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Abstract 8 

Timely forecasts of the onset or possible evolution of droughts is an important contribution to 9 

mitigate their manifold negative effects; therefore, in this paper, we propose a mathematically- 10 

simple drought forecasting framework gaining Mediterranean Sea temperature information (SST- 11 

M) to predict droughts. Agro-metrological drought index addressing seasonality and 12 

autocorrelation (AMDI-SA) was used in a Markov model in Urmia lake basin, North West of Iran. 13 

Markov chain is adopted to model drought for joint occurrence of different classes of drought 14 

severity and sea surface temperature of Mediterranean Sea, which is called 2D Markov chain 15 

model. The proposed model, which benefits suitability of Markov chain models for modeling 16 

droughts, showed improvement results in prediction scores relative to classic Markov chain model 17 

not including SST-M information, additionally. 18 
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1. Introduction  23 

Early warning/prediction of droughts is a significant contribution to drought preparedness. 24 

Statistical methods are routinely utilized for drought modeling and forecasting like other problems 25 

in hydrology and water resources. This is because most, if not all, hydrological processes such as 26 

extreme events have some degree of randomness. Most probabilistic methods used assume that the 27 

extreme hydrological values are stationary. However, research has shown that in some areas there 28 

are some types of Non-stationarities in hydrologic data (Salas and Obeysekera, 2014). 29 

Non-stationary may be due to normal changes in climate, particularly as a result of the low 30 

frequency components of climate change such as El Niño Southern Oscillation (ENSO) and ten 31 

years or even decades fluctuating components, such as Pacific Decadal Oscillation (PDO), Atlantic 32 

Multidecadal Oscillation (AMO), the Pacific/North American Pattern (PNA) and Sea Surface 33 

Temperature (SST) in the Niño region or every other sea. These large-scale tele connections cause 34 

oscillations applied synchronously or with a delay in the amplitude of hydrologic events such as 35 

storms, floods, droughts and sea level (Biabanaki et al., 2014; Enfield et al., 2001; Jain and Lall, 36 

2000; Jain and Lall, 2001; Meidani and Araghinejad, 2014; Park et al., 2010; Park et al., 2011). 37 

However, these components are used as an auxiliary tool in short term drought prediction in 38 

different studies using statistical methods such as linear regression (D'Arrigo and Wilson, 2008; 39 

Kumar and Panu, 1997; Wood and Lettenmaier, 2006; Yin, 1994), Artificial Neural Network 40 

(Hastenrath and Greischar, 1993; Silverman and Dracup, 2000), adaptive neuro-fuzzy inference 41 

system (ANFIS) (Bacanli et al., 2009; Chang and Chang, 2006; Nayak et al., 2004) and Hidden 42 

Markov models (Kondrashov et al, 2004; Deloncle et al, 2007). Although some fairly complicated 43 

statistical methods were used, evidence of their superiority over a simple method which can gain 44 

teleconnection information was not presented. 45 
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In Iran, Meidani and Araghinejad (2014) used time series of Mediterranean Sea surface 46 

temperature (SST-M) to forecast river flows in south west of Iran. They showed that the use of 47 

Mediterranean’s information lead to improved results in comparison with using other common 48 

indices, such as SOI, NAO or AMO (Atlantic Multidecadal Oscillation). However, it is not 49 

surprising, since Mediterranean Sea is the main source of moist air in Iran (Alijani and Harman, 50 

1985).  51 

Markov model is widely used for drought monitoring and prediction. The non-homogeneous 52 

Markov chain approach was applied to time series of the Palmer Index for early warning aimed at 53 

drought management (Lohani and Loganathan, 1997; Lohani et al., 1998). Cancelliere and Salas 54 

(2004) used a Markov chain approach to study drought length properties. These studies show that 55 

a stochastic approach may be useful for short term prediction and early warning as analyzed in 56 

previous studies (Paulo et al., 2005; Paulo and Pereira, 2007).  57 

 During recent years, several studies were conducted to identify factors influencing the weather. 58 

In this regard, scientists have devoted much effort to find a mathematical relationship between 59 

climate variability with teleconnection information in order to alleviate some of the socially 60 

undesirable effects of sudden, unexpected occurrences of extremes such as droughts, floods, and 61 

widespread fires. El-Nino Southern Oscillation (ENSO), Southern oscillation index (SOI), Pacific 62 

Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), sea surface temperatures (SST), 63 

and geopotential height (GpH) vastly used to encourage investigation of the possibilities of 64 

forecasting rainfall and other elements of the weather.  65 

Here, values of Agro-Meteorological Drought Index addressing seasonality and autocorrelation 66 

(AMDI-SA), showing drought severity, are categorized in 4 different classes and used in a Markov 67 

framework. Additionally, joint occurrence of drought severity classes and Mediterranean Sea 68 
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surface temperature (SST-M) classes used to monitor and predict droughts in a two-dimensional 69 

Markov chain model (2D-MCM) with 12 different transition classes. Since there is a time lag 70 

between SST-M and correlated drought/wetness condition, prediction is made on the help of 71 

known state of SST-M and previous state of drought. 72 

This research aims at modeling droughts in Urmia Lake basin, and predicting drought severity for 73 

short lead times. The proposed framework easily exploits temperature information of the 74 

Mediterranean Sea which is the original source of humidity in the region. It also provides 75 

promising probabilistic predictions of droughts, conveying the prediction uncertainty information 76 

which could be useful for operational drought management.  77 

 78 

2 Material and Methods 79 

2.1 AMDI-SA 80 

Having AMDI-SA, monthly soil moisture and precipitation data are used to calculate Standardized 81 

Precipitation Index (SPI) and Standardized Soil-Moisture Index (SSI). SSI, see e.g., AghaKouchak 82 

(2014), can be defined in a similar way to SPI. In order to integrate the indices, copula framework 83 

is used. The Kendall distribution function of the fitted copula are normalized to construct AMDI- 84 

SA. For detailed procedure, see e.g.  Bateni et al. (2018). 85 

Since AMDI-SA is a standardized index, it can be classified like SPI or other standardized indexes. 86 

In this study, 4 classes for droughts are used based on AMDI-SA values. Classes are descripted in 87 

table 1. 88 

Table 1 Classification of wetness/drought condition based on AMDI-SA values (modified from 89 

McKee et al. (1993)) 90 

Category Description Percentiles based on Index Value 
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 Normal Distribution 

(1) N Non Drought 50> AMDI-SA≥0 

(2) D0 Moderate Drought 16 to 50 -1 < AMDI-SA<0 

(3) D1 Severe Drought 7 to 16 -1.5 < AMDI-SA≤-1 

(4) D2 Extreme Drought 7> -1.5≥AMDI-SA 

 91 

AMDI-SA is a comprehensive agrometeorological drought index, which accounts seasonality and 92 

autocorrelation. Since AMDI-SA is seasonally-adjusted, a single Markov model can be adopted to 93 

model all its transitions. Moreover, time series of AMDI-SA values doesn’t show high 94 

autocorrelation, meaning that a first-order Markov model is adequate and the consideration of 95 

higher-order models is not needed. 96 

2.2 Climate Teleconnection Indices 97 

Accordingly, here Mediterranean Sea surface temperature is used as a climatic teleconnection 98 

index to predict droughts. In order to determine the time lag of influence of the teleconnection 99 

which is usually less than a year, eleven covariance matrices of teleconnection data for time lag of 100 

one to eleven months and AMDI-SA values are estimated. The covariance matrix which has the 101 

greatest (1st) norm, determines the time lag (D) of the influence of the teleconnection on the region. 102 

Since entire basin follow the same climate regime, the value of D is unique for basin as a whole. 103 

When the delay was determined, the teleconnection information for D months before, is used to 104 

model and predict current droughts. With the aim of compressing all spatial data covering 105 

Mediterranean Sea into one single value, Singular Value Decomposition (SVD) technique is used. 106 

According to the SVD procedure, a rectangular matrix A can be broken into the product of three 107 
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matrices, as follows: (1) an orthogonal matrix U, (2) a diagonal matrix D, and (3) the transpose of 108 

an orthogonal matrix V. Mathematically, this is represented as (Golub and Van Loan, 1996) 109 

      
A𝑚𝑛 = U𝑚𝑚D𝑚𝑛V𝑛,𝑛

𝑇                  (1)  110 

The columns of U are orthonormal eigenvectors of AAT; the columns of V are orthonormal 111 

eigenvectors of ATA; and S is a diagonal matrix containing the square roots of eigenvalues from 112 

U or V in descending order indicating the variance of linearly independent components along each 113 

dimension. Firstly, two matrices including values of Mediterranean SSTs grid points and AMDI- 114 

SA were developed for 325 months. Then, the cross-covariance matrix for those was computed  115 

    Covvar =
1

𝑛𝑚𝑜𝑛𝑡ℎ
× (

SST − M1.1 … SST − M1.𝑛𝑚𝑜𝑛𝑡ℎ

⋮ ⋱ ⋮
SST − M𝑚𝑔.1 … SST − M𝑚𝑔.𝑛𝑚𝑜𝑛𝑡ℎ

) × (

AMDI − SA1

⋮
AMDI − SA𝑛𝑚𝑜𝑛𝑡ℎ

)        (2) 116 

 117 

By applying SVD decomposition for the covariance matrix, 118 

            SVD(Covvar) = [U𝑚𝑔.𝑚𝑔
. (

S1.1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ S𝑚𝑔.𝑚𝑔

) . V1.1
𝑇 ]        (3) 119 

To have a single value for each time step, first Eigen value of the covariance matrix which has the 120 

greatest contribution to justify variability is used. Therefore, the time series of SST-M to use as 121 

teleconnection index is computed as follows: 122 

  (

SST − M1

⋮
SST − M𝑛𝑚𝑜𝑛𝑡ℎ

) = (

SST − M1.1 … SST − M1.𝑚𝑔

⋮ ⋱ ⋮
SST − M𝑛𝑚𝑜𝑛𝑡ℎ.1 … SST − M𝑛𝑚𝑜𝑛𝑡ℎ.𝑚𝑔

) × U(: .1)     (4) 123 

As a useful measurement for comparing the relative importance of modes in the decomposition, 124 

Bretherton et al. (1992) defines the Squared Covariance Fraction (SCF=svi
2/Σsv2) where sv 125 

represents each of the singular values. SCF is about 88% that shows possibility of the derived SST- 126 
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M values from SVD to show great share of variations of original information of SST-M for all grid 127 

points. This quantity is an average for the whole basin which is more or less the same all over it. 128 

Derived SST-M values are classified in two equiprobable classes to show cold and warm phases 129 

of Mediterranean Sea. 130 

2.3 Markovian Modeling 131 

A Markov process is a random process in which the future is independent of the past, given the 132 

present. In discrete time, the process (X) is known as a discrete-time Markov chain which its 133 

current state space (Xt+1) depends only on a few limited number of its previous state (Xt-k, ..., Xt-1, 134 

Xt). Markov chain is defined by a set of finite numbers of classes (S), the probability of transition 135 

between the states (𝑃𝑟ij…u
𝑙

) and order of the chain (l). Hereafter, discussion is limited to first order 136 

(l=1) Markov chains, used commonly in hydrological sciences. The independence of values that 137 

are separated by more than one time period is not required by the first order Markov property. 138 

Instead, it implies conditional independence of data values separated by more than one time period, 139 

which means that the statistical dependence among elements of the time series decreases as time 140 

lags increase (Wilks, 2011). 141 

For a homogeneous Markov model, transition probabilities are independent of time. Elements of 142 

Transition matrix (T), which are probability of transitions, can be estimated by empirical relative 143 

frequency of class transitions. If the frequency distribution of modeled variable is known in 144 

advance, assumptions made to adopt a Markov chain model could be verified by comparing steady- 145 

state probability vector of modeled variable (π) with the formerly known frequency distribution. 146 

However, in order to achieve a limiting steady-state distribution, the Markov chain process has to 147 

be regular which needs regularity of the transition matrix. Transition matrix (T) is called regular 148 

if, for some integer r, all entries of Tr are strictly positive. Therefore, for a regular transition matrix, 149 
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(1) Tn approaches TST as n approaches infinity, where TST is a matrix of the form 150 

[𝑣1. 𝑣2. … . 𝑣𝑠] where each vector (𝑣) has same repeating element. 151 

(2) If Xi is any state vector, then as n approaches infinity, TnXi approaches π, where π is a fixed 152 

probability vector (the sum of its entries is 1). 153 

In drought modeling, the state space consists of different drought severity classes which are based 154 

on values of an appropriate drought index. 155 

Markov chain modeling allows the estimation of the drought class probabilities, which represent 156 

the probabilities of occurrence of the various drought classes as an aid to water resources decision 157 

makers. Besides, many other features of drought such as the expected residence time in each class 158 

of severity and the expected first passage time could be evaluated using a Markov chain 159 

framework. 160 

2.4 Evaluation of Probabilistic Forecasts 161 

In order to address periodicity mainly caused by low-frequency components of climate variability, 162 

a 2D Markov chain model (2D-MCM) is proposed. Since AMDI-SA is not seasonal, a time- 163 

homogeneous framework is used for the chain. Joint occurrence of classes of SST-M, used as 164 

teleconnection information, and classes of drought severity, indicated by AMDI-SA values, consist 165 

classes of the Markov chain. Since there are 4 classes for drought severity based on AMDI-SA 166 

values and 3 classes for values of SST-M, 12 classes are made showing their joint occurrence 167 

conditioned the Markov chain model. It is worthwhile to mention that for example class number 168 

nine means that AMDI-SA shows severe drought (D1) while SST-M is in warm phase. As the 169 

teleconnection class is available for D months in advance and previous drought [severity] and 170 

transition probabilities are given before each time step, probabilistic prediction of AMDI-SA class 171 

is possible for the next month. In order to ensure about the adequacy of the model, the regularity 172 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



9 

 

of transition probability matrices is assessed for both the classical one dimensional Markov chain 173 

model (1D-MCM) using only AMDI-SA and the two dimensional Markov chain model (2D- 174 

MCM) gaining SST-M data. 175 

2.5 Evaluation of Probabilistic Forecasts 176 

To evaluate the performance of the multicategory probabilistic forecasts of the models, accuracy 177 

of probabilistic forecasts relative to polychotomous observations are measured. Furthermore, 178 

sharpness of predictions and discrimination are also important attributes of a forecasting system to 179 

be helpful as an aid for making decisions. 180 

Here, Brier score, sharpness score and generalized discrimination score are used to evaluate 181 

probabilistic forecast models adopted. 182 

2.5.1 Brier Score (BS) 183 

Brier Score proposed by Glenn W. Brier in 1950 (Brier, 1950), determines the magnitude of the 184 

probability forecast errors. Brier score is used to evaluate accuracy of predictions, defined as 185 

    𝐵𝑆 =
1

𝑁
∑ ∑ (𝑝𝑖𝑟 − 𝑜𝑖𝑟)2𝑆

𝑟=1
𝑁
𝑖=1          (5) 186 

where S is the number of classes, N is the total number of occasions, 𝑝𝑖𝑟is the forecast probability 187 

of rth class and 𝑜𝑖𝑟 is the observation probability of rth class (0 or 1), both at ith occasion. The 188 

lower Brier score for a set of predictions, the better the predictions are calibrated. BS is Sensitive 189 

to observational frequency of the event: the rarer an event, the easier it is to get a good BS without 190 

having any real skill. 191 

2.5.2 Generalized Discrimination Score (GDS) 192 

Generalized Discrimination Score shows the degree of correct probabilistic forecast 193 

discrimination, even if the forecasts have biases or calibration problems. GDS is generalized to 194 
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encompass all forecast categories, produces values ranging from 0.5 for a set of probability scores 195 

without skill to 1 as the maximum perfect value (Mason and Weigel, 2009; Barnston et al., 2010).  196 

Let nk and nl be the number of observed events for category k and l, respectively. When S is the 197 

number of categories, GDS score is calculated as 198 

    GDS =
∑ ∑ ∑ ∑ 𝐼(𝑷𝑘.𝑖.𝑷𝑙.𝑗)

𝑛𝑙
𝑗=1

𝑛𝑘
𝑖=1

𝑆
𝑙=𝑘+1

𝑆−1
𝑘=1

∑ ∑ 𝑛𝑘𝑛𝑙
𝑆
𝑙=𝑘+1

𝑆−1
𝑘=1

    (6) 199 

where Pk,i is the vector of forecast probabilities for the ith forecast given category k, and 200 

    𝐼(𝑷𝑘.𝑖. 𝑷𝑙.𝑗) = {
0

0.5
1 

      

𝑖𝑓  𝐹(𝑷𝑘.𝑖. 𝑷𝑙.𝑗) < 0.5 

𝑖𝑓  𝐹(𝑷𝑘.𝑖. 𝑷𝑙.𝑗) = 0.5

𝑖𝑓  𝐹(𝑷𝑘.𝑖. 𝑷𝑙.𝑗) > 0.5

  (7) 201 

The scoring rule 𝐹(𝑷𝑘.𝑖. 𝑷𝑙.𝑗) is defined as 202 

    𝐹(𝑷𝑘.𝑖. 𝑷𝑙.𝑗) =
∑ ∑ 𝑝𝑘,𝑖(𝑞)𝑝𝑙,𝑗(𝑟)𝑆

𝑟=𝑞+1
𝑆−1
𝑞=1

1−∑ 𝑝𝑘,𝑖(𝑞)𝑝𝑙,𝑗(𝑞)𝑆
𝑞=1

           (8) 203 

where pk,i(q) is the forecast probability for the qh category, and for the ith observation in category 204 

k. The numerator of Eq. 6 sums the 𝐼(𝑷𝑘.𝑖. 𝑷𝑙.𝑗) outcomes over all qualifying pairs of forecasts; 205 

the denominator contains the number of pairs (Mason and Weigel, 2009). 206 

2.5.3 Sharpness Score (SS) 207 

Given two reliable forecast systems, the one producing the sharper forecasts is preferable to use. 208 

Analogous to formulation of coefficient of variation, a simple score is introduced here to compare 209 

the forecasting models: 210 

    𝑆𝑆 = √
1

𝑁−1
∑ ∑ (𝑝𝑖𝑟 − 𝜇𝑖𝑟 )

2𝑆
𝑟=1

𝑁
𝑖=1            (9) 211 

where 𝜇𝑖𝑟 is historical average probability of rth class at ith occasion. Values approaching 0 212 

indicate an increasingly wider forecasts and values approaching ∞ indicates increasingly sharper 213 

forecasts.  214 
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For all above scores, since nonzero values of predictions in both 1D and 2D cases are restricted to 215 

number of drought classes, i.e. 4, S is assumed to be 4. 216 

2.6 Study Area 217 

Urmia Lake basin is located between 37°4′ to 38°17′ latitude and 45°13′ to 46° longitude in 218 

northwestern Iran (Fig. 1). The catchment area is shared between the three provinces West 219 

Azerbaijan (21500 km2), East Azerbaijan (19000 km2) and Kurdistan (5000 km2) (Yekom 220 

Consulting Engineer, 2005). The lake basin, as a unique socio-ecological region, is facing extreme 221 

water shortages due to poor water governance and climate change (Alipour, 2006; Zarghami et al., 222 

2009). Climate in the Urmia Lake basin is harsh and continental, affected mainly by the mountains 223 

surrounding the lake (Ghaheri et al., 1999). The annual average precipitation is about 500 mm. 224 

2.7 Data 225 

Because of the consistency and availability of the record for long-term, needed monthly 226 

precipitation data for the basin is acquired from daily 0.25° × 0.25° high resolution PERSIANN- 227 

CDR (Ashouri et al., 2015) for the period 1983–2010. The accuracy of PERSIANN precipitation 228 

data set family for Iran and Urmia Lake basin is demonstrated in some previous publications 229 

(Moazami et al., 2013; Bodagh-Jamli, 2015; Ghajarnia et al., 2015; Katiraie-Boroujerdy et al., 230 

2013). 231 

In this paper, soil moisture is derived using ERA-Interim-Land surface fluxes and near-surface 232 

meteorology to force the land surface model uses HTESSEL (Balsamo et al., 2015) for the period 233 

of 1983–2010. It is considered that most of the roots vegetation distribution is in the first 3 layers 234 

of soil in HTESSEL model (0-7cm, 7-28cm and 28-100cm). The 3 upper layers water content data 235 

weighting averaged to have single value for each 0.25° × 0.25° pixel. Both mentioned data sets are 236 

global; however, the data of Urmia Lake basin are extracted and handled further, only. To consider 237 
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spatial distribution of drought, 79 pixels covering the basin (not lake) are treated as data stations 238 

and series for each are processed. 239 

Monthly Mediterranean Sea surface temperature data which is used as a teleconnection 240 

information is obtained from NOAA Optimum Interpolation (OI) Sea Surface Temperature (SST) 241 

V2 for the period of 1983-2010 (NOAA_OI_SST_V2) with resolution of 1° × 1°. Extracting the 242 

data of Mediterranean Sea and removing grids which are near coast to exclude ramifications of 243 

land disturbances, time series for 129 grid point are obtained. 244 

Performance evaluation of the forecasting system is done for the period of 2004-2010, which lake 245 

has been affected by prolonged droughts during that. 246 

 247 

3 Results 248 

The value of covariance is maximized when the teleconnection information corresponding to one 249 

month ago are considered in conjunction with the index of the current moment, i.e. the time lag D 250 

= 1 month. 251 

To measure the ability of the forecasting system to detect droughts and discriminate between 252 

different classes of droughts, Brier Score (BS) and Generalized Discrimination Score (GDS) are 253 

evaluated for all data points in Urmia Lake basin. Furthermore, Sharpness Score (SS) adopted to 254 

assess the uncertainty of the model predictions are reported. To show the improvement contributed 255 

by the proposed model, average values of these scores for both case of all grid points for both 2D 256 

(including SST-M data) and 1D model (only AMDI-SA) are reported in Table 2. The spatial 257 

integration has the advantage of increasing the sample size used to build the scores. 258 

In case of BS and GDS, which score values are close, Fig. 2 and 3 shows spatial distributions of 259 

BS and GDS values for both 2D-MCM and 1D-MCM for all location points within the basin, 260 
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respectively. Using Mediterranean-SST information, caused both BS and GDS to improve for 261 

entire basin. As shown in Fig. 3, 2D-MCM leads to GDS values more than score of 0.5 (without 262 

skill) for almost all points. 263 

Table 2 Score values of the drought forecasting method for both 2D-MCM and 1D-MCM. 264 

 BS GDS SS 

1D-MCM 0.675 0.531 0.056 

2D-MCM 0.653 0.574 0.072 

 265 

The accordance of predicted state classes to observations is the main goal of any prediction 266 

framework. In order to evaluate the accordance, frequency distribution of observed and predicted 267 

class through performance evaluation period (2004-2010) for whole basin is showed in Fig. 4 and 268 

5. Since, predictions are probabilistic vectors, probability values for each class are calculated by 269 

element-wise averaging the vectors while empirical probability values are reported for 270 

observations. 271 

Transition probability matrix of both 1D and 2D Markov chain models are reported in Table 3 and 272 

4. It can be shown all elements of 2nd power of both transition probability matrices are strictly 273 

positive (regular matrix). Like previous studies using standardized drought indices (Paulo et al., 274 

2005), there is a strong diagonal tendency in Markov transition probability matrix. For 2D model, 275 

since each 2 consecutive classes have the same drought severity, there is a 2-diagonal tendency. 276 

  277 
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Table 3 Transition probability matrix of the 1D model (only AMDI-SA). 278 

State i 

State j 

1 2 3 4 

1 0.810 0.155 0.021 0.014 

2 0.221 0.681 0.080 0.018 

3 0.125 0.293 0.432 0.151 

4 0.095 0.149 0.231 0.525 

 279 

Table 4 Transition probability matrix of the 2D model (including SST-M data). 280 

State 

i 

State j 

1 2 3 4 5 6 7 8 

1 0.594 0.228 0.097 0.040 0.015 0.008 0.012 0.007 

2 0.264 0.531 0.054 0.123 0.006 0.014 0.001 0.008 

3 0.196 0.077 0.423 0.212 0.043 0.029 0.012 0.008 

4 0.052 0.125 0.210 0.508 0.033 0.056 0.007 0.009 

5 0.099 0.035 0.275 0.111 0.191 0.152 0.070 0.068 

6 0.043 0.073 0.073 0.158 0.126 0.360 0.055 0.111 

7 0.087 0.024 0.151 0.069 0.172 0.059 0.262 0.177 

8 0.039 0.044 0.041 0.062 0.079 0.148 0.152 0.438 

 281 

4. Discussion 282 

According to Table 2 and Fig. 2 and Fig. 3, the accuracy of prediction evaluated by Brier score is 283 

significantly improved using teleconnection information of Mediterranean Sea surface 284 
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temperature. The improvement is substantial for all location points within the Urmia basin. This 285 

highlights the fact that the main source of humidity in the basin is Mediterranean Sea. Both 1D 286 

and 2D Markov chain model do not show strong ability to discriminate between different classes 287 

of droughts (GDS<0.7) for most parts of the basin. However, 2D Markov chain model is more 288 

promising to discriminate. For a small share of location points within the basin, classical 1D model 289 

doesn’t show any desirable skill to discriminate between drought classes, exceptionally.  290 

Comparison of Sharpness score for the proposed 1D and 2D Markov chain models indicate that 291 

2D model produces sharper predictions. However, this attribute only matters when comparing two 292 

models of same accuracy. 293 

As indicated in Fig. 4 and Fig. 5, since empirical probability of observed class number one (or one 294 

up to three in Fig. 5) is more than 0.5, the period of performance evaluation (2004-2010) is a wetter 295 

than normal period. Nevertheless, probability distributions of predictions produced by 1D and 2D 296 

models generally follow empirical distribution of observations.  297 

Diagonal tendency in transition probability matrices for both 1D and 2D models reflects the 298 

persistence of recent drought categories, more highlighted for classes with extreme drought 299 

severity: when the actual state is D2 the more probable state for a month ahead is the present state, 300 

i.e. no changes of state are predictable. 301 

 302 

5. Conclusions 303 

This study was conducted to predict droughts, one of the world’s natural hazards and controversial 304 

issue. For this purpose, time series of an agro-meteorological drought index, namely AMDI-SA, 305 

were used. The proposed Markov framework exploits the temperature information of the 306 
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Mediterranean sea - as the original source of humidity in the region - in order to perform the task 307 

of prediction. 308 

Application of Markov method provides a probabilistic qualitative model of droughts. On the other 309 

hand, the nature of drought is qualitative. Therefore, probabilistic frameworks like Markov models 310 

seem to be the most reasonable approach to model droughts. 311 

Moreover, the probabilities of transition can be used in planning or operational mode for designing 312 

mitigation measures as the drought evolves. 313 

The prediction capability of the Markov models concerning short-term forecasts are limited by the 314 

characteristics of the climate, which tends to be reproduced in these short-term forecasts. However, 315 

taking advantage of teleconnection information improves performance of the drought early 316 

warning system as well as enhancing the understanding of the evolution of drought events.  317 

The proposed 2D Markov chain model, using teleconnection information, has promising values of 318 

prediction evaluation scores. Since it doesn’t have much mathematical burden, it is recommended 319 

to use this model in all regions which its over-year variations certainly correlated to some climatic 320 

teleconnections. 321 
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Fig. 1 Urmia Lake Basin in Iran 

Fig. 2 Spatial Distribution of BS for Both 1D-MCM (left) and 2D-MCM (right) in Urmia Lake 

Basin 

Fig. 3 Spatial Distribution of GDS for Both 1D-MCM (left) and 2D-MCM (right) in Urmia Lake 

Basin 

Fig. 4 Frequency Distribution of the Observed and the Model Predicted Classes for 1D Case (only 

AMDI-SA) 

Fig. 5 Frequency Distribution of the Observed and the Model Predicted Classes for 2D Case 

(including SST-M data) 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



figure 1 Click here to download line figure Fig1.tif 



figure 2 Click here to download colour figure Fig2.tif 
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