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This article deals with the regularity of entropy solutions of scalar conservation laws with discontinuous flux. It is well-known [Adimurthi et al., Comm. Pure Appl. Math. 2011] that the entropy solution for such an equation does not admit BV regularity in general, even when the initial data belongs to BV . Due to this phenomenon, fractional BV s spaces, where the exponent 0 < s ≤ 1 and BV = BV 1 , are required to be wider than BV . It is a long-standing open question to find the optimal regularizing effect for the discontinuous flux with L ∞ initial data. The optimal regularizing effect in BV s is proven in an important case using control theory, and the fractional exponent s is at most 1/2, even when the fluxes are uniformly convex.

Introduction

This article deals with the regularity aspects of the entropy solution for the following scalar conservation laws with discontinuous flux:

   u t + f (u) x = 0, if x > 0, t > 0, u t + g(u) x = 0, if x < 0, t > 0, u(x, 0) = u 0 (x), if x ∈ R, (1.1)
where u : R × [0, ∞) → R is the unknown function, u 0 (•) ∈ L ∞ (R) is the initial data and the fluxes f , g are C 1 (R) and strictly convex (i.e., f ′ and g ′ are increasing functions).

The conservation laws (1.1) arises in several physical situations and applied subjects. For example, it occurs naturally in the two-phase flow of a heterogeneous porous medium in petroleum reservoirs [START_REF] Jaffré | On the upstream mobility flux scheme for the simulating two phase flow in heterogeneous porous media[END_REF]. The equation (1.1) is also useful for understanding the ideal clarifier thickener [START_REF] Bürger | Well-posedness in BV t and convergence of a difference scheme for continuous sedimentation in ideal clarifier-thickener units[END_REF], traffic flow models with varying road surface conditions [START_REF] Mochon | An analysis for the traffic on the highways with changing surface condition[END_REF], and ion etching commonly used in the semiconductor industry [START_REF] Ross | Two new moving boundary problems for scalar conservation laws[END_REF]. These examples are just a glimpse at the broad applicability of the equation (1.1) in the fields of applied sciences. For more details, see [START_REF] Bürger | Well-posedness in BV t and convergence of a difference scheme for continuous sedimentation in ideal clarifier-thickener units[END_REF][START_REF] Bürger | A model of continuous sedimentation of flocculated suspensions in clarifier-thickener units[END_REF][START_REF] Diehl | Dynamic and steady-state behavior of continuous sedimentation[END_REF][START_REF] Diehl | A conservation law with point source and discontinuous flux function modeling continuous sedimentation[END_REF].

The equation (1.1) does not have a global classical solution, even for smooth initial data. Therefore, one needs to consider the following notion of a weak solution: From the above-defined weak formulation, it can be derived that if interface traces u ± (t) = lim x→0± u(x, t) exist, then at x = 0, u satisfies the Rankine-Hugoniot condition, namely, for almost all t, f (u + (t)) = g(u -(t)).

(1.2)

For the equation (1.1), the left and right traces u -, u + play important roles in the well-posedness theory and also in determining the regularity of solutions. In [START_REF] Adimurthi | Conservation laws with discontinuous flux[END_REF], the authors proved the existence of the interface traces via the Hamilton-Jacobi type equation.

It is well known that the conservation laws (1.1) do not have unique weak solutions. To establish uniqueness, an additional condition called the "entropy condition" is necessary even in the case of f = g. Kružkov [START_REF] Kružkov | First-order quasilinear equations with several space variables[END_REF] provided a generalized entropy condition and proved the uniqueness in the case where f = g. However, (1.1) have the flux discontinuity at the interface, one also needs the "interface entropy condition" to establish uniqueness, in addition to the Kružkov entropy. In this article, we use the following notion of the entropy solution. Definition 1.2 (Entropy solution, [START_REF] Adimurthi | Conservation laws with discontinuous flux[END_REF]). A weak solution u ∈ L ∞ (R × [0, T ]) of the problem (1.1) is said to be an entropy solution if the following holds.

1. u satisfies Kruzkov entropy conditions on each side of the interface x = 0, that is, in R \ {0}.

2. The interface traces u ± (t) = lim x→0± u(x, t) exist for almost all t > 0 and they satisfy the following "interface entropy condition" for almost all t > 0, |{t : f ′ (u + (t)) > 0 > g ′ (u -(t))}| = 0.

(1.3)

Uniqueness has been proved in [START_REF] Adimurthi | Conservation laws with discontinuous flux[END_REF] when interface traces exist for a weak solution and they satisfy the entropy condition (1.3). Additionally, the authors obtained useful Lax-Oleinik type explicit formulas for equation (1.1). The notion of 'A-B entropy solution' is introduced in [START_REF] Adimurthi | Optimal entropy solutions for conservation laws with discontinuous flux-functions[END_REF] and it coincides with (1.3) when A = θ g , B = θ f . The number θ f is defined by f (θ f ) = min f when f admits a minimum and g(θ g ) = min g. The Lax-Oleinik type formula is also available [START_REF] Adimurthi | Explicit Hopf-Lax type formulas for Hamilton-Jacobi equations and conservation laws with discontinuous coefficients[END_REF] for the 'A-B-entropy solutions'. It has been observed [START_REF] Adimurthi | Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux[END_REF] that for the case A < θ g or B > θ f , 'A-B-entropy solutions' belong to BV space for BV initial data and for A = θ g , B = θ f total variation of entropy solution can blow up at finite time t 0 > 0 for particular BV initial data (see section 1.2 for more details). Therefore, we work with the choice A = θ g , B = θ f . In this article, we rely on the interface entropy condition (1.3), and we use the analysis of characteristics developed as in [START_REF] Adimurthi | Conservation laws with discontinuous flux[END_REF].

The well-posedness theory of the problem has been extensively studied from both numerical and theoretical aspects. We refer to [START_REF] Adimurthi | Optimal entropy solutions for conservation laws with discontinuous flux-functions[END_REF][START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF][START_REF] Bressan | Vanishing viscosity solutions for conservation laws with regulated flux[END_REF][START_REF] Karlsen | Convergence of a Godunov scheme for conservation laws with a discontinuous flux lacking the crossing condition[END_REF][START_REF] Panov | On existence and uniqueness of entropy solutions to the Cauchy problem for a conservation law with discontinuous flux[END_REF] and the references therein. The existence of a solution of (1.1) has been proved by several numerical schemes [START_REF] Adimurthi | Godunov type methods for scalar conservation laws with flux function discontinuous in the space variable[END_REF][START_REF] Andreianov | The Godunov scheme for scalar conservation laws with discontinuous bell-shaped flux functions[END_REF][START_REF] Ghoshal | Convergence of a Godunov scheme to an Audusse-Perthame adapted entropy solution for conservation laws with BV spatial flux[END_REF][START_REF] Towers | Convergence of a difference scheme for conservation laws with a discontinuous flux[END_REF]. However, due to the absence of total variation bounds for entropy solutions, even for initial data u 0 ∈ BV , the convergence of numerical schemes is typically established using the singular mapping technique [START_REF] Adimurthi | Godunov type methods for scalar conservation laws with flux function discontinuous in the space variable[END_REF][START_REF] Temple | Global solution of the Cauchy problem for a class of 2 × 2 non strictly hyperbolic conservation laws[END_REF][START_REF] Towers | Convergence of a difference scheme for conservation laws with a discontinuous flux[END_REF]. The singular mapping technique originates from the fundamental paper of Temple [START_REF] Temple | Global solution of the Cauchy problem for a class of 2 × 2 non strictly hyperbolic conservation laws[END_REF]. Recent works have generalized the Godunov-type scheme to handle cases where discontinuities of the flux may have a limit point [START_REF] Ghoshal | Convergence of a Godunov scheme to an Audusse-Perthame adapted entropy solution for conservation laws with BV spatial flux[END_REF][START_REF] Ghoshal | A Godunov type scheme and error estimates for scalar conservation laws with Panov-type discontinuous flux[END_REF][START_REF] Ghoshal | BV regularity of the adapted entropy solutions for conservation laws with infinitely many spatial discontinuities[END_REF].

Since the entropy solution of (1.1) lacks BV regularity, it is natural to study its regularity in a space that is bigger than BV . More precisely, in this paper, we quantify the sharp regularity of entropy solution of (1.1) in suitable fractional spaces.

Structure of the paper

This paper is organized as follows: In Sections 1.1 and 1.2, we discuss regularity results for scalar conservation laws where f = g and for (1.1), respectively. This leads to Section 1.3, where we state the regularity problems corresponding to equation (1.1) in precise terms. In Section 2, we describe our main results along with some remarks. To make this article self-contained, Section 3 recalls some definitions and preliminary results from [START_REF] Adimurthi | Conservation laws with discontinuous flux[END_REF][START_REF] Bourdarias | Fractional BV spaces and applications to scalar conservation laws[END_REF]. The detailed proofs of the main results are presented in Section 4, which utilize the Hopf-Lax type formula and some results from [START_REF] Adimurthi | Conservation laws with discontinuous flux[END_REF] and techniques from [START_REF] Adimurthi | Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux[END_REF][START_REF]Optimal results on TV bounds for scalar conservation laws with discontinuous flux[END_REF]. The construction of a counter-example is provided in the last section to show that the main results of the present article cannot be improved. Two appendices contain basic useful lemmas and explanations regarding our adaptation of the result from control theory [START_REF] Adimurthi | Exact and optimal controllability for scalar conservation laws with discontinuous flux[END_REF].

Optimal regularity results in BV s spaces for a smooth flux: f = g

In this subsection, we focus on the case where f = g in (1.1). Even for Lipschitz continuous flux, the well-posedness for the entropy solution of (1.1) is established in the L ∞ setting [START_REF] Godunov | A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics[END_REF][START_REF] Kružkov | First-order quasilinear equations with several space variables[END_REF][START_REF] Lax | Hyperbolic systems of conservation laws[END_REF][START_REF] Oleĭnik | Discontinuous solutions of non-linear differential equations[END_REF], and many methodologies are available to study the regularity of the entropy solutions [START_REF] Adimurthi | Finer regularity of an entropy solution for 1-d scalar conservation laws with non uniform convex flux[END_REF][START_REF] Bourdarias | Fractional BV spaces and applications to scalar conservation laws[END_REF][START_REF] Castelli | Smoothing effect in BV -Φ for entropy solutions of scalar conservation laws[END_REF][START_REF] Castelli | Fractional spaces and conservation laws, Theory, numerics and applications of hyperbolic problems I[END_REF][START_REF] Ghoshal | Optimal regularity for all time for entropy solutions of conservation laws in BV s[END_REF][START_REF] Ghoshal | Non existence of the BV regularizing effect for scalar conservation laws in several space dimension for C 2 fluxes[END_REF][START_REF] Guelmame | Regularizing effect for conservation laws with a Lipschitz convex flux[END_REF][START_REF] Lax | Hyperbolic systems of conservation laws[END_REF][START_REF] Panov | Existence of strong traces for generalized solutions of multidimensional scalar conservation laws[END_REF][START_REF] Panov | Existence of strong traces for quasi-solutions of multidimensional conservation laws[END_REF][START_REF] Oleĭnik | Discontinuous solutions of non-linear differential equations[END_REF].

The function space BV is considered as the natural function space for scalar conservation laws since A. I. Volpert's fundamental work in 1967 ( [START_REF]pert. Spaces BV and quasilinear equations[END_REF]). It allows for compactness and provides a convenient way to describe the structure of shock waves with traces on each side of the singularity [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]. The BV regularity for entropy solutions was first observed in [START_REF] Lax | Hyperbolic systems of conservation laws[END_REF][START_REF] Oleĭnik | Discontinuous solutions of non-linear differential equations[END_REF] independently by P. D. Lax and O. Oleinik. In the case where the flux is uniformly convex, i.e., inf f ′′ > 0, the entropy solution becomes BV instantaneously even when the data is in L ∞ . This well-known smoothing effect is a consequence of the one-sided Lipschitz-Oleinik inequality [START_REF] Oleĭnik | Discontinuous solutions of non-linear differential equations[END_REF].

Unfortunately, the BV space is 'not enough' [START_REF] Cheng | The space BV is not enough for hyperbolic conservation laws[END_REF] when the flux is not uniformly convex. There are many examples of entropy solutions that are not in BV for positive time [START_REF] Adimurthi | Finer regularity of an entropy solution for 1-d scalar conservation laws with non uniform convex flux[END_REF][START_REF] Castelli | Oscillating waves and the maximal smoothing effect for one dimensional nonlinear conservation laws[END_REF][START_REF] Ghoshal | Optimal regularity for all time for entropy solutions of conservation laws in BV s[END_REF]. Although the non-vanishing property of the second derivative of the flux is necessary and sufficient for BV regularizing [START_REF] Ghoshal | Non existence of the BV regularizing effect for scalar conservation laws in several space dimension for C 2 fluxes[END_REF], smoothing effects can still occur in fractional Sobolev spaces [START_REF] Jabin | Some regularizing methods for transport equations and the regularity of solutions to scalar conservation laws[END_REF][START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF] for nonlinear flux. The fractional BV spaces preserve the advantages of the BV space, such as regularity and traces while allowing for more general flux functions [START_REF] Bourdarias | Fractional BV spaces and applications to scalar conservation laws[END_REF]. The Lax-Oleinik smoothing effect was generalized in BV s for a flux with power-law nonlinearity like |u| p+1 and p = 1/s ≥ 1, for C 1 or strictly convex flux in, [START_REF] Bourdarias | Fractional BV spaces and applications to scalar conservation laws[END_REF][START_REF] Castelli | Smoothing effect in BV -Φ for entropy solutions of scalar conservation laws[END_REF][START_REF] Guelmame | Regularizing effect for conservation laws with a Lipschitz convex flux[END_REF].

Fractional BV spaces, denoted by BV s , 0 < s ≤ 1, were first defined for all s ∈ (0, 1) in [START_REF] Love | Sur une classe de fonctionnelles linéaires[END_REF][START_REF] Musielak | On space of functions of finite generalized variation[END_REF][START_REF] Musielak | On generalized variations I[END_REF]. Let I be a non-empty interval of R and s ∈ (0, 1]. The space of fractional bounded variation functions denoted as BV s (I) is a generalization of the space of functions with a bounded variation on I, denoted as BV (I). In the sequel, we denote S(I) as the set of the subdivisions of I, that is the set of finite subsets σ = (x 0 , x 1 , ..., x n ) in I with (x 0 <x 1 <x 2 <...<x n ). [START_REF] Love | Sur une classe de fonctionnelles linéaires[END_REF][START_REF] Musielak | On space of functions of finite generalized variation[END_REF][START_REF] Musielak | On generalized variations I[END_REF]). Let σ = (x 0 , x 1 , ..., x n ) be in S(I) and let u be real function on I. The s-total variation of u with respect to σ is

Definition 1.3 (BV s

T V s u(σ) = n i=1 |u(x i ) -u(x i-1 )| 1/s , then define, T V s u(I) = sup σ∈S(I) T V s u(σ).
The set BV s (I) is the set of functions u : I → R such that T V s u(I) < ∞.

Previous regularity results for discontinuous flux

The regularity of the solution in the BV space is crucial for studying its convergence and the existence of its traces. Without a bound on the total variation, it is difficult to establish the convergence of numerical methods. However, it is not always possible to expect the total variation of the solution to decrease, as a non-constant solution can arise from constant initial data. Despite many decades of research on equation (1.1), optimal regularity results for its solution were not yet known. There are only a few known results regarding the regularity of the solution, which we describe below.

Although it has been proven that the solution away from the interface is BV in space [START_REF] Bürger | A family of numerical schemes for kinematic flows with discontinuous flux[END_REF], the regularity of the solution near the interface remained unknown for a long time. The first breakthrough result was achieved in 2009 by the authors of [START_REF] Adimurthi | Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux[END_REF]. They constructed an explicit example where min f = min g, demonstrating that the total variation of the entropy solution to (1.1) blows up at time t 0 > 0 for BV initial data. To build this example, they exploited the lack of Lipschitz continuity of f -1 g near the critical point of f . Here g -1 -, f -1 + are the inverse of g, f in appropriate domains, more precisely, they are defined as

g -1 -: ](g ′ ) -1 (-∞), (g ′ ) -1 (0)] → R & f -1 + : [(f ′ ) -1 (0), (f ′ ) -1 (+∞)[→ R. (1.4)
The key functions f -1 + g(•) and g -1 -f (•) transmit information via the interface from left-to-right and right-to-left respectively.

In contrast, several regularity results have been proven in [START_REF]Optimal results on TV bounds for scalar conservation laws with discontinuous flux[END_REF][START_REF]BV regularity near the interface for nonuniform convex discontinuous flux[END_REF]. Surprisingly, it was shown that the solution to (1.1) belongs to BV if the fluxes have the same minimum value, i.e., min f = f (θ f ) = min g = g(θ g ). The author also proved that if f (θ f ) = g(θ g ) and the initial data is compactly supported, then there exists a time T such that for all t > T , the solution to (1.1) admits BV regularity. However, the assumption of compact support cannot be relaxed, as it has been shown by example that there exists a sequence of time, T n , for which the total variation of the solution to (1.1) blows up.

Earlier referred publications have uniform convexity assumption on the fluxes, in [START_REF]BV regularity near the interface for nonuniform convex discontinuous flux[END_REF] it has been proved that even for non-uniform convex flux (with a special structure when the flux losses its uniform convexity) any L ∞ initial data gives the solution which is BV loc near the interface when the connection (A, B) as in [START_REF] Adimurthi | Explicit Hopf-Lax type formulas for Hamilton-Jacobi equations and conservation laws with discontinuous coefficients[END_REF] are far from the critical point. This discussion leads to conclude that working solely in the BV space framework is inadequate for scalar conservation laws with discontinuous flux (1.1). Hence, it is appropriate to consider a more generalized space than BV, such as the space of functions of fractional bounded variation, denoted as BV s . In the following subsection, we outline the questions that are addressed in this paper.

Questions on the BV s regularity for discontinuous flux

As we discussed thus far, the entropy solution of (1.1) lacks the following properties:

1. If u 0 ∈ BV (R), then u(•, t) ∈ BV (R) for any t > 0.
2. If f and g are uniformly convex fluxes, min f = min g and u 0 ∈ L ∞ (R), then for any t > 0, u(•, t) ∈ BV loc .

Based on these issues, we aim to address the following questions regarding the regularity of the solution of (1.1):

Question 1.1. Can we expect that if the given initial data belongs to BV s for a well-chosen 0 < s ≤ 1, then the solution of (1.1) stays in BV s ? Question 1.2. Can we expect that for any 0 < s ≤ 1 there exists 0 < s 1 such that if the given initial data belongs to BV s , then the solution of (1.1) belongs to BV s 1 ? Question 1.3. What is the Lax-Oleinik type regularizing effect for uniformly convex fluxes f and g? In other words, does the entropy solution of (1.1) belong to BV s for some s ∈ (0, 1) and for any given L ∞ initial data? Question 1.4. Can we choose 0 < s < 1 sharply and an initial data u 0 ∈ BV s space for which the generalized total variation blows up for the corresponding solution of (1.1)?

Under certain assumptions on the fluxes f and g, we are able to answer all of the questions from 1.1 to 1.4. We also present counterexamples that demonstrate the optimality of the assumptions in our main results. Additionally, we provide explicit estimates of s-total variation of the solution with respect to time variable t with some sufficient conditions on initial data.

Main Results

The paper assumes that f and g are C 1 strictly convex functions admitting a critical point. Let θ f and θ g be the unique critical points of f and g respectively, i.e., f ′ (θ f ) = 0 and g ′ (θ g ) = 0. The notation g -1 -and f -1 + denotes the inverse of g and f for the domain where g ′ (u) ≤ 0 and f ′ (u) ≥ 0, respectively. Note that the existence of a minimum for f and g are always assumed in this paper as it allows the critical behavior of the admissible solution. However, if f and g have no minimum but both are strictly increasing or decreasing, the situation is simpler [START_REF] Adimurthi | Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux[END_REF]. Thus, throughout the paper, it is assumed that,

f (θ f ) = min f = min g = g(θ g ).
(2.1)

In the best case, when f and g are uniformly convex and satisfy (2.1), we obtain a smoothing in BV 1/2 instead of BV . In the case of non-uniformly convex fluxes, the situation is worse. The smoothing depends on the nonlinear flatness of the fluxes. To be more precise, we introduce the following non-degeneracy flux condition which is, there exist two numbers p ≥ 1 and q ≥ 1, such that for any compact set K, there exist positive numbers C 1 and C 2 such that for all u = v, where

u, v ∈ K, |f ′ (u) -f ′ (v)| |u -v| p > C 1 > 0 and |g ′ (u) -g ′ (v)| |u -v| q > C 2 > 0. (2.2) 
For p = 1, this is the classical uniformly convex condition for f and for p > 1 it corresponds to a less nonlinear convex flux such as f (u) = |u| p+1 . An interesting subcase is when the loss of uniform convexity of the fluxes occurs only at their minimum. That is, if f belongs to C 2 and is uniformly convex except at its minimum. For example, convex power laws such as f (u) = |u| p+1 with p > 1. The same assumption can be made for the other flux g. f ′′ , g ′′ vanish only at θ f and θ g respectively.

(

The assumption (2.3) combined with the previous one (2.2) is also called the restricted nondegeneracy condition, and the fluxes that satisfy it are called restricted fluxes. In the subcase where both f and g satisfy (2.3), stronger results can be obtained, which are presented in Theorem 2.1 for initial data in L ∞ and Theorem 2.2 for initial data in BV s . Two quantities are fundamental to express the fractional regularity of the solutions, γ and ν,

γ =      1 q + 1 1 p + 1 ν =      1 p 1 q if min f < min g, if min f > min g. (2.4)
The constant γ ≤ 1/2 can be understood as a loss of regularity due to the interface and ν ≤ 1 as the smoothing effect outside the interface. More precisely, γ comes from the singular mapping technique as explained in the following remark. 

(θ f ) = g(θ g ). Then either f -1 + g(•) or g -1 -f (•)
is Lipschitz continuous while the other one is Hölder continuous with exponent γ. The value of γ depends on p and q from the non-degeneracy condition (2.2), and it is given by (2.4). The proof of this fact can be found in Lemma A.3.

Remark 2.2. In the statements of following theorems, the entropy solutions meant by the weak solutions additionally satisfy the Kružkov entropy and interface entropy condtions as mentioned in Definition 1.3.

Theorem 2.1 (Smoothing effect for restricted nonlinear fluxes and L ∞ initial data). Let f and g be two C 2 fluxes satisfying the restricted non-degeneracy condition f (θ f ) = g(θ g ) (2.1), (2.2) and (2.3). Let u(•, t) be the entropy solution of (1.1) corresponding to an initial data u 0 ∈ L ∞ (R). Then, for each t > 0 and M > 0, the entropy solution u(•, t) ∈ BV s (-M, M ), where s is determined as follows

s = min(γ, ν) (2.5)
and the following estimate holds with a positive constant C f,g,||u 0 || ∞ depending only on the fluxes and the range of the initial data,

T V s (u(•, t), [-M, M ]) ≤ C f,g,||u 0 || ∞ + 3(2||u 0 || ∞ ) 1/s + C f,g,||u 0 || ∞ M t . (2.6)
Remark 2.3 (Uniform convex fluxes and BV 1/2 ). If the fluxes f and g are uniformly convex then the solution belongs to BV 1/2 . So even for the uniformly convex case, the solution goes into a fractional BV space.

Hence, in the following theorem for BV s initial data with 0 < s ≤ 1, the previous result can be stated as follows. The previous Theorem 2.1 can be seen as a limiting case of the following Theorem 2.2 with s = 0, which states that BV 0 = L ∞ .

Theorem 2.2 (Smoothing effect for restricted nonlinear fluxes and BV s initial data).

Let f and g be two C 2 fluxes such that f (θ f ) = g(θ g ) and fluxes satisfy the restricted non-degeneracy condition (2.2) and (2.3). Let u(•, t) be the entropy solution of (1.1) corresponding to an initial data u 0 ∈ BV s (R) for s ∈ (0, 1). Then, for each t > 0 and M > 0, the entropy solution u(•, t) ∈ BV s 1 (-M, M ) where s 1 is given by

s 1 := min{γ, max{ν, s}} (2.7)
the following estimate holds with a positive constant C f,g,||u 0 ||∞ depending only on fluxes and the range of the initial data and a constant D > 0,

T V s 1 (u(•, t), [-M, M ]) ≤ C f,g,||u 0 || ∞ + C f,g,||u 0 || ∞ M t + 2 ||2u 0 || 1 s 1 ∞ + D • T V s (u 0 ). (2.8)
We note that the assumption on vanishing points of f ′′ and g ′′ is restrictive. We can relax this assumption at the cost of smaller s 1 . More precisely, we have the following result. Theorem 2.3 (Smoothing effect for L ∞ initial data). Let f and g be two C 2 fluxes such that f (θ f ) = g(θ g ) satisfying the non-degeneracy condition (2.2) with exponent p, q respectively. Let u(•, t) be the entropy solution of (1.1) corresponding to an initial data u 0 ∈ L ∞ (R). Then, for each t > 0 and M > 0, there exists positive constant C f,g,||u 0 ||∞ such that

T V s (u(•, t), [-M, M ]) ≤ C f,g,||u 0 || ∞ + 3(2||u 0 || ∞ ) 1/s + C f,g,||u 0 || ∞ M t where s is determined as follows s = γ ν.
(2.9)

Remark 2.4. If the initial data u 0 ∈ BV s 0 , then the entropy solution u(•, t) considered in Theorem 2.3 belongs to BV s 2 with s 2 = γ max(s 0 , ν). However, we do not present a separate proof of this result as it can be obtained by following a similar argument as in the proof of Theorem 2.3.

In general, away from the interface, the expected fractional regularity is min(1/p, 1/q) [11] which is always bigger than s in (2.5). In particular, near the interface, for BV initial data, a BV regularity for the entropy solution cannot be expected [START_REF] Adimurthi | Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux[END_REF]. At most, a BV 1/2 regularity is possible. Getting BV regularity of entropy solution can be impossible near the interface. The situation is better far from the interface. Far from the interface, the constant γ plays no role. The following theorem gives estimates which are sharp for small time.

Theorem 2.4 (Regularity outside the interface).

Let f and g be the fluxes with f (θ f ) = g(θ g ). Let u(•, t) be the entropy solution of (1.1) corresponding to an initial data u 0 ∈ BV s (R) for s ∈ (0, 1). If f and g satisfy (2.2) with exponent p and q respectively, for any t > 0, ϵ > 0, then there exists a constant C f,g,||u 0 ||∞ > 0

T V s 1 (u(•, t), (-∞, -ϵ] ∪ [ϵ, ∞)) ≤ C f,g,||u 0 || ∞ t ϵ + 2T V s 1 (u 0 ) + 2(2||u 0 || ∞ ) 1/s 1 (2.10)
for s 1 = min{p -1 , q -1 , s}.

Remark 2.5. All of the regularity results in Theorems 2.1, 2.2, 2.3, and 2.4 can be extended to fractional Sobolev space W s,p with the same exponent s, up to any ε > 0. This is possible due to the embedding BV s ⊂ W s-ε,1/s for all ε ∈ (0, s) [START_REF] Bourdarias | Fractional BV spaces and applications to scalar conservation laws[END_REF]. In other words, if the initial data is in a fractional BV space, then the entropy solution also belongs to a fractional Sobolev space. This is because BV s is more suitable than Sobolev space for entropy solutions since it recovers the exact regularity and BV-like traces [START_REF] Castelli | Oscillating waves and the maximal smoothing effect for one dimensional nonlinear conservation laws[END_REF][START_REF] Ghoshal | Optimal regularity for all time for entropy solutions of conservation laws in BV s[END_REF].

Now we discuss the optimality result. The assumption min f = min g forbids the favorable case f = g, which does not have the interface. Here, the optimality of Theorem 2.2 is proved in the best case with uniformly convex fluxes. For this purpose, examples are built with optimal regularity and not more up. The same construction is valid with a power law on one side of the interface. These examples highlight the sharpness of Theorem 2.2. Theorem 2.5 (Blow-up for critical BV s semi-norms). Let p ≥ 1 and ϵ > 0. Then there exist fluxes f, g and an initial data u 0 ∈ BV (R) such that 1. the flux f satisfies the non-degeneracy condition (2.2) with exponent p, 2. the function g is uniformly convex,

the corresponding entropy solution u(•, T ) /

∈ BV s loc (R) for some T > 0 and s =

1 p + 1 + ϵ.
The proof of Theorem 2.5 is postponed in Section 5 and Appendix C.

Preliminaries

The present work builds upon the fundamental work of Adimurthi and Gowda in [START_REF] Adimurthi | Conservation laws with discontinuous flux[END_REF], where they established an important foundation of the theory on scalar conservation laws with an interface and two convex fluxes. The author proposed the natural entropy condition (1.3) at the interface which means that no information comes only from the interface but crosses or goes towards the interface. Such entropy condition is in the spirit of Lax-entropy conditions for shock waves. To make this paper self-contained, we recall some definitions and results from their paper.

The following theorem, which provides a Lax-Oleinik or Lax-Hopf formula for the initial value problem (1.1), can be found in [7, Lemma 4.9, pp. 51]. The notations introduced in Theorem 3.1 will be used in the statements and proofs throughout the paper. Theorem 3.1 ([7]). Let u 0 ∈ L ∞ (R), then there exists the entropy solution u(•, t) of (1.1) corresponding to an initial data u 0 . Furthermore, there exist Lipschitz curves R 1 (t) ≥ R 2 (t) ≥ 0 and L 1 (t) ≤ L 2 (t) ≤ 0, monotone functions z ± (x, t) non-decreasing in x and non-increasing in t and t ± (x, t) non-increasing in x and non-decreasing in t such that the solution u(x, t) can be given by the explicit formula for almost all t > 0,

u(x, t) =                        (f ′ ) -1 x -z + (x, t) t if x ≥ R 1 (t), (f ′ ) -1 x t -t + (x, t) if 0 ≤ x < R 1 (t), (g ′ ) -1 x -z -(x, t) t if x ≤ L 1 (t), (g ′ ) -1 x t -t -(x, t) if L 1 (t) < x < 0. Furthermore, if f (θ f ) ≥ g(θ g ) then R 1 (t) = R 2 (t) and if f (θ f ) ≤ g(θ g ) then L 1 (t) = L 2 (t)
. We also have only three cases and following formula to compute the solution: There is a maximum principle for such entropy solutions, but more complicate than for f = g,

Case 1: L 1 (t) = 0 and R 1 (t) = 0, u(x, t) = u 0 (z + (x, t)) if x > 0, u 0 (z -(x, t)) if x < 0. Case 2: L 1 (t) = 0 and R 1 (t) > 0, then u(x, t) =    f -1 + g(u 0 (z + (x, t))) if 0 < x < R 2 (t), f -1 + g(θ g ) if R 2 (t) ≤ x ≤ R 1 (t), u 0 (z -(x, t)) if x < 0. Case 3: L 1 (t) < 0, R 1 (t) = 0, then u(x, t) =    g -1 -f (u 0 (z -(x, t))) if L 2 (t) < x < 0, u 0 (z -(x, t)) if x ≤ L 1 (t), g -1 -f (θ f ) if L 1 (t) < x < L 2 (t). z + (x,t) z + (x,t) z -(x,t) L 1 (t)=L 2 (t)=0 • • R 2 (t) R 1 (t) t + (x,t)
u ∞ ≤ max u 0 ∞ , sup |v|≤∥u 0 ∥∞ |f -1 + (g(v))|, sup |v|≤∥u 0 ∥∞ |g -1 -(f (v))| =: S f,g,||u 0 || ∞ . (3.1)
Without loss of generality, we may assume that min f < min g for the proofs of the main results below, as illustrated in Figure 2. This choice enforces the values of the entropy solution at the interface lie outside ( θf , θf ). Thus the function f ′ is far from 0 at the interface. Moreover, the function f ′-1 is Lipschitz outside ( θf , θf ), and for restricted fluxes, the function f -1 + is also Lipschitz outside ( θf , θf ). The singular maps f -1 + g and g -1 -f are shown to be Lipschitz and Hölder continuous, respectively, in Lemma A.3 in Appendix A.

Proof of main results

This long section aims to establish the fractional BV regularity of the entropy solution, which depends on the degeneracy of the fluxes. A crucial aspect of this is estimating the regularity of the traces at the interface. In subsection 4.1, we study the fractional regularity in a favorable case when the traces at the interface are not near the critical values θ f or θ g . Here, spatial BV s estimates for trace values issued from the interface are studied in Subsection 4.2. Moreover, only traces issued from the initial data are considered. The crossing of the interface is studied later in Subsection 4.3.

Regularity when traces are far from critical values

Our first objective is to establish fractional BV estimates for the solution in the time variable, assuming that the traces at x = 0 are far from the critical values θ f or θ g . Lemma 4.1 (Fractional BV estimate for the traces of the solution). Let f, g be satisfying (2.2) with exponents p, q respectively. Let 0 < a < b < ∞. Then the following holds:

1. If u(0-, t) > θ g for a.e. t ∈ (a, b), then we have T V 1 q (u(0-, •), (a, b)) ≤ C g b a , ( 4.1) 
where C g > 0 is constant depending only on g.

2.

If u(0+, t) < θ f for a.e. t ∈ (a, b), then we have

T V 1 p (u(0+, •), (a, b)) ≤ C f b a , ( 4.2) 
where C f > 0 is a constant depending on f .

Proof. Since u(0-, t) > θ g and g ′ ≥ 0 on (θ g , +∞), the value of the left trace comes from the left.

Using Theorem 3.1, we have

(g ′ ) -1 x -z -(x, t) t that gives u(0-, t) = (g ′ ) -1 -z -(0-, t) t for t ∈ (a, b)
, where t → z -(0-, t) is non-increasing. Since g satisfies the non-degeneracy condition (2.2), from Lemma A.1 (g ′ ) -1 is a 1/q-Hölder function with a constant H g such that

|u(0-, t 1 ) -u(0-, t 2 )| ≤ H g z -(0-, t 1 ) t 1 - z -(0-, t 2 ) t 2 1 q
.

We observe that z -(0-, t 1 )

t 1 - z -(0-, t 2 ) t 2 ≤ |z -(0-, t 1 )| 1 t 1 - 1 t 2 + 1 t 2 |z -(0-, t 1 ) -z -(0-, t 2 )| .
For any partition a ≤ t

1 < t 2 < • • • < t m ≤ b, m-1 j=1 |u(0-, t j ) -u(0-, t j+1 )| q ≤ H g q m-1 j=1 |z -(0-, t j )| 1 t j - 1 t j+1 + 1 t j+1 |z -(0-, t j ) -z -(0-, t j+1 )| ≤ H g q |z -(0-, b)| m-1 j=1 1 t j - 1 t j+1 + 1 a m-1 i=1 |z -(0-, t j ) -z -(0-, t j+1 )| ≤ H g q |z -(0-, b)| (b -a) ab + |z -(0-, a) -z -(0-, b)| a . Since |z -(0-, a) -z -(0-, b)| ≤ |z -(0-, b)| and b -a ≤ b we have, m-1 j=1 |u(0-, t j ) -u(0-, t j+1 )| q ≤ 2H g q |z -(0-, b)| a .
We obtain an upper bound on |z(0-, b)| from the finite speed of propagation, which gives

|z(0-, b)| ≤ M g b where K f,g,||u 0 || ∞ = sup{|g ′ (v)| ; |v| ≤ ||u 0 || ∞ }. Hence, we get a new constant C g m-1 j=1 |u(0-, t j ) -u(0-, t j+1 )| q ≤ C g b a .
This proves (4.1). Similarly, we can prove the (4.2).

Better fractional BV estimates for the traces of the solution can be obtained when the fluxes are less singular. Lemma 4.2 (Fractional BV estimate for traces away from critical values). Let r > 0 and f, g be satisfying (2.2) with exponent p, q respectively. Let 0 < a < b < ∞.

1. If u(0-, t) ≥ θ g + r and g ′′ vanishes only at θ g (2.3), then there exists a constant C g > 0 independent of r such that the following inequality holds,

T V (u(0-, •), (a, b)) ≤ C g min{g ′′ (v)|v ∈ [θ g + r, ||u 0 || ∞ ]} b a . (4.3) 2. If u(0+, t) ≤ θ f + r and f ′′ vanishes only at θ g (2.
3), then there exists a constant C f > 0 independent of r such that the following inequality holds,

T V (u(0+, •), (a, b)) ≤ C f min{f ′′ (v)|v ∈ [-||u 0 || ∞ , θ f -r]} b a . ( 4.4) 
Lemma 4.2 will be used later with constant r given by either θ f -θf or θf -θ f as shown in (see Fig 2). The fact that r is a positive constant is crucial to get uniform estimates later.

Proof. For any x, y

∈ R consider |x -y| = g ′ (g ′-1 (x) -g ′ (g ′-1 (y) = g ′′ (ξ) g ′-1 (x) -g ′-1 (y) ,
where ξ ∈ (x, y). Now for (4.3), Theorem 3.1 gives, u(0

-, t) = (g ′ ) -1 -z -(0-, t) t for t ∈ (a, b)
where t → z -(0-, t) is non-increasing. Thus,

u(0-, t 1 ) -u(0-, t 2) = g ′-1 -z -(0-, t 1 ) t 1 -g ′-1 -z -(0-, t 2 ) t 2 ≤ min{g ′′ (v); v ∈ [θ g + r, ||u 0 || ∞ ]} -1 z -(0-, t 1 ) t 1 - z -(0-, t 2 ) t 2 .
Now the similar calculation as to prove (4.1) gives (4.3). By similar arguments (4.4) can be proven for f .

Spatial BV s estimates for values originating from the interface

Now, far from the interface and restricted flux, when the values of the solution are far from the critical values of f and g, a BV estimate is available. The following inequalities are also valid in BV s and used later along with other BV s estimates. Lemma 4.3 (BV and BV s estimates for the solution). Let u be an entropy solution and R 1 (t) > 0 for some fixed t > 0. Let 0 < a < b < R 1 (t) and S f,g,||u 0 || ∞ be as in (3.1). Let r > 0, f satisfies (2.2) and f ′′ vanishes only on θ f (2.3). If u(x, t) ≥ θ f + r for a ≤ x ≤ b, then there exists a constant C f,g,||u 0 || ∞ > 0 such that

T V s (u(•, t), [a, b]) ≤ C f,g,||u 0 || ∞ min{f ′′ (v); v ∈ [θ f + r, S f,g,||u 0 || ∞ ]} 1 s t -t + (b, t) t -t + (a, t) 1 s , ( 4.5) 
for all 0 < s ≤ 1.

The same result holds for the left side of the interface as follows:

Lemma 4.4 (BV and BV s estimate for the solution). Let u be an entropy solution and L 1 (t) < 0 for some t > 0. Let L 1 (t) < a < b < 0 and S f,g,||u 0 || ∞ be as in (3.1). Let r > 0, flux g satisfies (2.2) and g ′′ vanishes only on

θ g . If u(x, t) ≤ θ g -r for a ≤ x ≤ b, then there exists a constant C f,g,||u 0 || ∞ > 0 such that T V s (u(•, t), [a, b]) ≤ C f,g,||u 0 || ∞ min{g ′′ (v); v ∈ [-S f,g,||u 0 || ∞ , θ g -r]} 1 s t -t -(b, t) t -t -(a, t) 1 s
, for all 0 < s ≤ 1.

Proof. Theorem 3.1 gives,

u(x, t) = (f ′ ) -1 x t -t + (x, t) for x ∈ (0, R 1 (t)). Fix a partition a ≤ x 1 < x 2 < • • • < x m ≤ b.
Then, as in the proof of inequality (4.3), it follows,

m-1 j=1 |u(x j , t) -u(x j+1 , t)| 1 s = m-1 j=1 (f ′ ) -1 x j t -t + (x j , t) -(f ′ ) -1 x j+1 t -t + (x j+1 , t) 1 s ≤ 1 min{f ′′ (v); v ∈ [θ f + r, S f,g,||u 0 || ∞ ]} 1 s m-1 j=1 x j t -t + (x j , t) - x j+1 t -t + (x j+1 , t) 1 s . We calculate x j t -t + (x j , t) - x j+1 t -t + (x j+1 , t) ≤ |x j | 1 t -t + (x j , t) - 1 t -t + (x j+1 , t) + 1 t -t + (x j+1 , t) |x j -x j+1 | ≤ b 1 t -t + (x j , t) - 1 t -t + (x j+1 , t) + 1 t -t + (a, t) |x j -x j+1 | .
Hence, by the convexity yields, (a + b)

1 s ≤ 2 1-s s a 1 s + b 1 s
and we get m-1 j=1

x j t -t + (x j , t) - x j+1 t -t + (x j+1 , t) 1 s ≤ 1 2 s-1 s m-1 j=1 b 1 s 1 t -t + (x j , t) - 1 t -t + (x j+1 , t) 1 s + m-1 j=1 1 (t -t + (a, t)) 1 s |x j -x j+1 | 1 s ≤ 1 2 s-1 s b 1 s 1 t -t + (a, t) - 1 t -t + (b, t) 1 s + b -a t -t + (a, t) 1 s ≤ 2 1 s b t -t + (a, t) 1 s .
In the last step we have used b -a ≤ b and (t -t + (b, t))

-(t -t + (a, t)) ≤ t -t + (b, t). Note that b ≤ K f,g,||u 0 || ∞ (t -t + (b, t)) where K f,g,||u 0 || ∞ = sup{|f ′ | ; |v| ≤ S f,g,||u 0 || ∞ } where S f,g,||u 0 || ∞ is defined in (3.1).
The following lemma deals with the spatial regularity of the entropy solution on the right side of the interface. Inequality (4.5) does not use the restricted non-degeneracy condition. Lemma 4.5. Let u be an entropy solution and R 1 (t) > 0 for some fixed t > 0. Let 0 < a < b < R 1 (t) and S f,g,||u 0 || ∞ be as in (3.1). If f only satisfies (2.2) with exponent p then we have

T V 1 p (u(•, t), [a, b]) ≤ C f,g,||u 0 || ∞ t -t + (b, t) t -t + (a, t) . ( 4.6) 
The same result holds for the left side of the interface as follows.

Lemma 4.6. Let u be an entropy solution and L 1 (t) < 0 for some t > 0. Let L 1 (t) < a < b < 0. If g satisfies (2.2) with exponent q then we have

T V 1 q (u(•, t), [a, b]) ≤ C f,g,||u 0 || ∞ t -t -(b, t) t -t -(a, t) . (4.7)
Using a similar argument to that of the previous Lemma 4.3, we can prove the inequality (4.6) of Lemma 4.5, so we omit the proof here.

Smoothing effect for restricted nonlinear fluxes

We are now ready to prove Theorem 2.1. Accordingly, we first fix an arbitrary partition and divide it into several parts. Some of these parts are far from the interface, where we estimate the generalized variation using the regularizing effect for scalar conservation laws without a boundary. For the parts near the interface, we apply the Lax-Oleinik formula (explicit formula in Theorem 3.1) for the solution, along with previous lemmas.

Proof of Theorem 2.1: Since f (θ f ) = g(θ g ), without loss of generality assume that f (θ f ) < g(θ g ) as in (see Fig 2). It is enough to consider the following two cases, the other cases are similar. Case(i): L 1 (t) = 0 and R 1 (t) ≥ 0.

Consider an arbitrary partition

{-M = x -n < • • • < x -1 < x 0 ≤ 0 < x 1 < • • • < x l ≤ R 2 (t) < x l+1 < • • • < x m ≤ R 1 (t) < x m+1 < • • • < x n = M }. Then, n-1 i=-n |u(x i , t) -u(x i+1 , t)| 1/s = -1 i=-n |u(x i , t) -u(x i+1 , t)| 1/s + n-1 i=m+1 |u(x i , t) -u(x i+1 , t)| 1/s + l-1 i=1 |u(x i , t) -u(x i+1 , t)| 1/s + m-1 i=l+1 |u(x i , t) -u(x i+1 , t)| 1/s + |u(x 0 , t) -u(x 1 , t)| 1/s + |u(x l , t) -u(x l+1 , t)| 1/s + |u(x m , t) -u(x m+1 , t)| 1/s .
From Theorem 3.1, it follows that the solution u is constant between R 2 (t) to R 1 (t), which means variation is zero for this interval. Using the Lax-Oleinik formula from Theorem 3.1 and bounding the last three terms yield

n i=-n |u(x i , t) -u(x i+1 , t)| 1/s ≤ -1 i=-n |u(x i , t) -u(x i+1 , t)| 1/s I + n-1 i=m+1 |u(x i , t) -u(x i+1 , t)| 1/s III + l-1 i=1 |f -1 + g(u 0 (z + (x i , t))) -f -1 + g(u 0 (z + (x i+1 , t)))| 1/s II +3(2||u 0 || ∞ ) 1/s .
Now we wish to estimate the terms I, II, and III. The simplest terms I, III are estimated as in [START_REF] Bourdarias | Fractional BV spaces and applications to scalar conservation laws[END_REF][START_REF] Castelli | Smoothing effect in BV -Φ for entropy solutions of scalar conservation laws[END_REF]. First, let us take into account the term I. Since f and g are satisfying the flux nondegeneracy condition (2.2), by Lemma A.1, the maps u → (g ′ ) -1 (u) and u → (f ′ ) -1 (u) are Hölder continuous with exponents q -1 and p -1 , respectively. From Theorem 3.1, we have that

u(x, t) = (g ′ ) -1 x -z -(x, t) t , for x < 0, then for -M ≤ x i < x i+1 ≤ 0, from Lemma A.1 |u(x i , t) -u(x i+1 , t)| q = (g ′ ) -1 x i -z -(x i , t) t -(g ′ ) -1 x i+1 -z -(x i+1 , t) t q ≤ C -q -1 2 x i -z -(x i , t) t - x i+1 -z -(x i+1 , t) t q -1 q
, using triangle inequality we obtain,

|u(x i , t) -u(x i+1 , t)| q ≤ C -1 2 x i -x i+1 t + C -1 2 z -(x i , t) -z -(x i+1 , t) t .
Since |x i |, |x i+1 | ≤ M and x = z -(x, t) + g ′ (u(x, 0))t hence, we get

T V q -1 u(σ ∩ [-M, 0]) ≤ 4M C 2 t + 1 C 2 sup |g ′ (v)| ; |v| ≤ ||u 0 || L ∞ (R) . ( 4.8) 
In similar fashion, for the term III we have,

T V p -1 u(σ ∩ [R 1 (t), M ]) ≤ 4M C 1 t + 1 C 1 sup |f ′ (v)| ; |v| ≤ ||u 0 || L ∞ (R) . (4.9)
Now we will estimate the term II. From the definition of s, s ≤ 1/p and s ≤ 1/(q + 1). The rest of the proof for this case is divided into two sub-cases.

1. Consider the situation when t min

+ (t) = inf{t + (x, t); x ∈ (0, R 1 (t))} ≥ t/2.
The fact that t min + > t/2 > 0 implies that the characteristics reaching the left side of the interface at (0-, t + ) have a positive speed. Hence, u(0-, t + (x, t)) > θ g for all x ∈ (0, R 1 (t)) (see Fig 2). Therefore, the inequality (4.1) of Lemma 4.1 gives

T V 1 q (u(0-, •)(t min + , t)) ≤ C g t t/2 = 2C g . Since s ≤ 1 q + 1 < 1 q Lemma B.1 yields T V s (u(0-, •)(t min + , t)) ≤ osc(u) 1/s-q • T V 1 q (u(0-, •)(t min + , t)) ≤ osc(u) 1/s-q C g , that gives II ≤ osc(u) 1/s-q C g .

Next, we focus on the sub-case when t min

+ (t) = inf{t + (x, t); x ∈ (0, R 1 (t))} < t/2.
As previous subcase, we already have T V s (u(0-, •)(t/2, t)) ≤ 2C g . Let j 0 > 0 such that t + (x j , t) ≥ t/2 for 0 < j ≤ j 0 and t + (x j , t) < t/2 for j 0 < j ≤ l -1. Since u(x j , t) = u(0+, t + (x j , t)) = f -1 + g(u(0-, t + (x j , t)) for 0 < j < l -1, from Lemma A. 3, f -1 + g is Lipschitz function, hence

j 0 j=1 |u(x j , t) -u(x j-1 , t)| 1 s ≤ 2C f,g .
Let θf > θ f be such that f ( θf ) = g(θ g ) as shown in (see Fig 2). Then by Rankine-Hugoniot condition (1.2) observe that u(x j , t) ≥ θf . From the inequality (4.5) of Lemma 4.3 we get

l-2 j=j 0 +1 |u(x j , t) -u(x j+1 , t)| 1 s ≤ C f,g,||u 0 ||∞ .
Subsequently, we get

II ≤ C f,g,||u 0 ||∞ . (4.10)
Hence combining the estimates on I, II and III for constant

C f,g,||u 0 || ∞ > 0 we have n i=-n |u(x i , t) -u(x i+1 , t)| 1/s ≤ C f,g,||u 0 || ∞ 1 + 1 t .
Case (ii): R 1 (t) = 0, L 1 (t) < 0. Unlike the previous case, this case is not as good due to the fact that g -1 -f is only Hölder continuous and not Lipschitz. Let us consider the partition

σ = {-M = x -n < • • • < x m ≤ L 2 (t) = L 1 (t) < x m+1 < • • • < x 0 ≤ R 2 (t) = R 1 (t) = 0 < x 1 < • • • ≤ x n = M } and then n i=-n |u(x i , t) -u(x i+1 , t)| 1/s = m-1 i=-n |u(x i , t) -u(x i+1 , t)| 1/s + n i=1 |u(x i , t) -u(x i+1 , t)| 1/s + -1 i=m+1 |u(x i , t) -u(x i+1 , t)| 1/s + |u(x 0 , t) -u(x 1 , t)| 1/s + |u(x m , t) -u(x m+1 , t)| 1/s . From Theorem 3.1 we get, ∞ i=-∞ |u(x i , t) -u(x i+1 , t)| 1/s = m-1 i=-n |u(x i , t) -u(x i+1 , t)| 1/s I +2(2||u 0 || ∞ ) 1/s + -1 i=m+1 |g -1 -(f (u 0 (z -(x i , t)))) -g -1 -(f (u 0 (z -(x i+1 , t))))| 1/s II + n i=1 |u(x i , t) -u(x i+1 , t)| 1/s III .
Similarly to Case (i) we bound I, III as in (4.8), (4.9) to get

I + III ≤ C f,g,||u 0 ||∞ M t .
We now estimate the term II, and similar to Case (i), we divide this analysis into two sub-cases.

1. We first consider the situation when t min -(t) = inf{t -(x, t); x ∈ (L 1 (t), 0)} ≥ t/2. The Rankine-Hugoniot condition (1.2) implies that u(0+, •) ≤ θf , (see Fig 2). The inequality (4.4) of Lemma 4.2 gives

T V (u(0+, •)(t min -, t)) ≤ C f,g,||u 0 || ∞ . (4.11)
Note that g -1 -• f is Hölder continuous function with exponent

1 q + 1 . Hence we have II = -1 j=m+1 |u(x j , t) -u(x j+1 , t)| 1 q+1 ≤ C f,g,||u 0 || ∞ . (4.12)
2. Next we focus on the sub-case when t min -(t) = inf{t -(x, t); x ∈ (L 1 (t), 0)} < t/2. Let j 0 < 0 such that t + (x j , t) ≥ t/2 for j 0 ≤ j < 0 and t + (x j , t) < t/2 for m + 1 < j < j 0 . In the previous sub-case we have

-1 j=j 0 |u(x j , t) -u(x j+1 , t)| 1 q+1 ≤ C f,g,||u 0 || ∞ . (4.13)
Note that for m + 1 < j < j 0 , u(x j , t) = u(0-, t -(x j , t)) ≤ θ g . From the inequality (4.7) of Lemma 4.6 we have

j 0 -1 j=m+1 |u(x j , t) -u(x j+1 , t)| 1 q ≤ C f,g,||u 0 || ∞ . (4.14)
Subsequently, we get

II ≤ C f,g,||u 0 || ∞ + ||2u 0 || 1 q+1 ∞ . (4.15)
Hence, from the estimates on I, II and III we get

n i=-n |u(x i , t) -u(x i+1 , t)| 1 q+1 ≤ C f,g,||u 0 || ∞ + 3(2||u 0 || ∞ ) 1 q+1 + C f,g M t .
(4.16)

Generalization for BV s initial data

Now we can prove Theorem 2.2. To do this, we divide the domain into several parts. Here, the initial data belongs to BV s . If s is very small, then far from the interface estimates come from the regularizing effect. If s is near 1, then outside interface initial data regularity propagates. For the estimate on the solution near the interface, again we use the Theorem 3.1 (Lax-Oleinik formula from [START_REF] Adimurthi | Conservation laws with discontinuous flux[END_REF]).

Proof of Theorem 2.2. Since f (θ f ) = g(θ g ), without loss of generality we assume that f (θ f ) < g(θ g ), (see Fig 2) because other cases can be done in a similar way. Hence, from Theorem 3.1 we have L 2 (t) = L 1 (t) then it is enough to consider the following two cases.

Case (i):

If L 1 (t) = 0 and R 1 (t) ≥ 0. Consider the partition σ = {-M = x -n ≤ • • • < x -1 < x 0 ≤ 0 < x 1 < • • • < x l ≤ R 2 (t) < x l+1 < • • • < x m ≤ R 1 (t) < x m+1 < • • • ≤ x n = M } and s 1 = min{γ, max{ν, s}} ∈ (0, 1). Then n-1 i=-n |u(x i , t) -u(x i+1 , t)| 1/s 1 = -1 i=-n |u(x i , t) -u(x i+1 , t)| 1/s 1 + n-1 i=m+1 |u(x i , t) -u(x i+1 , t)| 1/s 1 + l-1 i=1 |u(x i , t) -u(x i+1 , t)| 1/s 1 + m-1 i=l+1 |u(x i , t) -u(x i+1 , t)| 1/s 1 + |u(x 0 , t) -u(x 1 , t)| 1/s 1 + |u(x l , t) -u(x l+1 , t)| 1/s 1 + |u(x m , t) -u(x m+1 , t)| 1/s 1 .
From Theorem 3.1, the entropy solution is constant between R 2 (t) and R 1 (t) which means variation is zero for this interval. Hence,

n-1 i=-n |u(x i , t) -u(x i+1 , t)| 1/s 1 = -1 i=-n |u(x i , t) -u(x i+1 , t)| 1/s 1 I +3(2||u 0 || ∞ ) 1/s 1 + l-1 i=1 |f -1 + g(u 0 (z + (x i , t))) -f -1 + g(u 0 (z + (x i+1 , t)))| 1/s 1 II + n-1 i=m+1 |u(x i , t) -u(x i+1 , t)| 1/s 1 III .
From the choice of s 1 , we get s 1 ≤ max{s, 1/q}. If 1/q > s, then s 1 < 1/q. By a similar argument as in (4.8) we have

-1 i=-n |u(x i , t) -u(x i+1 , t)| 1/s 1 ≤ 4M C 2 t + 1 C 2 sup |g ′ (v)| ; |v| ≤ ||u|| L ∞ (R×[0,T ]) .
If s > 1/q then s 1 < s and we use the regularity of initial data to estimate I so from Lemma B.1 I ≤ D • T V s (u 0 ). Combining both the estimates we can write

I ≤ T V s (u 0 ) + 4M C 2 t + 1 C 2 sup |g ′ (v)| ; |v| ≤ ||u|| L ∞ (R×[0,T ]) . ( 4.17) 
Similarly we have

III ≤ T V s (u 0 ) + 4M C 1 t + 1 C 1 sup |f ′ (v)| ; |v| ≤ ||u|| L ∞ (R×[0,T ]) . ( 4.18) 
From Lemma A.3 we know that f -1 + g(•) is a Lipschitz continuous. Hence, the term II can be estimated as

II = l-1 i=1 |f -1 + g(u 0 (z + (x i , t))) -f -1 + g(u 0 (z + (x i+1 , t)))| 1/s 1 ≤ C • l-1 i=1 |u 0 (z + (x i , t)) -u 0 (z + (x i+1 , t))| 1/s 1 .
If s > 1/q, then we have s 1 < s. Using Lemma B.1, we obtain II ≤ D • T V s (u 0 ). For the case s < 1/q, it is uncertain whether s 1 < s, but we certainly have s 1 < 1/q. In this case, we use the regularizing effect for solutions of conservation laws due to the non-degeneracy of g [START_REF] Bourdarias | Fractional BV spaces and applications to scalar conservation laws[END_REF]. Thus, for term II, we obtain the estimate (4.10) similarly as in the proof of Theorem 2.1. Hence, combining the estimates on I, II and III we get

n-1 i=-n |u(x i , t) -u(x i+1 , t)| 1/s 1 ≤ D • T V s (u 0 ) + 3(2||u 0 || ∞ ) 1/s 1 + C f,g M t .
Case (ii): R 1 (t) = 0, L 1 (t) < 0. This case can be handled in a similar fashion as in the previous case.

Only difference is the estimation of II which can be done same as in (4.15).

Hence, we have proven that u(

•, t) ∈ BV s 1 (-M, M ). To show that u(•, t) ∈ BV s 1 (R), we consider a partition -∞ < x -n < • • • < x n < ∞ which is not necessarily contained in [-M, M ]. We can choose M = t sup{|f ′ (v)| , |g ′ (v)| ; |v| ≤ ||u 0 || ∞ }. Suppose |x j | ≤ M for -m 1 ≤ j ≤ m 2 for some 0 < m 1 , m 2 ≤ n. From (4.16) we get m 2 i=-m 1 |u(x i , t) -u(x i+1 , t)| 1 q+1 ≤ C f,g + 2(2||u 0 || ∞ ) 1 q+1 .
From the choice of M , we can see that

R 1 (t) ≤ M, L 1 (t) ≥ -M . Hence for i ≤ -m 1 , u(x i , t) = u 0 (z -(x i , t)) and for i ≥ m 2 , u(x i , t) = u 0 (z + (x i , t)). Subsequently, -m 1 -2 i=-n |u(x i , t) -u(x i+1 , t)| 1 s + n-1 i=m 2 +1 |u(x i , t) -u(x i+1 , t)| 1 s ≤ T V s (u 0 ).
Therefore, we obtain

n-1 i=-n |u(x i , t) -u(x i+1 , t)| 1 q+1 ≤ C f,g,||u 0 || ∞ + 4(2||u 0 || ∞ ) 1 q+1 + T V s (u 0 ).
This completes the proof of Theorem 2.2.

Non restricted fluxes

We now consider the case of weaker non-degeneracy conditions on the fluxes. In this case, we cannot utilize Lemma 4.2, 4.3, and 4.4 to obtain estimates on the solution near the interface. As a result, the regularity of the solution is weaker here.

Proof of Theorem 2.3: Fix a time t > 0. We only show for the case when R 1 (t) > 0. Note that in this case

L 1 (t) = L 2 (t) = 0. Suppose t 0 = lim x→R 1 (t)- t + (x, t). First consider t 0 > t/2. From Lemma 4.1, we have T V 1 q (u(0-, •), (t 0 , t)) ≤ C g t t 0 ≤ 2C g . Since u → f -1 + (g(u)
) is Hölder continuous with exponent

1 p + 1 , we get |u(0+, t 1 ) -u(0+, t 2 )| ≤ C f,g,||u 0 || ∞ |u(0-, t 1 ) -u(0-, t 2 )| 1 p+1
. Subsequently, we have

T V s (u(0+, •), (t 0 , t)) ≤ C f,g,||u 0 || ∞ where s = 1 q(p + 1)
.

Note that for x ∈ (0, R 1 (t)) we have u(x, t) = u(0+, t + (x, t)). Therefore,

T V s (u(•, t), (0, R 1 (t))) ≤ C f,g,||u 0 || ∞ . (4.19) For x > R 1 (t) we have u(x, t) = (f ′ ) -1 x -z + (x, t) t
for a non-decreasing x → z + (x, t). By using flux condition (2.2) of f , we obtain

T V 1 p (u(•, t), (R 1 (t), M )) ≤ C f,g,||u 0 || ∞ M t . ( 4.20) 
Hence,

T V s (u(•, t), (0, M )) ≤ T V s (u(•, t), (0, R 1 (t))) + ||2u|| 1 s L ∞ (R) + T V s (u(•, t), (R 1 (t), M )) ≤ C f,g,||u 0 || ∞ + ||2u 0 || 1 s L ∞ (R) + T V 1 p (u(•, t), (R 1 (t), M )) ≤ C f,g,||u 0 || ∞ + ||2u 0 || 1 s L ∞ (R) + C f,g,||u 0 || ∞ M t .
Next we consider the case when t 0 < t/2. Let x 0 = sup{x; t + (x, t) ≥ t/2}. By Lemma 4.3 we have

T V 1 p (u(•, t); (x 0 , M )) ≤ C f,g,||u 0 || ∞ + C f,g,||u 0 || ∞ M t . ( 4.21) 
Similar to (4.19) we get

T V s (u(•, t), (0, x 0 )) ≤ C f,g,||u 0 || ∞ with s = 1 q(p + 1)
.

Subsequently, we obtain

T V s (u(•, t), (0, M )) ≤ C f,g,||u 0 || ∞ + ||2u 0 || 1 s L ∞ (R) + C f,g,||u 0 || ∞ M t .
Note that for x < 0 we have u(x, t) = (g ′ ) -1 x -z -(x, t) t . Then by using flux condition (2.2)

we can show that

T V 1 q (u(•, t); (-M, 0)) ≤ C f,g,||u 0 || ∞ M t . ( 4.22) 
The other case when L 1 (t) < 0 follows from a similar argument. This completes the proof of Theorem 2.3.

Propagation of the initial regularity outside the interface

In this section, we show the regularity of entropy solutions outside the interface is better than at the interface.

Proof of Theorem 2.4. We consider the partition ϵ ≤

x 0 < x 1 < • • • < x l ≤ R 1 (t) ≤ x l+1 < • • • . Then ∞ i=0 |u(x i , t) -u(x i+1 , t)| 1/s = l-1 i=0 |u(x i , t) -u(x i+1 , t)| 1/s + ∞ i=l |u(x i , t) -u(x i+1 , t)| 1/s . Now from Theorem 3.1 we get, ∞ i=0 |u(x i , t) -u(x i+1 , t)| 1/s ≤ l-1 i=0 (f ′ ) -1 x i t -t + (x i , t) -(f ′ ) -1 x i+1 t -t + (x i+1 , t) 1/s + u(x l , t) -u(x l+1 , t) 1/s + ∞ i=l+1
u 0 (y(x i , t)) -u 0 (y(x i+1 , t)) ,

where h(ϵ, T ) = inf{t -t + (x, t) : ϵ ≤ x ≤ R 1 (t), 0 < t ≤ T }, which also implies that (f ′ ) -1 is Lipschitz continuous function on interval ϵ T , M h(ϵ, T )
. Then,

∞ i=0 |u(x i , t) -u(x i+1 , t)| 1/s ≤ C(ϵ, t) l-1 i=0 x i t -t + (x i , t) - x i+1 t -t + (x i+1 , t) 1/s + u(x l , t) -u(x l+1 , t) 1/s + ∞ i=l+1 u 0 (y(x i , t)) -u 0 (y(x i+1 , t)) 1/s .
The estimate on first sum follow from,

l-1 i=0 x i t -t + (x i , t) - x i+1 t -t + (x i+1 , t) 1/s = l-1 i=0 x i t -t + (x i , t) - x i t -t + (x i+1 , t) + x i t -t + (x i+1 , t) - x i+1 t -t + (x i+1 , t) 1/s , from triangle inequality we get, l-1 i=0 x i t -t + (x i , t) - x i+1 t -t + (x i+1 , t) 1/s ≤ l-1 i=0 x i t -t + (x i , t) - x i t -t + (x i+1 , t) + x i t -t + (x i+1 , t) - x i+1 t -t + (x i+1 , t) 1/s , now from the inequality a 1/s + b 1/s ≤ (a + b) 1/s we get, l-1 i=0 x i t -t + (x i , t) - x i+1 t -t + (x i+1 , t) 1/s ≤ l-1 i=0 x i t -t + (x i , t) - x i t -t + (x i+1 , t) + x i t -t + (x i+1 , t) - x i+1 t -t + (x i+1 , t) 1/s
. Therefore, we get the following estimate,

l-1 i=0 x i t -t + (x i , t) - x i+1 t -t + (x i+1 , t) 1/s ≤ R 1 (t) -ϵ |t -t + (ϵ, t)| + R 1 (t)|t + (ϵ, t) -t + (R 1 (t), t)| |t -t + (ϵ, t)| 2 1/s . Thus we have, ∞ i=0 |u(x i , t) -u(x i+1 , t)| 1/s ≤ C sup 0≤t≤T R 1 (t) -ϵ |t -t + (ϵ, t)| + R 1 (t)|t + (ϵ, t) -t + (R 1 (t), t)| |t -t + (ϵ, t)| 2 1/s + T V s (u 0 ) + (2||u 0 ||) 1/s , ≤ C(ϵ, t) + T V s (u 0 ) + (2||u 0 ||) 1/s .
In a similar way the other case x ≤ -ϵ can be handled, to yield

∞ i=0 |u(x i , t) -u(x i+1 , t)| 1/s ≤ C(ϵ, t) + T V s (u 0 ) + 2(2||u 0 ||) 1/s .

Construction of counter-example

We now proceed to construct a counterexample to show that when the initial data is in BV , the corresponding solution may not be in BV s at a fixed positive time T > 0, for some specific choice of flux. To do this, we refer to the backward construction for conservation laws with discontinuous flux introduced in [START_REF] Adimurthi | Exact and optimal controllability for scalar conservation laws with discontinuous flux[END_REF]. However, before we apply this method, we need to recall some notations and results from [START_REF] Adimurthi | Exact and optimal controllability for scalar conservation laws with discontinuous flux[END_REF]. In particular, we use the following result from [START_REF] Adimurthi | Exact and optimal controllability for scalar conservation laws with discontinuous flux[END_REF]: given functions h + and z, we can construct an entropy solution that satisfies the Hopf-Lax type formula for (1.1) with h + and z. Proposition 5.1 (Backward construction, [START_REF] Adimurthi | Exact and optimal controllability for scalar conservation laws with discontinuous flux[END_REF]). Let f, g are C 1 strictly convex functions. Let R > 0 and z : [0, R] → (-∞, 0] be a non-decreasing function with z 0 = z(0+) and z 1 = z(R-). Suppose

h + R T -t 1 = - z 1 t 1 , g ′ (u -) = z 0 T , g ′ (v -) = - z 1 t 1 , v-= f -1 + (g(v -)), (5.1) 
where h + is defined as

h + := g ′ • g -1 + • f • (f ′ ) -1 . (5.2)
We additionally assume that h + is a locally Lipschitz function. Then there exists an initial data u 0 ∈ L ∞ (R) and the corresponding entropy solution u to (1.1) such that

u(x, T ) = (f ′ ) -1 x T -t + (x)
where -

z(x) t + (x) = h + x T -t + (x) for x ∈ [0, R] (5.3)
and additionally, it holds u(x, T ) = u -for x < 0 and u(x, T ) = v-for x > R. To be self-contained the main ingredients of the proof are given in Appendix C. We now proceed with the proof of Theorem 2.5.

u θ g θ f f(u) g(u)
Proof of Theorem 2.5. Let f (u) = |u| p+1 and g(u) = u 2 -1. Note that by Lemma A.4 f satisfies the non-degeneracy condition (2.2) with exponent p and g is uniformly convex.

Let {a k } k≥1 be a sequence defined as a 2i = i -β and a 2i+1 = i -α with β > α > 0 which will be chosen later. Consider an increasing sequence {t k } such that t k → 1 and

1 -t 2k+1 = 1 k β-α (1 -t 2k ) and t 2k+2 -t 2k+1 = k -λ (5.4)
where λ > 1 will be chosen later. Then we have

t 2k+2 -t 2k+1 t 2k+1 = 1 k λ 1 t 2k+1 ≥ 1 k λ . (5.5)
We define {x i } as follows

x i = (1 -t 2i )a 2i = (1 -t 2i+1 )a 2i+1 . (5.6)
Since {t 2i } i≥1 is increasing and {a 2i } i≥1 is decreasing sequence, {x i } i≥1 is a decreasing sequence.

Let h : [0, ∞) → R be defined as

h(u) = 2 1 + (p + 1) -1-1 p u 1+ 1 p for u ≥ 0. Observe that h(a 2i+1 ) h(a 2i+2 ) -1 = 1 + i -α p+1 1+ 1 p -1 + (i+1) -β p+1 1+ 1 p 1 + (i+1) -β p+1 1+ 1 p ≤ 1 i p+1 p α - 1 i p+1 p β . (5.7) Then if λ < p + 1 p α we get h(a 2i+1 ) h(a 2i+2 ) -1 < t 2i+2 t 2i+1 -1. (5.8) 
Therefore, we have

t 2i+1 h(a 2i+1 ) < t 2i+2 h(a 2i+2 ).
(5.9)

Note that

1 -t 2i+1 1 -t 2i = 1 i β-α < 1.
(5.10)

Hence, t 2i+1 > t 2i . Since h(a 2i+1 ) > h(a 2i ) we have t 2i+1 h(a 2i+1 ) > h(a 2i )t 2i . Let ξ(x) be solving the following problem x 1 -ξ(x) 1+ 1 p = C ξ(x) + d 2 -1 (5.11) ξ(x i ) = t 2i+1 , (5.12) ξ(x i+1 ) = t 2i+2 . ( 5.13) 
Note that C > 0 and d > 0 are determined by (5.12) and (5.13). In particular, the existence of such ξ can be shown from Lemma 3.4 and 3.5 of [START_REF] Adimurthi | Exact and optimal controllability for scalar conservation laws with discontinuous flux[END_REF]. Next, we show that ξ ′ < 0. To do this, we differentiate both sides of (5.11) and get the following

0 < 1 + 1 p x 1 p = -ξ ′ (x) 1 + 1 p (1 -ξ(x)) 1 p C ξ(x) + d 2 -1 -ξ ′ (x)(1 -ξ(x)) 1+ 1 p 2C (ξ(x) + d) 2 C ξ(x) + d .
(5.14) Therefore, we get ξ ′ (x) < 0. Let Φ(x) be defined as

Φ(x) := ξ(x) 1 + x 1 -ξ(x) 1+ 1 p = Cξ(x) ξ(x) + d . ( 5.15) 
Observe that

Φ ′ (x) = ξ ′ (x) C ξ(x) + d - Cξ(x) (ξ(x) + d) 2 = ξ ′ (x) Cd (ξ(x) + d) 2 < 0.
(5.16)

Finally we define the function t(x) such that t(x i +) = t 2i and t(x i -) = t 2i+1 for i ≥ i 0 and t satisfies (5.11)-(5.13) for x ∈ (x i+1 , x i ). Let ρ : (0, ∞) → R be defined as

ρ(x) = -t(x)h x 1 -t(x)
.

(5.17) By (5.9) and (5.16), x → ρ(x) is increasing. By Proposition 5.1 with R = x 1 , there exists an entropy solution u such that 

u(x i +, 1) = x i (p + 1)(1 -t 2i ) 1 p and u(x i -, 1) = x i (p + 1)(1 -t 2i+1 ) 1 p . ( 5 
(x i -, 1) -u(x i +, 1)| = a 2i p + 1 1 p - a 2i+1 p + 1 1 p = (1 + p) -1 p i -α p -i -β p .
(5.20)

Let ϵ > 0. Then, we have We check that β -α = λ -1 and p + 1

|u(x i -, 1) -u(x i +, 1)| p+1 1+ϵ ≥ C(p) i -α(p+1) p(1+ϵ) -i -β(p+1) p(1+ϵ) . ( 5 
p β > 1 + ϵ. Hence, u(•, 1) / ∈ BV s loc (R) for s = 1 p + 1 + ϵ p + 1 .
Note that by Proposition 5.1 initial data u 0 ∈ L ∞ (R). Now we find a data which is in BV (R).

From the construction we have

x 1 < R 2 (1) where R 2 (t) is as in Theorem 3.1. Choose a point x 0 ∈ (x 1 , R 2 (1) 
). Note that 0 < t + (x 0 , 1) < 1 and u(x, t + (x 0 , 1)) = v-for x ≥ 0. We also observe that L 1 (t) = 0 and R 2 (t) > 0 for t = t + (x 0 , 1). Therefore, for t = t + (x 0 ) we have u(x, t) = (g ′ ) -1 x -z -(x, t) t for x < 0.

(5.23)

Since g is uniformly convex we have u(•, t + (x 0 , 1)) ∈ BV ((-∞, 0)). To conclude the Theorem 2.5 we set v 0 (x) := u(x, t 0 (x 0 , 1)). Let v(x, t) be the entropy solution to (1.1) with initial data v 0 . Note that v(x, 1 -t 0 (x 0 , 1)) = u(x, 1) for all x ∈ R. Hence, the proof of Theorem 2.5 is completed.

Appendix A. Hölder continuity of singular maps

In this section, we collect useful lemmas on the Hölder exponent and non-degeneracy of fluxes, which are used throughout the paper. Some commentaries are added for all lemmas. The following lemma recall that the non-uniform convexity of a flux function corresponds to a loss of the Lipschitz regularity for the reciprocal function of the derivative. This key point enforces a BV s (or generalized BV regularity [START_REF] Castelli | Smoothing effect in BV -Φ for entropy solutions of scalar conservation laws[END_REF][START_REF] Guelmame | Regularizing effect for conservation laws with a Lipschitz convex flux[END_REF]) instead of BV regularity [START_REF] Lax | Hyperbolic systems of conservation laws[END_REF][START_REF] Oleĭnik | Discontinuous solutions of non-linear differential equations[END_REF] for the entropy solutions.

Lemma A.1. Let g ∈ C 1 (R) be satisfying the non-degeneracy (2.2) with exponent q. Then (g ′ ) -1 is Hölder continuous with exponent 1/q.

Proof. Fix a compact set K. Let x and y is in g ′ (K). There exist x, ỹ such that x = (g ′ ) -1 (x) and ỹ = (g ′ ) -1 (y). Then,

|(g ′ ) -1 (x) -(g ′ ) -1 (y)| |x -y| 1/q = |x -ỹ| |g ′ (x) -g ′ (ỹ)| 1/q = |x -ỹ| |g ′ (x) -g ′ (ỹ)| 1/q ≤ 1 C 1/q 2 .
This proves the Lemma A.1.

The interface condition (1.2) requires the use of some reciprocal functions of the fluxes g or f . The fact that the reciprocal function of g is never Lipschitz near min g forbids the classical Lax-Oleinik BV smoothing effect for a uniform convex flux. Lemma A.2. Let g be a C 2 function satisfying (2.2) with exponent q then g + satisfies (2.2) with exponent q + 1 on domain (θ g , ∞).

Proof. Since θ g is the critical point of g hence, g ′ (θ g ) = 0, then we consider

g(x) -g(y) = (x -y) ˆ1 0 g ′ (λx + (1 -λ)y)dλ, = (x -y) ˆ1 0 (g ′ (λx + (1 -λ)y) -g ′ (θ g ))dλ.
We know that g ′ (•) is an increasing function and g satisfies the non-degeneracy condition (2.2). Let x > y ≥ θ g , then

|g(x) -g(y)| = |x -y| ˆ1 0 (g ′ (λx + (1 -λ)y) -g ′ (θ g ))dλ ≥ C 2 |x -y| ˆ1 0 (λx + (1 -λ)y) -θ g ) q dλ ≥ 1 q + 1 C 2 (x + (1 -λ)y) -θ g ) q+1 1 0 ≥ 1 q + 1 C 2 ((x -θ g ) q+1 -(y -θ g ) q+1 ) ≥ C 2 q + 1 |x -y| q+1 . (A.1)
The previous comment of Lemma A.2 is even more important for the non-Lipschitz regularity of the singular map.

Lemma A.3. Suppose fluxes f and g are C 1 (R) and convex functions with f (θ f ) < g(θ g ) which additionally satisfies the non-degeneracy condition (2.2) and let K is any compact set of R. Then for x ∈ K, f -1 + g(•) is a Lipschitz continuous function and g -1 -f (•) is a Hölder continuous function. Proof. Since f (θ f ) < g(θ g ), there exist a 1 < θ f < a 2 such that f (a 1 ) = g(θ g ) = f (a 2 ). Hence, we have

c := min {|f ′ (a)| ; a ∈ (-∞, a 1 ] ∪ [a 2 , ∞)} > 0. (A.2)
Without loss of generality, we can assume that g(x) = g(y) because if g(x) = g(y), then the result holds anyway. There exist x, ỹ > θ f such that f (x) = g(x) and f (ỹ) = g(y). As f -1 + is increasing, we get x, ỹ > a 2 . Consider the following We know that for f (x) ≥ g(θ g ) there exists x such that f (x) = g(x) and g ′ (x) > 0, without loss of generality we can assume that g(x) = g(y) because if g(x) = g(y) then result holds.

|g -1 -f (x) -g -1 -f (y)| q+1 |x -y| = |g -1 -f (x) -g -1 -f (y)| q+1 |f (x) -f (y)| • |f (x) -f (y)| |x -y| , = |g -1 -g(x) -g -1 -g(ỹ)| q+1 |g(x) -g(ỹ)| • |f (x) -f (y)| |x -y| , = |x -ỹ| q+1 |g(x) -g(ỹ)| • |f (x) -f (y)| |x -y| ,
Now from the Lipschitz continuity f and (A.1),

|g -1 -f (x) -g -1 -f (y)| q+1 |x -y| ≤ C. (A.4)
Hence, it implies that

|g -1 -f (x) -g -1 -f (y)| ≤ C|x -y| 1/q+1 .
The following lemma shows that power law fluxes satisfy the non-degeneracy condition (2.2).

Lemma A.4. Let M > 0 and g : [-M, M ] → R be defined as g(u) = |u| p for p ≥ 2. Then g satisfies the non-degeneracy condition (2.2) with exponent p -1. This is the simplest example with power-law degeneracy p -1 [START_REF] Bourdarias | Fractional BV spaces and applications to scalar conservation laws[END_REF][START_REF] Castelli | Oscillating waves and the maximal smoothing effect for one dimensional nonlinear conservation laws[END_REF].

Appendix B. BV s embedding

The continuous embedding between fractional BV spaces is explicitly expressed using the L ∞ norm or, more precisely, the oscillation in the following lemma. It is important to recall that the oscillation of a function u on an interval I is defined as follows |u(x i ) -u(x i+1 )| q ≤ T V t u(I).

This inequality can be improved as follows if u is non constant, that is osc(u) > 0. For this purpose, consider v = u/osc(u) so osc(v) ≤ 1. Now, on a subdivision, we have,

osc(u) -p n-1 i=1 |u(x i ) -u(x i+1 )| p = n-1 i=1 |v(x i ) -v(x i+1 )| p ≤ n-1 i=1 |v(x i ) -v(x i+1 )| q = osc(u) -q n-1 i=1 |u(x i ) -u(x i+1 )| q .
That is to say, the following inequality which is also valid when osc(u) = 0,

n-1 i=1 |u(x i ) -u(x i+1 )| p ≤ osc(u) p-q n-1 i=1 |u(x i ) -u(x i+1 )| q .
This is enough to conclude the lemma.

Appendix C. Backward construction

The proof of optimality presented in section 5 needs a construction of initial data and solution by borrowing ideas and techniques from control. We only give a sketch of the existence of such solution along with initial data that is stated in Proposition 5.1. The complete construction can be found in [START_REF] Adimurthi | Exact and optimal controllability for scalar conservation laws with discontinuous flux[END_REF].

Proof of Proposition 5.1. We first approximate z(x) by piece-wise constant increasing function as follows

             z 0 = w 0 < w 1 < • • • < w k = z 1 , |w i+1 -w i | < 1 N , 0 = x 0 < x 1 < • • • < x k = R, z(x i ) = w i for 1 ≤ i ≤ k -1
, with z 0 = z(0) and z 1 = z(R-).

(C.1)

We set t 0 = T and t i , 1 ≤ i ≤ 2k,, c i , d i 1 ≤ i ≤ k as follows

h + x i T -t 2i-1 = - w i-1 t 2i-1 , h + x i T -t 2i = - w i t 2i , f ′ (c 2i-1 ) = x i T -t 2i-1 , f ′ (c 2i ) = x i T -t 2i
and d i = g -1 + (f (a i )).

(C.2)

Then we observe that c 2i-1 > c 2i , d 2i-1 > d 2i , T = t 0 > t 1 > • • • > t 2k = T 1 . Consider Lipschitz curves r i , ri , a i , b i defined as follows

s i = f (c 2i-1 ) -f (c 2i ) c 2i-1 -c 2i , S i = g(d 2i-1 ) -g(d 2i ) d 2i-1 -d 2i , 1 ≤ i ≤ k, r i (t) = g ′ (d i )(t -t i ), ri (t) = f ′ (c i )(t -t i ), 1 ≤ i ≤ 2k, a i (t) = x i + s i (t -T ), b i (t) = S i (t -q i ), a i (q i ) = 0, 1 ≤ i ≤ 2k, (C.3) r 0 (t) = g ′ (b 0 )(t -T ) = g ′ (u -)(t -t 0 ). (C.4)
Now, we define u N 0 as below

u N 0 :=            u - if x < w 0 , d 2i-1 if w i-1 < x < b i (0), 1 ≤ i ≤ k, d 2i if b i (0) < x < w i , 1 ≤ i ≤ k, v - if w 2k < x < 0, v- if x > 0.
(C.5)

Definition 1 . 1 (

 11 Weak solution). A function u ∈ C(0, T ; L 1 loc (R)) is said to be a weak solution of the problem (1.1) if ∞ 0 R u ∂ϕ ∂t + F (x, u) ∂ϕ ∂x dx dt + R u 0 (x)ϕ(x, 0)dx = 0, for all ϕ ∈ C ∞ c (R × R + ), where the flux F (x, u) is given as F (x, u) = H(x)f (u) + (1 -H(x))g(u), and H(x) is the Heaviside function.

Remark 2 . 1 .

 21 Let f and g be the fluxes satisfying the non-degeneracy condition (2.2) and f

Figure 1 :

 1 Figure 1: An illustration of solution for Case 2 and L i (t) and R i (t) curves

Figure 2 :

 2 Figure 2: Illustration of the fluxes

Figure 3 :

 3 Figure 3: An illustration of fluxes

|f - 1 +

 1 g(x) -f -1 + g(y)| |x -y| = |f -1 + g(x) -f -1 + g(y)| |g(x) -g(y)| • |g(x) -g(y)| |x -y| , = |f -1 + f (x) -f -1 + f (ỹ)| |f (x) -f (ỹ)| • |g(x) -g(y)| |x -y| , = |x -ỹ| |f (x) -f (ỹ)| • |g(x) -g(y)| |x -y| , = 1 f ′ (c 0 ) • |g(x) -g(y)| |x -y| ,for some c 0 in between x, ỹ. Note that c 0 ≥ a 2 and f ′ ≥ c. Since g is a Lipschitz continuous function, we have |g(x) -g(y)| ≤ c 1 |x -y|, where c 1 depends on g and K. Therefore, we get|f -1 + g(x) -f -1 + g(y)| |x -y| ≤ C. (A.3)

Lemma B. 1 .

 1 osc(u) := sup x<y {|u(x) -u(y)|} ≤ 2 u ∞ . Let u : I ⊂ R → R be bounded function on a given interval I and 0 < s < t such that u ∈ BV t ⊂ BV s . Let p = 1 s ≥ q = 1 t , then, T V s u(I) ≤ osc(u) p-q T V t u(I). (B.1)Proof. When osc(u) ≤ 1, the inequality y p ≤ y q for all y ∈ [0, 1] gives a direct estimate. More precisely, let σ = (x 1 , • • • , x n ) be any partition of I,n-1 i=1 |u(x i ) -u(x i+1 )| p ≤ n-1 i=1
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Let ti (x) be the unique solution to

Corresponding entropy solution u N is the following

By assumption we have h + is a locally Lipschitz continuous function and we can prove TV bound of g ′ (u N 0 ) (see [START_REF] Adimurthi | Exact and optimal controllability for scalar conservation laws with discontinuous flux[END_REF] for more details). Then, by applying Helly's Theorem we can find a u 0 ∈ L ∞ (R) and corresponding entropy solution u satisfying (5.3). This completes the proof of Proposition 5.1.