτu)(t) = Lτfp(u)(t) = fp(u)(t− τ). (3)

Now, we may observe that u is the output of a VQT, which
is itself a convolutional operator followed by an operation
of pointwise complex modulus. This operation demodulates
oscillations and thus produces a form of approximate equivari-
ance to time shifts, even despite setting the hop length to 256
samples (see Section III-B):

ULτx(t, λ) ≈ LτUx(t, λ) = Ux(t− τ, λ). (4)

Lastly, the operator ϕp proceeds from the Spleeter U-Net [65]
which, again, satisfies an approximate property of equivariance:

ϕpLτx(t) ≈ Lτϕpx(t) = ϕpx(t− τ). (5)

A mathematical idealization of the three equations above may
be expressed in terms of the commutative diagram below:

x ϕpx Uϕpx fpUϕpx

Lτx ϕpLτx UϕpLτx fpUϕpLτx,

ϕp

Lτ

U

Lτ

fp

Lτ Lτ

ϕp U fp

(6)
and likewise with ϕ¬p and f¬p.

Receptive fields grow over the temporal dimension from
11 frames at the first layer to 25 at the last layer. Over the

frequency dimension, their size is as large as 9 rows (27
musical semitones) in the fourth layer. As a result, ZeroNS
has a relatively large number of trainable parameters: 13.4M,
compared to 21.8k in [43]. This is, in part, because [43] resorts
to dilated convolutions so as to increase receptive field size
while maintaining a small parameter budget. We leave as future
work the optimized design of receptive fields in ZeroNS.

D. Pretext Task: Synchrony Prediction (Sync-Pred)

We train the ZeroNS model in a self-supervised way to
predict the synchrony between percussive and non-percussive
parts in a ten-second signal x of polyphonic music. We begin by
drawing a “batch” of B = 16 independent time lags τ1 . . . τB
uniformly at random between zero and ∆ = 5 seconds. For
every lag τi with 1 ≤ i ≤ B, we extract the five-second clip
in x starting at time τi, which we denote by Lτix. Then,
we apply source separation with ϕp and ϕ¬p followed by
VQT with U. We feed the batch UϕpLτix to the “percussive
network” of ZeroNS (fp) and the batch Uϕ¬pLτix to its “non-
percussive network” (f¬p). We apply ℓ2 normalization over the
time dimension; let us denote by yi,p and yi,¬p the resulting
embeddings. Given i, the diagram in Equation 6 allows to
interpret yi,p as a local renormalization of fp(Uϕpx) over the
interval [τi, τi +∆]:

yi,p(t) =
fp
(
UϕpLτix

)
(t)∥∥∥fp(UϕpLτix
)∥∥∥

2

(7)

and likewise with every yi,¬p after having replaced fp and ϕp

by f¬p and ϕ¬p respectively. Intuitively, sync-pred consists in
enhancing the cosine similarity between yi,¬p and yi,p while
inhibiting that between yi,¬p and yj,p for j ̸= i.

Let us adopt the shorthand f for the tuple (fp, f¬p). We
propose to formulate sync-pred as the minimization of the
following loss function, named normalized temperature-scaled
cross-entropy or NT-Xent [46] and used in [48][47]:

Lf (x) = − 1

B

B∑
i=1

log

(
exp( 1

T ⟨yi,¬p|yi,p⟩)∑B
j=1 exp(

1
T ⟨yi,¬p|yj,p⟩)

)
, (8)

on average over unlabeled signals x. In the equation above,
the bracket notation ⟨yi,¬p|yj,p⟩ denotes the scalar product
between yi,¬p and yj,p, which corresponds to a cosine
similarity between the outputs of f¬p and fp after lagging by
τi and τj and trimming to ∆. The constant T is a “temperature”
hyperparameter, which we set equal to 0.25.

In practice, we train the ZeroNS model f in PyTorch4 with
the Adam optimizer [66] and a learning rate of 10−6. We
split our unlabeled dataset (see Section III-A) into a training
subset of size 28,800 and a validation subset of size 6,400. We
monitor the validation loss and stop training once it reaches a
minimum; i.e., after 35 epochs.

E. Downstream Task: Beat Tracking

We evaluate a total of seven systems for the beat tracking
task. The first four of these are unsupervised, or self-supervised,
and correspond to:

4Official website: https://pytorch.org
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i Random+DBN: a randomly initialized fully convolutional
network of Section III-C with the unsupervised DBN of
[30] (see Section II-B);

ii Spectral Flux+DP: feature engineering (spectral flux) and
dynamic programming [29] (see Section II-B);

iii ZeroNS+DP: fully convolutional network of Section III-C
trained with sync-pred on percussive and non-percussive
parts of the FMA dataset (see Section III-D), followed by
maximum pooling between the resulting embeddings (see
below) and dynamic programming;

iv ZeroNS+DBN: same as above, dynamic programming
replaced by the unsupervised DBN;

The results of the above can be found in Section IV-C. The
next three rely on human supervision, in part or in full. Their
results can be found in Section IV-D; we outline the beat
tracking training procedure below:

v Random+DBN: same as (i), trained on each beat tracking
dataset;

vi ZeroNS+DBN: same as (iv), fine-tuned on each beat
tracking dataset;

vii TCN+DBN: temporal convolutional network with super-
vised training on multiple datasets, followed by the same
DBN used in our experiments [43].

In systems (iii), (iv), and (vi), we merge the two branches
of ZeroNS via maximum pooling between unnormalized
percussive (fp) and non-percussive embeddings (f¬p):

y(t) = max
(
fp(Uϕpx)(t), f¬p(Uϕ¬px)(t)

)
. (9)

This allows our system to perform beat tracking when either
the percussive or non-percussive sources are silent; i.e. when x
contains no drums (ϕpx = 0) or nothing but drums (ϕ¬px = 0).
Conversely, in (i) and (v), the model comprises a single branch
f which operates on the VQT of the mixture Ux; thus, no
merging is necessary.

In (iii), we pass y as observation to the dynamic program of
[29] and retain its peaks as predicted beats. In (iv), we do the
same with the DBN of [30]. We set its BPM range to [55, 215].
Both of these approaches (ZeroNS+DP and ZeroNS+DBN)
combine a supervised source separation model (Spleeter), a
self-supervised acoustic model (ZeroNS), and an unsupervised
sequence model (DBN or DP): hence, they may be regarded
as unsupervised with respect to the beat tracking task.

In (v) and (vi), we convert the human annotation into a
signal y∗ with the same hop length as y. Following [43], the
value of y∗(t) equals 1 if t is nearest to an annotated beat,
0.5 if t is adjacent to an annotated beat, and 0 otherwise.

We train the network f to minimize the binary cross-entropy
(BCE) between its prediction y and the ground truth y∗:

− 1

Ny

Ny∑
t=1

y∗(t) log(y(t)) + (1− y∗(t)) log(1− y(t)), (10)

where Ny is the duration of y, on average for every y. Because
Ny varies across songs y, we use a batch size of 1.

In (vi), we pre-train f = (fp, f¬p) with sync-pred and fine-
tune it on Equation 10 with the Adam optimizer and a small
learning rate of 5 × 10−8 to prevent catastrophic forgetting.
However, in (v), we initialize f at random with i.i.d. Gaussian
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ZeroNS (perc.)

ZeroNS (non-perc.)

ZeroNS (both)

Supervised
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Fig. 2: Comparison of learned embeddings in terms of
information-theoretic measures. Blue diamonds and orange
bars denote means and medians respectively. Box and whisker
edges denote quartiles and deciles respectively.

weights. We train f on the beat tracking task in a supervised
way, with a larger learning rate of 10−5. These learning rates
were established by trial-and-error.

IV. EVALUATION AND RESULTS

In this section, we evaluate our models, both on the
pretext task (sync-pred) and the downstream task (beat track-
ing). We demonstrate that pre-training with ZeroNS benefits
unsupervised learning, low-data learning, and cross-dataset
generalization, in comparison with supervised learning from a
random initialization.

A. Convergence on the Pretext Task
The ZeroNS neural network is able to train appropriately

on the curated dataset. During the first few iterations on the
training set, the cosine similarities between all percussive and
non-percussive embeddings are very close to one, suggesting
that the networks are unable to recognize synchronized and
non-synchronized outputs. After 25 epochs, the ZeroNS model
reaches a loss value of 0.634±0.30. Synchronized embeddings
in the validation set have a mean cosine similarity value of
0.804±0.13 while non-synchronized embeddings have a mean
cosine similarity value of 0.053± 0.01.

These results show that both our data curation process
and pretext task definition enable the model to converge
appropriately. This probably would not have been the case
if we had not filtered out songs with very few drums, for
example. In the end, we stopped training after 35 epochs.
By then, the loss on the validation set had not diminished
for 10 epochs. We therefore opted to stop training early. The
network that achieved the lowest validation loss during the 35
epochs of training was selected for our downstream tasks. For
a more comprehensive view of the network’s evolution during
training, we encourage the reader to consult the figures in the
supplementary material of this paper.

B. Emergence of Sparsity and Periodicity
When looking at an ideal beat tracking activation function,

one can immediately notice that it is both very sparse and



TRANS. ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. X, NO. Y, SUBMITTED SEPTEMBER 2022, REVISED JUNE 2023, ACCEPTED JULY 2023 8

resembles a periodic function. Its values are equal to 0 at
all points except when a beat occurs. In this case, the value
is equal to 1. These beat values are cyclical, and usually
occur at almost constant time intervals. We therefore use six
information-theoretic measures in order to better understand the
embeddings generated by our pretext task, and their relevance
for beat tracking. Maximizing performance on these measures
is not crucial: in the event of tempo-varying music, the ground
truth beat activation function is not exactly periodic. However,
these cases only apply to a small subset of songs.

For sparsity, we use the following measures: the ℓ2/ℓ1

norm ratio, which is often used to encourage sparsity for
non-convex problems such as non-negative matrix factorization
[67]; the Gini coefficient, which is a common measure of
statistical inequality; the kurtosis, a measure of the amount
of outliers present in the distribution of a real-valued random
variable; and the Shannon entropy, which quantifies the amount
of information contained in our embeddings, the amount
of surprise or uncertainty. A comprehensive overview of
each measure can be found in [68]. We also report the
sample entropy of our embeddings. Originally proposed for
physiological time-series [69], this measure estimates the
amount of regularity present in a signal. Finally, we compute
the maximum autocorrelation value obtained for shifts of 0.25
to 4 seconds. Each embedding mean is subtracted before
measuring the above. All values are also divided by the un-
lagged autocorrelation value. We compute each measure for five
embeddings: a randomly initialized CNN; the percussive branch
fp of ZeroNS; the non-percussive branch f¬p of ZeroNS; the
maximum of the two branches, f (see Equation 9); and a
supervised CNN trained on the Ballroom dataset (see Section
IV-D). All measures are computed on the GTZAN dataset.

Figure 2 displays our results for each network. One can
notice that most measures point towards our embeddings being
sparser than the randomly initialized network’s outputs. This
is even more apparent for the percussive network. The Gini
coefficient values of the ZeroNS networks are very close
to one, for example, suggesting that a few values in our
embeddings are large whilst the rest are close to zero. The
kurtosis and ℓ2/ℓ1 norm ratio are also larger, suggesting a
greater amount of outliers and sparsity. On the other hand,
our pre-training leads to smaller entropy values. The sample
entropy values of the ZeroNS network are especially similar
to those of the supervised network. This suggests that our
embeddings are both sparser and more regular than the ones
generated by the randomly initialized network. The maximum
normalized autocorrelation values obtained by each of ZeroNS’
branches are also much closer to those of a supervised beat
tracking CNN, and hence much more periodic than those of the
randomly initialized network. Visualizing these embeddings
seems to support this claim: we notice that our embeddings
mostly have values that are close to zero, except for peaks
that occur sporadically. These peaks seem to be synchronized
with periodic musical onsets, and especially drum sounds such
as kicks and claps. More work needs to be done in order to
validate this hypothesis.

When comparing the ZeroNS outputs to a regular beat
tracking network’s outputs, we notice that for the ℓ2/ℓ1 norm

Dataset # files length
Ballroom 685 5h57m
Hainsworth 222 3h19m
GTZAN 1000 8h20m
SMC 217 2h25m

TABLE I: Datasets used for Beat Tracking

ratio, Gini coefficient, and kurtosis, we obtain noticeably
smaller values using the beat tracking network compared to our
ZeroNS embeddings. The entropy values obtained using the
former, on the other hand, are larger than the former’s. Finally,
we observe some overlap between the autocorrelation values
found in each set of embeddings. Although these measures
must not be interpreted as proof that our pretext task is
relevant to our downstream task, they do show a trend: the
generated outputs tend to be sparse and periodic, just like a
supervised network’s outputs. We invite the reader to consult the
supplemental material of this paper in order to better visualize
our embeddings.

C. Unsupervised Representations

We evaluated our models on four annotated datasets: the
Ballroom dataset5 from [70], [71] and annotated using [41]6 ,
the Hainsworth dataset [72], the GTZAN dataset from [73] and
annotated in [74], and the SMC dataset [75]. Unlike in [43],
[12], [76], [39]7, we report results on each dataset separately.
This was done in order to better study the effects of pre-training
on small datasets. Each is annotated differently and spans a
variety of musical genres. Table I further describes the datasets
we used according to the number of files they contain and
the duration of these files. We adopt the following evaluation
metrics: F1-score, AMLc, AMLt, CMLc, and CMLt. The CMLc
and CMLt metrics evaluate how continuously correct a beat
tracking estimation is (use of the maximum length of correct
predictions). The AMLt and AMLc metrics are similar but
allow offbeat variations of an annotated beat sequence to be
matched with detected beats. One can read more about each
metric in [77].

Let us now explore the effects of pre-training on downstream
task performance. In our first evaluation setting, we test our
models in an unsupervised fashion. Our results can be found
in Figure 3. When looking at the figure, one notices that the
randomly initialized network is greatly outperformed by the
Spectral Flux+DP, ZeroNS+DP, and ZeroNS+DBN methods.
The randomly-initialized network does not surpass a mean
CMLc score of 0.01 or an F1-score of 0.37 on each dataset.
This was to be expected: it is neither trained or optimized to
learn a form of musical meter, tempo, or synchrony to a pulse.

In contrast, both ZeroNS methods perform just as well, if not
better, than the method in [29]. When used in conjunction with
the latter’s dynamic program, our ZeroNS method outperforms
the Spectral Flux+DP method on 13/15 metrics for the SMC

5Online repository: https://github.com/CPJKU/BallroomAnnotations
6The duplicates in the Ballroom dataset identified in https://highnoongmt.

wordpress.com/2014/01/23/ballroom dataset/ were removed.
7In these papers, the SMC, Ballroom, and Hainsworth datasets are mixed

during 8-fold cross validation. They use the GTZAN dataset as a test set.
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Fig. 3: Benchmark of four different unsupervised models on the beat tracking task: our randomly initialized fully-convolutional
network followed by the DBN in [30]; Librosa’s spectral flux and dynamic programming (DP) algorithm [29]; ZeroNS followed
by DP; and ZeroNS followed by the DBN. Each row corresponds to a different dataset (indicated on the right) while each
column corresponds to a different evaluation metric (at the top). Reported figures result from the mean scores for each track.

Mirex, Hainsworth, and Ballroom datasets. It is however
consistently outperformed by the Spectral Flux+DP method
on the GTZAN dataset. We leave as future work to determine
where the ZeroNS method fails compared to it Spectral Flux
counterpart. These results do suggest that the onset functions
output by the ZeroNS network are at the very least on par with
the ones generated by Spectral Flux [29] for beat tracking.

When used in conjunction with the SOTA DBN from [30],
our ZeroNS model outperforms Spectral Flux+DP on all
datasets for every single metric. When using an F1-score metric,
the ZeroNS+DBN method beats the Spectral Flux+DP method
by at least four percentage points. The method also achieves
70% (SMC Mirex), 80.3% (Hainsworth), 82.5% (Ballroom),
and 92.1% (GTZAN) of the performance of its fully-supervised
counterpart (Random+DBN in next section). When using an
AMLc metric, the ZeroNS+DBN method beats the Spectral
Flux+DP method by at least eight percentage points on every
datset. The method also achieves 56.7%, 76.2%, 82.8%, and
92.3% of the performance of its fully-supervised counterpart.
The same effect can be observed for the other three metrics.
These results are, to the best of our knowledge, SOTA for
unsupervised beat tracking.

D. Supervised Learning

For the supervised models, we split our datasets into eight
randomly selected folds. Each of these are then used as a test set
during cross-validation. During each cross-validation iteration,
the remaining folds’ data is used for either our training or
validation sets. These are selected randomly using a 6

7 and
1
7 split. For each 8-fold cross-validation iteration, training is
stopped when the model’s F1-score on the validation set has
not increased for 20 epochs. The randomly initialized network

and the fine-tuned ZeroNS network are all evaluated using the
aforementioned methodology. Figure 4 displays our results on
each dataset according to the metrics introduced previously.
We also report the results from [43], obtained using a temporal
convolutional network (TCN) and the the DBN from [30].

Fine-tuning our ZeroNS model on each beat tracking
dataset does not yield the same promising results as the
unsupervised learning setting. On all datasets and metrics,
the ZeroNS+DBN network’s performance is roughly on par
with the Random+DBN network’s performance. On the SMC
and GTZAN datasets, for example, the fine-tuned network
outperforms the randomly initialized network by a slight
margin (maximum ∼ 0.03) on all metrics. We observe the
opposite phenomenon on the Ballroom and Hainsworth datasets.
This leads us to the following conclusion: in an 8-fold cross-
validation setting, there is enough annotated training data for the
randomly initialized and ZeroNS model to perform similarly.

When comparing our models’ performances with the
TCN+DBN network, we notice that the latter’s performance
on the SMC, Ballroom, and Hainsworth datasets is generally
better for every metric. This is particularly striking on the
smaller Hainsworth dataset, where their mean F1-score is 0.874
compared to our maximum of 0.783. On the GTZAN dataset,
however, our ZeroNS+DBN network outperforms their method
for every single metric except AMLc. Our Random+DBN
network outperforms their method for every single metric
except AMLt and AMLc. This makes sense: 8-fold cross-
validation is performed on the combined SMC, Ballroom, and
Hainsworth datasets in [43]. The GTZAN dataset, on the other
hand, is used solely for testing purposes. We surmise that the
TCN+DBN performance would be much closer to ours had
they computed their results on each dataset individually.
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Fig. 4: Benchmark of three different supervised models on the beat tracking task: our randomly initialized fully-convolutional
network followed by the DBN in [30]; ZeroNS followed by the DBN; and the SOTA temporal convolutional network of [43].
Rows, columns, and results follow the same structure as Figure 3.

E. Low-Data Beat Tracking

We also test the effects of pre-training in a low-data learning
setup. For each dataset, we extract two constant folds for
testing and validation. These each contain an eighth of the
total dataset. The remaining data is used to train a randomly
initialized model and a ZeroNS model. The DBN from [30] is
used in conjunction with all models. However, instead of using
all the remaining data for training, we use subsets of size 1,
2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, and 96 tracks. For each
subset, we train our networks on 10 randomly selected subsets
of the training data, so as to maximize the diversity of our
low-data learning reference examples. We also stop training
once performance on the validation set has not increased for 20
epochs. The model that performs best on that set is selected for
testing. Figure 5 displays our results. For each size of training
set, we report the mean and standard deviation over 10 trials
on all four datasets and all five evaluation metrics.

One can notice that for all metrics and datasets, the ZeroNS
network significantly outperforms the randomly initialized net-
work up to 24–32 tracks. Even better, the randomly initialized
network struggles to learn anything until then; we observe mean
F1-scores of less than 0.33 for a training set of less than 24 on
the SMC dataset. More generally, the fully-supervised network
only starts to match performance using 96 tracks when 32 tracks
are used for training. In contrast, the ZeroNS network obtains
an F1-score of 0.401 on the SMC dataset, or more than 77%
of the fully-supervised network’s performance on the 8-fold
cross-validation setting of the previous experiment, with just
one track for training. We observe similar behavior on the other
datasets with a training set size of 1; the ZeroNS network has
a mean F1-score of 0.604 on the Hainsworth dataset, 0.729 on
the Ballroom dataset, and 0.820 on the GTZAN dataset versus
0.783, 0.911, and 0.847 for the randomly initialized network

in the previous, fully-supervised experiment. As the number of
training examples increases, the randomly initialized network’s
performance does catch up with the ZeroNS network’s one.

The exact same behavior is observed using other evaluation
metrics. On the Hainsworth dataset, the AMLc has a mean
value of less than 0.04 when fewer than 12 examples are used
to train a randomly initialized network. In comparison, the
ZeroNS network reaches a value of 0.559 with just one training
example. Both networks only start performing similarly when
24 examples are used (0.659 versus 0.736); the ZeroNS network
still performs more than a standard deviation better in this case.

This leads us to conclude the following: our proposed
pretext task significantly helps our network on the downstream
task under a regime of limited labeled data. Indeed, ZeroNS
embeddings already contain relevant information for beat
tracking, and few annotated examples are needed for the system
to perform well. A similar idea is broached in semi-supervised
learning [78], where it is theorized that humans learn by being
exposed to large amounts of unlabeled data, and a small amount
of labeled examples that help guide their learning. Our network
is learning in the same way; a large catalog of unlabeled data
is used to understand the notion of musical beat, and only a
few examples suffice to teach it how to track the beat.

F. Cross-Dataset Generalization

Annotating a song’s beats is a lengthy and time-consuming
process. More importantly, most datasets are annotated using
different techniques [77], which can lead to a form of bias.
In our final evaluation setting, we explore the cross-dataset
generalization capabilities of our pre-trained models. We train
our randomly initialized and ZeroNS networks on each of the
Ballroom, SMC, and Hainsworth datasets using 8-fold cross-
validation. For each fold, the highest performing model is
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Fig. 5: Random+DBN and ZeroNS+DBN model performances on our low-data experiments. For all datasets, points represent
scores using 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, and 96 tracks of the available training set. The green curve denotes
fine-tuned ZeroNS and the orange curve, a supervised model with random initialization. Dots and shaded areas represent the
mean and standard deviation of each metric across ten trials respectively. We display the Random+DBN results from Section
IV-D as top-line results in blue.

tested on the GTZAN dataset, our largest and most diverse
dataset. Figure 6 displays our results.

We observe that ZeroNS pre-training drastically improves
our model’s generalization capabilities. The gap in performance
is quite stark: when training on the SMC dataset, the Random
model’s mean F1-score is 0.638 whereas the ZeroNS model’s
is 0.748; when training on the Hainsworth dataset, the Random
model’s mean AMLt is 0.834 whereas the ZeroNS model’s
is 0.894; when training on the Ballroom dataset, the Random
model’s mean CMLc is 0.584 whereas the ZeroNS model’s
is 0.656. These results demonstrate that ZeroNS pre-training
helps mitigate the bias towards certain genres or annotation
strategies. ZeroNS pre-training is however not on par with the
training method from [43], where the SMC, Ballroom, and
Hainsworth datasets are combined for training and the GTZAN
dataset is used for evaluation. In the future, we hope to use our
pre-training to improve beat tracking results on musical genres
or styles with little to no annotated data, so as to expand the
scope of MIR beyond Western music and the U.S. Billboard.

V. DISCUSSION AND CONCLUSION

Unsupervised beat tracking, once a central theme in MIR,
has now lost most of the attention it had two decades ago.
Indeed, the surge of deep learning has shifted the focus towards
supervised representation learning. Yet, the ability to learn a

beat detection function with little or no supervision remains
an urgent need for various reasons: because humans learn this
way; because the overwhelming majority of recorded music is
unlabeled; and because annotating audio is time-consuming.

In this article, we have proposed to revisit the old problem of
unsupervised beat tracking with new tools: high-quality source
separation, deep convolutional networks in the time–frequency
domain, and most importantly, multitrack contrastive learning.

We have presented a new pretext task in self-supervised
learning, which we named “synchrony prediction” (sync-pred),
and which consists in distinguishing whether two musical parts
(percussive and non-percussive) are in sync or out of sync.
This is a simple model-agnostic task, involving a single audio
file per batch and no artificial perturbations of the audio data.
Thanks to an off-the-shelf source separation system (Spleeter),
we have scaled up sync-pred to 98 hours of audio; that is, ten
times more data than the largest annotated dataset for beat
tracking (GTZAN, 9 hours). Besides, we have argued that
sync-pred is interesting because it resembles two musicians
grooving to a collective pulse when playing together.

We have implemented sync-pred as part of a deep learning
model, named “Zero-Note Samba” or ZeroNS. In doing so,
we do not claim that the architectural design of ZeroNS is
optimal; only that it showcases some interesting properties of
sync-pred. First, we observe that sync-pred essentially acts as
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Hainsworth, and Ballroom datasets and evaluated on GTZAN.

a “transientness prior” on the learned embeddings. Second,
when used in conjunction with the dynamic programming
algorithm from [29] or the dynamic Bayesian network from
[30], the learned embeddings match or outperform previous
SOTA unsupervised methods. Third, sync-pred offers a form
of pre-training for supervised models that allows to drastically
reduce the quantity of annotated data; typically from 100 songs
down to ten songs or fewer. Fourth, this pre-training mitigates
dataset bias and improves beat tracking metrics on a cross-
dataset evaluation setting by two standard deviations. These
findings lead us to think that sync-pred has potential in beat
tracking, and perhaps other problems in which multiple sources,
agents, or modalities operate in synchrony.

Our main negative finding is that, under a k-fold cross-
validation scenario, pre-training ZeroNS with sync-pred does
not improve beat tracking performance, or marginally so. It
remains unclear how knowledge may be transferred from
pretext to downstream task in a way that favors within-dataset
generalization. In a recent report [79], we have proposed to
do so with coincidence prediction instead of sync-pred, yet
with limited success so far. Variations in the formulation of
multitrack contrastive learning or in the architecture of ZeroNS
might solve this shortcoming in the future.

Beyond the task of beat tracking, it would be valuable to
inquire how sync-pred could be employed at larger musical
time scales: namely, downbeat estimation and structure analysis.
To this end, sync-pred may not only be formulated between
two audio sources, but also between audio and video, audio
and motion, or audio and neurophysiology. Lastly, we note
that sync-pred is not limited to the time domain: it could also
be formulated in the frequency domain, with downstream tasks
such as tonality estimation and chord transcription.
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[12] S. Böck, F. Krebs, and G. Widmer, “Joint beat and downbeat tracking
with recurrent neural networks.” in Proc. ISMIR. New York City, 2016,
pp. 255–261.

[13] R. Vogl, M. Dorfer, G. Widmer, and P. Knees, “Drum transcription
via joint beat and drum modeling using convolutional recurrent neural
networks.” in Proc. ISMIR, 2017, pp. 150–157.

[14] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[15] A. M. Zador, “A critique of pure learning and what artificial neural
networks can learn from animal brains,” Nat. Commun., vol. 10, no. 1,
pp. 1–7, 2019.

[16] M. Fuentes, B. McFee, H. Crayencour, S. Essid, and J. Bello, “Analysis of
common design choices in deep learning systems for downbeat tracking,”
in Proc. ISMIR, 2018.

[17] T. Bertin-Mahieux, D. P. W. Ellis, B. Whitman, and P. Lamere, “The
million song dataset,” in Proc. ISMIR, 2011.

[18] M. Fuentes, L. S. Maia, M. Rocamora, L. W. Biscainho, H. C. Crayencour,
S. Essid, and J. P. Bello, “Tracking beats and microtiming in Afro-Latin
American music using conditional random fields and deep learning,” in
Proc. ISMIR, 2019.

[19] A. P. Klapuri, A. J. Eronen, and J. T. Astola, “Analysis of the meter
of acoustic musical signals,” IEEE Trans. Audio Speech Lang. Process.,
vol. 14, no. 1, pp. 342–355, 2005.

[20] G. Peeters and J. Flocon-Cholet, “Perceptual tempo estimation using
gmm-regression,” in Proc. Workshop on Music Information Retrieval
with User-Centered and Multimodal Strategies. ACM, 2012, pp. 45–50.

[21] M. Goto and Y. Muraoka, “A real-time beat tracking system for audio
signals,” in Proc. ICMC, 1995.

[22] T. Lenc, H. Merchant, P. E. Keller, H. Honing, M. Varlet, and
S. Nozaradan, “Mapping between sound, brain and behaviour: Four-
level framework for understanding rhythm processing in humans and
non-human primates,” Philos. Trans. R. Soc. B, vol. 376, no. 1835, 2021.

[23] B. De Man, M. Mora-Mcginity, G. Fazekas, and J. D. Reiss, “The open
multitrack testbed,” in Proc. AES. Audio Engineering Society, 2014.



TRANS. ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. X, NO. Y, SUBMITTED SEPTEMBER 2022, REVISED JUNE 2023, ACCEPTED JULY 2023 13

[24] R. M. Bittner, J. Salamon, M. Tierney, M. Mauch, C. Cannam, and J. P.
Bello, “MedleyDB: A multitrack dataset for annotation-intensive MIR
research,” in Proc. ISMIR, vol. 14, 2014, pp. 155–160.

[25] R. Hennequin, A. Khlif, F. Voituret, and M. Moussallam, “Spleeter: a
fast and efficient music source separation tool with pre-trained models,”
J. Open Source Softw., vol. 5, no. 50, p. 2154, 2020.

[26] N. Turpault, S. Wisdom, H. Erdogan, J. Hershey, R. Serizel, E. Fonseca,
P. Seetharaman, and J. Salamon, “Improving sound event detection in
domestic environments using sound separation,” in Proc. DCASE, 2020.

[27] G. Meseguer-Brocal, R. Bittner, S. Durand, and B. Brost, “Data cleansing
with contrastive learning for vocal note event annotations,” in Proc. ISMIR,
2020.

[28] E. Fonseca, A. Jansen, D. P. Ellis, S. Wisdom, M. Tagliasacchi, J. R.
Hershey, M. Plakal, S. Hershey, R. C. Moore, and X. Serra, “Self-
supervised learning from automatically separated sound scenes,” in Proc.
IEEE ICASSP, 2021.

[29] D. P. Ellis, “Beat tracking by dynamic programming,” J. New Mus. Res.,
vol. 36, no. 1, pp. 51–60, 2007.
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Fig. 1: Normalized temperature-scaled cross-entropy (NT-Xent) loss evolution over 35 epochs. The blue curve represents the
training mean batch loss over 28,800 batches while the orange curve represents the validation mean batch loss over 6400
batches. As one can notice, the ZeroNS model starts to overfit after approximately 20 epochs. This motivated us to stop training.
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Fig. 2: Cosine similarity evolution on the training set over 35 epochs. The blue curve represents the mean cosine similarity
between synchronized percussive parts (positives) and non-percussive parts (anchors). The orange curve represents the mean
cosine similarity between non-synchronized percussive parts (negatives) and non-percussive parts (anchors).
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Fig. 3: Cosine similarity evolution on the validation set over 35 epochs. The blue curve and orange curves represent the same
values as in the previous figure.
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Fig. 4: First example signal. The cosine similarity between percussive and non-percussive embeddings is equal to 0.861 here.
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Fig. 5: Second example signal. The cosine similarity between percussive and non-percussive embeddings is equal to 0.971 here.
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Fig. 6: Third example signal. The cosine similarity between percussive and non-percussive embeddings is equal to 0.747 here.
Notice how the embedding during the “silent” parts of the non-percussive signal still contains peaks that could be seen as
musical beats.


