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Abstract
Early-onset neurodevelopmental conditions (e.g., autism) affect males more frequently than females. Androgens may play a
role in this male-bias by sex-differentially impacting early prenatal brain development, particularly neural circuits that later
develop specialized roles in social cognition. Here, we find that increasing prenatal testosterone in humans is associated with
later reduction of functional connectivity between social brain default mode (DMN) subsystems in adolescent males, but has
no effect in females. Since testosterone can work directly via the androgen receptor (AR) or indirectly via the estrogen
receptor through aromatase conversion to estradiol, we further examined how a potent non-aromatizable androgen,
dihydrotestosterone (DHT), acts via the AR to influence gene expression in human neural stem cells (hNSC)—particularly
for genes of high-relevance for DMN circuitry. DHT dysregulates a number of genes enriched for syndromic causes of
autism and intellectual disability and for genes that in later development are expressed in anatomical patterns that highly
correspond to the cortical midline DMN subsystem. DMN-related and DHT-affected genes (e.g., MEF2C) are involved in a
number of synaptic processes, many of which impact excitation-inhibition balance. Androgens have male-specific prenatal
influence over social brain circuitry in humans and may be relevant towards explaining some component of male-bias in
early-onset neurodevelopmental conditions.

Introduction

It has long been known that events occurring during prenatal
development can have long-lasting programming impact on
susceptibility for medical conditions that emerge later in life
[1–3]. Emerging work has shown that events starting during
prenatal development can have long-term impact potentially

leading to increased likelihood for atypical neurodevelop-
mental phenotypes. For instance, neurodevelopmental con-
ditions such as autism have been linked to multiple types of
biological processes that stem from very early periods of
prenatal development [4–10]. Therefore, it is becoming
increasingly clear that prenatal brain development is a cri-
tical window of importance for understanding factors that
increase the likelihood of neurodevelopmental conditions.

Several early-onset neurodevelopmental conditions (e.g.,
autism, intellectual disability, attention deficit hyperactivity
disorder (ADHD), developmental language disorders, conduct
disorder) are well known to have a sex-biased prevalence rate
[11]. For example, the latest estimates for autism suggest that
three males are diagnosed for every one female [12]. Several
theories have been put forward to explain the sex ratio
imbalance in early-onset neurodevelopmental conditions [13],
over and above under-diagnosis or mis-diagnosis in females
[14]. One prominent theory suggests that there are factors
inherent in females that act to reduce the likelihood of atypical
neurodevelopment [15]. For example, a higher burden of
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large effect mutations are present in females compared to
males with autism, suggesting that protective mechanisms in
females may raise the threshold for deleterious impact of such
mutations [16]. In contrast to female-specific factors reducing
likelihood of autism, there may also be important male-
specific mechanisms for increasing the likelihood of develop-
ing autism. We have theorized that sex steroid hormones such
as testosterone may have fetal programming effects on later
brain development in ways relevant to autism [17]. Recent
large studies have confirmed that maternal polycystic ovary
syndrome, a syndrome associated with elevated androgen
levels, increases the odds for both autism and ADHD in
offspring [18–20]. We also recently confirmed elevation of a
latent steroidogenic factor affecting multiple steroid hormones
including testosterone in the amniotic fluid of clinically
diagnosed males with autism [7]. Extending into the non-
clinical population, continuous variation in how much fetal
testosterone (FT) an individual is exposed to in the womb is
associated with behavioral variation in autistic traits [21, 22].
FT and later postnatal testosterone variation also affects spe-
cific behavioral and cognitive domains such as social cogni-
tion, language, emotion, and reward processes, which are
implicated in autism and other male-biased neurodevelop-
mental conditions [23–25]. Thus, it may be that multiple sex-
specific factors could be at work to both increase likelihood in
males and decrease likelihood in females for developing
early-onset neurodevelopmental conditions. Further work is
needed to tease apart how these mechanisms may operate
similarly or differently in males and females. In addition,
translational work is needed to examine how such mechan-
isms directly affect biological processes supporting both
typical and atypical human brain development.

In this study, we first examine the question of whether FT
longitudinally exerts sex-specific influence over intrinsic
functional organization of specific circuits involved in social,
language, and affective functions in humans. To test this
question, we examined a unique cohort of individuals in
whom we have measured concentration levels of testosterone
directly from amniotic fluid during a midgestational window
of pregnancy where fetuses are sexually differentiating and
where surges in sex steroid levels may have maximal impact
on early brain development [26, 27]. These individuals are
now in their adolescent years and we examined how varia-
bility in FT is associated with patterns of intrinsic functional
connectivity as measured with resting state functional mag-
netic resonance imaging (rsfMRI). Given known links
between FT and the behavioral and cognitive domains of
social cognition, social-communication, language, emotion,
and reward [23, 24], we examined specific neural circuits
known for their roles in these domains. We predicted that FT
would act as a male-specific mechanism to influence con-
nectivity towards atypicality and that such male-specific
influence would not be observed in females.

While it is important to identify associations between FT
and macroscale neural circuitry, we also want to better
understand how androgens like testosterone exert mechanistic
influence over early prenatal neural development. Testosterone
can exert gene regulatory influence through several routes.
Testosterone or conversion via 5-alpha-reductase to dihy-
drotestosterone (DHT) could potentially act in a direct manner
via the androgen receptor (AR) to influence transcription of
other genes targeted by the AR. However, testosterone can also
be converted to estradiol via aromatase and have different
transcriptional influence over genes targeted by the estrogen
receptor (ER). To understand how testosterone may have AR-
dependent influence on early neural development we further
examined how DHT affects gene expression in human neural
stem cells (hNSC) [28]. Of particular interest for this work is
the overlap between DHT-dysregulated genes and genes spa-
tially expressed in similar patterns across cortex as rsfMRI-
defined macroscale networks that are associated with FT. If FT
influences later neural circuitry in an AR-dependent manner,
we expect that the DHT-dysregulated gene set would be enri-
ched for genes that are spatially expressed in patterns that
highly resemble FT-associated rsfMRI networks.

Methods

Participants

This study was approved by the Essex 1 National Research
Ethics committee. Parents gave informed consent for their
child to participate and each adolescent also gave assent to
participate. Participants were 64 adolescents (32 males, 32
females; male age mean= 15.42 years, standard deviation
= 0.92 years; female age mean= 15.55 years, standard
deviation= 1.06 years; age range= 13.22–17.18 years)
sampled from a larger cohort of individuals whose mothers
underwent amniocentesis during pregnancy for clinical
reasons (i.e., screening for chromosomal abnormalities). At
amniocentesis, none of the individuals screened positive for
any chromosomal abnormalities and were thus considered
typically developing. At the time of scanning, none of the
participants self- or parent-reported any kind of neurologi-
cal or psychiatric diagnosis. After assays of current testos-
terone levels were completed, we found that the assay did
not result in useable data for four males and two females,
and thus these individuals were excluded from further
analyses requiring intact FT and current testosterone data.

Fetal testosterone collection and measurement

FT was measured from amniotic fluid samples collected
between 13 and 20 weeks of gestation via radioimmunoassay.
This period is within the 8–24 week window that is
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hypothesized to be critical for human sexual differentiation
[26]. Amniotic fluid was extracted with diethyl ether, which
was evaporated to dryness at room temperature and the
extracted material redissolved in an assay buffer. Testosterone
was assayed by the Count-a-Coat method (Diagnostic Pro-
duct), which uses an antibody to testosterone coated onto
propylene tubes and a 125I-labeled testosterone analog. The
detection limit of the assay using the ether-extraction method
is 0.05 nmol/L. The coefficient of variation (CV) for between-
batch imprecision is 19% at a concentration of 0.8 nmol/L and
9.5% at a concentration of 7.3 nmol/L. The CVs for within-
batch imprecision are 15% at a concentration of 0.3 nmol/L
and 5.9% at a concentration of 2.5 nmol/L. This method
measures total extractable testosterone.

Current testosterone collection and measurement

Current testosterone during adolescence was measured from
passive saliva samples using a commercial competitive
ELISA (Salimetrics Ltd, US) at the Biomarker Analysis
Laboratory at Anglia Ruskin University. All pipetting used
a Tecan Evo liquid handler. Twenty-five microliters of
saliva samples, standard and controls were pipetted into the
appropriate wells of the ELISA plates, 150 µL of testos-
terone conjugated to horseradish peroxidase (HRP)
enzymes was added to all wells and the plate shaken for
5 min and then incubated for 55 min at room temperature.
The ELISA plates were washed four times in Salimetrics
wash buffer using a Tecan Hydroflex before the addition of
200 µL of enzyme substrate (TMB), the plates shaken for
5 min and color allowed to develop for an additional 25 min
before the reaction was stopped by the addition of 50 µL of
Salimetrics stop solution. The resulting optical density in
the wells was read at 450 nm with a secondary filter cor-
rection at 620 nm. The sensitivity of this assay is 1 pg/mL.
The CVs for within- batch imprecision were 4.53% for the
high controls and 14.88% for the low controls.

fMRI data acquisition

All MRI scanning took place on a 3T Siemens Tim Trio
MRI scanner at the Wolfson Brain Imaging Center in
Cambridge, UK. Functional imaging data were acquired
with a multi-echo echo planar imaging (EPI) sequence with
online reconstruction (repetition time (TR), 2000 ms; field
of view (FOV), 240 mm; 28 oblique slices, descending
alternating slice acquisition, slice thickness 3.8 mm; echo
times (TE)= 13, 31, and 48 ms, GRAPPA acceleration
factor 2, BW= 2368 Hz/pixel, flip angle, 90°, voxel size
3.8 mm isotropic). Resting state data were collected using a
10 min ‘‘eyes-open’’ run (i.e., 300 volumes), where parti-
cipants were asked to stare at a central fixation cross and to
not fall asleep. Anatomical images were acquired using a

T1-weighted magnetization prepared rapid gradient echo
(MPRAGE) sequence for warping purposes (TR, 2300 ms;
TI, 900 ms; TE, 2.98 ms; flip angle, 9°, matrix 256 × 256 ×
256, field-of-view 25.6 cm).

fMRI preprocessing

Data were processed by ME-ICA using the tool meica.py as
distributed in the AFNI neuroimaging suite (v2.5), which
implemented both basic fMRI image preprocessing and
decomposition-based denoising. For the processing of each
subject, first the anatomical image was skull-stripped and
then warped nonlinearly to the MNI anatomical template
using AFNI 3dQWarp. The warp field was saved for later
application to functional data. For each functional dataset,
the first TE dataset was used to compute parameters of
motion correction and anatomical-functional coregistration,
and the first volume after equilibration was used as the base
EPI image. Matrices for de-obliquing and six-parameter
rigid body motion correction were computed. Then, 12-
parameter affine anatomical-functional coregistration was
computed using the local Pearson correlation (LPC) cost
function, using the gray matter segment of the EPI base
image computed with AFNI 3dSeg as the LPC weight mask.
Matrices for de-obliquing, motion correction, and
anatomical-functional coregistration were combined with
the standard space non-linear warp field to create a single
warp for functional data. The dataset of each TE was then
slice-time corrected and spatially aligned through applica-
tion of the alignment matrix, and the total non-linear warp
was applied to the dataset of each TE. No time series fil-
tering was applied in the preprocessing phase. Data were
analyzed with no spatial smoothing. ME-ICA denoising
was used to identify and remove non-BOLD signal fluc-
tuation [29–31].

Group independent components analysis and dual
regression

To assess large-scale intrinsic functional organization of the
brain we utilized the unsupervised data-driven method of
independent component analysis (ICA) to conduct a group-
ICA, and then utilized dual regression to back-project spa-
tial maps and individual time series for each component and
subject. Both group-ICA and dual regression was imple-
mented with FSL’s MELODIC and Dual Regression tools
(www.fmrib.ox.ac.uk/fsl). For group-ICA, we constrained
the dimensionality estimate to 30, as in most cases with
low-dimensional ICA, the number of meaningful compo-
nents can be anywhere from 10–30 [32]. From these com-
ponents, we manually selected the components that best
represented networks typically involved in emotion
(amygdala), reward (ventral striatum), language (superior
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temporal gyrus, inferior frontal gyrus, insula), and social
cognition (default mode network) functions.

Between-component connectivity analysis

Time courses for each subject and each component were
used to model between-component connectivity. This was
achieved by constructing a partial correlation matrix for all
six components using Tikhonov-regularization (i.e., ridge
regression, rho= 1) as implemented within the nets_net-
mats.m function in the FSLNets MATLAB toolbox (https://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets). The aim of utilizing
partial correlations was to estimate direct connection
strengths in a more accurate manner than can be achieved
with full correlations, which allow more for indirect con-
nections to influence connectivity strength [32–34]. Partial
correlations were then converted into Z-statistics using
Fisher’s transformation for further statistical analyses. The
lower diagonal of each subject’s partial correlation matrix
was extracted for a total of 15 separate component-pair
comparisons. For each of these 15 comparisons we ran
robust regression (to be insensitive to outliers) [35] (https://
github.com/canlab/RobustToolbox) to examine correlations
between connectivity and FT variation. This analysis was
conducted twice—once with FT only and again with FT and
controlling for variability in current levels of testosterone.
These correlations were computed separately for males and
females. Finally, we computed Z-statistics and p-values for
difference between male and female correlations utilizing
the paired.r function in the psych R library. False positive
control was achieved with FDR q < 0.05, implemented with
the p.adjust function in R.

Androgen influence on gene expression in a human
neural stem cell model

To gain insight into the impact of androgens on gene
expression in embryonic development, we examined data
from a recent RNA-seq experiment whereby human neural
stem cells (hNSC) derived from embryonic stem cells were
treated with 100 nM of a potent non-aromatizable androgen,
dihydrotestosterone (DHT) or a control treatment (dimethyl
sulfoxide; DMSO) [28] (GEO accession number:
GSE86457). The cell line used was line SA001 from a male
donor, obtained from Cellartis (Goteborg, Sweden). The work
was supervised by the French Bioethics Agency (Agreement
number NOR AFSB 12002 43S). hNSCs were derived as
described in Boissart et al. [36]. Read counts obtained from
RNA sequencing of three batches (biological replicates) of
treated hNSCs derived from SA001 (DMSO (n= 4;3;3) vs.
DHT 100 nM (n= 3;3;3)) were analyzed, scaling them by
library size using the trimmed mean of M values (TMM)
method, implemented with the calcNormFactors function in

the edgeR library [37]. Low expressing genes were removed
if there was not two or more samples with more than 100
reads while the previous analysis [28] filtered out genes with
less than 100 reads normalized and divided by gene length in
kb for each condition and below the 80th percentile in one of
the condition studied (DMSO or DHT 100 nM 24 h). This
filtering left a total of 13,284 genes for further downstream
analysis. Batch effects were removed using the ComBat
function within the sva R library. The software utilized in the
prior paper [28] for DE analysis was DESeq2 [38]. This study
used the voom function from the limma library in R to esti-
mate precision weights for linear modeling of differential
expression (DE) that will account for mean-variance trends
[39]. DE analysis in limma allows for utilization of the voom
function to estimate precision weights that account for mean-
variance trends and which are incorporated directly into linear
DE models. Another unique aspect of DE analysis within
limma is the incorporation of an empirical Bayes procedure
for sharing information between genes in estimating variance.
Genes were identified as DE if they survived Storey FDR
correction at q < 0.05 [40].

Isolating DMN-relevant genes based on spatial
expression similarity to rsfMRI components

We next wanted to isolate genes with high-relevance to our
specific large-scale neural circuits identified by rsfMRI ICA
analysis. To achieve this aim, we used the gene expression
decoding functionality within Neurosynth and NeuroVault
[41] to identify genes whose spatial expression patterns are
consistently similar across subjects to our rsfMRI IC maps.
This decoding analysis utilizes the six donor brains from the
Allen Institute Human Brain Gene Expression atlas [42, 43].
The analysis first utilizes a linear model to compute simi-
larity between the observed rsfMRI IC map and spatial
patterns of gene expression for each of the six brains in the
Allen Institute dataset. The slopes of these subject-specific
linear models encode how similar each gene’s spatial
expression pattern is with our rsfMRI IC maps. These slopes
were then subjected to a one-sample t-test to identify genes
whose spatial expression patterns are consistently of high
similarity across the donor brains to the rsfMRI IC maps we
input. The resulting list of genes was then thresholded
for multiple comparisons and only the genes surviving FDR
q < 0.05 and with positive t-statistic values were considered.

Gene set enrichment analyses

Analyses examining enrichment (i.e., overlap) between two
lists of genes, was implemented using the sum(dhyper)
function in R. For enrichments with Neurosynth Gene
Expression Decoding analyses, the background set size for
all enrichment analyses was set to the total number of genes
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considered for Neurosynth Gene Expression Decoding
analyses (i.e., 20,787). We also examined enrichment with
autism-associated genes listed under SFARI Gene Scoring
categories (lists downloaded on 10/10/2017). The back-
ground set size for this analysis was set to the total number
of genes included in the DE analysis (13,284).

All enrichment analyses using Gene Ontology (GO)
database was implemented with AmiGO 2 (http://amigo.
geneontology.org/amigo). Here we used a custom back-
ground list, which was the total number of genes included in
the DE analysis (i.e., 13,284 genes). Only GO terms sur-
viving Bonferroni correction were used.

Developmental trajectory of MEF2C expression

RNA-seq data from the Allen Institute BrainSpan Human
Brain Gene Expression atlas was utilized for this analysis.
We examined medial prefrontal cortex (MFC) in BrainSpan
as it is the most prominent region from the IC01 functional
connectivity map (see Results). We tested hypotheses about
whether there is developmental upregulation of MEF2C and
enhanced variability in prenatal vs. postnatal development.
To test this, we used a permutation test (100,000 permuta-
tions) whereby on each permutation we randomized pre-
natal or postnatal labels and then re-calculated the mean
difference or difference in standard deviation in expression
between prenatal and postnatal (after birth) periods. We
then compared the observed mean or standard deviation
difference statistics to their null distributions to compute the
p-value for each comparison.

Follow-up experiment of DHT-dysregulation of
MEF2C expression using qPCR

Three lines of hNSCs cells (two derived from iPSC lines
reprogrammed from male fibroblasts GM01869 and
GM04603 and one derived from blood of an anonymous
female donor, PB12) were treated by DMSO or DHT
100 nM during 24 h, in quadruplicates, as previously
described in Quartier et al. [28]. RNA was extracted using
RNeasy minikit (Qiagen, Valencia, CA, USA) including a
DNase I treatment. Total RNA (500 ng) was reverse tran-
scribed into cDNA using random hexamers and SuperScript
II reverse transcriptase according to the manufacturer’s
recommendation (Invitrogen, Carlsbad, CA, USA). Real-
time PCR quantification (qPCR) was performed on cDNA
on LightCycler 480 II (Roche) using the QuantiTect SYBR
Green PCR Master Mix (Qiagen) and primers specific to
MEF2C (MEF2C_RT_F: 5′-ATCGACCTCCAAGTGC
AGGTAACA-3′ and MEF2C_RT_R: 5′- AGACCTGGT
GAGTTTCGGGGATT-3′). All qPCR reactions were per-
formed in triplicate. Reaction specificity was controlled by
post-amplification melting curve analysis. The relative

expression of gene-of-interest vs. two references genes
(GAPDH and YWHAZ) was calculated using the 2-(ΔΔCt)
method. To test for DHT upregulation of MEF2C expres-
sion we utilized a linear mixed-effect model (lme function
within the nlme R library) with condition and sex as fixed
effects and cell line and replicate as crossed random effects.
To quantify evidence of replication of the original MEF2C
result in RNA-seq data, we computed a replication Bayes
Factor [44]. Replication Bayes Factors >10 indicate strong
evidence for replication.

MEF2C expression in an iPSC model of autism

MEF2C expression was examined from the RNA-seq data
from Marchetto et al. [10]. This dataset comprises expres-
sion measured from induced pluripotent stem cells (iPSC),
neural progenitor cells, and neurons grown from fibroblasts
of typically developing controls or patients with autism.
Analyses were specifically focused on MEF2C expression
and used a linear mixed-effect model ANOVA (lme func-
tion from the nlme R library) modeling diagnosis, RIN, cell
type, and diagnosis⁎cell type interaction as fixed effects and
subject identifier as a random effect. This ANOVA was
followed-up by specific tests (lm function in R) of between-
group difference within each cell type, covarying for RIN.

Code availability

The code used to reproduce the findings of this study are
available from the corresponding author upon reasonable
request.

Results

Sex-differential FT influence on connectivity
between social brain default mode subsystems

Confirming our overall hypothesis that FT exerts sex-specific
influence over connectivity between neural circuits under-
pinning functions affected in male-biased neurodevelop-
mental conditions, we find only one between-component
connection that is differentially related to FT in males vs.
females. This between-component connection comprises
anterior and primarily cortical midline (IC01) vs. posterior
(IC09) components of the default mode network (DMN)
(Fig. 1a, b). On average, connectivity between these com-
ponents is robustly non-zero indicating strong normative
relationships between these two integral parts of the DMN.
However, as FT increases, connectivity between IC01 and
IC09 decreases, specifically for males but not females (male
r=−0.69, p= 0.0001; female r= 0.02, p= 0.89; z= 3.35,
p= 7.88e-4) (Fig. 1c). In other words, within males
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specifically, increasing FT has an effect of reducing con-
nectivity between these DMN subsystems. In contrast to the
sex-specific effects identified here, we also analyzed the data
ignoring sex as a factor. However, we did not find any evi-
dence of a relationship between FT and DMN connectivity
that spans across the sexes (r=−0.20, p= 0.15; Supple-
mentary Fig. 1). Because all subjects were adolescents, cur-
rent levels of testosterone could play a potential mediating
role in the relationship between FT and DMN connectivity.
FT and current testosterone were not correlated in females
(r= 0.03, p= 0.86), but showed a positive trend in males
(r= 0.33, p= 0.08) (Supplementary Fig. 2). Current testos-
terone was also significantly negatively correlated with DMN
connectivity in males (male r=−0.37, p= 0.008), but not
females (female r= 0.08, p= 0.97) and there was no evi-
dence of difference in the strength of the correlations (z=
1.55, p= 0.12) (Supplementary Fig. 3). When controlling for
the effect of current testosterone, we find that sex-specific
relationships between FT and DMN connectivity persist (male
r=−0.63, p= 0.001; female r= 0.07, p= 0.74; z= 3.12,
p= 0.001), indicating that this effect is not explained by
current levels of testosterone during adolescence.

Genes influenced by androgens and relevant to
DMN circuits

We next asked the question of how androgens may impact
gene expression in early prenatal development—specifically
DMN circuitry. To model these early stages of develop-
ment, we re-analyzed previously published [28] tran-
scriptomic data obtained from a human neural stem cell
model (hNSC) treated with a potent non-aromatizable
androgen, dihydrotestosterone (DHT, 100 nM). Differ-
ential expression (DE) analysis identified 460 genes upre-
gulated and 221 genes downregulated by DHT. Upregulated

genes are enriched in numerous processes spanning angio-
genesis, blood vessel morphogenesis and development,
enzyme linked receptor protein signaling, cell surface
receptor signaling, signal transduction, cell morphogenesis,
neuron development, and cell differentiation, among many
others. Downregulated genes are enriched in cardiac
chamber morphogenesis, regionalization, pattern specifica-
tion process, neuron differentiation, neurogenesis, among
many others (Supplementary Fig. 4A, B). We previously
reported enrichments with many autism-associated genes,
which are also known as syndromic causes of autism [28].
Although our DE analyses differed from the past paper [28],
the current enrichment analyses largely confirm this prior
finding. Many genes listed in the ‘‘Syndromic’’ category of
SFARI Gene were also DHT-dysregulated (e.g., HI1,
ASXL3, CHD2, DHCR7, HCN1, MEF2C, PAX6, PRODH,
PTEN, and SCN1A). Other important autism-associated
genes were also DHT-dysregulated such as NLGN4X,
NRXN3, FOXP1, and SCN9A. For more on this enrichment
analysis between DHT-dysregulated genes and autism-
associated genes for this analysis, see the Supplementary
Results and Supplementary Fig. 4C.

We then tested the critical question regarding whether any
genes influenced by DHT in hNSCs are relevant for devel-
oping cortical networks such as the DMN, which are influ-
enced by FT in a sex-specific manner. We used Neurosynth
Gene Expression Decoding analyses to isolate spatial gene
expression patterns that are similar to the DMN components
identified by rsfMRI. While only four genes pass at FDR q
< 0.05 for the IC09 component, 2444 genes pass at the same
FDR threshold for the IC01 component. This IC01 gene set
was significantly enriched in genes that are differentially
expressed by DHT in hNSCs (OR= 1.88, p= 0.000002).
This overlapping gene set was highly enriched in a number of
synaptic processes (Fig. 2a). Several examples of such genes

Fig. 1 Sex-differential relationship between FT and DMN subsystem connectivity. a, b show axial montages of the two DMN components (IC01,
IC09). c Shows a scatterplot of the relationship between FT and IC01-IC09 connectivity
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are shown in Fig. 2b–f—particularly myocyte enhancer factor
2C (MEF2C), synaptotagmin 17 (SYT17), neurabin-1
(PPP1R9A), neuronal pentraxin 2 (NPTX2), glutamate
receptor 1 (GRIA1), and glutamate receptor, ionotropic, kai-
nate 2 (GRIK2), sodium channel, voltage gated, type III alpha
subunit (SCN3A), and sodium channel, voltage gated, type IX
alpha subunit (SCN9A).

Similar directionality of MEF2C dysregulation in
induced pluripotent stem cells of male patients with
autism

Of the genes that are both differentially expressed by DHT
and spatially highly expressed in a pattern associated with

the DMN, we followed-up one gene of particular interest—
MEF2C (Fig. 3a). MEF2C is among the genes from SFARI
Gene noted as a syndromic cause of autism and is differ-
entially expressed here by DHT. MEF2C is also known to
be a downstream target of the androgen receptor [45]. While
MEF2C itself is not sex-differentially expressed in the brain
during prenatal and adult periods of development [46, 47],
as a transcription factor it can differentially target other
genes as a function of sex and the degree of such sex-
differential targeting explains a substantial amount of var-
iance in sex-differential expression [48]. Confirming
DHT upregulation of MEF2C expression we ran a follow-
up experiment using qPCR and found that indeed the
upregulation of MEF2C by DHT in the RNA-seq data is

Fig. 2 Synaptic enrichments of DHT-dysregulated genes and genes
with high levels of spatially expression similarity to rsfMRI DMN
IC01 map (a) and plots of specific genes contributing to these
enrichments (b–h). Whole-brain maps showing expression for each
gene are composite maps averaging across all donors. These composite

maps are shown for visualization purposes only. They are not meant to
reflect directly the hierarchical statistical testing as implemented with
Neurosynth Gene Expression Decoding. The coloring in the enrich-
ment plot in a represents terms from different Gene Ontology (GO)
clusters
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replicated using qPCR on three additional independent cell
lines (t= 3.73, p= 0.003, replication Bayes Factor= 164)
(Fig. 3b, c).

We went further in subsequent analyses to identify
MEF2C’s trajectory of expression in medial prefrontal
cortex throughout prenatal and postnatal periods.
Using the Allen Institute BrainSpan Developmental
Gene Expression atlas we indeed find that prenatal devel-
opment is a prominent period where MEF2C is upregu-
lated in medial prefrontal cortex (p= 0.01). There is also
enhanced variability in prenatal MEF2C expression
compared to postnatal expression (p= 0.02)—an effect
likely due to marked change from first to second and
third trimesters of gestation. MEF2C expression
increases substantially from first to second trimester of
gestation and continues high levels of expression until

around 2 years of age, when expression tapers off and
becomes stable throughout the rest of the lifespan
(Fig. 3d).

Finally, we tested whether MEF2C is dysregulated in
induced pluripotent stem cells (iPSC) from male patients
with autism and whether the directionality of such dysre-
gulation is congruent with the directionality of DHT-
influence on MEF2C expression. To achieve this aim, we
re-examined a recent RNA-seq dataset, which examined
iPSC, neural progenitor cells, and neurons grown from
fibroblasts of male cases of autism [10]. An ANOVA
examining all cell types identified a Diagnosis⁎Cell Type
interaction (F= 6.89, p= 0.0047). Congruent with the
directionality of DHT upregulation, MEF2C is also upre-
gulated in iPSCs from male patients with autism (t= 3.68,
p= 0.0035, Cohen’s d= 1.42). In contrast, no dysregulation

Fig. 3 a Shows spatial pattern of MEF2C expression compared to
spatial rsfMRI map for IC01. The whole-brain MEF2C expression
maps shown is a composite map averaging across all donors. This
composite map is shown for visualization purposes only. It is not
meant to reflect directly the hierarchical statistical testing as imple-
mented with Neurosynth Gene Expression Decoding. b, c Show

expression of MEF2C across RNA-seq (b) and qPCR (c) experiments.
d Shows the developmental trajectory of MEF2C expression in the
Allen Institute BrainSpan atlas (blue, female; red male). e Shows
MEF2C expression across induced pluripotent stem cells (iPSC),
neural progenitor cells (NPC), and neurons from cases with autism or
typically developing controls (TD)
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is observed in neural progenitor cells (t= 0.12, p= 0.90,
Cohen’s d= 0.11) or neurons in autism (t= 2.19, p= 0.052,
Cohen’s d= 1.31) (Fig. 3e).

Discussion

In this study, we have shown that variation in testosterone
during midgestational prenatal development has long-
lasting effects on how specific networks comprising the
core of the social brain, the DMN, are organized. In line
with hypotheses about sex-specific mechanisms, we
identified that the fetal programming impact of testoster-
one on later circuit-level organization of the DMN
depends on whether an individual is male or female.
These findings are compatible with other normative large-
scale work on sex differences in DMN connectivity. Two
large independent studies on adults utilizing the 1000
Functional Connectomes or UK Biobank datasets now
replicably show that default mode connectivity is subtly
on-average stronger in females than in males [49, 50].
While these prior and much larger studies find these subtle
DMN sex differences, it is noteworthy that sex
differences in DMN connectivity were not apparent in
the current dataset (t= 0.23, p= 0.81; Supplementary
Fig. 5). This result is most likely due to lack of statisti-
cal power for identifying the subtle sex differences that
prior and much larger studies have identified. Never-
theless, the directionality of documented on-average
DMN sex differences in functional connectivity are con-
gruent with the directionality of the male-specific influ-
ence shown here—FT reduces later DMN connectivity,
and thus could be one explanation behind the on-average
lower DMN connectivity in males observed in other stu-
dies [49, 50].

These findings are also particularly relevant for under-
standing how the prenatal environmental shapes early
neurobiological mechanisms and heightens male-
susceptibility for early-onset neurodevelopmental condi-
tions. Autism is an early neurodevelopmental condition of
particular relevance here, given the 3:1 sex ratio [12]
alongside other work implicating elevated prenatal ster-
oidogenic activity [7, 18]. The hallmark features of autism
are profound difficulties with early social-communication
and social behavior, which has led to many investigations
on the possible link with default mode network organization
and function. The two core DMN subsystems identified in
this work are known for the importance in both mentalizing
and self-referential cognition and these domains along with
the DMN circuitry underlying them are known to be aty-
pical in males with autism [51–54]. The current results
suggest that FT could act as a male-specific mechanism that
reduces connectivity between core default mode subsystems

linked to domains that are highly important for social-
communication.

Showing that FT influences later functional organization
within the human brain is the first step in understanding the
developmental biology behind this effect. Imperative in
working towards this translational goal is the need to
understand how FT might have male-specific biological
effects on developing neural circuits for the social brain,
such as the DMN. Using a human neural stem cell model,
we identified a subset of genes that are differentially
expressed after androgen treatment. In an important link to
autism, this set of genes is enriched in a number of high-
impact genes known to be causes of syndromic autism and
intellectual disability. This finding underscores a prior paper
[28] utilizing the same dataset that came across similar
findings albeit with a different approach for differential
expression analysis. However, this finding makes some
specific inferences with regards to enrichments with the
‘‘syndromic’’ category of variants (n= 102) labeled within
SFARI Gene, whereas the prior paper looked for enrich-
ment with any of n= 235 genes annotated within SFARI
Gene.

In keeping with the relevant early phase of neurodeve-
lopment for hNSCs, the DHT manipulation affected many
genes involved in important neurodevelopmental processes
including neurogenesis, cell differentiation, pattern specifi-
cation and regionalization, and morphogenesis. These
findings are also in line with previous work [28] whereby
independent experiments showed that DHT enhances cell
proliferation and prevents cell death during neuronal dif-
ferentiation under nutrient-deprived conditions. These pro-
cesses are hypothesized to be some of the earliest key
prenatal processes that are affected in autism and dysregu-
lation of these processes can have multifinal outcomes and
pleiotropic effects later in life including atypical circuit
formation and function [55]. Androgen activity can be
considered as a gene regulatory influence over prenatal
brain development given that such sex hormones work via
androgen receptor signaling to directly affect transcription
of many other genes. This work further supports the idea
that androgens can exert regulatory impact over prenatal
neurobiological processes that are highly linked to male-
biased conditions like autism.

Going beyond the list of DHT-dysregulated genes, we
went further to pinpoint a subset of DHT-influenced genes
that are also highly relevant specifically for the cortical
midline DMN subsystem that shows a male-specific influ-
ence of FT. This subset of DHT-dysregulated and cortical
midline DMN-relevant genes was enriched for a variety of
synaptic processes and potentially highlights important
biological mechanisms in prenatal development that
androgens act on. For example, the top enrichment in such
genes was for excitatory postsynaptic potentials and
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includes genes for glutamate receptors such as GRIK2,
GRIA1, and GRIA2, all of which are upregulated by DHT.
Also included in this enrichment is MEF2C, which is
upregulated by DHT, and is known to alter excitation-
inhibition (E-I) imbalance [56, 57]. Also relevant to E-I
imbalance is NPTX2, which has effects on GluA4-
containing AMPA receptors [58] and synaptogenesis [59].
DHT also upregulates sodium-gated ion channel genes
(SCN3A, SCN9A), which have spatial similarity expression
with cortical midline DMN and could also be relevant to E-I
imbalance. All of these effects whereby DHT upregulates
expression of such genes may point to the importance of E-I
imbalance in androgen-impact on early prenatal brain
development. This is particularly relevant to autism given
common theoretical views about E-I imbalance in autism
[60]. Because these genes are highly expressed in spatial
patterns resembling the DMN network we find associated
with FT in rsfMRI, it may be that these are key mechanisms
of prenatal androgen-impact on early developing social
brain DMN circuit formation and maintenance.

While there are many genes from this work that could be
focused on, we particularly highlight the role of MEF2C.
Ample evidence supports the involvement of MEF2C as a
candidate mechanism involved in male-biased early devel-
opmental conditions such as autism and intellectual dis-
ability [4, 57, 61–64]. Developmentally, MEF2C is highly
expressed during prenatal development (Fig. 3d). Within
prenatal development MEF2C has the potential to be a
transcriptional regulator of a number of autism-associated
genes— MEF2C binding motifs are enriched in upstream
regions of genes within prenatal gene co-expression mod-
ules that harbor a number of autism-associated genes [4].
Congruent with the idea that MEF2C is important for many
prenatal neurodevelopmental processes, other work has
shown it is involved in neurogenesis, cell differentiation,
maturation, and migration [65–67] as well as having later
roles to play in experience-dependent synaptic development
and cell death [56, 57, 68, 69]. MEF2C is also a known
downstream target of the androgen receptor (AR), thus
making it highly susceptible to androgen-dependent tran-
scriptional influence [45]. MEF2C is also one of the most
important transcription factor genes influencing sex differ-
ences in human brain gene expression—MEF2C differen-
tially targets genes as a function of sex, and the magnitude
of this sex-differential targeting explains a large percentage
of variance in sex differences in gene expression of its
putative targets [48]. Our work further underscores
MEF2C’s involvement in male-specific mechanisms behind
atypical neurodevelopment, and particularly highlights how
MEF2C could be one of many candidates behind fetal
programming effects of androgens on developing social
brain circuits such as the DMN. Compatible with effects on
early neurogenesis and differentiation, we find evidence that

MEF2C expression is dysregulated in the same direction as
FT influence in iPS cells in male cases with autism. Thus,
important future work could examine AR targeting of
MEF2C and its effect on early neurogenesis and differ-
entiation processes. Finally, while available data suggests
that rare deleterious MEF2C mutations are not more pre-
valent in males vs. females with autism or intellectual dis-
ability [70–72], it is unclear whether sex effects would exist
in more subtle missense mutations or whether effects might
appear with much larger sample size. It will be important in
future work to examine these questions with larger datasets.

There are some important caveats and limitations to be
discussed. As illustrated in Fig. 1c, it is noteworthy that FT
exhibits a much larger range of variability in males than
females. From the current data we cannot determine whe-
ther females might show a similar effect if FT variability
was enhanced to a similar range as that of males. Thus, the
interpretations must be tempered by the caveat that the
current data cannot tell us whether the observed effects are
due to a fundamental difference in the how males vs.
females respond to FT or whether the effect is simply a
matter of difference in how much FT males and females are
exposed to. Further work examining females with a larger
range of FT levels is needed to better understand the sex-
specific effects of FT exposure on later development. Sec-
ond, the current work on hNSCs primarily shows how
testosterone may have important actions on early neural
development via conversion to DHT and action on the
androgen receptor. However, future work could examine
other routes of influence, such as aromatization of testos-
terone to estradiol and actions through the estrogen recep-
tor. Furthermore, prior work has shown that the gene RORA
is influenced by androgens and estrogens and can have
further regulatory influence over aromatase levels and act to
reduce estrogen levels [73]. RORA and aromatase levels are
both reduced in frontal cortex in autism and are highly
related to each other [73, 74]. This work suggests that routes
of influence via the AR may be more likely implicated in
autism. Nonetheless, future work should investigate the role
of testosterone conversion to estradiol and actions via the
estrogen receptor and how such mechanisms interact with
RORA in autism.

In conclusion, we find that variation in FT during mid-
gestational periods of prenatal development has a sex-
specific impact on later human brain development. In par-
ticular, FT reduces functional connectivity in adolescence
between social brain DMN subsystems in males, but has no
effect on DMN functional connectivity in females. This sex-
specific influence in early prenatal development was mod-
eled in hNSCs to discover how androgens may act as a
transcriptional influence on genes that are highly relevant in
the adult brain for specific DMN-related circuitry. Here, we
discovered that DHT-dysregulated genes are enriched for
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syndromic causes of autism and intellectual disability and
are highly enriched for genes that are spatially expressed in
a similar pattern to the cortical midline DMN subsystem.
These DHT-dysregulated and DMN-relevant genes (e.g.,
MEF2C) are involved in a variety of synaptic processes and
may affect excitation-inhibition balance. These affected
processes are congruent with the idea that FT may exert
fetal programming influence on genes that play roles in
biological processes that are integral for later circuit for-
mation and maintenance. DHT also plays a prominent role
in dysregulating genes involved in many early neurodeve-
lopmental processes such as neurogenesis, cell differentia-
tion, patterning, and regionalization. This effect is
compatible with the idea that androgens can affect genes
that may have pleiotropic roles at early and later phases of
brain development that link early cell proliferation and
differentiation to later synaptic organization. MEF2C is one
particular gene with such early and late developmental
roles. MEF2C is also highly relevant to cortical midline
DMN circuitry and is highly associated with male-biased
conditions such as autism and intellectual disability.
MEF2C is upregulated in hNSCs by DHT. In an important
link with autism, we find similar MEF2C upregulation in
iPS cells, but not neural progenitor cells or neurons from
male cases of autism. This work highlights that prenatal
androgens may have male-specific influence over early
prenatal neurodevelopmental processes that can potentially
manifest as long-lasting influence over social brain cir-
cuitry. These effects may help explain normative sex dif-
ferences in brain and behavior as well as increased male-
susceptibility to conditions such as autism.
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