
HAL Id: hal-03669742
https://hal.science/hal-03669742v2

Submitted on 12 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fractional regularity for conservation laws with
discontinuous flux

Shyam Sundar Ghoshal, Stéphane Junca, Akash Parmar

To cite this version:
Shyam Sundar Ghoshal, Stéphane Junca, Akash Parmar. Fractional regularity for conservation
laws with discontinuous flux. Nonlinear Analysis: Real World Applications, inPress, 75, pp.103960.
�10.1016/j.nonrwa.2023.103960�. �hal-03669742v2�

https://hal.science/hal-03669742v2
https://hal.archives-ouvertes.fr


Fractional regularity for conservation laws with discontinuous flux

Shyam Sundar Ghoshala, Stéphane Juncab, Akash Parmara

aCentre for Applicable Mathematics, Tata Institute of Fundamental Research, Post Bag No 6503, Sharadanagar,
Bangalore - 560065, India.

bUniversité Côte d’Azur, LJAD, Inria & CNRS, Parc Valrose, 06108 Nice, France.

Abstract
This article deals with the regularity of entropy solutions of scalar conservation laws with dis-
continuous flux. It is well-known [Adimurthi et al., Comm. Pure Appl. Math. 2011] that the
entropy solution for such an equation does not admit BV regularity in general, even when the
initial data belongs to BV . Due to this phenomenon, fractional BV s spaces, where the exponent
0 < s ≤ 1 and BV = BV 1, are required to be wider than BV . It is a long-standing open question
to find the optimal regularizing effect for the discontinuous flux with L∞ initial data. The optimal
regularizing effect in BV s is proven in an important case using control theory, and the fractional
exponent s is at most 1/2, even when the fluxes are uniformly convex.
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1. Introduction

This article deals with the regularity aspects of the entropy solution for the following scalar
conservation laws with discontinuous flux:

ut + f(u)x = 0, if x > 0, t > 0,
ut + g(u)x = 0, if x < 0, t > 0,

u(x, 0) = u0(x), if x ∈ R,
(1.1)

where u : R× [0,∞) → R is the unknown function, u0(·) ∈ L∞(R) is the initial data and the fluxes
f , g are C1(R) and strictly convex (i.e., f ′ and g′ are increasing functions).

The conservation laws (1.1) arises in several physical situations and applied subjects. For
example, it occurs naturally in the two-phase flow of a heterogeneous porous medium in petroleum
reservoirs [31]. The equation (1.1) is also useful for understanding the ideal clarifier thickener [14],
traffic flow models with varying road surface conditions [38], and ion etching commonly used in
the semiconductor industry [45]. These examples are just a glimpse at the broad applicability of
the equation (1.1) in the fields of applied sciences. For more details, see [14, 15, 20, 21].

The equation (1.1) does not have a global classical solution, even for smooth initial data.
Therefore, one needs to consider the following notion of a weak solution:
Definition 1.1 (Weak solution). A function u ∈ C(0, T ;L1

loc(R)) is said to be a weak solution
of the problem (1.1) if

∞̂

0

ˆ

R

u
∂ϕ

∂t
+ F (x, u)

∂ϕ

∂x
dx dt+

ˆ

R

u0(x)ϕ(x, 0)dx = 0,

for all ϕ ∈ C∞
c (R×R+), where the flux F (x, u) is given as F (x, u) = H(x)f(u) + (1−H(x))g(u),

and H(x) is the Heaviside function.
From the above-defined weak formulation, it can be derived that if interface traces u±(t) =

lim
x→0±

u(x, t) exist, then at x = 0, u satisfies the Rankine-Hugoniot condition, namely, for almost
all t,

f(u+(t)) = g(u−(t)). (1.2)
For the equation (1.1), the left and right traces u−, u+ play important roles in the well-posedness
theory and also in determining the regularity of solutions. In [7], the authors proved the existence
of the interface traces via the Hamilton-Jacobi type equation.

It is well known that the conservation laws (1.1) do not have unique weak solutions. To establish
uniqueness, an additional condition called the “entropy condition” is necessary even in the case of
f = g. Kružkov [34] provided a generalized entropy condition and proved the uniqueness in the
case where f = g. However, (1.1) have the flux discontinuity at the interface, one also needs the
“interface entropy condition” to establish uniqueness, in addition to the Kružkov entropy. In this
article, we use the following notion of the entropy solution.
Definition 1.2 (Entropy solution, [7]). A weak solution u ∈ L∞(R× [0, T ]) of the problem (1.1)
is said to be an entropy solution if the following holds.
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1. u satisfies Kruzkov entropy conditions on each side of the interface x = 0, that is, in R\{0}.

2. The interface traces u±(t) = lim
x→0±

u(x, t) exist for almost all t > 0 and they satisfy the
following “interface entropy condition” for almost all t > 0,

|{t : f ′(u+(t)) > 0 > g′(u−(t))}| = 0. (1.3)

Uniqueness has been proved in [7] when interface traces exist for a weak solution and they
satisfy the entropy condition (1.3). Additionally, the authors obtained useful Lax-Oleinik type
explicit formulas for equation (1.1). The notion of ‘A-B entropy solution’ is introduced in [5] and
it coincides with (1.3) when A = θg, B = θf . The number θf is defined by f(θf ) = min f when f
admits a minimum and g(θg) = min g. The Lax-Oleinik type formula is also available [6] for the
‘A-B-entropy solutions’. It has been observed [1] that for the case A < θg or B > θf , ‘A-B-entropy
solutions’ belong to BV space for BV initial data and for A = θg, B = θf total variation of entropy
solution can blow up at finite time t0 > 0 for particular BV initial data (see section 1.2 for more
details). Therefore, we work with the choice A = θg, B = θf . In this article, we rely on the
interface entropy condition (1.3), and we use the analysis of characteristics developed as in [7].

The well-posedness theory of the problem has been extensively studied from both numerical
and theoretical aspects. We refer to [5, 10, 12, 33, 43] and the references therein. The existence
of a solution of (1.1) has been proved by several numerical schemes [4, 9, 26, 47]. However, due
to the absence of total variation bounds for entropy solutions, even for initial data u0 ∈ BV , the
convergence of numerical schemes is typically established using the singular mapping technique
[4, 46, 47]. The singular mapping technique originates from the fundamental paper of Temple [46].
Recent works have generalized the Godunov-type scheme to handle cases where discontinuities of
the flux may have a limit point [26, 27, 28].

Since the entropy solution of (1.1) lacks BV regularity, it is natural to study its regularity in
a space that is bigger than BV . More precisely, in this paper, we quantify the sharp regularity of
entropy solution of (1.1) in suitable fractional spaces.

Structure of the paper
This paper is organized as follows: In Sections 1.1 and 1.2, we discuss regularity results for

scalar conservation laws where f = g and for (1.1), respectively. This leads to Section 1.3, where
we state the regularity problems corresponding to equation (1.1) in precise terms. In Section 2, we
describe our main results along with some remarks. To make this article self-contained, Section
3 recalls some definitions and preliminary results from [7, 11]. The detailed proofs of the main
results are presented in Section 4, which utilize the Hopf-Lax type formula and some results from
[7] and techniques from [1, 22]. The construction of a counter-example is provided in the last
section to show that the main results of the present article cannot be improved. Two appendices
contain basic useful lemmas and explanations regarding our adaptation of the result from control
theory [3].

1.1. Optimal regularity results in BV s spaces for a smooth flux: f = g

In this subsection, we focus on the case where f = g in (1.1). Even for Lipschitz continuous
flux, the well-posedness for the entropy solution of (1.1) is established in the L∞ setting [32, 34,
35, 44], and many methodologies are available to study the regularity of the entropy solutions
[2, 11, 17, 18, 24, 25, 29, 35, 41, 42, 44].

The function space BV is considered as the natural function space for scalar conservation laws
since A. I. Volpert’s fundamental work in 1967 ([48]). It allows for compactness and provides a
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convenient way to describe the structure of shock waves with traces on each side of the singularity
[8]. The BV regularity for entropy solutions was first observed in [35, 44] independently by P. D.
Lax and O. Oleinik. In the case where the flux is uniformly convex, i.e., inf f ′′ > 0, the entropy
solution becomes BV instantaneously even when the data is in L∞. This well-known smoothing
effect is a consequence of the one-sided Lipschitz-Oleinik inequality [44].

Unfortunately, the BV space is ‘not enough’ [19] when the flux is not uniformly convex. There
are many examples of entropy solutions that are not in BV for positive time [2, 16, 24]. Although
the non-vanishing property of the second derivative of the flux is necessary and sufficient for BV
regularizing [25], smoothing effects can still occur in fractional Sobolev spaces [30, 36] for nonlinear
flux. The fractional BV spaces preserve the advantages of the BV space, such as regularity and
traces while allowing for more general flux functions [11]. The Lax-Oleinik smoothing effect was
generalized in BV s for a flux with power-law nonlinearity like |u|p+1 and p = 1/s ≥ 1, for C1 or
strictly convex flux in, [11, 17, 29].

Fractional BV spaces, denoted by BV s, 0 < s ≤ 1, were first defined for all s ∈ (0, 1) in
[37, 39, 40]. Let I be a non-empty interval of R and s ∈ (0, 1]. The space of fractional bounded
variation functions denoted as BV s(I) is a generalization of the space of functions with a bounded
variation on I, denoted as BV (I). In the sequel, we denote S(I) as the set of the subdivisions of
I, that is the set of finite subsets σ = (x0, x1, ..., xn) in I with (x0<x1<x2<...<xn).

Definition 1.3 (BV s [37, 39, 40]). Let σ = (x0, x1, ..., xn) be in S(I) and let u be real function on
I. The s-total variation of u with respect to σ is

TV su(σ) =
n∑

i=1

|u(xi)− u(xi−1)|1/s,

then define,
TV su(I) = sup

σ∈S(I)
TV su(σ).

The set BV s(I) is the set of functions u : I → R such that TV su(I) < ∞.

1.2. Previous regularity results for discontinuous flux
The regularity of the solution in the BV space is crucial for studying its convergence and the

existence of its traces. Without a bound on the total variation, it is difficult to establish the
convergence of numerical methods. However, it is not always possible to expect the total variation
of the solution to decrease, as a non-constant solution can arise from constant initial data. Despite
many decades of research on equation (1.1), optimal regularity results for its solution were not
yet known. There are only a few known results regarding the regularity of the solution, which we
describe below.

Although it has been proven that the solution away from the interface is BV in space [13],
the regularity of the solution near the interface remained unknown for a long time. The first
breakthrough result was achieved in 2009 by the authors of [1]. They constructed an explicit
example where min f 6= min g, demonstrating that the total variation of the entropy solution to
(1.1) blows up at time t0 > 0 for BV initial data. To build this example, they exploited the lack
of Lipschitz continuity of f−1g near the critical point of f . Here g−1

− , f−1
+ are the inverse of g, f in

appropriate domains, more precisely, they are defined as
g−1
− : ](g′)−1(−∞), (g′)−1(0)] → R & f−1

+ : [(f ′)−1(0), (f ′)−1(+∞)[→ R. (1.4)
The key functions f−1

+ g(·) and g−1
− f(·) transmit information via the interface from left-to-right and

right-to-left respectively.
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In contrast, several regularity results have been proven in [22, 23]. Surprisingly, it was shown
that the solution to (1.1) belongs to BV if the fluxes have the same minimum value, i.e., min f =
f(θf ) = min g = g(θg). The author also proved that if f(θf ) 6= g(θg) and the initial data is
compactly supported, then there exists a time T such that for all t > T , the solution to (1.1)
admits BV regularity. However, the assumption of compact support cannot be relaxed, as it has
been shown by example that there exists a sequence of time, Tn, for which the total variation of
the solution to (1.1) blows up.

Earlier referred publications have uniform convexity assumption on the fluxes, in [23] it has
been proved that even for non-uniform convex flux (with a special structure when the flux losses
its uniform convexity) any L∞ initial data gives the solution which is BVloc near the interface when
the connection (A,B) as in [6] are far from the critical point.

This discussion leads to conclude that working solely in the BV space framework is inadequate
for scalar conservation laws with discontinuous flux (1.1). Hence, it is appropriate to consider a
more generalized space than BV, such as the space of functions of fractional bounded variation,
denoted as BV s. In the following subsection, we outline the questions that are addressed in this
paper.

1.3. Questions on the BV s regularity for discontinuous flux
As we discussed thus far, the entropy solution of (1.1) lacks the following properties:

1. If u0 ∈ BV (R), then u(·, t) ∈ BV (R) for any t > 0.

2. If f and g are uniformly convex fluxes, min f 6= min g and u0 ∈ L∞(R), then for any t > 0,
u(·, t) ∈ BVloc.

Based on these issues, we aim to address the following questions regarding the regularity of the
solution of (1.1):

Question 1.1. Can we expect that if the given initial data belongs to BV s for a well-chosen
0 < s ≤ 1, then the solution of (1.1) stays in BV s?

Question 1.2. Can we expect that for any 0 < s ≤ 1 there exists 0 < s1 such that if the given
initial data belongs to BV s, then the solution of (1.1) belongs to BV s1?

Question 1.3. What is the Lax-Oleinik type regularizing effect for uniformly convex fluxes f and
g? In other words, does the entropy solution of (1.1) belong to BV s for some s ∈ (0, 1) and for
any given L∞ initial data?

Question 1.4. Can we choose 0 < s < 1 sharply and an initial data u0 ∈ BV s space for which
the generalized total variation blows up for the corresponding solution of (1.1)?

Under certain assumptions on the fluxes f and g, we are able to answer all of the questions from
1.1 to 1.4. We also present counterexamples that demonstrate the optimality of the assumptions
in our main results. Additionally, we provide explicit estimates of s-total variation of the solution
with respect to time variable t with some sufficient conditions on initial data.
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2. Main Results

The paper assumes that f and g are C1 strictly convex functions admitting a critical point. Let
θf and θg be the unique critical points of f and g respectively, i.e., f ′(θf ) = 0 and g′(θg) = 0. The
notation g−1

− and f−1
+ denotes the inverse of g and f for the domain where g′(u) ≤ 0 and f ′(u) ≥ 0,

respectively. Note that the existence of a minimum for f and g are always assumed in this paper
as it allows the critical behavior of the admissible solution. However, if f and g have no minimum
but both are strictly increasing or decreasing, the situation is simpler [1]. Thus, throughout the
paper, it is assumed that,

f(θf ) = min f 6= min g = g(θg). (2.1)
In the best case, when f and g are uniformly convex and satisfy (2.1), we obtain a smoothing
in BV 1/2 instead of BV . In the case of non-uniformly convex fluxes, the situation is worse. The
smoothing depends on the nonlinear flatness of the fluxes. To be more precise, we introduce the
following non-degeneracy flux condition which is, there exist two numbers p ≥ 1 and q ≥ 1, such
that for any compact set K, there exist positive numbers C1 and C2 such that for all u 6= v, where
u, v ∈ K,

|f ′(u)− f ′(v)|
|u− v|p

> C1 > 0 and |g′(u)− g′(v)|
|u− v|q

> C2 > 0. (2.2)

For p = 1, this is the classical uniformly convex condition for f and for p > 1 it corresponds to a
less nonlinear convex flux such as f(u) = |u|p+1.

An interesting subcase is when the loss of uniform convexity of the fluxes occurs only at their
minimum. That is, if f belongs to C2 and is uniformly convex except at its minimum. For example,
convex power laws such as f(u) = |u|p+1 with p > 1. The same assumption can be made for the
other flux g.

f ′′, g′′ vanish only at θf and θg respectively. (2.3)
The assumption (2.3) combined with the previous one (2.2) is also called the restricted non-
degeneracy condition, and the fluxes that satisfy it are called restricted fluxes. In the subcase
where both f and g satisfy (2.3), stronger results can be obtained, which are presented in Theorem
2.1 for initial data in L∞ and Theorem 2.2 for initial data in BV s. Two quantities are fundamental
to express the fractional regularity of the solutions, γ and ν,

γ =


1

q + 1
1

p+ 1

ν =


1

p
1

q

if min f < min g,

if min f > min g.
(2.4)

The constant γ ≤ 1/2 can be understood as a loss of regularity due to the interface and ν ≤ 1
as the smoothing effect outside the interface. More precisely, γ comes from the singular mapping
technique as explained in the following remark.

Remark 2.1. Let f and g be the fluxes satisfying the non-degeneracy condition (2.2) and f(θf ) 6=
g(θg). Then either f−1

+ g(·) or g−1
− f(·) is Lipschitz continuous while the other one is Hölder con-

tinuous with exponent γ. The value of γ depends on p and q from the non-degeneracy condition
(2.2), and it is given by (2.4). The proof of this fact can be found in Lemma A.3.

Remark 2.2. In the statements of following theorems, the entropy solutions meant by the weak
solutions additionally satisfy the Kružkov entropy and interface entropy condtions as mentioned in
Definition 1.3.

6



Theorem 2.1 (Smoothing effect for restricted nonlinear fluxes and L∞ initial data).
Let f and g be two C2 fluxes satisfying the restricted non-degeneracy condition f(θf ) 6= g(θg)
(2.1), (2.2) and (2.3). Let u(·, t) be the entropy solution of (1.1) corresponding to an initial data
u0 ∈ L∞(R). Then, for each t > 0 and M > 0, the entropy solution u(·, t) ∈ BV s(−M,M), where
s is determined as follows

s = min(γ, ν) (2.5)
and the following estimate holds with a positive constant Cf,g,||u0||∞ depending only on the fluxes
and the range of the initial data,

TV s(u(·, t), [−M,M ]) ≤ Cf,g,||u0||∞ + 3(2||u0||∞)1/s +
Cf,g,||u0||∞M

t
. (2.6)

Remark 2.3 (Uniform convex fluxes and BV 1/2). If the fluxes f and g are uniformly convex
then the solution belongs to BV 1/2. So even for the uniformly convex case, the solution goes into
a fractional BV space.

Hence, in the following theorem for BV s initial data with 0 < s ≤ 1, the previous result can
be stated as follows. The previous Theorem 2.1 can be seen as a limiting case of the following
Theorem 2.2 with s = 0, which states that BV 0 = L∞.

Theorem 2.2 (Smoothing effect for restricted nonlinear fluxes and BV s initial data).
Let f and g be two C2 fluxes such that f(θf ) 6= g(θg) and fluxes satisfy the restricted non-degeneracy
condition (2.2) and (2.3). Let u(·, t) be the entropy solution of (1.1) corresponding to an initial
data u0 ∈ BV s(R) for s ∈ (0, 1). Then, for each t > 0 and M > 0, the entropy solution
u(·, t) ∈ BV s1(−M,M) where s1 is given by

s1 := min{γ,max{ν, s}} (2.7)
the following estimate holds with a positive constant Cf,g,||u0||∞ depending only on fluxes and the
range of the initial data and a constant D > 0,

TV s1(u(·, t), [−M,M ]) ≤ Cf,g,||u0||∞ +
Cf,g,||u0||∞M

t
+ 2 ||2u0||

1
s1∞ +D · TV s(u0). (2.8)

We note that the assumption on vanishing points of f ′′ and g′′ is restrictive. We can relax this
assumption at the cost of smaller s1. More precisely, we have the following result.

Theorem 2.3 (Smoothing effect for L∞ initial data). Let f and g be two C2 fluxes such that
f(θf ) 6= g(θg) satisfying the non-degeneracy condition (2.2) with exponent p, q respectively. Let
u(·, t) be the entropy solution of (1.1) corresponding to an initial data u0 ∈ L∞(R). Then, for each
t > 0 and M > 0, there exists positive constant Cf,g,||u0||∞ such that

TV s(u(·, t), [−M,M ]) ≤ Cf,g,||u0||∞ + 3(2||u0||∞)1/s +
Cf,g,||u0||∞M

t
where s is determined as follows

s = γ ν. (2.9)

Remark 2.4. If the initial data u0 ∈ BV s0, then the entropy solution u(·, t) considered in Theorem
2.3 belongs to BV s2 with s2 = γmax(s0, ν). However, we do not present a separate proof of this
result as it can be obtained by following a similar argument as in the proof of Theorem 2.3.

In general, away from the interface, the expected fractional regularity is min(1/p, 1/q) [11]
which is always bigger than s in (2.5). In particular, near the interface, for BV initial data, a BV
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regularity for the entropy solution cannot be expected [1]. At most, a BV 1/2 regularity is possible.
Getting BV regularity of entropy solution can be impossible near the interface. The situation is
better far from the interface. Far from the interface, the constant γ plays no role. The following
theorem gives estimates which are sharp for small time.

Theorem 2.4 (Regularity outside the interface). Let f and g be the fluxes with f(θf ) 6= g(θg).
Let u(·, t) be the entropy solution of (1.1) corresponding to an initial data u0 ∈ BV s(R) for
s ∈ (0, 1). If f and g satisfy (2.2) with exponent p and q respectively, for any t > 0, ϵ > 0, then
there exists a constant Cf,g,||u0||∞ > 0

TV s1(u(·, t), (−∞,−ϵ] ∪ [ϵ,∞)) ≤
Cf,g,||u0||∞t

ϵ
+ 2TV s1(u0) + 2(2||u0||∞)1/s1 (2.10)

for s1 = min{p−1, q−1, s}.

Remark 2.5. All of the regularity results in Theorems 2.1, 2.2, 2.3, and 2.4 can be extended to
fractional Sobolev space W s,p with the same exponent s, up to any ε > 0. This is possible due to
the embedding BV s ⊂ W s−ε,1/s for all ε ∈ (0, s) [11]. In other words, if the initial data is in a
fractional BV space, then the entropy solution also belongs to a fractional Sobolev space. This is
because BV s is more suitable than Sobolev space for entropy solutions since it recovers the exact
regularity and BV-like traces [16, 24].

Now we discuss the optimality result. The assumption min f 6= min g forbids the favorable
case f = g, which does not have the interface. Here, the optimality of Theorem 2.2 is proved
in the best case with uniformly convex fluxes. For this purpose, examples are built with optimal
regularity and not more up. The same construction is valid with a power law on one side of the
interface. These examples highlight the sharpness of Theorem 2.2.

Theorem 2.5 (Blow-up for critical BV s semi-norms). Let p ≥ 1 and ϵ > 0. Then there exist
fluxes f, g and an initial data u0 ∈ BV (R) such that

1. the flux f satisfies the non-degeneracy condition (2.2) with exponent p,

2. the function g is uniformly convex,

3. the corresponding entropy solution u(·, T ) /∈ BV s
loc(R) for some T > 0 and s =

1

p+ 1
+ ϵ.

The proof of Theorem 2.5 is postponed in Section 5 and Appendix C.

3. Preliminaries

The present work builds upon the fundamental work of Adimurthi and Gowda in [7], where they
established an important foundation of the theory on scalar conservation laws with an interface
and two convex fluxes. The author proposed the natural entropy condition (1.3) at the interface
which means that no information comes only from the interface but crosses or goes towards the
interface. Such entropy condition is in the spirit of Lax-entropy conditions for shock waves. To
make this paper self-contained, we recall some definitions and results from their paper.

The following theorem, which provides a Lax-Oleinik or Lax-Hopf formula for the initial value
problem (1.1), can be found in [7, Lemma 4.9, pp. 51]. The notations introduced in Theorem 3.1
will be used in the statements and proofs throughout the paper.
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Theorem 3.1 ([7]). Let u0 ∈ L∞(R), then there exists the entropy solution u(·, t) of (1.1) corre-
sponding to an initial data u0. Furthermore, there exist Lipschitz curves R1(t) ≥ R2(t) ≥ 0 and
L1(t) ≤ L2(t) ≤ 0, monotone functions z±(x, t) non-decreasing in x and non-increasing in t and
t±(x, t) non-increasing in x and non-decreasing in t such that the solution u(x, t) can be given by
the explicit formula for almost all t > 0,

u(x, t) =



(f ′)−1

(
x− z+(x, t)

t

)
if x ≥ R1(t),

(f ′)−1

(
x

t− t+(x, t)

)
if 0 ≤ x < R1(t),

(g′)−1

(
x− z−(x, t)

t

)
if x ≤ L1(t),

(g′)−1

(
x

t− t−(x, t)

)
if L1(t) < x < 0.

Furthermore, if f(θf ) ≥ g(θg) then R1(t) = R2(t) and if f(θf ) ≤ g(θg) then L1(t) = L2(t). We
also have only three cases and following formula to compute the solution:

Case 1: L1(t) = 0 and R1(t) = 0,

u(x, t) =

{
u0(z+(x, t)) if x > 0,
u0(z−(x, t)) if x < 0.

Case 2: L1(t) = 0 and R1(t) > 0, then

u(x, t) =


f−1
+ g(u0(z+(x, t))) if 0 < x < R2(t),
f−1
+ g(θg) if R2(t) ≤ x ≤ R1(t),
u0(z−(x, t)) if x < 0.

Case 3: L1(t) < 0, R1(t) = 0, then

u(x, t) =


g−1
− f(u0(z−(x, t))) if L2(t) < x < 0,
u0(z−(x, t)) if x ≤ L1(t),
g−1
− f(θf ) if L1(t) < x < L2(t).

z+(x,t)z+(x,t)
z-(x,t)

L1(t)=L2(t)=0

• •
R2(t)

R1(t)

t+(x,t)

Figure 1: An illustration of solution for Case 2 and Li(t) and Ri(t) curves

There is a maximum principle for such entropy solutions, but more complicate than for f = g,

‖u‖∞ ≤ max

(
‖u0‖∞, sup

|v|≤∥u0∥∞
|f−1

+ (g(v))|, sup
|v|≤∥u0∥∞

|g−1
− (f(v))|

)
=: Sf,g,||u0||∞ . (3.1)

Without loss of generality, we may assume that min f < min g for the proofs of the main results
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u

f(u)

f
g

!f
θg

            

θ̃f
θࠡ
f

Figure 2: Illustration of the fluxes

below, as illustrated in Figure 2. This choice enforces the values of the entropy solution at the
interface lie outside (θ̃f , θ̄f ). Thus the function f ′ is far from 0 at the interface. Moreover,
the function f ′−1 is Lipschitz outside (θ̃f , θ̄f ), and for restricted fluxes, the function f−1

+ is also
Lipschitz outside (θ̃f , θ̄f ). The singular maps f−1

+ g and g−1
− f are shown to be Lipschitz and Hölder

continuous, respectively, in Lemma A.3 in Appendix A.

4. Proof of main results

This long section aims to establish the fractional BV regularity of the entropy solution, which
depends on the degeneracy of the fluxes. A crucial aspect of this is estimating the regularity of
the traces at the interface. In subsection 4.1, we study the fractional regularity in a favorable
case when the traces at the interface are not near the critical values θf or θg. Here, spatial BV s

estimates for trace values issued from the interface are studied in Subsection 4.2. Moreover, only
traces issued from the initial data are considered. The crossing of the interface is studied later in
Subsection 4.3.

4.1. Regularity when traces are far from critical values
Our first objective is to establish fractional BV estimates for the solution in the time variable,

assuming that the traces at x = 0 are far from the critical values θf or θg.

Lemma 4.1 (Fractional BV estimate for the traces of the solution). Let f, g be satisfying (2.2)
with exponents p, q respectively. Let 0 < a < b < ∞. Then the following holds:

1. If u(0−, t) > θg for a.e. t ∈ (a, b), then we have

TV
1
q (u(0−, ·), (a, b)) ≤ Cg

b

a
, (4.1)

where Cg > 0 is constant depending only on g.

2. If u(0+, t) < θf for a.e. t ∈ (a, b), then we have

TV
1
p (u(0+, ·), (a, b)) ≤ Cf

b

a
, (4.2)

where Cf > 0 is a constant depending on f .
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Proof. Since u(0−, t) > θg and g′ ≥ 0 on (θg,+∞), the value of the left trace comes from the left.

Using Theorem 3.1, we have (g′)−1

(
x− z−(x, t)

t

)
that gives u(0−, t) = (g′)−1

(
−z−(0−, t)

t

)
for

t ∈ (a, b), where t 7→ z−(0−, t) is non-increasing. Since g satisfies the non-degeneracy condition
(2.2), from Lemma A.1 (g′)−1 is a 1/q-Hölder function with a constant Hg such that

|u(0−, t1)− u(0−, t2)| ≤ Hg

∣∣∣∣z−(0−, t1)

t1
− z−(0−, t2)

t2

∣∣∣∣ 1q .
We observe that∣∣∣∣z−(0−, t1)

t1
− z−(0−, t2)

t2

∣∣∣∣ ≤ |z−(0−, t1)|
∣∣∣∣ 1t1 − 1

t2

∣∣∣∣+ 1

t2
|z−(0−, t1)− z−(0−, t2)| .

For any partition a ≤ t1 < t2 < · · · < tm ≤ b,
m−1∑
j=1

|u(0−, tj)− u(0−, tj+1)|q

≤ Hg
q
m−1∑
j=1

[
|z−(0−, tj)|

∣∣∣∣ 1tj − 1

tj+1

∣∣∣∣+ 1

tj+1

|z−(0−, tj)− z−(0−, tj+1)|
]

≤ Hg
q

[
|z−(0−, b)|

m−1∑
j=1

∣∣∣∣ 1tj − 1

tj+1

∣∣∣∣+ 1

a

m−1∑
i=1

|z−(0−, tj)− z−(0−, tj+1)|

]

≤ Hg
q

[
|z−(0−, b)| (b− a)

ab
+

|z−(0−, a)− z−(0−, b)|
a

]
.

Since |z−(0−, a)− z−(0−, b)| ≤ |z−(0−, b)| and b− a ≤ b we have,
m−1∑
j=1

|u(0−, tj)− u(0−, tj+1)|q ≤ 2Hg
q |z−(0−, b)|

a
.

We obtain an upper bound on |z(0−, b)| from the finite speed of propagation, which gives |z(0−, b)| ≤
Mgb where Kf,g,||u0||∞ = sup{|g′(v)| ; |v| ≤ ||u0||∞}. Hence, we get a new constant Cg

m−1∑
j=1

|u(0−, tj)− u(0−, tj+1)|q ≤ Cg
b

a
.

This proves (4.1). Similarly, we can prove the (4.2).

Better fractional BV estimates for the traces of the solution can be obtained when the fluxes
are less singular.

Lemma 4.2 (Fractional BV estimate for traces away from critical values). Let r > 0 and f, g be
satisfying (2.2) with exponent p, q respectively. Let 0 < a < b < ∞.

1. If u(0−, t) ≥ θg + r and g′′ vanishes only at θg (2.3), then there exists a constant Cg > 0
independent of r such that the following inequality holds,

TV (u(0−, ·), (a, b)) ≤ Cg

min{g′′(v)|v ∈ [θg + r, ||u0||∞]}
b

a
. (4.3)

2. If u(0+, t) ≤ θf + r and f ′′ vanishes only at θg (2.3), then there exists a constant Cf > 0
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independent of r such that the following inequality holds,

TV (u(0+, ·), (a, b)) ≤ Cf

min{f ′′(v)|v ∈ [−||u0||∞, θf − r]}
b

a
. (4.4)

Lemma 4.2 will be used later with constant r given by either θf − θ̃f or θ̄f − θf as shown in
(see Fig 2). The fact that r is a positive constant is crucial to get uniform estimates later.

Proof. For any x, y ∈ R consider
|x− y| =

∣∣g′(g′−1(x)− g′(g′−1(y)
∣∣ = g′′(ξ)

∣∣g′−1(x)− g′−1(y)
∣∣ ,

where ξ ∈ (x, y). Now for (4.3), Theorem 3.1 gives, u(0−, t) = (g′)−1

(
−z−(0−, t)

t

)
for t ∈ (a, b)

where t 7→ z−(0−, t) is non-increasing. Thus,∣∣u(0−, t1)− u(0−, t2)
∣∣ =

∣∣∣∣g′−1

(
−z−(0−, t1)

t1

)
− g′−1

(
−z−(0−, t2)

t2

)∣∣∣∣
≤ min{g′′(v); v ∈ [θg + r, ||u0||∞]}−1

∣∣∣∣z−(0−, t1)

t1
− z−(0−, t2)

t2

∣∣∣∣ .
Now the similar calculation as to prove (4.1) gives (4.3). By similar arguments (4.4) can be proven
for f .

4.2. Spatial BV s estimates for values originating from the interface
Now, far from the interface and restricted flux, when the values of the solution are far from

the critical values of f and g, a BV estimate is available. The following inequalities are also valid
in BV s and used later along with other BV s estimates.

Lemma 4.3 (BV and BV s estimates for the solution). Let u be an entropy solution and R1(t) > 0
for some fixed t > 0. Let 0 < a < b < R1(t) and Sf,g,||u0||∞ be as in (3.1). Let r > 0, f satisfies
(2.2) and f ′′ vanishes only on θf (2.3). If u(x, t) ≥ θf + r for a ≤ x ≤ b, then there exists a
constant Cf,g,||u0||∞ > 0 such that

TV s(u(·, t), [a, b]) ≤
Cf,g,||u0||∞

min{f ′′(v); v ∈ [θf + r, Sf,g,||u0||∞ ]} 1
s

(
t− t+(b, t)

t− t+(a, t)

) 1
s

, (4.5)

for all 0 < s ≤ 1.

The same result holds for the left side of the interface as follows:

Lemma 4.4 (BV and BV s estimate for the solution). Let u be an entropy solution and L1(t) < 0
for some t > 0. Let L1(t) < a < b < 0 and Sf,g,||u0||∞ be as in (3.1). Let r > 0, flux g satisfies
(2.2) and g′′ vanishes only on θg. If u(x, t) ≤ θg − r for a ≤ x ≤ b, then there exists a constant
Cf,g,||u0||∞ > 0 such that

TV s(u(·, t), [a, b]) ≤
Cf,g,||u0||∞

min{g′′(v); v ∈ [−Sf,g,||u0||∞ , θg − r]} 1
s

(
t− t−(b, t)

t− t−(a, t)

) 1
s

,

for all 0 < s ≤ 1.

Proof. Theorem 3.1 gives,

u(x, t) = (f ′)−1

(
x

t− t+(x, t)

)
for x ∈ (0, R1(t)).
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Fix a partition a ≤ x1 < x2 < · · · < xm ≤ b. Then, as in the proof of inequality (4.3), it follows,
m−1∑
j=1

|u(xj, t)− u(xj+1, t)|
1
s =

m−1∑
j=1

∣∣∣∣(f ′)−1

(
xj

t− t+(xj, t)

)
− (f ′)−1

(
xj+1

t− t+(xj+1, t)

)∣∣∣∣ 1s
≤ 1

min{f ′′(v); v ∈ [θf + r, Sf,g,||u0||∞ ]} 1
s

m−1∑
j=1

∣∣∣∣ xj

t− t+(xj, t)
− xj+1

t− t+(xj+1, t)

∣∣∣∣ 1s .
We calculate∣∣∣∣ xj

t− t+(xj, t)
− xj+1

t− t+(xj+1, t)

∣∣∣∣ ≤ |xj|
∣∣∣∣ 1

t− t+(xj, t)
− 1

t− t+(xj+1, t)

∣∣∣∣+ 1

t− t+(xj+1, t)
|xj − xj+1|

≤ b

∣∣∣∣ 1

t− t+(xj, t)
− 1

t− t+(xj+1, t)

∣∣∣∣+ 1

t− t+(a, t)
|xj − xj+1| .

Hence, by the convexity yields, (a+ b)
1
s ≤ 2

1−s
s

(
a

1
s + b

1
s

)
and we get

m−1∑
j=1

∣∣∣∣ xj

t− t+(xj, t)
− xj+1

t− t+(xj+1, t)

∣∣∣∣ 1s
≤ 1

2
s−1
s

(
m−1∑
j=1

b
1
s

∣∣∣∣ 1

t− t+(xj, t)
− 1

t− t+(xj+1, t)

∣∣∣∣ 1s + m−1∑
j=1

1

(t− t+(a, t))
1
s

|xj − xj+1|
1
s

)

≤ 1

2
s−1
s

(
b

1
s

∣∣∣∣ 1

t− t+(a, t)
− 1

t− t+(b, t)

∣∣∣∣ 1s + ( b− a

t− t+(a, t)

) 1
s

)

≤ 2
1
s

(
b

t− t+(a, t)

) 1
s

.

In the last step we have used b− a ≤ b and (t− t+(b, t))− (t− t+(a, t)) ≤ t− t+(b, t). Note that
b ≤ Kf,g,||u0||∞(t− t+(b, t)) where Kf,g,||u0||∞ = sup{|f ′| ; |v| ≤ Sf,g,||u0||∞} where Sf,g,||u0||∞ is defined
in (3.1).

The following lemma deals with the spatial regularity of the entropy solution on the right side
of the interface. Inequality (4.5) does not use the restricted non-degeneracy condition.

Lemma 4.5. Let u be an entropy solution and R1(t) > 0 for some fixed t > 0. Let 0 < a < b <
R1(t) and Sf,g,||u0||∞ be as in (3.1). If f only satisfies (2.2) with exponent p then we have

TV
1
p (u(·, t), [a, b]) ≤ Cf,g,||u0||∞

t− t+(b, t)

t− t+(a, t)
. (4.6)

The same result holds for the left side of the interface as follows.

Lemma 4.6. Let u be an entropy solution and L1(t) < 0 for some t > 0. Let L1(t) < a < b < 0.
If g satisfies (2.2) with exponent q then we have

TV
1
q (u(·, t), [a, b]) ≤ Cf,g,||u0||∞

t− t−(b, t)

t− t−(a, t)
. (4.7)

Using a similar argument to that of the previous Lemma 4.3, we can prove the inequality (4.6)
of Lemma 4.5, so we omit the proof here.
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4.3. Smoothing effect for restricted nonlinear fluxes
We are now ready to prove Theorem 2.1. Accordingly, we first fix an arbitrary partition and

divide it into several parts. Some of these parts are far from the interface, where we estimate the
generalized variation using the regularizing effect for scalar conservation laws without a boundary.
For the parts near the interface, we apply the Lax-Oleinik formula (explicit formula in Theorem
3.1) for the solution, along with previous lemmas.

Proof of Theorem 2.1: Since f(θf ) 6= g(θg), without loss of generality assume that f(θf ) < g(θg)
as in (see Fig 2). It is enough to consider the following two cases, the other cases are similar.
Case(i): L1(t) = 0 and R1(t) ≥ 0.

Consider an arbitrary partition {−M = x−n < · · · < x−1 < x0 ≤ 0 < x1 < · · · < xl ≤ R2(t) <
xl+1 < · · · < xm ≤ R1(t) < xm+1 < · · · < xn = M}. Then,

n−1∑
i=−n

|u(xi, t)− u(xi+1, t)|1/s =
−1∑

i=−n

|u(xi, t)− u(xi+1, t)|1/s +
n−1∑

i=m+1

|u(xi, t)− u(xi+1, t)|1/s

+
l−1∑
i=1

|u(xi, t)− u(xi+1, t)|1/s +
m−1∑
i=l+1

|u(xi, t)− u(xi+1, t)|1/s

+ |u(x0, t)− u(x1, t)|1/s + |u(xl, t)− u(xl+1, t)|1/s + |u(xm, t)− u(xm+1, t)|1/s.
From Theorem 3.1, it follows that the solution u is constant between R2(t) to R1(t), which means
variation is zero for this interval. Using the Lax-Oleinik formula from Theorem 3.1 and bounding
the last three terms yield

n∑
i=−n

|u(xi, t)− u(xi+1, t)|1/s ≤
−1∑

i=−n

|u(xi, t)− u(xi+1, t)|1/s︸ ︷︷ ︸
I

+
n−1∑

i=m+1

|u(xi, t)− u(xi+1, t)|1/s︸ ︷︷ ︸
III

+
l−1∑
i=1

|f−1
+ g(u0(z+(xi, t)))− f−1

+ g(u0(z+(xi+1, t)))|1/s︸ ︷︷ ︸
II

+3(2||u0||∞)1/s.

Now we wish to estimate the terms I, II, and III. The simplest terms I, III are estimated as in
[11, 17]. First, let us take into account the term I. Since f and g are satisfying the flux non-
degeneracy condition (2.2), by Lemma A.1, the maps u 7→ (g′)−1(u) and u 7→ (f ′)−1(u) are Hölder
continuous with exponents q−1 and p−1, respectively. From Theorem 3.1, we have that

u(x, t) = (g′)−1

(
x− z−(x, t)

t

)
, for x < 0,

then for −M ≤ xi < xi+1 ≤ 0, from Lemma A.1

|u(xi, t)− u(xi+1, t)|q =

∣∣∣∣(g′)−1

(
xi − z−(xi, t)

t

)
− (g′)−1

(
xi+1 − z−(xi+1, t)

t

)∣∣∣∣q
≤

(
C−q−1

2

∣∣∣∣xi − z−(xi, t)

t
− xi+1 − z−(xi+1, t)

t

∣∣∣∣q−1)q

,

using triangle inequality we obtain,

|u(xi, t)− u(xi+1, t)|q ≤ C−1
2

∣∣∣∣xi − xi+1

t

∣∣∣∣+ C−1
2

∣∣∣∣z−(xi, t)− z−(xi+1, t)

t

∣∣∣∣.
14



Since |xi|, |xi+1| ≤ M and x = z−(x, t) + g′(u(x, 0))t hence, we get

TV q−1

u(σ ∩ [−M, 0]) ≤ 4M

C2t
+

1

C2

sup
{
|g′(v)| ; |v| ≤ ||u0||L∞(R)

}
. (4.8)

In similar fashion, for the term III we have,

TV p−1

u(σ ∩ [R1(t),M ]) ≤ 4M

C1t
+

1

C1

sup
{
|f ′(v)| ; |v| ≤ ||u0||L∞(R)

}
. (4.9)

Now we will estimate the term II. From the definition of s, s ≤ 1/p and s ≤ 1/(q + 1). The rest
of the proof for this case is divided into two sub-cases.

1. Consider the situation when tmin
+ (t) = inf{t+(x, t); x ∈ (0, R1(t))} ≥ t/2. The fact that

tmin
+ > t/2 > 0 implies that the characteristics reaching the left side of the interface at
(0−, t+) have a positive speed. Hence, u(0−, t+(x, t)) > θg for all x ∈ (0, R1(t)) (see Fig 2).
Therefore, the inequality (4.1) of Lemma 4.1 gives TV

1
q (u(0−, ·)(tmin

+ , t)) ≤ Cg
t

t/2
= 2Cg.

Since s ≤ 1

q + 1
<

1

q
Lemma B.1 yields

TV s(u(0−, ·)(tmin
+ , t)) ≤ osc(u)1/s−q · TV

1
q (u(0−, ·)(tmin

+ , t))

≤ osc(u)1/s−qCg,

that gives
II ≤ osc(u)1/s−qCg.

2. Next, we focus on the sub-case when tmin
+ (t) = inf{t+(x, t); x ∈ (0, R1(t))} < t/2. As previous

subcase, we already have TV s(u(0−, ·)(t/2, t)) ≤ 2Cg. Let j0 > 0 such that t+(xj, t) ≥ t/2
for 0 < j ≤ j0 and t+(xj, t) < t/2 for j0 < j ≤ l − 1. Since u(xj, t) = u(0+, t+(xj, t)) =
f−1
+ g(u(0−, t+(xj, t)) for 0 < j < l − 1, from Lemma A.3, f−1

+ g is Lipschitz function, hence
j0∑
j=1

|u(xj, t)− u(xj−1, t)|
1
s ≤ 2Cf,g.

Let θ̄f > θf be such that f(θ̄f ) = g(θg) as shown in (see Fig 2). Then by Rankine-Hugoniot
condition (1.2) observe that u(xj, t) ≥ θ̄f . From the inequality (4.5) of Lemma 4.3 we get

l−2∑
j=j0+1

|u(xj, t)− u(xj+1, t)|
1
s ≤ Cf,g,||u0||∞ .

Subsequently, we get
II ≤ Cf,g,||u0||∞ . (4.10)

Hence combining the estimates on I, II and III for constant Cf,g,||u0||∞ > 0 we have
n∑

i=−n

|u(xi, t)− u(xi+1, t)|1/s ≤ Cf,g,||u0||∞

(
1 +

1

t

)
.

Case (ii): R1(t) = 0, L1(t) < 0. Unlike the previous case, this case is not as good due to the fact
that g−1

− f is only Hölder continuous and not Lipschitz. Let us consider the partition σ = {−M =
x−n < · · · < xm ≤ L2(t) = L1(t) < xm+1 < · · · < x0 ≤ R2(t) = R1(t) = 0 < x1 < · · · ≤ xn = M}
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and then
n∑

i=−n

|u(xi, t)− u(xi+1, t)|1/s =
m−1∑
i=−n

|u(xi, t)− u(xi+1, t)|1/s +
n∑

i=1

|u(xi, t)− u(xi+1, t)|1/s

+
−1∑

i=m+1

|u(xi, t)− u(xi+1, t)|1/s + |u(x0, t)− u(x1, t)|1/s

+ |u(xm, t)− u(xm+1, t)|1/s.
From Theorem 3.1 we get,

∞∑
i=−∞

|u(xi, t)− u(xi+1, t)|1/s =
m−1∑
i=−n

|u(xi, t)− u(xi+1, t)|1/s︸ ︷︷ ︸
I

+2(2||u0||∞)1/s

+
−1∑

i=m+1

|g−1
− (f(u0(z−(xi, t))))− g−1

− (f(u0(z−(xi+1, t))))|1/s︸ ︷︷ ︸
II

+
n∑

i=1

|u(xi, t)− u(xi+1, t)|1/s︸ ︷︷ ︸
III

.

Similarly to Case (i) we bound I, III as in (4.8), (4.9) to get

I + III ≤
Cf,g,||u0||∞M

t
.

We now estimate the term II, and similar to Case (i), we divide this analysis into two sub-cases.
1. We first consider the situation when tmin

− (t) = inf{t−(x, t); x ∈ (L1(t), 0)} ≥ t/2. The
Rankine-Hugoniot condition (1.2) implies that u(0+, ·) ≤ θ̃f , (see Fig 2). The inequality
(4.4) of Lemma 4.2 gives

TV (u(0+, ·)(tmin
− , t)) ≤ Cf,g,||u0||∞ . (4.11)

Note that g−1
− ◦ f is Hölder continuous function with exponent 1

q + 1
. Hence we have

II =
−1∑

j=m+1

|u(xj, t)− u(xj+1, t)|
1

q+1 ≤ Cf,g,||u0||∞ . (4.12)

2. Next we focus on the sub-case when tmin
− (t) = inf{t−(x, t); x ∈ (L1(t), 0)} < t/2. Let j0 < 0

such that t+(xj, t) ≥ t/2 for j0 ≤ j < 0 and t+(xj, t) < t/2 for m+ 1 < j < j0. In the
previous sub-case we have

−1∑
j=j0

|u(xj, t)− u(xj+1, t)|
1

q+1 ≤ Cf,g,||u0||∞ . (4.13)

Note that for m + 1 < j < j0, u(xj, t) = u(0−, t−(xj, t)) ≤ θg. From the inequality (4.7) of
Lemma 4.6 we have

j0−1∑
j=m+1

|u(xj, t)− u(xj+1, t)|
1
q ≤ Cf,g,||u0||∞ . (4.14)
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Subsequently, we get

II ≤ Cf,g,||u0||∞ + ||2u0||
1

q+1
∞ . (4.15)

Hence, from the estimates on I, II and III we get
n∑

i=−n

|u(xi, t)− u(xi+1, t)|
1

q+1 ≤ Cf,g,||u0||∞ + 3(2||u0||∞)
1

q+1 +
Cf,gM

t
. (4.16)

4.4. Generalization for BV s initial data
Now we can prove Theorem 2.2. To do this, we divide the domain into several parts. Here, the

initial data belongs to BV s. If s is very small, then far from the interface estimates come from the
regularizing effect. If s is near 1, then outside interface initial data regularity propagates. For the
estimate on the solution near the interface, again we use the Theorem 3.1 (Lax-Oleinik formula
from [7]).

Proof of Theorem 2.2. Since f(θf ) 6= g(θg), without loss of generality we assume that f(θf ) <
g(θg), (see Fig 2) because other cases can be done in a similar way. Hence, from Theorem 3.1 we
have L2(t) = L1(t) then it is enough to consider the following two cases.

Case (i): If L1(t) = 0 and R1(t) ≥ 0.
Consider the partition σ = {−M = x−n ≤ · · · < x−1 < x0 ≤ 0 < x1 < · · · < xl ≤ R2(t) <
xl+1 < · · · < xm ≤ R1(t) < xm+1 < · · · ≤ xn = M} and

s1 = min{γ,max{ν, s}} ∈ (0, 1).

Then
n−1∑
i=−n

|u(xi, t)− u(xi+1, t)|1/s1

=
−1∑

i=−n

|u(xi, t)− u(xi+1, t)|1/s1 +
n−1∑

i=m+1

|u(xi, t)− u(xi+1, t)|1/s1

+
l−1∑
i=1

|u(xi, t)− u(xi+1, t)|1/s1 +
m−1∑
i=l+1

|u(xi, t)− u(xi+1, t)|1/s1

+ |u(x0, t)− u(x1, t)|1/s1 + |u(xl, t)− u(xl+1, t)|1/s1

+ |u(xm, t)− u(xm+1, t)|1/s1 .
From Theorem 3.1, the entropy solution is constant between R2(t) and R1(t) which means
variation is zero for this interval. Hence,

n−1∑
i=−n

|u(xi, t)− u(xi+1, t)|1/s1 =
−1∑

i=−n

|u(xi, t)− u(xi+1, t)|1/s1︸ ︷︷ ︸
I

+3(2||u0||∞)1/s1

+
l−1∑
i=1

|f−1
+ g(u0(z+(xi, t)))− f−1

+ g(u0(z+(xi+1, t)))|1/s1︸ ︷︷ ︸
II
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+
n−1∑

i=m+1

|u(xi, t)− u(xi+1, t)|1/s1︸ ︷︷ ︸
III

.

From the choice of s1, we get s1 ≤ max{s, 1/q}. If 1/q > s, then s1 < 1/q. By a similar
argument as in (4.8) we have

−1∑
i=−n

|u(xi, t)− u(xi+1, t)|1/s1 ≤
4M

C2t
+

1

C2

sup
{
|g′(v)| ; |v| ≤ ||u||L∞(R×[0,T ])

}
.

If s > 1/q then s1 < s and we use the regularity of initial data to estimate I so from Lemma
B.1 I ≤ D · TV s(u0). Combining both the estimates we can write

I ≤ TV s(u0) +
4M

C2t
+

1

C2

sup
{
|g′(v)| ; |v| ≤ ||u||L∞(R×[0,T ])

}
. (4.17)

Similarly we have

III ≤ TV s(u0) +
4M

C1t
+

1

C1

sup
{
|f ′(v)| ; |v| ≤ ||u||L∞(R×[0,T ])

}
. (4.18)

From Lemma A.3 we know that f−1
+ g(·) is a Lipschitz continuous. Hence, the term II can

be estimated as

II =
l−1∑
i=1

|f−1
+ g(u0(z+(xi, t)))− f−1

+ g(u0(z+(xi+1, t)))|1/s1

≤ C ·
l−1∑
i=1

|u0(z+(xi, t))− u0(z+(xi+1, t))|1/s1 .

If s > 1/q, then we have s1 < s. Using Lemma B.1, we obtain II ≤ D · TV s(u0). For the
case s < 1/q, it is uncertain whether s1 < s, but we certainly have s1 < 1/q. In this case, we
use the regularizing effect for solutions of conservation laws due to the non-degeneracy of g
[11]. Thus, for term II, we obtain the estimate (4.10) similarly as in the proof of Theorem
2.1. Hence, combining the estimates on I, II and III we get

n−1∑
i=−n

|u(xi, t)− u(xi+1, t)|1/s1 ≤ D · TV s(u0) + 3(2||u0||∞)1/s1 +
Cf,gM

t
.

Case (ii): R1(t) = 0, L1(t) < 0.
This case can be handled in a similar fashion as in the previous case.
Only difference is the estimation of II which can be done same as in (4.15).

Hence, we have proven that u(·, t) ∈ BV s1(−M,M). To show that u(·, t) ∈ BV s1(R), we consider
a partition −∞ < x−n < · · · < xn < ∞ which is not necessarily contained in [−M,M ]. We can
choose M = t sup{|f ′(v)| , |g′(v)| ; |v| ≤ ||u0||∞}. Suppose |xj| ≤ M for −m1 ≤ j ≤ m2 for some
0 < m1,m2 ≤ n. From (4.16) we get

m2∑
i=−m1

|u(xi, t)− u(xi+1, t)|
1

q+1 ≤ Cf,g + 2(2||u0||∞)
1

q+1 .

From the choice of M , we can see that R1(t) ≤ M,L1(t) ≥ −M . Hence for i ≤ −m1, u(xi, t) =
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u0(z−(xi, t)) and for i ≥ m2, u(xi, t) = u0(z+(xi, t)). Subsequently,
−m1−2∑
i=−n

|u(xi, t)− u(xi+1, t)|
1
s +

n−1∑
i=m2+1

|u(xi, t)− u(xi+1, t)|
1
s ≤ TV s(u0).

Therefore, we obtain
n−1∑
i=−n

|u(xi, t)− u(xi+1, t)|
1

q+1 ≤ Cf,g,||u0||∞ + 4(2||u0||∞)
1

q+1 + TV s(u0).

This completes the proof of Theorem 2.2.

4.5. Non restricted fluxes
We now consider the case of weaker non-degeneracy conditions on the fluxes. In this case, we

cannot utilize Lemma 4.2, 4.3, and 4.4 to obtain estimates on the solution near the interface. As
a result, the regularity of the solution is weaker here.

Proof of Theorem 2.3: Fix a time t > 0. We only show for the case when R1(t) > 0. Note that in
this case L1(t) = L2(t) = 0. Suppose t0 = lim

x→R1(t)−
t+(x, t). First consider t0 > t/2. From Lemma

4.1, we have

TV
1
q (u(0−, ·), (t0, t)) ≤

Cgt

t0
≤ 2Cg.

Since u 7→ f−1
+ (g(u)) is Hölder continuous with exponent 1

p+ 1
, we get

|u(0+, t1)− u(0+, t2)| ≤ Cf,g,||u0||∞ |u(0−, t1)− u(0−, t2)|
1

p+1 .

Subsequently, we have

TV s(u(0+, ·), (t0, t)) ≤ Cf,g,||u0||∞ where s =
1

q(p+ 1)
.

Note that for x ∈ (0, R1(t)) we have u(x, t) = u(0+, t+(x, t)). Therefore,
TV s(u(·, t), (0, R1(t))) ≤ Cf,g,||u0||∞ . (4.19)

For x > R1(t) we have u(x, t) = (f ′)−1

(
x− z+(x, t)

t

)
for a non-decreasing x 7→ z+(x, t). By using

flux condition (2.2) of f , we obtain

TV
1
p (u(·, t), (R1(t),M)) ≤

Cf,g,||u0||∞M

t
. (4.20)

Hence,

TV s(u(·, t), (0,M)) ≤ TV s(u(·, t), (0, R1(t))) + ||2u||
1
s

L∞(R) + TV s(u(·, t), (R1(t),M))

≤ Cf,g,||u0||∞ + ||2u0||
1
s

L∞(R) + TV
1
p (u(·, t), (R1(t),M))

≤ Cf,g,||u0||∞ + ||2u0||
1
s

L∞(R) +
Cf,g,||u0||∞M

t
.

Next we consider the case when t0 < t/2. Let x0 = sup{x; t+(x, t) ≥ t/2}. By Lemma 4.3 we have

TV
1
p (u(·, t); (x0,M)) ≤ Cf,g,||u0||∞ +

Cf,g,||u0||∞M

t
. (4.21)
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Similar to (4.19) we get

TV s(u(·, t), (0, x0)) ≤ Cf,g,||u0||∞ with s =
1

q(p+ 1)
.

Subsequently, we obtain

TV s(u(·, t), (0,M)) ≤ Cf,g,||u0||∞ + ||2u0||
1
s

L∞(R) +
Cf,g,||u0||∞M

t
.

Note that for x < 0 we have u(x, t) = (g′)−1

(
x− z−(x, t)

t

)
. Then by using flux condition (2.2)

we can show that

TV
1
q (u(·, t); (−M, 0)) ≤

Cf,g,||u0||∞M

t
. (4.22)

The other case when L1(t) < 0 follows from a similar argument. This completes the proof of
Theorem 2.3.

4.6. Propagation of the initial regularity outside the interface
In this section, we show the regularity of entropy solutions outside the interface is better than

at the interface.

Proof of Theorem 2.4. We consider the partition ϵ ≤ x0 < x1 < · · · < xl ≤ R1(t) ≤ xl+1 < · · · .
Then

∞∑
i=0

|u(xi, t)− u(xi+1, t)|1/s =
l−1∑
i=0

|u(xi, t)− u(xi+1, t)|1/s +
∞∑
i=l

|u(xi, t)− u(xi+1, t)|1/s.

Now from Theorem 3.1 we get,
∞∑
i=0

|u(xi, t)− u(xi+1, t)|1/s ≤
l−1∑
i=0

∣∣∣∣(f ′)−1

(
xi

t− t+(xi, t)

)
− (f ′)−1

(
xi+1

t− t+(xi+1, t)

)∣∣∣∣1/s
+

∣∣u(xl, t)− u(xl+1, t)
∣∣1/s + ∞∑

i=l+1

∣∣u0(y(xi, t))− u0(y(xi+1, t))
∣∣1/s.

Since t+(x, t) is a monotone and bounded function such that t+(x, t) < t for all x ≥ ϵ, it follows
that the infimum of t− t+(x, t) positive. Hence, we obtain

ϵ

T
≤ x

t− t+(x, t)
≤ M

h(ϵ, T )
,

where h(ϵ, T ) = inf{t − t+(x, t) : ϵ ≤ x ≤ R1(t), 0 < t ≤ T}, which also implies that (f ′)−1 is

Lipschitz continuous function on interval
[
ϵ

T
,

M

h(ϵ, T )

]
. Then,

∞∑
i=0

|u(xi, t)− u(xi+1, t)|1/s ≤ C(ϵ, t)
l−1∑
i=0

∣∣∣∣ xi

t− t+(xi, t)
− xi+1

t− t+(xi+1, t)

∣∣∣∣1/s
+

∣∣u(xl, t)− u(xl+1, t)
∣∣1/s

+
∞∑

i=l+1

∣∣u0(y(xi, t))− u0(y(xi+1, t))
∣∣1/s.

The estimate on first sum follow from,
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l−1∑
i=0

∣∣∣∣ xi

t− t+(xi, t)
− xi+1

t− t+(xi+1, t)

∣∣∣∣1/s
=

l−1∑
i=0

∣∣∣∣ xi

t− t+(xi, t)
− xi

t− t+(xi+1, t)
+

xi

t− t+(xi+1, t)
− xi+1

t− t+(xi+1, t)

∣∣∣∣1/s ,
from triangle inequality we get,

l−1∑
i=0

∣∣∣∣ xi

t− t+(xi, t)
− xi+1

t− t+(xi+1, t)

∣∣∣∣1/s
≤

l−1∑
i=0

(∣∣∣∣ xi

t− t+(xi, t)
− xi

t− t+(xi+1, t)

∣∣∣∣+ ∣∣∣∣ xi

t− t+(xi+1, t)
− xi+1

t− t+(xi+1, t)

∣∣∣∣)1/s

,

now from the inequality a1/s + b1/s ≤ (a+ b)1/s we get,
l−1∑
i=0

∣∣∣∣ xi

t− t+(xi, t)
− xi+1

t− t+(xi+1, t)

∣∣∣∣1/s

≤

(
l−1∑
i=0

∣∣∣∣ xi

t− t+(xi, t)
− xi

t− t+(xi+1, t)

∣∣∣∣+ ∣∣∣∣ xi

t− t+(xi+1, t)
− xi+1

t− t+(xi+1, t)

∣∣∣∣
)1/s

.

Therefore, we get the following estimate,
l−1∑
i=0

∣∣∣∣ xi

t− t+(xi, t)
− xi+1

t− t+(xi+1, t)

∣∣∣∣1/s ≤
(

R1(t)− ϵ

|t− t+(ϵ, t)|
+

R1(t)|t+(ϵ, t)− t+(R1(t), t)|
|t− t+(ϵ, t)|2

)1/s

.

Thus we have,
∞∑
i=0

|u(xi, t)− u(xi+1, t)|1/s ≤ C sup
0≤t≤T

(
R1(t)− ϵ

|t− t+(ϵ, t)|
+

R1(t)|t+(ϵ, t)− t+(R1(t), t)|
|t− t+(ϵ, t)|2

)1/s

+ TV s(u0) + (2||u0||)1/s,
≤ C(ϵ, t) + TV s(u0) + (2||u0||)1/s.

In a similar way the other case x ≤ −ϵ can be handled, to yield
∞∑
i=0

|u(xi, t)− u(xi+1, t)|1/s ≤ C(ϵ, t) + TV s(u0) + 2(2||u0||)1/s.

5. Construction of counter-example

We now proceed to construct a counterexample to show that when the initial data is in BV , the
corresponding solution may not be in BV s at a fixed positive time T > 0, for some specific choice
of flux. To do this, we refer to the backward construction for conservation laws with discontinuous
flux introduced in [3]. However, before we apply this method, we need to recall some notations
and results from [3]. In particular, we use the following result from [3]: given functions h+ and z,
we can construct an entropy solution that satisfies the Hopf-Lax type formula for (1.1) with h+

and z.
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Proposition 5.1 (Backward construction, [3]). Let f, g are C1 strictly convex functions. Let
R > 0 and z : [0, R] → (−∞, 0] be a non-decreasing function with z0 = z(0+) and z1 = z(R−).
Suppose

h+

(
R

T − t1

)
= −z1

t1
,

g′(u−) =
z0
T
, g′(v−) = −z1

t1
, v̄− = f−1

+ (g(v−)), (5.1)

where h+ is defined as
h+ := g′ ◦ g−1

+ ◦ f ◦ (f ′)−1. (5.2)
We additionally assume that h+ is a locally Lipschitz function. Then there exists an initial data
u0 ∈ L∞(R) and the corresponding entropy solution u to (1.1) such that

u(x, T ) = (f ′)−1

(
x

T − t+(x)

)
where − z(x)

t+(x)
= h+

(
x

T − t+(x)

)
for x ∈ [0, R] (5.3)

and additionally, it holds u(x, T ) = u− for x < 0 and u(x, T ) = v̄− for x > R.

u
θg

θf

f(u) g(u)

Figure 3: An illustration of fluxes

To be self-contained the main ingredients of the proof are given in Appendix C. We now
proceed with the proof of Theorem 2.5.

Proof of Theorem 2.5. Let f(u) = |u|p+1 and g(u) = u2 − 1. Note that by Lemma A.4 f satisfies
the non-degeneracy condition (2.2) with exponent p and g is uniformly convex.

Let {ak}k≥1 be a sequence defined as a2i = i−β and a2i+1 = i−α with β > α > 0 which will be
chosen later. Consider an increasing sequence {tk} such that tk → 1 and

1− t2k+1 =
1

kβ−α
(1− t2k) and t2k+2 − t2k+1 = k−λ (5.4)

where λ > 1 will be chosen later. Then we have
t2k+2 − t2k+1

t2k+1

=
1

kλ

1

t2k+1

≥ 1

kλ
. (5.5)

We define {xi} as follows
xi = (1− t2i)a2i = (1− t2i+1)a2i+1. (5.6)

Since {t2i}i≥1 is increasing and {a2i}i≥1 is decreasing sequence, {xi}i≥1 is a decreasing sequence.
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Let h : [0,∞) → R be defined as

h(u) = 2

√
1 + (p+ 1)−1− 1

pu1+ 1
p

for u ≥ 0. Observe that

h(a2i+1)

h(a2i+2)
− 1 =

√
1 +

(
i−α

p+1

)1+ 1
p −

√
1 +

(
(i+1)−β

p+1

)1+ 1
p√

1 +
(

(i+1)−β

p+1

)1+ 1
p

≤ 1

i
p+1
p

α
− 1

i
p+1
p

β
. (5.7)

Then if λ <
p+ 1

p
α we get

h(a2i+1)

h(a2i+2)
− 1 <

t2i+2

t2i+1

− 1. (5.8)

Therefore, we have
t2i+1h(a2i+1) < t2i+2h(a2i+2). (5.9)

Note that
1− t2i+1

1− t2i
=

1

iβ−α
< 1. (5.10)

Hence, t2i+1 > t2i. Since h(a2i+1) > h(a2i) we have t2i+1h(a2i+1) > h(a2i)t2i. Let ξ(x) be solving
the following problem (

x

1− ξ(x)

)1+ 1
p

=

(
C

ξ(x) + d

)2

− 1 (5.11)

ξ(xi) = t2i+1, (5.12)
ξ(xi+1) = t2i+2. (5.13)

Note that C > 0 and d > 0 are determined by (5.12) and (5.13). In particular, the existence of
such ξ can be shown from Lemma 3.4 and 3.5 of [3]. Next, we show that ξ′ < 0. To do this, we
differentiate both sides of (5.11) and get the following

0 <

(
1 +

1

p

)
x

1
p = −ξ′(x)

(
1 +

1

p

)
(1− ξ(x))

1
p

[(
C

ξ(x) + d

)2

− 1

]
−ξ′(x)(1− ξ(x))1+

1
p

2C

(ξ(x) + d)2

(
C

ξ(x) + d

)
.

(5.14)

Therefore, we get ξ′(x) < 0. Let Φ(x) be defined as

Φ(x) := ξ(x)

√
1 +

(
x

1− ξ(x)

)1+ 1
p

=
Cξ(x)

ξ(x) + d
. (5.15)

Observe that

Φ′(x) = ξ′(x)

[
C

ξ(x) + d
− Cξ(x)

(ξ(x) + d)2

]
= ξ′(x)

Cd

(ξ(x) + d)2
< 0. (5.16)

Finally we define the function t(x) such that t(xi+) = t2i and t(xi−) = t2i+1 for i ≥ i0 and t
satisfies (5.11)–(5.13) for x ∈ (xi+1, xi). Let ρ : (0,∞) → R be defined as

ρ(x) = −t(x)h

(
x

1− t(x)

)
. (5.17)

By (5.9) and (5.16), x 7→ ρ(x) is increasing. By Proposition 5.1 with R = x1, there exists an
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entropy solution u such that

u(xi+, 1) =

(
xi

(p+ 1)(1− t2i)

) 1
p

and u(xi−, 1) =

(
xi

(p+ 1)(1− t2i+1)

) 1
p

. (5.18)

By (5.6) we get

u(xi+, 1) =

(
a2i

p+ 1

) 1
p

and u(xi−, 1) =

(
a2i+1

p+ 1

) 1
p

. (5.19)

Therefore,

|u(xi−, 1)− u(xi+, 1)| =

∣∣∣∣∣
(

a2i
p+ 1

) 1
p

−
(
a2i+1

p+ 1

) 1
p

∣∣∣∣∣
= (1 + p)−

1
p

[
i−

α
p − i−

β
p

]
. (5.20)

Let ϵ > 0. Then, we have

|u(xi−, 1)− u(xi+, 1)|
p+1
1+ϵ ≥ C(p)

[
i−

α(p+1)
p(1+ϵ) − i−

β(p+1)
p(1+ϵ)

]
. (5.21)

Now, we set

λ = 1 +
2p

3(2p+ 1)
ϵ,

p+ 1

p
α = 1 +

4p+ 2

3(2p+ 1)
ϵ and p+ 1

p
β = 1 +

2(3p+ 2)

3(2p+ 1)
ϵ. (5.22)

We check that β−α = λ− 1 and p+ 1

p
β > 1+ ϵ. Hence, u(·, 1) /∈ BV s

loc(R) for s = 1

p+ 1
+

ϵ

p+ 1
.

Note that by Proposition 5.1 initial data u0 ∈ L∞(R). Now we find a data which is in BV (R).
From the construction we have x1 < R2(1) where R2(t) is as in Theorem 3.1. Choose a point
x0 ∈ (x1, R2(1)). Note that 0 < t+(x0, 1) < 1 and u(x, t+(x0, 1)) = v̄− for x ≥ 0. We also observe
that L1(t) = 0 and R2(t) > 0 for t = t+(x0, 1). Therefore, for t = t+(x0) we have

u(x, t) = (g′)−1

(
x− z−(x, t)

t

)
for x < 0. (5.23)

Since g is uniformly convex we have u(·, t+(x0, 1)) ∈ BV ((−∞, 0)). To conclude the Theorem 2.5
we set v0(x) := u(x, t0(x0, 1)). Let v(x, t) be the entropy solution to (1.1) with initial data v0. Note
that v(x, 1− t0(x0, 1)) = u(x, 1) for all x ∈ R. Hence, the proof of Theorem 2.5 is completed.

Appendix A. Hölder continuity of singular maps

In this section, we collect useful lemmas on the Hölder exponent and non-degeneracy of fluxes,
which are used throughout the paper. Some commentaries are added for all lemmas. The follow-
ing lemma recall that the non-uniform convexity of a flux function corresponds to a loss of the
Lipschitz regularity for the reciprocal function of the derivative. This key point enforces a BV s

(or generalized BV regularity [17, 29]) instead of BV regularity [35, 44] for the entropy solutions.

Lemma A.1. Let g ∈ C1(R) be satisfying the non-degeneracy (2.2) with exponent q. Then (g′)−1

is Hölder continuous with exponent 1/q.

Proof. Fix a compact set K. Let x and y is in g′(K). There exist x̃, ỹ such that x̃ = (g′)−1(x) and
ỹ = (g′)−1(y). Then,

|(g′)−1(x)− (g′)−1(y)|
|x− y|1/q

=
|x̃− ỹ|

|g′(x̃)− g′(ỹ)|1/q
=

|x̃− ỹ|
|g′(x̃)− g′(ỹ)|1/q

≤ 1

C
1/q
2

.

24



This proves the Lemma A.1.

The interface condition (1.2) requires the use of some reciprocal functions of the fluxes g or
f . The fact that the reciprocal function of g is never Lipschitz near min g forbids the classical
Lax-Oleinik BV smoothing effect for a uniform convex flux.

Lemma A.2. Let g be a C2 function satisfying (2.2) with exponent q then g+ satisfies (2.2) with
exponent q + 1 on domain (θg,∞).

Proof. Since θg is the critical point of g hence, g′(θg) = 0, then we consider

g(x)− g(y) = (x− y)

ˆ 1

0

g′(λx+ (1− λ)y)dλ,

= (x− y)

ˆ 1

0

(g′(λx+ (1− λ)y)− g′(θg))dλ.

We know that g′(·) is an increasing function and g satisfies the non-degeneracy condition (2.2).
Let x > y ≥ θg, then

|g(x)− g(y)| = |x− y|
ˆ 1

0

(g′(λx+ (1− λ)y)− g′(θg))dλ

≥ C2|x− y|
ˆ 1

0

(λx+ (1− λ)y)− θg)
qdλ

≥ 1

q + 1
C2

(
(x+ (1− λ)y)− θg)

q+1
)∣∣∣∣∣

1

0

≥ 1

q + 1
C2((x− θg)

q+1 − (y − θg)
q+1)

≥ C2

q + 1
|x− y|q+1. (A.1)

The previous comment of Lemma A.2 is even more important for the non-Lipschitz regularity
of the singular map.

Lemma A.3. Suppose fluxes f and g are C1(R) and convex functions with f(θf ) < g(θg) which
additionally satisfies the non-degeneracy condition (2.2) and let K is any compact set of R. Then
for x ∈ K, f−1

+ g(·) is a Lipschitz continuous function and g−1
− f(·) is a Hölder continuous function.

Proof. Since f(θf ) < g(θg), there exist a1 < θf < a2 such that f(a1) = g(θg) = f(a2). Hence, we
have

c̄ := min {|f ′(a)| ; a ∈ (−∞, a1] ∪ [a2,∞)} > 0. (A.2)
Without loss of generality, we can assume that g(x) 6= g(y) because if g(x) = g(y), then the result
holds anyway. There exist x̃, ỹ > θf such that f(x̃) = g(x) and f(ỹ) = g(y). As f−1

+ is increasing,
we get x̃, ỹ > a2. Consider the following

|f−1
+ g(x)− f−1

+ g(y)|
|x− y|

=
|f−1

+ g(x)− f−1
+ g(y)|

|g(x)− g(y)|
· |g(x)− g(y)|

|x− y|
,

=
|f−1

+ f(x̃)− f−1
+ f(ỹ)|

|f(x̃)− f(ỹ)|
· |g(x)− g(y)|

|x− y|
,
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=
|x̃− ỹ|

|f(x̃)− f(ỹ)|
· |g(x)− g(y)|

|x− y|
,

=
1

f ′(c0)
· |g(x)− g(y)|

|x− y|
,

for some c0 in between x̃, ỹ. Note that c0 ≥ a2 and f ′ ≥ c̄. Since g is a Lipschitz continuous
function, we have |g(x)− g(y)| ≤ c1 |x− y|, where c1 depends on g and K. Therefore, we get

|f−1
+ g(x)− f−1

+ g(y)|
|x− y|

≤ C. (A.3)

We know that for f(x) ≥ g(θg) there exists x̃ such that f(x) = g(x̃) and g′(x̃) > 0, without loss of
generality we can assume that g(x) 6= g(y) because if g(x) = g(y) then result holds.

|g−1
− f(x)− g−1

− f(y)|q+1

|x− y|
=

|g−1
− f(x)− g−1

− f(y)|q+1

|f(x)− f(y)|
· |f(x)− f(y)|

|x− y|
,

=
|g−1

− g(x̃)− g−1
− g(ỹ)|q+1

|g(x̃)− g(ỹ)|
· |f(x)− f(y)|

|x− y|
,

=
|x̃− ỹ|q+1

|g(x̃)− g(ỹ)|
· |f(x)− f(y)|

|x− y|
,

Now from the Lipschitz continuity f and (A.1),
|g−1

− f(x)− g−1
− f(y)|q+1

|x− y|
≤ C. (A.4)

Hence, it implies that
|g−1

− f(x)− g−1
− f(y)| ≤ C|x− y|1/q+1.

The following lemma shows that power law fluxes satisfy the non-degeneracy condition (2.2).
Lemma A.4. Let M > 0 and g : [−M,M ] → R be defined as g(u) = |u|p for p ≥ 2. Then g
satisfies the non-degeneracy condition (2.2) with exponent p− 1.

This is the simplest example with power-law degeneracy p− 1 [11, 16].

Appendix B. BV s embedding
The continuous embedding between fractional BV spaces is explicitly expressed using the L∞

norm or, more precisely, the oscillation in the following lemma. It is important to recall that the
oscillation of a function u on an interval I is defined as follows

osc(u) := sup
x<y

{|u(x)− u(y)|} ≤ 2‖u‖∞.

Lemma B.1. Let u : I ⊂ R → R be bounded function on a given interval I and 0 < s < t such
that u ∈ BV t ⊂ BV s. Let p =

1

s
≥ q =

1

t
, then,

TV su(I) ≤ osc(u)p−q TV tu(I). (B.1)
Proof. When osc(u) ≤ 1, the inequality yp ≤ yq for all y ∈ [0, 1] gives a direct estimate. More
precisely, let σ = (x1, · · · , xn) be any partition of I,

n−1∑
i=1

|u(xi)− u(xi+1)|p ≤
n−1∑
i=1

|u(xi)− u(xi+1)|q ≤ TV tu(I).
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This inequality can be improved as follows if u is non constant, that is osc(u) > 0. For this
purpose, consider v = u/osc(u) so osc(v) ≤ 1. Now, on a subdivision, we have,

osc(u)−p

n−1∑
i=1

|u(xi)− u(xi+1)|p =
n−1∑
i=1

|v(xi)− v(xi+1)|p

≤
n−1∑
i=1

|v(xi)− v(xi+1)|q = osc(u)−q

n−1∑
i=1

|u(xi)− u(xi+1)|q.

That is to say, the following inequality which is also valid when osc(u) = 0,
n−1∑
i=1

|u(xi)− u(xi+1)|p ≤ osc(u)p−q

n−1∑
i=1

|u(xi)− u(xi+1)|q.

This is enough to conclude the lemma.

Appendix C. Backward construction

The proof of optimality presented in section 5 needs a construction of initial data and solution
by borrowing ideas and techniques from control. We only give a sketch of the existence of such
solution along with initial data that is stated in Proposition 5.1. The complete construction can
be found in [3].

Proof of Proposition 5.1. We first approximate z(x) by piece-wise constant increasing function as
follows 

z0 = w0 < w1 < · · · < wk = z1,

|wi+1 − wi| <
1

N
,

0 = x0 < x1 < · · · < xk = R,
z(xi) = wi for 1 ≤ i ≤ k − 1,

with z0 = z(0) and z1 = z(R−).

(C.1)

We set t0 = T and ti, 1 ≤ i ≤ 2k,, ci, di 1 ≤ i ≤ k as follows

h+

(
xi

T − t2i−1

)
= −wi−1

t2i−1

, h+

(
xi

T − t2i

)
= −wi

t2i
,

f ′(c2i−1) =
xi

T − t2i−1

, f ′(c2i) =
xi

T − t2i
and di = g−1

+ (f(ai)).
(C.2)

Then we observe that c2i−1 > c2i, d2i−1 > d2i, T = t0 > t1 > · · · > t2k = T1. Consider Lipschitz
curves ri, r̃i, ai, bi defined as follows

si =
f(c2i−1)− f(c2i)

c2i−1 − c2i
, Si =

g(d2i−1)− g(d2i)

d2i−1 − d2i
, 1 ≤ i ≤ k,

ri(t) = g′(di)(t− ti), r̃i(t) = f ′(ci)(t− ti), 1 ≤ i ≤ 2k,
ai(t) = xi + si(t− T ), bi(t) = Si(t− qi), ai(qi) = 0, 1 ≤ i ≤ 2k,

(C.3)

r0(t) = g′(b0)(t− T ) = g′(u−)(t− t0). (C.4)
Now, we define uN

0 as below

uN
0 :=


u− if x < w0,
d2i−1 if wi−1 < x < bi(0), 1 ≤ i ≤ k,
d2i if bi(0) < x < wi, 1 ≤ i ≤ k,
v− if w2k < x < 0,
v̄− if x > 0.

(C.5)
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Let t̃i(x) be the unique solution to

h+

(
x

T − t̃i(x, t)

)
= − zi

t̃i(x, t)
for x ∈ (xi, xi+1), 1 ≤ i ≤ k − 1. (C.6)

Corresponding entropy solution uN is the following

uN(x, t) =



u− if x < r0(t),

(g′)−1

(
x− zi

t

)
if r2i(t) < x < min{r2i+1(t), 0},

(f ′)−1

(
x

t− t̃i(x, t)

)
if max{r̃2i+1(t), 0} < x < r̃2i−1(t),

d2i−1 if r2i−1(t) < x < min{Si(t), 0}, 1 ≤ i ≤ k,
d2i if S2i(t) < x < min{r2i(t), 0}, 1 ≤ i ≤ k,
c2i−1 if max{r̃2i−1(t), 0} < x < si(t), 1 ≤ i ≤ k,
c2i if max{si(t), 0} < x < r̃2i, 1 ≤ i ≤ k,
v− if r2k(t) < x < 0,
v̄− if x > max{r̃2k, 0}.

(C.7)

By assumption we have h+ is a locally Lipschitz continuous function and we can prove TV bound
of g′(uN

0 ) (see [3] for more details). Then, by applying Helly’s Theorem we can find a u0 ∈ L∞(R)
and corresponding entropy solution u satisfying (5.3). This completes the proof of Proposition
5.1.
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