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Timely forecasts of the onset or possible evolution of droughts is an important contribution to 9 mitigate their manifold negative effects; therefore, in this paper, we propose a mathematically-10 simple drought forecasting framework gaining Mediterranean Sea temperature information (SST-11 M) to predict droughts. Agro-metrological drought index addressing seasonality and 12 autocorrelation (AMDI-SA) was used in a Markov model in Urmia lake basin, North West of Iran. 13 Markov chain is adopted to model drought for joint occurrence of different classes of drought 14 severity and sea surface temperature of Mediterranean Sea, which is called 2D Markov chain 15 model. The proposed model, which benefits suitability of Markov chain models for modeling 16 droughts, showed improvement results in prediction scores relative to classic Markov chain model 17 not including SST-M information, additionally. 18

Introduction 23

Early warning/prediction of droughts is a significant contribution to drought preparedness. 24

Statistical methods are routinely utilized for drought modeling and forecasting like other problems 25 in hydrology and water resources. This is because most, if not all, hydrological processes such as 26 extreme events have some degree of randomness. Most probabilistic methods used assume that the 27 extreme hydrological values are stationary. However, research has shown that in some areas there 28 are some types of Non-stationarities in hydrologic data [START_REF] Salas | Revisiting the concepts of return period and risk for nonstationary 436 hydrologic extreme events[END_REF]. 29

Non-stationary may be due to normal changes in climate, particularly as a result of the low 30 frequency components of climate change such as El Niño Southern Oscillation (ENSO) and ten 31 years or even decades fluctuating components, such as Pacific Decadal Oscillation (PDO), Atlantic 32

Multidecadal Oscillation (AMO), the Pacific/North American Pattern (PNA) and Sea Surface 33

Temperature (SST) in the Niño region or every other sea. These large-scale tele connections cause 34 oscillations applied synchronously or with a delay in the amplitude of hydrologic events such as 35 storms, floods, droughts and sea level [START_REF] Biabanaki | A principal 350 components/singular spectrum analysis approach to ENSO and PDO influences on rainfall 351 in western Iran[END_REF][START_REF] Enfield | The Atlantic Multidecadal Oscillation and its 372 relation to rainfall and river flows in the continental U.S[END_REF]Jain and Lall, 36 2000;Jain and Lall, 2001;[START_REF] Meidani | Long-lead streamflow forecasting in the southwest of Iran by 411 sea surface temperature of the Mediterranean sea[END_REF][START_REF] Park | Climate links and 425 variability of extreme sea-level events at Key West, Pensacola, and Mayport, Florida[END_REF][START_REF] Park | Storm surge 422 projections and implications for water management in south Florida[END_REF]. 37

However, these components are used as an auxiliary tool in short term drought prediction in 38 different studies using statistical methods such as linear regression [START_REF] D'arrigo | El Niño and Indian Ocean influences on Indonesian drought: 367 implications for forecasting rainfall and crop productivity[END_REF]39 Kumar and Panu, 1997;[START_REF] Wood | A test bed for new seasonal hydrologic forecasting 444 approaches in the western United States[END_REF][START_REF] Yin | Reconstruction of the winter Pacific-North American teleconnection pattern 449 during 1895-1947 and its application in climatological studies[END_REF], Artificial Neural Network 40 [START_REF] Hastenrath | Further work on the prediction of northeast Brazil rainfall 382 anomalies[END_REF][START_REF] Silverman | Artificial neural networks and long-range precipitation 439 prediction in California[END_REF], adaptive neuro-fuzzy inference 41 system (ANFIS) [START_REF] Bacanli | Adaptive neuro-fuzzy inference system for drought 338 forecasting[END_REF][START_REF] Chang | Adaptive neuro-fuzzy inference system for prediction of water 365 level in reservoir[END_REF][START_REF] Nayak | A neuro-fuzzy computing technique 417 for modeling hydrological time series[END_REF] and Hidden 42

Markov models [START_REF] Kondrashov | Weather regimes and preferred transition paths in a three-394 level quasigeostrophic model[END_REF][START_REF] Deloncle | Weather regime prediction using statistical 370 learning[END_REF]. Although some fairly complicated 43 statistical methods were used, evidence of their superiority over a simple method which can gain 44 teleconnection information was not presented.

temperature (SST-M) to forecast river flows in south west of Iran. They showed that the use of 47

Mediterranean's information lead to improved results in comparison with using other common 48 indices, such as SOI, NAO or AMO (Atlantic Multidecadal Oscillation). However, it is not 49 surprising, since Mediterranean Sea is the main source of moist air in Iran (Alijani and Harman, 50 1985). 51

Markov model is widely used for drought monitoring and prediction. The non-homogeneous 52

Markov chain approach was applied to time series of the Palmer Index for early warning aimed at 53 drought management [START_REF] Lohani | An early warning system for drought management using the 400 palmer drought index[END_REF][START_REF] Lohani | Long-term analysis and short-term 403 forecasting of dry spells by Palmer drought severity index[END_REF]. Cancelliere and Salas 54 (2004) used a Markov chain approach to study drought length properties. These studies show that 55 a stochastic approach may be useful for short term prediction and early warning as analyzed in 56

previous studies [START_REF] Paulo | Drought class transition analysis through 429 Markov and Loglinear models, an approach to early warning[END_REF][START_REF] Paulo | Prediction of SPI drought class transitions using Markov chains. 432[END_REF]. 57

During recent years, several studies were conducted to identify factors influencing the weather. 58

In this regard, scientists have devoted much effort to find a mathematical relationship between 59 climate variability with teleconnection information in order to alleviate some of the socially 60 autocorrelation, meaning that a first-order Markov model is adequate and the consideration of 95 higher-order models is not needed. 96

Climate Teleconnection Indices

97

Accordingly, here Mediterranean Sea surface temperature is used as a climatic teleconnection 98 index to predict droughts. In order to determine the time lag of influence of the teleconnection 99 which is usually less than a year, eleven covariance matrices of teleconnection data for time lag of 100 one to eleven months and AMDI-SA values are estimated. The covariance matrix which has the 101 greatest (1st) norm, determines the time lag (D) of the influence of the teleconnection on the region. 102

Since entire basin follow the same climate regime, the value of D is unique for basin as a whole. 103

When the delay was determined, the teleconnection information for D months before, is used to 104 model and predict current droughts. With the aim of compressing all spatial data covering 105

Mediterranean Sea into one single value, Singular Value Decomposition (SVD) technique is used. 106

According to the SVD procedure, a rectangular matrix A can be broken into the product of three 107 matrices, as follows: (1) an orthogonal matrix U, (2) a diagonal matrix D, and (3) the transpose of 108 an orthogonal matrix V. Mathematically, this is represented as [START_REF] Golub | Matrix computations[END_REF] 109

A 𝑚𝑛 = U 𝑚𝑚 D 𝑚𝑛 V 𝑛,𝑛 𝑇 (1) 110 
The columns of U are orthonormal eigenvectors of AA T ; the columns of V are orthonormal 111 eigenvectors of A T A; and S is a diagonal matrix containing the square roots of eigenvalues from 112 U or V in descending order indicating the variance of linearly independent components along each 113 dimension. Firstly, two matrices including values of Mediterranean SSTs grid points and AMDI-114

SA were developed for 325 months. Then, the cross-covariance matrix for those was computed 115

Covvar = 1 𝑛 𝑚𝑜𝑛𝑡ℎ × ( SST -M 1.1 … SST -M 1.𝑛 𝑚𝑜𝑛𝑡ℎ ⋮ ⋱ ⋮ SST -M 𝑚 𝑔 .1 … SST -M 𝑚 𝑔 .𝑛 𝑚𝑜𝑛𝑡ℎ ) × ( AMDI -SA 1 ⋮ AMDI -SA 𝑛 𝑚𝑜𝑛𝑡ℎ )
(2) 116 117 By applying SVD decomposition for the covariance matrix, 118

SVD(Covvar) = [U 𝑚 𝑔 .𝑚 𝑔 . ( S 1.1 ⋯ 0 ⋮ ⋱ ⋮ 0 ⋯ S 𝑚 𝑔 .𝑚 𝑔 ) . V 1.1 𝑇 ]
(3) 119

To have a single value for each time step, first Eigen value of the covariance matrix which has the 120 greatest contribution to justify variability is used. Therefore, the time series of SST-M to use as 121 teleconnection index is computed as follows: 122

( SST -M 1 ⋮ SST -M 𝑛 𝑚𝑜𝑛𝑡ℎ ) = ( SST -M 1.1 … SST -M 1.𝑚 𝑔 ⋮ ⋱ ⋮ SST -M 𝑛 𝑚𝑜𝑛𝑡ℎ .1 … SST -M 𝑛 𝑚𝑜𝑛𝑡ℎ .𝑚 𝑔 ) × U(: .1) (4) 123 
As a useful measurement for comparing the relative importance of modes in the decomposition, 124 [START_REF] Bretherton | An intercomparison of methods for finding coupled 358 patterns in climate data[END_REF] which means that the statistical dependence among elements of the time series decreases as time 140 lags increase [START_REF] Wilks | Statistical methods in the atmospheric sciences[END_REF]. 141

Markovian Modeling

For a homogeneous Markov model, transition probabilities are independent of time. Elements of 142

Transition matrix (T), which are probability of transitions, can be estimated by empirical relative 143 frequency of class transitions. If the frequency distribution of modeled variable is known in 144 advance, assumptions made to adopt a Markov chain model could be verified by comparing steady-145 state probability vector of modeled variable (π) with the formerly known frequency distribution. 146

However, in order to achieve a limiting steady-state distribution, the Markov chain process has to 147 be regular which needs regularity of the transition matrix. Transition matrix (T) is called regular 148 if, for some integer r, all entries of T r are strictly positive. Therefore, for a regular transition matrix, 149

(1) T n approaches TST as n approaches infinity, where TST is a matrix of the form 150

[ 𝑣 1 . 𝑣 2 . … . 𝑣 𝑠 ] where each vector (𝑣) has same repeating element. 151

(2) If Xi is any state vector, then as n approaches infinity, T n Xi approaches π, where π is a fixed 152 probability vector (the sum of its entries is 1). 153

In 

Evaluation of Probabilistic Forecasts 176

To evaluate the performance of the multicategory probabilistic forecasts of the models, accuracy 177 of probabilistic forecasts relative to polychotomous observations are measured. Furthermore, 178

sharpness of predictions and discrimination are also important attributes of a forecasting system to 179 be helpful as an aid for making decisions. 180

Here, Brier score, sharpness score and generalized discrimination score are used to evaluate 181 probabilistic forecast models adopted. 182

Brier Score (BS)

183 Brier Score proposed by Glenn W. [START_REF] Brier | Verification of forecasts expressed in terms of probability[END_REF][START_REF] Brier | Verification of forecasts expressed in terms of probability[END_REF], determines the magnitude of the 184 probability forecast errors. Brier score is used to evaluate accuracy of predictions, defined as 185

𝐵𝑆 = 1 𝑁 ∑ ∑ (𝑝 𝑖𝑟 -𝑜 𝑖𝑟 ) 2 𝑆 𝑟=1 𝑁 𝑖=1
(5) 186

where S is the number of classes, N is the total number of occasions, 𝑝 𝑖𝑟 is the forecast probability 187

of rth class and 𝑜 𝑖𝑟 is the observation probability of rth class (0 or 1), both at ith occasion. The 188 lower Brier score for a set of predictions, the better the predictions are calibrated. BS is Sensitive 189 to observational frequency of the event: the rarer an event, the easier it is to get a good BS without 190 having any real skill. 191

Generalized Discrimination Score (GDS)

192 Generalized Discrimination Score shows the degree of correct probabilistic forecast 193 discrimination, even if the forecasts have biases or calibration problems. GDS is generalized to 194 encompass all forecast categories, produces values ranging from 0.5 for a set of probability scores 195 without skill to 1 as the maximum perfect value [START_REF] Mason | A generic forecast verification framework for administrative 406 purposes[END_REF]Barnston et al., 2010). 196 Let nk and nl be the number of observed events for category k and l, respectively. When S is the 197 number of categories, GDS score is calculated as 198

GDS = ∑ ∑ ∑ ∑ 𝐼(𝑷 𝑘.𝑖 .𝑷 𝑙.𝑗 ) 𝑛 𝑙 𝑗=1 𝑛 𝑘 𝑖=1 𝑆 𝑙=𝑘+1 𝑆-1 𝑘=1 ∑ ∑ 𝑛 𝑘 𝑛 𝑙 𝑆 𝑙=𝑘+1 𝑆-1 𝑘=1 (6) 199
where Pk,i is the vector of forecast probabilities for the ith forecast given category k, and 200 The scoring rule 𝐹(𝑷 𝑘.𝑖 . 𝑷 𝑙.𝑗 ) is defined as 202

𝐹(𝑷 𝑘.𝑖 . 𝑷 𝑙.𝑗 ) = ∑ ∑ 𝑝 𝑘,𝑖 (𝑞)𝑝 𝑙,𝑗 (𝑟) 𝑆 𝑟=𝑞+1 𝑆-1 𝑞=1 1-∑ 𝑝 𝑘,𝑖 (𝑞)𝑝 𝑙,𝑗 (𝑞) 𝑆 𝑞=1 (8) 203 
where pk,i(q) is the forecast probability for the qh category, and for the ith observation in category 204

k. The numerator of Eq. 6 sums the 𝐼(𝑷 𝑘.𝑖 . 𝑷 𝑙.𝑗 ) outcomes over all qualifying pairs of forecasts; 205 the denominator contains the number of pairs [START_REF] Mason | A generic forecast verification framework for administrative 406 purposes[END_REF]. 206

Sharpness Score (SS)

207 Given two reliable forecast systems, the one producing the sharper forecasts is preferable to use. 208

Analogous to formulation of coefficient of variation, a simple score is introduced here to compare 209 the forecasting models: 210 To measure the ability of the forecasting system to detect droughts and discriminate between 252 different classes of droughts, Brier Score (BS) and Generalized Discrimination Score (GDS) are 253 evaluated for all data points in Urmia Lake basin. Furthermore, Sharpness Score (SS) adopted to 254 assess the uncertainty of the model predictions are reported. To show the improvement contributed 255 by the proposed model, average values of these scores for both case of all grid points for both 2D 256

𝑆𝑆 = √ 1 𝑁-1 ∑ ∑ (𝑝 𝑖𝑟 -𝜇 𝑖𝑟 ) 2 𝑆 𝑟=1 𝑁 𝑖=1 ( 
(including SST-M data) and 1D model (only AMDI-SA) are reported in Table 2. The spatial 257 integration has the advantage of increasing the sample size used to build the scores. 258

In case of BS and GDS, which score values are close, Fig. 2 

Conclusions 303

This study was conducted to predict droughts, one of the world's natural hazards and controversial 304 issue. For this purpose, time series of an agro-meteorological drought index, namely AMDI-SA, 305

were used. The proposed Markov framework exploits the temperature information of the 306

Mediterranean sea -as the original source of humidity in the region -in order to perform the task 307 of prediction. 308

Application of Markov method provides a probabilistic qualitative model of droughts. On the other 309 hand, the nature of drought is qualitative. Therefore, probabilistic frameworks like Markov models 310 seem to be the most reasonable approach to model droughts. 311

Moreover, the probabilities of transition can be used in planning or operational mode for designing 312 mitigation measures as the drought evolves. 313

The prediction capability of the Markov models concerning short-term forecasts are limited by the 314 characteristics of the climate, which tends to be reproduced in these short-term forecasts. However, 315

taking advantage of teleconnection information improves performance of the drought early 316

warning system as well as enhancing the understanding of the evolution of drought events. 317

The proposed 2D Markov chain model, using teleconnection information, has promising values of 318 prediction evaluation scores. Since it doesn't have much mathematical burden, it is recommended 319 to use this model in all regions which its over-year variations certainly correlated to some climatic 320 teleconnections. 321 Click here to download colour figure Fig5.tif

131A

  Markov process is a random process in which the future is independent of the past, given the 132 present. In discrete time, the process (X) is known as a discrete-time Markov chain which its 133 current state space (Xt+1) depends only on a few limited number of its previous state (Xt-k, ..., Xt-1, 134 Xt). Markov chain is defined by a set of finite numbers of classes (S), the probability of transition 135 between the states (𝑃𝑟 ij…u 𝑙 ) and order of the chain (l). Hereafter, discussion is limited to first order 136 (l=1) Markov chains, used commonly in hydrological sciences. The independence of values that 137 are separated by more than one time period is not required by the first order Markov property. 138 Instead, it implies conditional independence of data values separated by more than one time period, 139

  𝐼(𝑷 𝑘.𝑖 . 𝑷 𝑙.𝑗 ) 𝑷 𝑘.𝑖 . 𝑷 𝑙.𝑗 ) < 0.5 𝑖𝑓 𝐹(𝑷 𝑘.𝑖 . 𝑷 𝑙.𝑗 ) = 0.5 𝑖𝑓 𝐹(𝑷 𝑘.𝑖 . 𝑷 𝑙.𝑗 ) > 0.5 (7) 201

  9) 211 where 𝜇 𝑖𝑟 is historical average probability of rth class at ith occasion. Values approaching 0 212 indicate an increasingly wider forecasts and values approaching ∞ indicates increasingly sharper 213 forecasts. 214 spatial distribution of drought, 79 pixels covering the basin (not lake) are treated as data stations 238 and series for each are processed. 239 Monthly Mediterranean Sea surface temperature data which is used as a teleconnection 240 information is obtained from NOAA Optimum Interpolation (OI) Sea Surface Temperature (SST) 241 V2 for the period of 1983-2010 (NOAA_OI_SST_V2) with resolution of 1° × 1°. Extracting the 242 data of Mediterranean Sea and removing grids which are near coast to exclude ramifications of 243 land disturbances, time series for 129 grid point are obtained. 244Performance evaluation of the forecasting system is done for the period of 2004-2010, which lake 245 has been affected by prolonged droughts during that. covariance is maximized when the teleconnection information corresponding to one 249 month ago are considered in conjunction with the index of the current moment, i.e. the time lag D 250 = 1 month. 251

Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 1 2 3 4

 123451234 Fig. 1 Urmia Lake Basin in Iran Fig. 2 Spatial Distribution of BS for Both 1D-MCM (left) and 2D-MCM (right) in Urmia Lake Basin Fig. 3 Spatial Distribution of GDS for Both 1D-MCM (left) and 2D-MCM (right) in Urmia Lake Basin Fig. 4 Frequency Distribution of the Observed and the Model Predicted Classes for 1D Case (only AMDI-SA) Fig. 5 Frequency Distribution of the Observed and the Model Predicted Classes for 2D Case (including SST-M data)

  

  

  

Material and Methods 79 2.1 AMDI-SA

  

	surface temperature (SST-M) classes used to monitor and predict droughts in a two-dimensional Normal Distribution	69
	Markov chain model (2D-MCM) with 12 different transition classes. Since there is a time lag (1) N Non Drought 50> AMDI-SA≥0	70
	between SST-M and correlated drought/wetness condition, prediction is made on the help of (2) D0 Moderate Drought 16 to 50 -1 < AMDI-SA<0	71
	known state of SST-M and previous state of drought. (3) D1 Severe Drought 7 to 16	-1.5 < AMDI-SA≤-1	72
	This research aims at modeling droughts in Urmia Lake basin, and predicting drought severity for (4) D2 Extreme Drought 7> -1.5≥AMDI-SA	73
	short lead times. The proposed framework easily exploits temperature information of the	74 91
	Mediterranean Sea which is the original source of humidity in the region. It also provides AMDI-SA is a comprehensive agrometeorological drought index, which accounts seasonality and	75 92
	promising probabilistic predictions of droughts, conveying the prediction uncertainty information	76
	which could be useful for operational drought management.		77
					78
	2 80
	Having AMDI-SA, monthly soil moisture and precipitation data are used to calculate Standardized	81
	Precipitation Index (SPI) and Standardized Soil-Moisture Index (SSI). SSI, see e.g., AghaKouchak	82
	(2014), can be defined in a similar way to SPI. In order to integrate the indices, copula framework	83
	is used. The Kendall distribution function of the fitted copula are normalized to construct AMDI-	84
	SA. For detailed procedure, see e.g. Bateni et al. (2018).		85
	Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), sea surface temperatures (SST), Since AMDI-SA is a standardized index, it can be classified like SPI or other standardized indexes.	63 86
	and geopotential height (GpH) vastly used to encourage investigation of the possibilities of In this study, 4 classes for droughts are used based on AMDI-SA values. Classes are descripted in	64 87
	forecasting rainfall and other elements of the weather. table 1.		65 88
	Here, values of Agro-Meteorological Drought Index addressing seasonality and autocorrelation Table 1 Classification of wetness/drought condition based on AMDI-SA values (modified from	66 89
	(AMDI-SA), showing drought severity, are categorized in 4 different classes and used in a Markov McKee et al. (1993))	67 90
	framework. Additionally, joint occurrence of drought severity classes and Mediterranean Sea	68
	Category	Description	Percentiles based on	Index Value

undesirable effects of sudden, unexpected occurrences of extremes such as droughts, floods, and 61 widespread fires. El-Nino Southern Oscillation (ENSO), Southern oscillation index (SOI), Pacific 62 autocorrelation. Since AMDI-SA is seasonally-adjusted, a single Markov model can be adopted to 93 model all its transitions. Moreover, time series of AMDI-SA values doesn't show high 94

  defines the Squared Covariance Fraction (SCF=svi 2 /Σsv 2 ) where sv 125 represents each of the singular values. SCF is about 88% that shows possibility of the derived SST-126 M values from SVD to show great share of variations of original information of SST-M for all grid 127points. This quantity is an average for the whole basin which is more or less the same all over it. 128Derived SST-M values are classified in two equiprobable classes to show cold and warm phases 129

	of Mediterranean Sea.	130

  drought modeling, the state space consists of different drought severity classes which are based 154

	of transition probability matrices is assessed for both the classical one dimensional Markov chain	173
	model (1D-MCM) using only AMDI-SA and the two dimensional Markov chain model (2D-	174
	MCM) gaining SST-M data.	175
	on values of an appropriate drought index.	155
	Markov chain modeling allows the estimation of the drought class probabilities, which represent	156
	the probabilities of occurrence of the various drought classes as an aid to water resources decision	157
	makers. Besides, many other features of drought such as the expected residence time in each class	158
	of severity and the expected first passage time could be evaluated using a Markov chain	159
	framework.	160
	2.4 Evaluation of Probabilistic Forecasts	161
	In order to address periodicity mainly caused by low-frequency components of climate variability,	162
	a 2D Markov chain model (2D-MCM) is proposed. Since AMDI-SA is not seasonal, a time-	163
	homogeneous framework is used for the chain. Joint occurrence of classes of SST-M, used as	164
	teleconnection information, and classes of drought severity, indicated by AMDI-SA values, consist	165
	classes of the Markov chain. Since there are 4 classes for drought severity based on AMDI-SA	166
	values and 3 classes for values of SST-M, 12 classes are made showing their joint occurrence	167
	conditioned the Markov chain model. It is worthwhile to mention that for example class number	168
	nine means that AMDI-SA shows severe drought (D1) while SST-M is in warm phase. As the	169
	teleconnection class is available for D months in advance and previous drought [severity] and	170
	transition probabilities are given before each time step, probabilistic prediction of AMDI-SA class	171
	is possible for the next month. In order to ensure about the adequacy of the model, the regularity 172

Table 2

 2 Score values of the drought forecasting method for both 2D-MCM and 1D-MCM.

	and 3 shows spatial distributions of	259

Table 3

 3 Transition probability matrix of the 1D model (only AMDI-SA).

	278

Table 4

 4 Transition probability matrix of the 2D model (including SST-M data).

	280

282

According to Table

2

and Fig.

2

and Fig.

3

, the accuracy of prediction evaluated by Brier score is 283 significantly improved using teleconnection information of Mediterranean Sea surface 284

NOAA_OI_SST_V2 data provided at their web site (NOAA, 2017).

Acknowledgments

Thanks to NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, for freely available

Conflict of Interest

324

The authors declare that they have no conflict of interest. 325 326 References