
HAL Id: hal-03669659
https://hal.science/hal-03669659v1

Preprint submitted on 16 May 2022 (v1), last revised 8 Nov 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Explorable automata
Emile Hazard, Denis Kuperberg

To cite this version:

Emile Hazard, Denis Kuperberg. Explorable automata. 2022. �hal-03669659v1�

https://hal.science/hal-03669659v1
https://hal.archives-ouvertes.fr


Explorable automata1

Emile Hazard #2

CNRS, LIP, ENS Lyon, France3

Denis Kuperberg #�4

CNRS, LIP, ENS Lyon, France5

Abstract6

We define the class of explorable automata on finite or infinite words. This is a generalization7

of Good-For-Games (GFG) automata, where this time non-deterministic choices can be resolved8

by building finitely many simultaneous runs instead of just one. We show that recognizing GFG9

automata among explorable ones is in PTime, thereby giving a strong link between the two notions.10

We then show that recognizing explorable automata is ExpTime-complete, in the case of finite words11

or Büchi automata. Additionally, we define the notion of ω-explorable automata on infinite words,12

where countably many runs can be used to resolve the non-deterministic choices. We show that all13

reachability automata are ω-explorable, but this is not the case for safety ones. We finally show14

ExpTime-completeness for ω-explorability of automata on infinite words, covering the safety and15

co-Büchi acceptance conditions.16
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1 Introduction20

In several fields of theoretical science, the tension between deterministic and non-deterministic21

models is a source of fundamental open questions, and has led to important lines of research.22

The most famous of this kind is the P vs NP question in complexity theory. This paper aims23

at further investigating the frontier between determinism and non-determinism in automata24

theory. Although Non-deterministic and Deterministic Finite Automata (NFA and DFA) are25

known to be equivalent, many subtle questions remain about the cost of determinism, and a26

deep understanding of non-determinism will be needed to solve them.27

One of the approaches investigating non-determinism in automata is the study of Good-28

For-Games (GFG) automata, introduced in [13]. An automaton is GFG if when reading29

input letters one by one, its non-determinism can be resolved on-the-fly without any need to30

guess the future. This constitutes a model that is intermediary between non-determinism and31

determinism, and can sometimes bring the best of both worlds. Like deterministic automata,32

GFG automata on infinite words retain good properties such as their soundness with respect33

to composition with games, making them appropriate for use in Church synthesis algorithms34

[13]. On the other hand, like non-deterministic automata, they can be exponentially more35

succinct than deterministic ones [16]. There is a very active line of research trying to36

understand the various properties of GFG automata, see e.g. [21, 22, 4, 6, 17, 11, 23] for37

latest developments. Notice that GFG automata are also called history-deterministic, a38

terminology introduced originally in the theory of regular cost functions [9]. The name39

“history-deterministic” corresponds to the above intuition of solving non-determinism on-the-40

fly, while “good-for-games” refers to sound composition with games. These two notions may41

actually differ in some quantitative frameworks, but coincide on boolean automata [5].42

The goal of this paper is to pursue this line of research by introducing and studying the43

class of explorable automata on finite and infinite words. The intuition behind explorability44

is to limit the amount of non-determinism required by the automaton to accept its language,45
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23:2 Explorable automata

in a more permissive way than GFG automata. If k ∈ N, an automaton is k-explorable if46

when reading input letters, it suffices to keep track of k runs to build an accepting one, if it47

exists. An automaton is explorable if it is k-explorable for some k ∈ N. This can be seen48

as a variation on the notion of GFG automaton, which corresponds to the case k = 1. The49

present work can be compared to [15], where a notion related to k-explorability (called width)50

is introduced and studied. In [15], the notion of simultaneous runs is different and more51

permissive, and does not give any meaningful notion of explorability, because n simultaneous52

runs always suffice for an automaton with n states. However some results of [15] also apply53

to k-explorability, notably ExpTime-completeness of deciding k-explorability of an NFA if54

k is part of the input. Surprisingly however, the techniques used in [15] are quite different55

from the ones we need here. This shows that fixing a bound k for the number of runs leads56

to very different problems compared to asking for the existence of such a bound.57

One of the motivations to introduce the notion of explorability is to tackle one of the58

important open questions about GFG automata: what is the complexity of deciding whether59

an automaton is GFG? Recognizing GFG automata is known to be in PTime for Büchi [1]60

and co-Büchi [16] automata, but even for 3 parity ranks, the only known upper bound is61

ExpTime via the naive algorithm from [13]. We show how explorable automata can simplify62

this question: if the input automaton is explorable, then the problem becomes PTime.63

Therefore, the question of recognizing GFG automata can be shifted to: how hard is it to64

recognize explorable automata?65

We then proceed to study the decidability and complexity of the explorability problem:66

deciding whether an input automaton on finite or infinite words is explorable. For this, we67

establish a connection with the population control problem studied in [2]. This problem68

asks, given an NFA with an arbitrary number of tokens in the initial state, whether a69

controller can choose input letters, thereby forcing every token to reach a designated state,70

even if tokens are controlled by an opponent. It is shown in [2] that the population control71

problem is ExpTime-complete, and we adapt their proof to our setting to show that the72

explorability problem is ExpTime-complete as well, already for NFAs. We also show that a73

direct reduction is possible, but at an exponential cost, yielding only a 2-ExpTime algorithm74

for the NFA explorability problem. In the case of infinite words, we adapt the proof to the75

Büchi case, thereby showing that the Büchi explorability problem is in ExpTime as well.76

We also remark that as in [2], the number of tokens needed to witness explorability can go77

as high as doubly exponential in the size of the automaton.78

This ExpTime-completeness result means that we unfortunately cannot directly use the79

intermediate notion of explorable automata to improve on the complexity of recognizing80

GFG automata, as could have been the hope. We still believe however that this explorability81

notion is of interest towards a better understanding of non-determinism in automata theory.82

Notice that interestingly, from a model-checking perspective, our approach is dual to83

[2]: in the population control problem, an NFA is well-behaved when we can “control” it by84

forcing arbitrarily many runs to simultaneously reach a designated state, via an appropriate85

choice of input letters. On the contrary, in our approach, the input letters form an adversarial86

environment, and our NFA is well-behaved when its non-determinism is limited, in the sense87

that it is enough to spread finitely many runs to explore all possible behaviours.88

On infinite words, we push further the notion of explorability, by remarking that for some89

automata, even following a countable number of runs is not enough. This leads to defining the90

class of ω-explorable automata, as those automata on infinite words where non-determinism91

can be resolved using countably many runs. We show that ω-explorable automata form a92

non-trivial class even for the safety acceptance condition (but not for reachability), and give93
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an ExpTime algorithm recognizing ω-explorable automata, encompassing the safety and94

co-Büchi conditions. We also show ExpTime-hardness of this problem, by adapting the95

ExpTime-hardness proof of [2] to the setting of ω-explorability.96

Summary of the contributions. We show that given an explorable parity automaton97

of fixed parity index, it is in PTime to decide whether it is GFG. The algorithm used for98

Büchi in [1] is conjectured to work for any acceptance condition (this is the “G2 conjecture”),99

and it is in fact this algorithm that is shown here to work on any explorable parity automaton.100

We show that given a NFA or Büchi automaton, it is decidable and ExpTime-complete to101

check whether it is explorable. Our proof of ExpTime-completeness for NFAs uses techniques102

developed in [2], where ExpTime-completeness is shown for the NFA population control103

problem. We generalize this result to ExpTime explorability checking for Büchi automata,104

requiring further adaptations. We also give a black box reduction using the result from105

[2]. This is enough to show decidability of the NFA explorability problem, but it yields a106

2-ExpTime algorithm. As in [2], the ExpTime algorithm yields a doubly exponential tight107

upper bound on the number of tokens needed to witness explorability.108

On infinite words, we show that any reachability automaton is ω-explorable, but that this109

is not the case for safety automata. We show that both the safety and co-Büchi ω-explorability110

problems are ExpTime-complete.111

Related Works. Many works aim at quantifying the amount of non-determinism in112

automata. A survey by Colcombet [10] gives useful references on this question. Let us mention113

for instance the notion of ambiguity, which quantifies the number of simultaneous accepting114

runs. Similarly as in [15], we can note that ambiguity is orthogonal to k-explorability. Remark115

however that our finite/countable/uncountable explorability hierarchy is reminiscent of the116

finite/polynomial/exponential ambiguity hierarchy (see e.g. [24]).117

In [14], several ways of quantifying the non-determinism in automata are studied from118

the point of view of complexity, including notions such as the number of advice bits needed.119

Another approach is studied in [20], where a measure of the maximum non-deterministic120

branching along a run is defined and compared to other existing measures.121

Following the GFG approach, a hierarchy of non-determinism and an analysis of this122

hierarchy via probabilistic models is given in [22].123

We define explorability via games with tokens inspired by the approach in [1]. These124

games with tokens and their interplay with various quantitative acceptance conditions were125

recently investigated in [6].126

2 Explorable automata127

2.1 Preliminaries128

If i ≤ j are integers, we will denote by [i, j] the integer interval {i, i + 1, . . . , j}. If S is a set,129

its cardinal will be denoted |S|, and its powerset P(S).130

We work with a fixed finite alphabet Σ. We will use the following default notation for the131

components of an automaton A: QA for its states of states, qA
0 for its initial state, FA for132

its accepting states, ∆A for its set of transitions. The subscript might be omitted when clear133

from context. We might also specify its alphabet by ΣA instead of Σ for cases where different134

alphabets come into play. If ∆ ⊆ Q × Σ × Q is the transition relation, and (p, a) ∈ Q × Σ,135

we will note ∆(p, a) = {q ∈ Q, (p, a, q) ∈ ∆}. If X ⊆ Q, we note ∆(X, a) =
⋃

p∈X ∆(p, a).136

We will consider non-deterministic automata on finite words (NFAs). A run of such an137

automaton on a word a1a2 . . . an ∈ Σ∗ is a sequence of states q0q1 . . . qn ∈ Q∗ (q0 being the138
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23:4 Explorable automata

initial state), such that for all i ∈ [0, n − 1], we have qi+1 ∈ ∆(qi, ai). Such a run is accepting139

if qn ∈ F , i.e. if the run belongs to Q∗F . As usual, the language of an automaton A, denoted140

L(A), is the set of words that admit an accepting run.141

We will also deal with automata on infinite words, and we recall here some of the standard142

acceptance conditions for such automata. A run on an infinite word w ∈ Σω is now an infinite143

sequence of states, i.e. an element of Qω, starting in q0 and following as before transitions144

of the automaton according to the letters of w. Such a run of Qω is accepting in a safety145

(resp. reachability, Büchi, co-Büchi) automaton if it belongs to F ω (resp. Q∗FQω, (Q∗F )ω,146

Q∗F ω). States from F will be called Büchi states in Büchi automata, and states from Q \ F147

will be called co-Büchi states in co-Büchi automata.148

Finally, we will also mention the parity acceptance condition: it uses a ranking function149

rk from Q to an interval of integers [i, j]. A run is accepting if the minimal rank appearing150

infinitely often is even (following the convention of [2]).151

2.2 Explorability152

We start by introducing the k-explorability game, which is the central tool allowing us to153

define the class of explorable automata.154

▶ Definition 1 (k-explorability game). Consider a non-deterministic automaton A on finite155

or infinite words, and an integer k. The k-explorability game on A is played on the arena156

Qk. The two players are called Determiniser and Spoiler, and they play as follows.157

The initial position is the k-tuple S0 = (q0, . . . , q0).158

At step i from a position Si−1 ∈ Qk, Spoiler chooses a letter ai ∈ Σ, and Determiniser159

chooses Si ∈ Qk such that for any token l ∈ [0, k − 1], Si−1(l) a−→ Si(l) is a transition of160

A (where Si(l) stands for the l-th component in Si).161

The play is won by Determiniser if for any β ≤ ω such that the word (ai)1≤i<β is in L(A),162

there is a token l < k being accepted by A, meaning that the sequence (Si(l))i<β is an163

accepting run1. Otherwise the winner is Spoiler.164

We will say that A is k-explorable if Determiniser wins the k-explorability game.165

We will say that A is explorable if it is k-explorable for some k ∈ N.166

▶ Example 2. The NFA Ak on alphabet {a, a1, . . . , ak} is k-explorable but not (k − 1)-167

explorable. It can easily be adapted to a binary alphabet, by replacing in the automaton168

a1, . . . , ak by distinct words of the same length.169

On the other hand, the NFA C is a non-explorable NFA accepting all words on alphabet170

Σ = {a, b}. Indeed, Spoiler can win the k-explorability game for any k, by eliminating tokens171

one by one, choosing at each step the letter b if q1 is occupied by at least one token, and the172

letter a otherwise.173

1 This condition β ≤ ω is actually accounting separately for the two cases of finite and infinite words,
corresponding respectively to β < ω and β = ω.
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▶ Example 3. The following NFA Bk with 3k + 1 states on alphabet Σ = {a, b} is explorable175

but requires 2k tokens. Indeed, since when choosing the 2ith letter Spoiler can always pick176

the state pi or ri containing the least amount of tokens to decide whether to play a or b, the177

best strategy for Determiniser is to split his tokens evenly at each qi. This means he needs178

to start with 2k tokens to end up with at least one token in qk after a word of Σ2k.179
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Σ

Σ

a

b

Σ
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180

Let us mention a few facts that follow from the definition of explorability:181

▶ Lemma 4.182

Any finite language is explorable.183

If A is k-explorable, then it is n-explorable for all n ≥ k.184

If A is k-explorable and B is n-explorable, then185

A ∪ B (with states Q = {q0} ∪ QA ∪ QB) is (k + n)-explorable,186

the union product A × B (with F = (FA × QB) ∪ (QA × FB)) is max(k, n)-explorable,187

the intersection product A × B (with F = FA × FB) is (kn)-explorable.188

Proof. If L(A) is finite, it is enough to take k = |L(A)| tokens to witness explorability: for189

each u ∈ L(A), the token tu assumes that the input word is u and follows an accepting run190

of A over u as long as input letters are compatible with u. As soon as an input letter is not191

compatible with u, the token tu is discarded and behaves arbitrarily for the rest of the play.192

If A is k-explorable and n ≥ k, then Determiniser can win the n-explorability game by193

using the same strategy with the first k tokens and making arbitrary choices with the n − k194

remaining tokens.195

If A and B are k- and n-explorable respectively, then Determiniser can use both strategies196

simultaneously with k + n tokens in A ∪ B, using k tokens in A and n tokens in B. If the197

input word is in A (resp. B), then the tokens playing in A (resp. B) will win the play.198

In the union product A × B, it is enough to take max(k, n) tokens: if 0 ≤ i < min(k, n),199

the token number i follows the strategy of the token i in A on the first coordinate, and200

the strategy of the token i in B in the second one. If min(k, n) ≤ i < max(k, n), say wlog201

k ≤ i < n, the token i follows an arbitrary strategy on the A-component and the strategy of202

token i on the B-component.203
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23:6 Explorable automata

However, Determiniser may need up to kn tokens to play in A × B when the accepting204

set is FA × FB: the token (i, j) will use the strategy of the token i in the k-explorability205

game of A together with the strategy of the token j in the n-explorability game of B. This206

lower bound of kn cannot be improved: consider for instance Ak × An, where Ak, An are207

from Example 2. ◀208

Notice that a similar notion was introduced in [15] under the name width. In [15], the209

emphasis is put on another version of the explorability game, where tokens can be duplicated,210

and |Q| is an upper bound for the number of necessary tokens. In this work we will on the211

contrary focus on non-duplicable tokens, for which some results of [15] already apply. In212

particular the following holds:213

▶ Theorem 5 ([15, Rem. 6.9]). Given an NFA A and an integer k, it is ExpTime-complete214

to decide whether A is k-explorable (even if we fix k = |QA|/2).215

We aim here at answering a different question:216

▶ Definition 6 (Explorability problem). The explorability problem is the question, given a217

non-deterministic automaton A, of deciding whether it is explorable.218

Questions : Is the explorability problem decidable ? If yes, what is its complexity ?219

We will first give some motivation for this problem in Section 2.3.220

2.3 Link with GFG automata221

An automaton A is Good-for-Games (GFG) if it is 1-explorable, i.e. if there is a strategy222

σ : Σ∗ → Q resolving the non-determinism based on the word read so far, with the guarantee223

that the run piloted by this strategy is accepting whenever the input word is in L(A). See224

e.g. [3] for an introduction to GFG automata.225

We will give here an additional and stronger link between explorable and GFG automata.226

In this part we will mainly be interested in automata on infinite words.227

One of the main open problems related to GFG automata on infinite words is to decide,228

given a nondeterministic parity automaton, whether it is GFG. For now, the problem is only229

known to be in PTime for co-Büchi [16] and Büchi [1] automata. Extending this result even230

to 3 parity ranks is still open, and only a naive ExpTime upper bound [13] is known in this231

case. The following result shows that explorability is relevant in this context:232

▶ Theorem 7. Given an explorable parity automaton A of fixed parity index, it is in PTime233

to decide whether it is GFG.234

This is one of the motivations to get a better understanding of explorable automata.235

Indeed, if we can obtain an efficient algorithm for recognizing them, or if we are in a context236

guaranteeing that we are only dealing with explorable automata, this result shows that we237

can obtain an efficient algorithm for recognizing GFG automata.238

The rest of this section will be devoted to give a proof sketch of Theorem 7. See Appendix239

A.1 for formal details. The proof idea is inspired by [1].240

Let A be an explorable parity automaton, of fixed parity index [i, j].241

We briefly recall the definition of the game Gk(A) defined in [1], for an arbitrary k ∈ N.242

At each round, Adam plays a letter a ∈ Σ, then Eve moves her token according to an243

a-transition, and finally Adam moves his k tokens according to a-transitions. Eve wins the244

play if her token builds an accepting run, of if all of Adam’s tokens build a rejecting run.245
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We will prove that the game G2(A) is won by Eve if and only A is GFG. Since G2(A)246

can be solved in PTime for fixed parity index [1], this is enough to conclude.247

First, it is clear that if A is GFG, then Eve wins G2(A) [1]: Eve can simply play her248

GFG strategy with her token, ignoring Adam’s tokens.249

For the converse, assume Eve wins G2(A), we want to prove that A is GFG. We use the250

following lemma:251

▶ Lemma 8 ([1, Thm. 14]). Eve wins G2(A) if and only if Eve wins Gk(A) for all k ≥ 2.252

Since A is explorable, there is k ∈ N such that A is k-explorable. Let τk be a winning253

strategy for Determiniser in the k-explorability game of A, and σk be a winning strategy for254

Eve in Gk(A). We show that we can combine these two strategies to yield a GFG strategy σ255

for A. This proof follows the same idea as in [1] where the explorability hypothesis is not256

available, but A is assumed to be Büchi. The strategy σ will store k virtual tokens in its257

memory. When the automaton reads a new letter a ∈ Σ, these k tokens will be updated258

according to τk. Then the choice of σ will follow the strategy σk against these k tokens.259

Notice that the strategies τk and σk might use additional memory, but this is completely260

transparent in this proof scheme. If the input word is in L(A), then by correctness of τk, one261

of the k virtual tokens will accept. Thus, by correctness of σk, the run chosen by σ will be262

accepting. Therefore, σ is a correct GFG strategy, witnessing that A is GFG. This concludes263

the proof sketch of Theorem 7.264

3 Decidability and complexity of the explorability problem265

In this section, we prove that the explorability problem is decidable and ExpTime-complete.266

We start by showing in Section 3.1 decidability of the explorability problem for NFAs267

using the results of [2] as a black box. This yields an algorithm in 2-ExpTime. We give268

in Section 3.2 a polynomial reduction in the other direction, thereby obtaining ExpTime-269

hardness of the NFA explorability problem. To obtain a matching upper bound and show270

ExpTime-completeness, we use again [2], but this time we must “open the black box” and271

dig into the technicalities of their ExpTime algorithm while adapting them to our setting.272

We do so in Section 3.3, directly treating the more general case of Büchi automata.273

3.1 2-ExpTime algorithm via a black box reduction274

Let us start by recalling the population control problem (PCP) of [2].275

▶ Definition 9 (k-population game). Given an NFA B with a distinguished target state f ∈ QB,276

and an integer k ∈ N, the k-population game is played similarly as the k-explorability game,277

only the winning condition differs: Spoiler wins if the game reaches a position where all278

tokens are in the state f .279

The PCP asks, given B and f ∈ QB, whether Spoiler wins the k-population game for all280

k ∈ N. Notice that this convention is opposite to explorability, where positive instances are281

defined via a win of Determiniser. The PCP is shown in [2] to be ExpTime-complete. We282

will present here a direct exponential reduction from the explorability problem to the PCP.283

Let A be a NFA. Our goal is to build an exponential NFA B with a distinguished state f284

such that (B, f) is a negative instance of the PCP if and only if A is explorable.285

We choose QB = (QA × P(QA)) ⊎ {f, ⊥}, where f, ⊥ are fresh sink states. The alphabet286

of B will be ΣB = Σ ⊎ {atest}, where atest is a fresh letter.287
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23:8 Explorable automata

The initial state of B is qB
0 = (qA

0 , {qA
0 }). Notice that we do not need to specify accepting288

states in B, as acceptance play no role in the PCP.289

We finally define the transitions of B in the following way:290

(p, X) a−→ (q, ∆A(X, a)) if a ∈ Σ and q ∈ ∆A(p, a),291

(p, X) atest−→ f if p /∈ FA and X ∩ FA ̸= ∅.292

(p, X) atest−→ ⊥ otherwise.293

We aim at proving the following Lemma:294

▶ Lemma 10. For any k ∈ N, A is k-explorable if and only if Determiniser wins the295

k-population game on (B, f).296

Notice that as long as letters of Σ are played, the second component of states of B evolves297

deterministically and keeps track of the set of reachable states in A. Moreover, the letter298

atest also acts deterministically on QB. Therefore, the only non-determinism to be resolved in299

B is how the first component evolves, which amounts to building a run in A. Thus, strategies300

driving tokens in A and B are isomorphic. It now suffices to observe that Spoiler wins the301

k-population game on (B, f) if and only if he has a strategy allowing to eventually play atest302

while all tokens are in a state of the form (q, X) with q /∈ FA and X ∩ FA ̸= ∅. This is303

equivalent to Spoiler winning the k-explorability game of A, since X ∩ FA ̸= ∅ witnesses that304

the word played so far is in L(A).305

This concludes the proof that A is explorable if and only if (B, f) is a negative instance306

of the PCP. So given a NFA A that we want to test for explorability, it suffices to build307

(B, f) as above, and use the ExpTime algorithm from [2] as a black box on (B, f). Since B308

is of exponential size compared to A, we obtain the following result:309

▶ Theorem 11. The NFA explorability problem is decidable and in 2-ExpTime.310

3.2 ExpTime-hardness of NFA explorability311

We will perform here an encoding in the converse direction: starting from an instance (B, f)312

of the PCP, we build polynomially a NFA A such that A is explorable if and only if (B, f) is313

a negative instance of the PCP.314

It is stated in [2] that without loss of generality, we can consider that f is a sink state in315

B, and we will use this assumption here.316

Let C be the 4-state automaton of Example 2, that is non-explorable and accepts all317

words on alphabet ΣC = {a, b}. Recall that as an instance of the PCP, B does not come with318

an acceptance condition. We will consider that its accepting set is FB = QB \ {f}.319

We will take for A the product automaton B × C on alphabet ΣA = ΣB × ΣC, with320

the union acceptance condition: A accepts whenever one of its components accepts. The321

transitions of A are defined as expected: (p, p′) a1,a2−→ (q, q′) in A whenever p
a1−→ q in B and322

p′ a2−→ q′ in C.323

Since L(C) = (ΣC)∗, we have L(A) = (ΣA)∗. The intuition for the role of C in this324

construction is the following: it allows us to modify B in order to accept all words, without325

interfering with its explorability status.326

We claim that for any k ∈ N, A is k-explorable if and only if Determiniser wins the327

k-population game on (B, f).328

Assume that A is k-explorable, via a strategy σ. Then Determiniser can play in the329

k-population game on (B, f) using σ as a guide. In order to simulate σ, one must feed to it330

letters from ΣC in addition to letters from ΣB chosen by Spoiler. This is done by applying331
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a winning strategy for Spoiler in the k-explorability game of C. Assume for contradiction332

that at some point, this strategy σ reaches a position where all tokens are in a state of the333

form (f, q) with q ∈ QC . Since f is a sink state, when the play continues it will eventually334

reach a point where all tokens are in (f, q3), where q3 is the rejecting sink of C. This is335

because we are playing letters from ΣC according to a winning strategy for Spoiler in the336

k-explorability game of C, and this strategy guarantees that all tokens eventually reach q3 in337

C. But this state (f, q3) is rejecting in A, and L(A) = (ΣA)∗, so this is a losing position for338

Determiniser in the k-explorability game of A. Since we assumed σ is a winning strategy339

in this game, we reach a contradiction. This means that following this strategy σ together340

with an appropriate choice for letters from ΣC , we guarantee that at least one token never341

reaches the sink state f on its B-component. This corresponds to Determiniser winning in342

the k-population game on (B, f).343

Conversely, assume that Determiniser wins in the k-population game on (B, f), via a344

strategy σ. The same strategy can be used in the k-explorability game of A, by making345

arbitrary choices on the C component. As before, this corresponds to a winning strategy in346

the k-explorability game of A, since there is always at least one token with B-component in347

FB = QB \ {f}. This achieves the hardness reduction, and allows us to conclude:348

▶ Theorem 12. The NFA explorability problem is ExpTime-hard.349

▶ Remark 13. Using standard padding arguments, it is straightforward to extend Theorem 12350

to ExpTime-hardness of explorability for automata on infinite words, using any of the351

acceptance conditions defined in Section 2.1.352

Let us give some intuition on why we can obtain a polynomial reduction in one direction,353

but did not manage to do so in the other direction. Intuitively, the explorability problem is354

“more difficult” than the PCP for the following reason. In the PCP, Spoiler is allowed to play355

any letters, and the winning condition just depends on the current position. On the contrary,356

the winning condition of the k-explorability game mentions that the word chosen by Spoiler357

must belong to the language of the NFA. In order to verify this, we a priori need to append358

to the arena an exponential deterministic automaton for this language, and this is what is359

done in Section 3.1. This complicated winning condition is also the source of difficulty of360

recognizing GFG parity automata.361

3.3 ExpTime algorithm for Büchi explorability362

▶ Theorem 14. The explorability problem can be solved in ExpTime for Büchi automata363

(and all simpler conditions).364

Due to space constraints we will only sketch the proof of Theorem 14 here. A more365

detailed account is given in Appendix A.2.366

The algorithm is adapted from the ExpTime algorithm for the PCP from [2]. We will367

recall here the main ideas of this algorithm, and describe how we adapt it to our setting.368

Let A be an NFA, together with a target state f . The idea in [2] is to abstract the369

population game with arbitrary many tokens by a game called the capacity game. This game370

allows Determiniser to describe only the support of his set of tokens, i.e. the set of states371

occupied by tokens. The sequence of states obtained in a play can be analyzed via a notion372

of bounded capacity, in order to detect whether it actually corresponds to a play with finitely373

many tokens. This notion can be approximated by the more relaxed finite capacity, which374

is a regular property that is equivalent to bounded capacity in a context where games are375

finite-memory determined. This property of finite capacity can be verified by a deterministic376
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parity automaton, yielding a parity game that can be won by Spoiler if and only if (A, f) is377

a positive instance of the PCP. Since this parity game has size exponential in A, this yields378

an ExpTime algorithm for the PCP.379

Here, we will perform the following tweaks to this construction. We now start with a380

Büchi automaton A, and want to decide whether it is explorable.381

First, we need to control that the infinite word played by Spoiler is in L(A). This requires382

to build a deterministic parity automaton D recognising L(A), and incorporate it into the383

arena. The size of D is exponential with respect to A. We then follow [2] and build the384

capacity game augmented with D. This time, a sequence of supports is winning if infinitely385

many of them contain an accepting state. We emphasize that we use here a particularity of386

the Büchi condition: observing the sequences of support sets of tokens is enough to decide387

whether one of the tokens follows an accepting run. The same particularity was used in [1],388

and was a crucial tool allowing to give a PTime algorithm for Büchi GFGNess. Since this389

modification still allows us to manipulate supports as simple sets, we can make use of the390

capacity game as before. We give in Appendix A.2, Remark 39 an example showing that a391

naive adaptation of this construction to co-Büchi automata would not be correct.392

Finally, we show that we can as in [2] obtain a parity game of exponential size character-393

izing explorability of A, yielding the wanted ExpTime algorithm.394

We also remark that as in [2], this construction gives a doubly exponential upper bound395

on the number of tokens needed to witness explorability. Moreover, the proof from [2] that396

this is tight also stands here.397

4 Explorability with countably many tokens398

In this section we look at the same problem of explorability of an automaton, but we now399

allow for infinitely many tokens. More precisely, we will redefine the explorability game to400

allow an arbitrary cardinal for the number of tokens, then consider decidability problems401

regarding that game. This notion will mainly be interesting for automata on infinite words.402

4.1 Definition and basic results403

The following definition extends the notion of k-explorability to non-integer cardinals:404

▶ Definition 15 (κ-explorability game). Consider an automaton A and a cardinal κ. The405

κ-explorability game on A is played on the arena (QA)κ, between Determiniser and Spoiler.406

They play as follows.407

The initial position is S0 associating q0 to all κ tokens.408

At step i, from position Si−1, Spoiler chooses a letter ai ∈ Σ, and Determiniser chooses409

Si such that for any token α, Si−1(α) a−→ Si(α) is a transition in A.410

The play is won by Determiniser if for any β ≤ ω such that the word (ai)1≤i<β is in L(A),411

there is a token α ∈ κ building an accepting run, meaning that the sequence (Si(α))i<β is an412

accepting run. Otherwise the winner is Spoiler.413

We will say in particular that A is ω-explorable if Determiniser wins the game with414

ω tokens. We use here the notation ω for convenience, it should be understood as the415

countably infinite cardinal ℵ0. We will however explicitly use the fact that such an amount416

of tokens can be labelled by N, in order to describe strategies for Spoiler or Determiniser417

in the ω-explorability game. The following lemma gives a first few results on generalised418

explorability.419
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a b
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q2

a
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a

b

Figure 1 Two safety automata. Left: ω-explorable but not explorable. Right: not ω-explorable.

▶ Lemma 16.420

Determiniser wins the explorability game on A with |L(A)| tokens.421

ω-explorability is not equivalent to explorability422

There are non ω-explorable safety automata.423

Proof. For the first item, a strategy for Determiniser is to associate a token to each word424

of L(A) and to have it follow an accepting run for that word. Let us add a few details425

on the cardinality of L(A). First, a dichotomy result has been shown in [19] (even in the426

more general case of infinite trees): if L(A) is not countable, then it has the cardinality427

of continuum, and this happens if and only if L(A) contains a non-regular word. In this428

case, we can simply associate a token with every possible run. In the other case where429

L(A) is countable, we have to associate an accepting run to each word, and this can be430

done without needing the Axiom of Countable Choice: a canonical run can be selected (e.g.431

lexicographically minimal).432

We now want to prove that there are automata that are ω-explorable but not explorable.433

One such automaton is given in Figure 1 (left), where the rejecting sink state is omitted.434

Against any finite number of tokens, Spoiler has a strategy to eliminate them one by one,435

by playing a while Determiniser sends tokens to q1, and b the first time q1 is empty after436

the play of Determiniser. On the other hand, with tokens indexed by ω, Determiniser can437

keep the token 0 in q0, and send token i to q1 at step i. Those strategies are winning, which438

proves both non explorability and ω explorability of the automaton.439

The last item is proven by the second example from Figure 1. A winning strategy for440

Spoiler against countable tokens consists in labelling the tokens with integers, then targeting441

each token one by one (first token 0, then 1, 2, etc.). Each token is removed using the correct442

two-letters sequence (a, then b if the token is in q1 or a if it is in q2). With this strategy,443

every token is removed at some point, even if there might always be tokens in the game. ◀444

The first item of Lemma 16 implies that the ω-explorability game only gets interesting445

when we look at automata over infinite words: since any language of finite words over a finite446

alphabet is countable, Determiniser wins the corresponding ω-explorability game. We will447

therefore focus on infinite words in the following.448

Let us emphasize the following slightly counter-intuitive fact: in the ω-explorability game,449

it is always possible for Determiniser to guarantee that infinitely many tokens occupy each450

currently reachable state. However, even in a safety automaton, this is not enough to win451

the game, as it does not prevent that each individual token might be eventually “killed” at452

some point. As the following Lemma shows, this phenomenon does not occur in reachability453

automata.454

▶ Lemma 17. Any reachability automaton is ω-explorable.455
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Proof. For every w ∈ Σ∗ such that there is a finite run ρ leading to an accepting state,456

Determiniser can use a single token following ρ. This token will accept all words of w · Σω.457

Since Σ∗ is countable, we only need countably many such tokens to cover the whole language,458

hence the result.459

Let us give another equally simple view: a winning strategy for Determiniser in the460

ω-explorability game is to keep infinitely many tokens in each currently reachable state, as461

described above. Since acceptance in a reachability automaton is witnessed at a finite time,462

this strategy is winning. ◀463

4.2 ExpTime algorithm for co-Büchi automata464

We already know, from the example of Figure 1, that the result from Lemma 17 does not465

hold in the case of safety automata. However we have the following decidability result, which466

talks about co-Büchi automata, and therefore still holds for safety automata as a subclass of467

co-Büchi.468

▶ Theorem 18. The ω-explorability of co-Büchi automata is decidable in ExpTime.469

To prove this result, we will use the following elimination game. A will from here on470

correspond to a co-Büchi (complete) automaton. We start by building a deterministic471

co-Büchi automaton D for L(A) (e.g. using the breakpoint construction [18]).472

▶ Definition 19 (Elimination game). The elimination game is played on the arena P(QA) ×473

QA × QD. The two players are named Protector and Eliminator, and the game proceeds as474

follows, starting in the position ({qA
0 }, qA

0 , qD
0 ).475

From position (B, q, p) Eliminator chooses a letter a ∈ Σ.476

If q is not a co-Büchi state, Protector picks a state q′ ∈ ∆A(q, a).477

If q is a co-Büchi state, Protector picks any state q′ ∈ ∆A(B, a). Such an event is called478

elimination.479

The play moves to position (∆A(B, a), q′, δD(p, a)).480

Such a play can be written (B0, q0, p0) a1−→ (B1, q1, p1) a2−→ (B2, q2, p2) . . ., and Eliminator481

wins if infinitely many qi and finitely many pi are co-Büchi states.482

Intuitively, what is happening in this game is that Protector is placing a token that483

he wants to protect in a reachable state, and Eliminator aims at bringing that token to a484

co-Büchi state while playing a word of L(A). If Protector eventually manages to preserve his485

token from elimination on an infinite suffix of the play, he wins.486

▶ Lemma 20. The elimination game can be solved in polynomial time (in the size of the487

game).488

Proof. To prove this result, we simply need to note that the winning condition is a parity489

condition of fixed index. If we label the co-Büchi states qi with rank 1, the co-Büchi states490

pi with rank 2, and the others with 3, then take the lowest rank in (Bi, qi, pi) (ignoring Bi),491

Eliminator wins if and only if the inferior limit of ranks is even. As any parity game with 3492

ranks can be solved in polynomial time [7], this is enough to get the result. ◀493

We want to prove the equivalence between this game and the ω-explorability game to494

obtain Theorem 18.495

▶ Lemma 21. A is ω-explorable if and only if Protector wins the elimination game on A.496
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Proof. First let us suppose that Eliminator wins the elimination game on A. To build a497

strategy for Spoiler in the ω-explorability game of A, we first take a function f : N → N498

such that for any n ∈ N, |f−1(n)| is infinite (for instance f is described by the sequence499

0, 0, 1, 0, 1, 2, 0, 1, 2, 3, . . .). The strategy for Spoiler will focus on sending token f(0), then500

f(1), then f(2), etc. to a co-Büchi state.501

Let σ be a memoryless winning strategy for Eliminator in the elimination game (recall502

that parity games do not require memory [12]). Spoiler will follow this strategy σ in the503

ω-explorability game, by keeping an imaginary play of the elimination game in his memory:504

M = P(QA) × QA × QD × N.505

At first the memory holds the initial state ({qA
0 }, qA

0 , qD
0 , 0), and the current target is506

given by the last component: it is the token f(0).507

From (B, q, p, n) Spoiler plays in both games the letter a given by σ.508

Once Determiniser has played, Spoiler moves the memory to (∆A(B, a), q′, δD(p, a), n)509

where q′ is the new position of the token f(n), except if q was a co-Büchi state, in which510

case we move to (∆A(B, a), q′, δD(p, a), n + 1) where q′ is the new position of the token511

f(n + 1). We then go back to the previous step.512

This strategy builds a play of the elimination game in the memory, that is consistent with σ.513

We know that σ is winning, which implies that the word played is in L(A), and that every514

n ∈ N is visited (each elimination increments n, and there are infinitely many of those). An515

elimination happening while the target is the token f(n) corresponds, on the exploration516

game, to that token visiting a co-Büchi state. Ultimately this means that Determiniser did517

not provide any accepting run, while Spoiler did play a word from L(A), and therefore won.518

Let us now consider the situation where Protector wins the elimination game, using some519

strategy τ . We want to build a winning strategy for Determiniser in the ω-explorability520

game. Similarly, this strategy will keep track of a play in the elimination game in its memory.521

Determiniser will maintain ω tokens in any reachable state, while focusing on a particular522

token which follows the path of the current target in the elimination game. When that token523

visits a co-Büchi state, we switch to the new token specified by τ .524

Since τ is winning in the elimination game, either the word played by Spoiler is not in525

L(A), which ensures a win for Determiniser, or there are no eliminations after some point,526

meaning that the target token at that point never visits another co-Büchi state, which also527

implies that Determiniser wins. ◀528

With Lemmas 20 and 21 we get a proof of Theorem 18, since the elimination game529

associated to A is of exponential size and can be built using exponential time.530

4.3 ExpTime-hardness of the ω-explorability problem531

▶ Theorem 22. The ω-explorability problem for (any automaton model embedding) safety532

automata is ExpTime-hard.533

We give a quick summary of the proof in this section. The full proof can be found534

in Appendix A.3. The main idea will be to reduce the acceptance problem of a PSpace535

alternating Turing machine (ATM) to the ω-explorability problem of some automaton that536

we build from the machine. This reduction is an adaptation of the one from [2] showing537

ExpTime-hardness of the NFA population control problem (defined in Section 3.1).538

The computation of an ATM can be seen as a game between two players who respectively539

aim for acceptance and rejection of the input. These players influence the output by choosing540

the transitions when facing a non-deterministic choice, that can belong to either one of them.541
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Let us first describe the automaton built in [2]. In that reduction, the choices made by542

the ATM players are translated into choices for Determiniser and Spoiler. The automaton543

has two main blocks: one dedicated to keeping track of the machine’s configuration, which544

we call Config, and another focusing on the simulation of the ATM choices, which we call545

Choices. In Config, there is no non-determinism: the tokens move following the transitions of546

the machine given as input to the automaton. In Choices, Determiniser can pick a transition547

by sending his token to the corresponding state, while Spoiler uses letters to pick his.548

The automaton constructed this way will basically read a sequence of runs of the ATM.549

At each run, some tokens must be sent into both blocks. Reaching an accepting state of a550

run lets Spoiler send some tokens from Choices to his target state, specifically those whose551

choices for the transitions of the ATM were followed. He can then restart with the remaining552

tokens until all are in the target. This process will ensure a win for Spoiler if he has a winning553

strategy in the ATM game. If he does not, then Determiniser can use a strategy ensuring554

rejection in the ATM game to avoid the configurations where he loses tokens, provided he555

starts with enough tokens.556

This equivalence between acceptance of the ATM and the automaton being a positive557

instance of the PCP provides the ExpTime-hardness of their problem.558

In our setup, getting rid of tokens one by one is not enough: Spoiler needs to be able to559

target a specific token and send it to the target state (which is now the rejecting state ⊥)560

in one run. If he can do that, repeating the process for every token, without omitting any,561

ensures his win. If he cannot, then Determiniser has a strategy to pick a specific token and562

preserving it from ⊥, and therefore wins.563

This is why we adapt our reduction to allow Spoiler to target a specific token, no matter564

where it chooses to go. To do so, we change the transitions so that winning a run lets Spoiler565

additionally send every token from Config into ⊥. With that and the fact that he can already566

target a token in Choices, we get a winning strategy for Spoiler when the ATM is accepting.567

If the ATM is rejecting, Spoiler is still able to send some tokens to ⊥, but he no longer568

has that targeting ability, which is how Determiniser is able to build a strategy preserving a569

specific token to win. To ensure the sustainability of this method, Determiniser needs to570

keep ω additional tokens following his designated token, so that he always has ω tokens to571

spread into the gadgets every time a new run starts.572

Overall, we are able to compute in polynomial time from the ATM a safety automaton573

that is ω-explorable if and only if the ATM rejects its input. Since acceptance of a polynomial574

space ATM is known to be ExpTime-hard, we obtain Theorem 22.575

Conclusion576

We introduced and studied the notions of explorability and ω-explorability, for automata on577

finite and infinite words. We showed that these problems are ExpTime-complete for Büchi578

condition in the first case and co-Büchi condition in the second case.579

It is plausible that these results could be generalised to higher parity conditions, for580

instance by replacing the notion of support set by Safra trees, but this is outside of the scope581

of this paper and we leave this investigation for further research.582

Although we showed that the original motivation of using explorability to improve the583

current knowledge on the complexity of the GFGness problem for all parity automata cannot584

be directly achieved, since deciding explorability is at least as hard as GFGness, we believe585

that explorability is a natural property in the study of degrees of nondeterminism, and that586

this notion could be used in other contexts as a middle ground between deterministic and587

non-deterministic automata.588
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A Appendix660

A.1 Link with GFG automata661

We describe here in more detail how, assuming that A is explorable and Eve wins Gk(A) for662

some k ∈ N, we obtain a GFG strategy for A. Let us note Q = QA the set of states of A.663

In the proof sketch of Section 2.3, we defined τk to be a winning strategy for Determiniser664

in the k-explorability game, and σk a winning strategy for Eve in Gk(A).665

Let us explicit in detail the shape of these strategies. The strategy τk has access to the666

history of the play in the k-explorability game, and must decide on a move for Determiniser.667

Notice that it is always enough to know the history of the opponent’s moves (here the letters668

of Σ played so far), since this allows to compute the answer of Determiniser at each step,669

and therefore build a unique play. Thus we can take for τk a function Σ∗ → Qk. If the word670

played so far is u ∈ Σ∗, the tuple of states reached by the k tokens moved according to τk is671

τk(u) ∈ Qk, with in particular τk(ε) = (qA
0 , . . . , qA

0 ).672

If w = a1a2 · · · ∈ Σω, and i ∈ N, let us note (qi
w,1, . . . , qi

w,k) = τk(a1 . . . ai). That is qi
w,j673

is the state reached by the jth token after i steps in the run induced by τk and u. If j ∈ [1, k],674

let us note ρu,j the infinite run q0
w,jq1

w,jq2
w,j . . . , followed by the jth token in this play. By675

definition of τk, we have the guarantee that for all w ∈ L(A), there exists j ∈ [1, k] such that676

ρw,j is accepting.677

If u = a1 . . . an ∈ Σ∗ is a finite word, we define τ ′
k(u) = (τk(ε), τk(a1), τk(a1a2) . . . , τk(u))678

the list of partial runs induced by τk on u.679

Let us now turn to the strategy σk of Eve in Gk(A). The type of this strategy is680

σk : Σ∗ × (Qk)∗ → Q. Indeed, this time, the history of Adam’s moves must contain his choice681

of letters together with his choices of positions for his k tokens. So σk(u, γ) gives the state682

reached by Eve’s token after an history (u, γ) for the moves of Adam. Notice that at each683

step, Eve must move before Adam in this game Gk(A), so γ does not contain the choice684

of Adam on the last letter of u. This means that except for u = ε, we can always assume685

|u| = |γ| + 1 in a history (u, γ).686

We have the guarantee that if Adam plays an infinite word w together with runs ρ1, . . . , ρk687

on w, at least one of which is accepting, then the run yielded by σk against (w, (ρ1, . . . , ρk))688

is accepting.689

We finally define the GFG strategy σ for A, of type Σ∗ → Q, by induction: σ(ε) = qA
0 ,690

and σ(ua) = σk(ua, τ ′
k(u)).691

This amounts to playing the strategy σk in Gk(A), against Adam playing a word w and692

moving his k tokens according to the strategy τk against w. If the infinite word w = a1a2 . . .693

chosen by Adam is in L(A), then by correctness of τk one of the k runs ρw,1, . . . , ρw,k yielded694

by τk is accepting. Hence, by correctness of σk, the run σ(ε)σ(a1)σ(a1a2) yielded by σ695

(based on σk) is accepting. This concludes the proof that σ is a correct GFG strategy for A,696

witnessing that A is GFG.697

A.2 ExpTime algorithm for Büchi explorability698

We will prove here Theorem 14 from Section 3.3.699

In this part, A = (Σ, Q, qA
0 , ∆A, FA) is a non-deterministic Büchi automaton. We700

start by computing in exponential time an equivalent deterministic parity automaton D =701

(Σ, QD, qD
0 , δD, FD), via any standard method.702

The algorithm described in this section is adapted from [2]. Many results from this703

previous work still hold in our framework. We will however need to adapt some constructions704
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and give new arguments, both to fit our explorability framework, and to generalize from705

NFA to Büchi automata.706

▶ Definition 23 (Transfer graph). A transfer graph G is a subset of Q × Q. We say that it707

is compatible with a letter a if every edge in G corresponds to a transition in A labelled by708

a, i.e. for any (q, r) ∈ G, we have (q, a, r) ∈ ∆A. In other words, G is a subgraph of the709

transition graph of the letter a.710

Given a transfer graph G and a set of states X ⊆ Q, we note G(X) = {q ∈ Q | ∃r ∈711

X, (q, r) ∈ G}. We call respectively Dom(G) and Im(G) the projections of G on its first and712

second coordinate, i.e. Dom(G) = {q ∈ Q | ∃r ∈ Q, (q, r) ∈ G} and Im(G) = G(Q).713

The composition of transfer graphs is defined the natural way: G ·H = {(x, z) | ∃y, (x, y) ∈714

G ∧ (y, z) ∈ H}.715

▶ Definition 24 (Support game). The support game is played in the arena P(Q) × QD, called716

support arena. It is played as follows by Determiniser and Spoiler.717

The starting support is S0 = ({qA
0 }, qD

0 ).718

At any given step with support (B, q), Spoiler chooses a letter a ∈ Σ, then Determiniser719

chooses a transfer graph G compatible with a, and with Dom(G) = B. The play then720

moves to (Im(G), δD(q, a)).721

A play can be represented by a sequence (B0, q0) a1,G1−→ (B1, q1) a2,G2−→ (B2, q2) . . ..722

We say that Spoiler wins the play if the run q0q1q2 . . . of D is parity accepting, while only723

finitely many Bi contain Büchi states (from FA).724

Note that a winning strategy for Determiniser in the support game cannot in general725

be interpreted as a witness of explorability. This is illustrated by the automaton C from726

Example 2. For any k ∈ N, the k-explorability game is won by Spoiler on that automaton,727

while Determiniser wins the support game. Intuitively, the support game does not account728

for the limits of resources for Determiniser.729

On the other hand, a winning strategy for Spoiler in this support game does translate730

into a non-explorability witness, i.e. a strategy for Spoiler in the k-explorability game for731

any k. The support game is therefore “too easy” for Determiniser, and this is what we try to732

correct in the following.733

▶ Definition 25 (Projection of a play). Given a play S0
a1−→ S1

a2−→ S2 . . . in the k-explorability734

game, the projection of that play in the support arena is the play (B0, q0) a1,G1−→ (B1, q1) a2,G2−→735

(B2, q2) . . ., where:736

Bi is the support of Si (states occupied in Si),737

q0 = qD
0 and qi+1 = δD(ai+1, qi) for all i,738

Gi+1 = {(Si(j), Si+1(j)) | j ∈ [0, k − 1]}.739

This corresponds to forgetting the multiplicity of tokens and only keeping track of the transitions740

that are used.741

▶ Definition 26 (Realisable play). A play in the support arena is realisable if it is the projection742

of a play in the k-explorability game for some k ∈ N.743

We would like to restrict plays in the support arena to realisable ones only. To do so, we744

define the notion of capacity as follows.745
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▶ Definition 27 (Accumulator and capacity [2]). In a play (B0, q0) a1,G1−→ (B1, q1) a2,G2−→746

(B2, q2) . . ., an accumulator is a sequence (Tj)j∈N such that for any j, Tj ⊆ Bj and Tj+1 ⊇747

Gi+1(Tj). An edge (q, r) ∈ Gj+1 is an entry for (Tj)j∈N at index i if q /∈ Tj and r ∈ Tj+1.748

A play has finite capacity if every accumulator has finitely many entries, and bounded749

capacity if the number of entries of its accumulators is bounded.750

This definition gives us tools to talk about realisable plays in a more practical way, as751

shown by the following Lemma. Note that although the explorability game is replaced by752

the population control game in [2], the same proof still applies here.753

▶ Lemma 28 ([2, Lem 3.5]). A play is realisable if and only if it has bounded capacity.754

Moreover, the proof of Lemma 28 can also be used to get the following result, which we755

will use later. Note that we talk about the explorability game in this Lemma, but this only756

concerns its arena regardless of the winning condition. The proof holds because the arena757

from [2] is identical.758

▶ Lemma 29 ([2, Lem 3.5]). If Determiniser has a strategy τ in the support arena such759

that any play compatible with τ has capacity bounded by c, then he has a strategy τ ′ in760

the 2c+1-tokens explorability game such that any play compatible with τ ′ has its projection761

compatible with τ .762

We will use the notion of capacity to define the following game, using finite capacity763

instead of bounded to obtain a winning condition.764

▶ Definition 30 (Capacity game). The capacity game is played in the support arena. Given765

a play (B0, q0) a1,G1−→ (B1, q1) a2,G2−→ (B2, q2) . . ., Spoiler wins if it is a winning play in the766

support game, or if it has infinite capacity.767

▶ Lemma 31 ([2, Prop 3.8]). Either Spoiler or Determiniser wins the capacity game, and768

the winner has a winning strategy with finite memory.769

Proof. Although this result talks about slightly different objects than in [2, Prop 3.8], their770

proof actually still stand with our definitions of capacity game and support game. The771

proof proceeds by building a nondeterministic Büchi automaton verifying that the capacity772

is infinite, determinising it into a parity automaton, and incorporating it into the arena to773

yield a parity game equivalent to the capacity game. The winner of this parity game has a774

positional strategy, which corresponds to a finite memory strategy in the capacity game. ◀775

▶ Lemma 32 (adapted from [2, Prop 3.9]). If Spoiler wins the capacity game, then he wins776

the k-explorability game for any k.777

Proof. Here Spoiler can simply apply the strategy for the capacity game to the explorability778

game, by remembering only the information that is relevant from the point of view of the779

capacity game (i.e. the supports and transfer graphs).This will simulate a realisable play of780

the capacity game, which has bounded capacity by Lemma 28. Since the strategy is winning781

in the capacity game, and this simulated play cannot have infinite capacity, Spoiler wins782

the underlying support game. This ensures the win for Spoiler in the explorability game:783

he plays a word of L(A) as witnessed by the acceptance of D, while finitely many Büchi784

states are witnessed by tokens of Determiniser. We use here the particular property of Büchi785

condition: one of the tokens follows an accepting run if and only if it occurs infinitely many786

times that the support set occupied by tokens contains a Büchi state. ◀787
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▶ Lemma 33 (adapted from [2, Prop 3.10]). If Determiniser wins the capacity game using788

finite memory M , then he wins the k-explorability game for some k ∈ N.789

Proof. We first prove that under these conditions, Determiniser can win the capacity game790

while ensuring a capacity bounded by |M | × |QD| × 4|Q|.791

Let us consider a winning strategy τ with memory M for Determiniser in the capacity792

game. We take a play (B0, q0) a1,G1−→ (B1, q1) a2,G2−→ (B2, q2) . . . compatible with τ , and we793

show that its capacity is bounded by |M | × |QD| × 4|Q|.794

Given an accumulator T = (Ti)i∈N, if there are two integers i < j such that mi = mj795

(memory states at steps i and j), Bi = Bj , qi = qj and Ti = Tj , then one can build a796

play that loops on the corresponding interval, while still being compatible with τ . This797

accumulator cannot have infinitely many entries, so T does not have any entry in the interval798

[i, j]. As a consequence, if i and j are entry times, we have (mi, Bi, qi, Ti) ̸= (mj , Bj , qj , Tj),799

which means there can be at most |M | × 2|Q| × |QD| × 2|Q| = |M | × |QD| × 4|Q| entries in800

the accumulator T .801

We now know that the capacity of any play compatible with τ is bounded by |M | ×802

|QD|×4|Q|. Take k = 21+|M |×|QD|×4|Q| . Lemma 29 then provides a strategy for Determiniser803

in the k-explorability game, that ensures that the successive supports (i.e. the sets of states804

occupied by tokens) contain Büchi states infinitely often. This means that at least one token805

visits Büchi states infinitely often, since there are finitely many tokens. This ensures a win806

for Determiniser. ◀807

These Lemmas 32 and 33 give a way to solve the explorability problem if we can efficiently808

find the winner of the corresponding capacity game. Note that we could use the parity809

game built in the proof of Lemma 31 to solve the problem, but this would yield a doubly810

exponential algorithm since the parity automaton that we build in this proof is itself doubly811

exponential.812

The following gives an exponential time algorithm for solving the capacity game, and813

therefore the explorability problem.814

▶ Definition 34 (Leaks and separations). If G and H are two transfer graphs, we say that G815

leaks at H if there are three states q, x, y such that (q, y) ∈ G · H, (x, y) ∈ H and (q, x) /∈ G.816

We say that G separates states r and t if there is a q such that (q, r) ∈ G and (q, t) /∈ G.817

The separator of G, noted Sep(G), is the set of all such (r, t).818

Note that in a play denoted as before, whenever i < j < n, we have Sep(G[i, n]) ⊆819

Sep(G[j, n]).820

We will now define the tracking list of a play. The point of that list will be to provide an821

easy way to detect indices that leak infinitely often.822

▶ Definition 35 (Tracking list). The tracking list Ln at step n is a list of transfer graphs823

{G[i1, n], . . . , G[ikn
, n]}. It is defined inductively, with L0 the empty list, and Ln computed824

as follows.825

We update every G[i, n − 1] in Ln−1 into G[i, n] by composing with Gn.826

We then add G[n − 1, n] = Gn at the end of the list.827

And finally we clean the list, by removing any graph with a separator identical to the828

previous one.829

If for some i, G[i, n] ∈ Ln for every n > i, we say that i is remanent.830
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To properly use these tracking lists, it suffices to know that the following result holds.831

For more details we refer the to [2].832

▶ Lemma 36 ([2, Lem 4.4]). A play has infinite capacity if and only if there is a remanent833

index that leaks infinitely often.834

We now define a game GA associated to A, that extends the support arena using tracking835

lists to detect infinite capacity plays. Once again, this is an adaptation from [2].836

The states of GA are in P(Q) × QD × G≤|Q|2 , where G≤|Q|2 is the set of lists of at most837

|Q|2 transfer graphs. Each state can be written as (B, q, L) where B is a subset of Q, q is a838

state of D, and L is a tracking list. The initial state is ({qA
0 }, qD

0 , ε).839

The transitions are the ones that can be written (B, q, L) p,a,G−→ (B′, q′, L′) with the840

following conditions.841

(B, q) a,G−→ (B′, q′) is a transition from the support arena.842

L′ is obtained by updating L with G, as detailed in the definition of tracking list.843

Take L = {H1, . . . , Hk} and L′ = {H ′
1, . . . , H ′

k′}. Let p′ be the smallest index such that844

Hp′ leaks at G, or k + 1 if there is no such index. Let p′′ be the smallest index such that845

H ′
p′′ ≠ Hp′′ · G, or k + 1 if there is none. We then take p = min(2p′ + 1, 2p′′) (which846

implies that p ∈ [2, 2|Q|2 + 1]).847

To choose a transition, Spoiler first chooses a letter, then Determiniser picks a transition848

graph compatible with that letter. The rest is determined by the conditions above. This849

creates a play that can be denoted as (B0, q0, L0) a1,G1,p1−→ (B1, q1, L1) a2,G2,p2−→ . . ..850

The winning condition for Spoiler goes as follows. Either the inferior limit of (pi)i>0 is851

odd, or the run (qi)i≥0 is accepting while there are finitely many accepting states seen in852

(Bi)i≥0.853

▶ Lemma 37 (adapted from [2, Thm 4.5]). Spoiler wins GA if and only if he wins the capacity854

game.855

Proof. First note that strategies in the support arena can be easily translated to GA and856

conversely, since in both cases Spoiler only chooses letters while Determiniser picks transfer857

graphs, and the rest is determined by these data.858

If Spoiler has a winning strategy in GA, then he can play the same strategy in the capacity859

game. Such a play can be written as (B0, q0) a1,G1−→ (B1, q1) a2,G2−→ . . ., and the play of GA860

happening in the memory of Spoiler is (B0, q0, L0) a1,G1,p1−→ (B1, q1, L1) a2,G2,p2−→ . . .. We use861

the notation Ln = {H1
n, . . . , Hkn

n }.862

Since Spoiler plays according to a winning strategy in the simulated game GA, at least863

one of his winning conditions for that game hold in this play.864

If the limit parity is 2p + 1 for some p, then for any n large enough, Hp
n is the same as865

Hp+1
n (otherwise there would be a parity less than 2p + 1 later) and leaks infinitely often, so866

Spoiler wins the capacity game.867

If the run (qi)i≥0 is accepting while there are finitely many accepting states seen in868

(Bi)i≥0, then this also ensures the win for Spoiler in the capacity game.869

In both cases, the play is therefore won by Spoiler.870

On the other hand, if Spoiler wins the capacity game, he can also use the same strategy871

in GA, with the same correspondence between the winning conditions.872

◀873

We can finally conclude with the main result of this section:874
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q0
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b

Figure 2 A co-Büchi automaton on which the projection of a play in not enough to determine
the winner (the dotted lines represent co-Büchi transitions)

▶ Theorem. The Büchi explorability problem can be solved in ExpTime.875

Proof. To prove this result, it is enough to prove that the game GA can be solved in876

exponential time in the size of A, since the answer to that problem also answers the877

explorability of A. We show that the winning condition of the game GA for Spoiler can878

be seen as a disjunction of parity conditions. Formally, it is of the form Parity∨(Parity∧879

Co-Büchi). But it is straightforward to turn the second disjunct into a parity condition with880

twice as many priorities. Thus GA can be seen as a generalised parity game. Such games are881

studied in [8], which gives us an algorithm for solving GA in time O(m4dm2) (2d)!
d!2 , where d is882

the number of priorities and m the size of the game.883

If we take n = |A|, using the fact that m = O(2n), we get the complexity O(24nd+2n) (2d)!
d!2 ,884

which can be simplified into O(24n3+2n(2n2)n2) = O(25n3+2n) using the fact that d = O(n2).885

This gives us an exponential bound for the time complexity of this problem. ◀886

▶ Remark 38. We can also be interested in the number of tokens needed for Determiniser to887

witness explorability of an automaton. By inspecting our proof, we can see that we obtain a888

doubly exponential upper bound. Moreover, we can use the same construction as in [2, Prop889

6.3] to show that this is tight, i.e. some automata require a doubly exponential number of890

tokens to witness explorability.891

▶ Remark 39. This algorithm only works as such in the case of Büchi automata. The next892

step would be to adapt it to co-Büchi, with the hope that a solution for both these models893

might lead to one for parity automata. However, in order to use a similar method in the894

co-Büchi case, we would want some way to check the winning condition for a play in the895

explorability game using only the projection of that play in the support arena. This is not896

possible with the current definitions of these games: we can create plays in the explorability897

game with the same projection, but different winners. Take the automaton from Figure898

2. If we play the 2-explorability game on that automaton, Determiniser has a strategy to899

ensure that the support are always maximal, alternating between {q0} and {q1, q2}. However,900

Spoiler can either chose to always take the co-Büchi transition with the same token, or to901

alternate between tokens. He only wins in the second case.902

A.3 ExpTime-hardness of the ω-explorability problem903

This part focuses on proving Theorem 22 stating the ExpTime-hardness of the ω-explorability904

problem for safety automata, which also proves the optimality of the algorithm from Sec-905

tion 4.2.906
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We reduce from the acceptance problem of a PSpace alternating Turing machine. This907

is again inspired from [2].908

We take an alternating Turing machine M = (ΣM, QM, ∆M, qM
0 , qM

f ) with QM =909

Q∃ ⊎ Q∀. It can be seen as a game between two players: existential (∃) and universal (∀).910

On a given input, the game creates a run by letting ∃ (resp. ∀) solve the non-determinism in911

states from Q∃ (resp. Q∀) by picking a transition from ∆. Player ∃ wins if the play reaches912

the accepting state qM
f , and w is accepted if and only if ∃ has a winning strategy. We assume913

that M uses polynomial space P (n) in the size n of its input, i.e. the winning strategies can914

avoid configurations with tape longer than P (n). We also fix an input word w ∈ (ΣM)∗.915

We will assume for simplicity that ΣM = {0, 1} and that the machine alternates between916

existential and universal states, starting with an existential one (meaning that q0 ∈ Q∃ and917

the transitions are either Q∃ → Q∀ or Q∀ → Q∃). In our reduction, this will mean that we918

give the choice of the transition alternatively to Spoiler (playing ∃) and Determiniser (∀).919

We create a safety automaton A = (Q, Σ, q0, ∆, ⊥) with:920

Q = QM ⊎ Pos ⊎ Mem ⊎ Trans ⊎ {q0, store, ⊥, ⊤} where:921

Pos = [1, P (n)]922

Mem = {mb,i | b ∈ {0, 1}, i ∈ [1, P (n)]}923

Trans = {E} ∪ {At | t ∈ ∆M}924
925

Σ = {at,p | t ∈ ∆M and p ∈ [1, P (n)]} ⊎ {init, end, restart, win} ⊎ {checkq | q ∈926

QM} ⊎ {checkb,i | (b, i) ∈ {0, 1} × [1, P (n)]}.927

⊥ is a rejecting sink state: a run is accepting if and only if it never reaches this state.928

Let us give the intuition for the role of each state of A. First the states in QM, Pos and929

Mem are used to keep track of the configuration of M, as described in Lemma 40. Those930

in Trans are used to simulate the choices of ∃ and ∀ (played by Spoiler and Determiniser931

respectively). The state store keeps tokens safe for the remaining of a run when Spoiler932

decides to ignore their transition choice. The sinks ⊤ and ⊥ are respectively the one Spoiler933

must avoid at all cost, and the one in which he wants to send every token eventually.934

We now define the transitions in ∆. The states ⊤ and ⊥ are both sinks (⊤ accepting and935

⊥ rejecting). We then describe all transitions labelled by the letter at,p with p ∈ Pos and936

t = (q, q′, b, b′, d) ∈ ∆M, where q and q′ are the starting and destination states of t, while b937

and b′ are the letters read and written at the current head position, and d ∈ {L, R} is the938

direction taken by the head. These transitions are:939

q → q′.940

p → p′ with p′ = p + 1 if d = R, or p − 1 if d = L. It goes to ⊤ if p′ /∈ [1, P (n)].941

mb,p → mb′,p, and mb′′,p′′ → mb′′,p′′ for any b′′ and any p′′ ̸= p.942

E → At′ for any transition t′.943

At → E.944

q′′ → ⊤ for any q′′ ̸= q.945

m1−b,p → ⊤ (1 − b is the boolean negation of b).946

p′ → ⊤ for any p′ ̸= p.947

At′ → store for any transitions t′ ̸= t.948

The first three bullet points manage the evolution of the configuration of M. The next two949

deal with the alternation between players, and the next three punish Spoiler if the transition950

is invalid (the check letters will handle the case where Determiniser is the one giving an951

invalid transition). The last one saves the tokens that are not chosen for the transition.952
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q0 E At

store ⊥

init
at,p, at′,p

at,p

at′,pΣ \ {end, checkq, checkb,i}

end
end

Σ

end

Figure 3 Gadget for simulating the choice of ∀ in the alternation (transitions labelled by check
are not represented, and t′ represents any transition different from t).

The other letters give the following transitions.953

init goes from q0 to the states E, qM
0 , and 1 ∈ Pos, and also to the states mb,i954

corresponding to the initial content of the tape, i.e. all mb,i such that b is the i-th letter955

of w (or 0 if i > |w|).956

end labels transitions from any non accepting state of M to ⊤, from store to q0, and957

from any other state to ⊥.958

checkq creates a transition from At to ⊥ for any t ∈ ∆ starting from q. It also creates a959

transition from q to ⊤. Any other state is sent back to q0. Intuitively, playing that letter960

means that q is not the current state and that any transition starting from q is invalid.961

checkb,i creates a transition from At to ⊥ for any t ∈ ∆ reading b on the tape. It also962

creates transitions from any j ∈ Pos \ {i} and from mb,i to ⊤. Any other state is sent to963

q0. Intuitively, playing that letter means that the current head position is i, and that its964

content is not b, so any transition reading b is invalid.965

To summarize, the states of A can be seen as two blocks, apart from q0, ⊤ and ⊥: those966

dealing with the configuration of M (QM, Pos and Mem), and those from the gadget of967

Figure 3 which deal with the alternation and non deterministic choices.968

The following result provides tools to manipulate the relation between A and M.969

▶ Lemma 40. Let us consider a play of the ω-explorability game on A, that we stop at some970

point. Suppose that the letters at,p played since the last init are at1,p1 , . . . , atk,pk
. If ⊤ is971

not reachable from q0 with this sequence, then we can define a run ρ of M on w taking the972

sequence of transitions t1, . . . , tk. The following implications hold:973

Token present in implies that at the end of ρ

q ∈ QM the current state is q

p ∈ Pos the head is in position p

mb,i ∈ Mem the tape contains b at position i

E it is the turn of ∃
At it is the turn of ∀

974

Proof. These results are obtained by straightforward induction from the definitions. The975

unreachability of ⊤ is used to ensure that only valid transitions are played. ◀976

We will now prove that A is ω-explorable if and only if the Turing machine M rejects977

the word w. Let us first assume that w ∈ L(M). There is a winning strategy σ∃ for ∃ in978

the alternating Turing machine game, and Spoiler will use that strategy in the explorability979

game to win against ω tokens. He will consider that the tokens are labelled by integers, and980

always target the smallest one that is not already in ⊥. He proceeds as follows.981
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Spoiler plays init from a position where every token is either in q0 or ⊥. We can assume982

from here that Determiniser sends token to each possible state, and just add imaginary983

tokens if he does not. Additionally, if the target token does not go to E, then Spoiler984

creates an imaginary target token in E that will play only valid transitions (we will985

describe what this means later). Its purpose is to ensure that we actually reach an986

accepting state of M to destroy the real target token.987

When there are tokens in E, Spoiler plays letters according to σ∃. More formally,988

if the letters played since init are at1,p1 . . . ati,pi
, then Spoiler plays ati+1,pi+1 where989

ti+1 = σ∃(t1, . . . , ti) and pi+1 = pi + 1 or pi − 1 depending on the head movement in ti.990

After such a play, Determiniser can move tokens to any state At. If there are more than991

one occupied state, Spoiler picks the one containing the current target token (possibly992

imaginary).993

If that state corresponds to an invalid transition (wrong starting state or wrong tape994

content at the current head position), then Spoiler plays the corresponding check995

letter. Formally, if the target token (not the imaginary one, since Spoiler can avoid996

invalid transitions for that one) is in At, Spoiler plays checkq if the starting state q of997

t does not match the current state of the tape (given by Lemma 40), or checkb,i if the998

current head position is i and does not contain b. In both cases, the target token is999

sent to ⊥ with no other token reaching ⊤ (by Lemma 40). This sends us back to the1000

first step, but with an updated target.1001

If the state instead corresponds to a valid transition, then Spoiler can play the1002

corresponding at,p, where p is the current head position (again, given by Lemma 40),1003

then go back to the previous step (where there are tokens in E).1004

If no invalid transition is reached, the run eventually gets to an accepting state of M1005

because σ∃ is winning. This corresponds to a stage where Spoiler can safely play end to1006

get rid of the target token along with all tokens outside of store, by sending them to ⊥1007

(the only reason not to play end would be the existence of tokens in non accepting states1008

of QM). This sends us back to the first step, but with an updated target.1009

This strategy guarantees that after k runs, at least the first k tokens are in state ⊥, and1010

therefore cannot witness an accepting run. We also know that the final word is accepted by1011

A, because an accepting run can be created by going to the state store as soon as possible1012

in each factor corresponding to a run of M.1013

Conversely, if there is a winning strategy σ∀ for the universal player in the alternation1014

game on M(w), then we can build a winning strategy for Determiniser in the ω-explorability1015

game. This strategy is more straightforward than the previous one, as we can focus on the1016

tokens sent to E (while still populating each state when init is played, but these other1017

tokens follow a deterministic path until the next init).1018

Determiniser will initially chooses a specific token, called leader. He then sends ω tokens1019

to every reachable state when Spoiler plays init, with the leader going to E. Determiniser1020

then moves the tokens in the leader’s state according to σ∀. Spoiler cannot send the leader to1021

⊥, since the only way to do that would be using the letter end, but this would immediately1022

ensure the win for Spoiler, as there will always be some token in non-accepting states of M1023

(because σ∀ is winning), and those tokens would be sent to ⊤ upon playing end. This means1024

that Spoiler has no way to send the leader to ⊥ without losing the game, and therefore that1025

Determiniser wins.1026

Note that with that strategy, Spoiler can still safely send some tokens to ⊥ by playing1027

the wrong transition, which sends the tokens following the leader to store, then some well1028
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chosen check letter to send the remaining ones to ⊥. However Determiniser will start the1029

next run with still ω tokens, including the leader. This is why the choice of a specific leader1030

is important, as it can never be safely sent to ⊥.1031

This proves that the automaton A created from M and w (using polynomial time) is1032

ω-explorable if and only if M rejects w. This completes the proof since the acceptance1033

problem is ExpTime-hard for alternating Turing machines using polynomial space.1034
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