
HAL Id: hal-03669659
https://hal.science/hal-03669659v2

Submitted on 8 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Explorable Automata
Emile Hazard, Denis Kuperberg

To cite this version:
Emile Hazard, Denis Kuperberg. Explorable Automata. CSL 2023, Feb 2023, Warsaw, Poland.
pp.24:1–24:18, �10.4230/LIPIcs.CSL.2023.24�. �hal-03669659v2�

https://hal.science/hal-03669659v2
https://hal.archives-ouvertes.fr

Explorable Automata
Emile Hazard �

CNRS, LIP, ENS Lyon, France

Denis Kuperberg �

CNRS, LIP, ENS Lyon, France

Abstract
We define the class of explorable automata on finite or infinite words. This is a generalization of
History-Deterministic (HD) automata, where this time non-deterministic choices can be resolved by
building finitely many simultaneous runs instead of just one. We show that recognizing HD parity
automata of fixed index among explorable ones is in PTime, thereby giving a strong link between
the two notions. We then show that recognizing explorable automata is ExpTime-complete, in the
case of finite words or Büchi automata. Additionally, we define the notion of ω-explorable automata
on infinite words, where countably many runs can be used to resolve the non-deterministic choices.
We show that all reachability automata are ω-explorable, but this is not the case for safety ones.
We finally show ExpTime-completeness for ω-explorability of automata on infinite words for the
safety and co-Büchi acceptance conditions.

2012 ACM Subject Classification Theory of computation→ Formal languages and automata theory

Keywords and phrases Nondeterminism, automata, complexity

Digital Object Identifier 10.4230/LIPIcs.CSL.2023.7

1 Introduction

In several fields of theoretical science, the tension between deterministic and non-deterministic
models is a source of fundamental open questions, and has led to important lines of research.
The most famous of this kind is the P vs NP question in complexity theory. This paper aims
at further investigating the frontier between determinism and non-determinism in automata
theory. Although Non-deterministic and Deterministic Finite Automata (NFA and DFA) are
known to be equivalent in terms of expressive power, many subtle questions remain about
the cost of determinism, and a deep understanding of non-determinism will be needed to
solve them.

One of the approaches investigating non-determinism in automata is the study of History-
Deterministic (HD) automata, introduced in [17] under the name Good-For-Game (GFG)
automata. An automaton is HD if, when reading input letters one by one, its non-determinism
can be resolved on-the-fly without any need to guess the future. This constitutes a model
that is intermediary between non-determinism and determinism, and can sometimes bring
the best of both worlds. Like deterministic automata, HD automata on infinite words retain
good properties such as their soundness with respect to composition with games, making
them appropriate for use in Church synthesis algorithms [17]. On the other hand, like
non-deterministic automata, they can be exponentially more succinct than deterministic ones
[20]. There is a very active line of research trying to understand the various properties of HD
automata, see e.g. [1, 2, 7, 9, 21, 14, 25] for latest developments. The terminology history-
deterministic, was introduced originally in the theory of regular cost functions [12]. The
name “history-deterministic” corresponds to the above intuition of solving non-determinism
on-the-fly, while the earlier name of “good-for-games” refers to sound composition with
games. These two notions may actually differ in some quantitative frameworks, but coincide
on boolean automata [8], and have been used interchangeably in most of the literature on

© Emile Hazard and Denis Kuperberg;
licensed under Creative Commons License CC-BY 4.0

31st EACSL Annual Conference on Computer Science Logic (CSL 2023).
Editors: Bartek Klin and Elaine Pimentel; Article No. 7; pp. 7:1–7:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:emile.hazard@ens-lyon.fr
mailto:denis.kuperberg@ens-lyon.fr
https://orcid.org/0000-0001-5406-717X
https://doi.org/10.4230/LIPIcs.CSL.2023.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Explorable Automata

the topic. In this paper, since we are mainly interested in resolving the non-determinism
on-the-fly, we choose the HD denomination to emphasize this aspect1.

The goal of this paper is to pursue this line of research by introducing and studying the
class of explorable automata on finite and infinite words. The intuition behind explorability
is to limit the amount of non-determinism required by the automaton to accept its language,
in a more permissive way than HD automata. If k ∈ N, an automaton is k-explorable if
when reading input letters, it suffices to keep track of k runs to build an accepting one, if it
exists. An automaton is explorable if it is k-explorable for some k ∈ N. This can be seen
as a variation on the notion of HD automaton, which corresponds to the case k = 1. The
present work can be compared to [19], where a notion related to k-explorability (called width)
is introduced and studied, see Section 2.4. In particular, some results of [19] also apply to
k-explorability, notably ExpTime-completeness of deciding k-explorability of an NFA if k is
part of the input. Surprisingly however, the techniques used in [19] are quite different from
the ones we need here. This shows that fixing a bound k for the number of runs leads to
very different problems compared to asking for the existence of such a bound.

One of the motivations to introduce the notion of explorability is to tackle one of the
important open questions about HD automata: what is the complexity of deciding whether
an automaton is HD? We explain in the following why explorability is relevant for this
question, and show obstructions to some of our initial hopes in this direction.

Recognizing HD automata is known to be in PTime for Büchi [3] and co-Büchi [20]
automata, but even for 3 parity ranks, the only known upper bound is ExpTime via the naive
algorithm from [17]. We show how explorable automata can simplify this question: if the
input automaton is explorable, then the problem becomes PTime for any fixed acceptance
condition. Therefore, the question of recognizing HD automata can be shifted to: how hard
is it to recognize explorable automata?

We then proceed to study the decidability and complexity of the explorability problem:
deciding whether an input automaton on finite or infinite words is explorable. For this, we
establish a connection with the population control problem studied in [4]. This problem
asks, given an NFA with an arbitrary number of tokens in the initial state, whether a
controller can choose input letters, thereby forcing every token to reach a designated state,
even if tokens are controlled by an opponent. It is shown in [4] that the population control
problem is ExpTime-complete, and we adapt their proof to our setting to show that the
explorability problem is ExpTime-complete as well, already for NFAs. We also show that a
direct reduction is possible, but at an exponential cost, yielding only a 2-ExpTime algorithm
for the NFA explorability problem. In the case of infinite words, we adapt the proof to the
Büchi case, thereby showing that the Büchi explorability problem is in ExpTime as well.
We also remark that, as in [4], the number of tokens needed to witness explorability can go
as high as doubly exponential in the size of the automaton.

This ExpTime-completeness result means that we unfortunately cannot directly use the
intermediate notion of explorable automata to improve on the complexity of recognizing
HD automata in full generality, as could have been the hope. However, there can also be
some frameworks where we can guarantee to obtain an explorable automaton, and therefore
easily decide whether it is HD. A recent example of this from [9] is detailed in Section
2.5. More generally, we believe that this explorability notion is of interest towards a better

1 This departs from earlier practices consisting in using HD and GFG in a way coherent with their
contexts of introduction: HD for cost functions and GFG for boolean automata. Hence most of the
papers cited here use GFG.

E. Hazard and D. Kuperberg 7:3

understanding of non-determinism in automata theory.
Notice that interestingly, from a model-checking perspective, our approach is dual to

[4]: in the population control problem, an NFA is well-behaved when we can “control” it by
forcing arbitrarily many runs to simultaneously reach a designated state, via an appropriate
choice of input letters. On the contrary, in our approach, the input letters form an adversarial
environment, and our NFA is well-behaved when its non-determinism is limited, in the sense
that it is enough to spread finitely many runs to explore all possible behaviors.

On infinite words, we push further the notion of explorability, by remarking that for some
automata, even following a countable number of runs is not enough. This leads to defining the
class of ω-explorable automata, as those automata on infinite words where non-determinism
can be resolved using countably many runs. We show that ω-explorable automata form a
non-trivial class even for the safety acceptance condition (but not for reachability), and give
an ExpTime algorithm recognizing ω-explorable automata, encompassing the safety and
co-Büchi conditions. We also show ExpTime-hardness of this problem, by adapting the
ExpTime-hardness proof of [4] to the setting of ω-explorability.

Summary of the contributions. We show that given an explorable parity automaton
of fixed parity index, it is in PTime to solve its HDness problem, i.e. decide whether it is HD.
The idea was already used in [3], and in [9] for quantitative automata. The algorithm used
for Büchi HDness in [3] is conjectured to work for any acceptance condition (this is the “G2
conjecture”), and it is in fact this algorithm that is shown here to work on any explorable
parity automaton.

We show that given an NFA or Büchi automaton, it is decidable and ExpTime-complete
to check whether it is explorable. Our proof of ExpTime-completeness for NFAs uses
techniques developed in [4], where ExpTime-completeness is shown for the NFA population
control problem. We generalize this result to ExpTime explorability checking for Büchi
automata, requiring further adaptations. We also give a black box reduction using the result
from [4]. This is enough to show decidability of the NFA explorability problem, but it yields
a 2-ExpTime algorithm. As in [4], the ExpTime algorithm yields a doubly exponential tight
upper bound on the number of tokens needed to witness explorability.

On infinite words, we show that any reachability automaton is ω-explorable, but that this
is not the case for safety automata. We show that both the safety and co-Büchi ω-explorability
problems are ExpTime-complete.

Related Works. Many works aim at quantifying the amount of non-determinism in
automata. A survey by Colcombet [13] gives useful references on this question. Let us
mention for instance the notion of ambiguity, which quantifies the number of simultaneous
accepting runs. Similarly to [19], we can note that ambiguity is orthogonal to k-explorability.
Remark however that our finite/countable/uncountable explorability hierarchy is reminiscent
of the finite/polynomial/exponential ambiguity hierarchy (see e.g. [26]).

In [18], several ways of quantifying the non-determinism in automata are studied from
the point of view of complexity, including notions such as the number of advice bits needed.

Another approach is studied in [24], where a measure of the maximum non-deterministic
branching along a run is defined and compared to other existing measures.

Following the HD approach, a hierarchy of non-determinism and an analysis of this
hierarchy via probabilistic models is given in [2].

The idea of k-explorability stems from the approach in [3], using games with tokens to
tackle the HDness problem for Büchi automata. In this previous work, the idea of following
a finite number of runs in parallel plays a central role in the proof. Remark however that
the notion of explorability as studied here is stronger than what is needed in [3]. The

CSL 2023

7:4 Explorable Automata

k-explorability (and explorability) property was explicitly defined under the name k-History-
Determinism in [9], as a proof tool to decide the HDness of LimInf and LimSup automata.
The work [9] is part of a research effort to understand how partial determinism notions such
as HDness play out in quantitative automata, see survey [5]. Our goal here is to investigate
explorability as defining a natural class of automata on finite and infinite words, somehow
giving it an “official status” not restricted to an intermediate proof tool.

History of this work. It is traditional in our community to present results as a finished
product, abstracting away the path that led to it. This paragraph is an experiment: we
believe that in addition to this practice, it can be interesting for the reader to have access to
a history of how ideas developed.

The interest we took in the explorability notion originated in the fact that it makes
deciding HDness much easier, and the hope was that by using this notion as an intermediate,
we could obtain an algorithm improving on the ExpTime upper bound for deciding GFGness
of parity automata of fixed index, e.g. to PSpace. As we described above, we ended up
showing that this approach cannot yield an algorithm below ExpTime (at least not in
full generality). However, although this was initially only a tool for this decision problem,
explorability turns out to be a natural generalisation of HD automata, and an interesting class
to study in itself. The first investigation of this notion, and in particular of its decidability,
was the object of a short research internship by Milla Valnet under the supervision of the
second author. It was expected that decidability of explorability would be a reachable goal
for such a short internship, but it turned out that this was overly optimistic. The internship
yielded preliminary results, and in particular was useful to introduce and study the notion of
“coverability”. This version of the problem does not take accepting conditions into account,
but only asks that at any point of the run, every state that could be reached is actually
occupied by a token. After the internship, we continued to use this coverability notion as a
stepping stone towards an understanding of explorability. However, after more preliminary
results and unsuccessful attempts at obtaining decidability, we discovered the connection
between explorability and population control from [4], that rendered the intermediate notion
of coverability useless for our purposes, and we then focused on exploiting that link. We chose
to leave coverability out of the present exposition, as it feels like a “watered-down” version
of explorability, but it could be useful in some contexts, hence we briefly mention it in this
chronological account. Let us just informally state here that it is straightforward to modify
our proofs in order to show that deciding whether an NFA is coverable is ExpTime-complete
as well.

2 Explorable automata

2.1 Preliminaries

2.2 Automata
If i ≤ j are integers, we will denote by [i, j] the integer interval {i, i+ 1, . . . , j}. If S is a set,
its cardinal will be denoted |S|, and its powerset P(S).

We work with a fixed finite alphabet Σ. We will use the following default notation for
the components of an automaton A: QA for its set of states, qA0 for its initial state, FA
for its accepting states, ∆A for its set of transitions. Letter A in the components might
be omitted when clear from context. We might also specify its alphabet by ΣA instead of
Σ for cases where different alphabets come into play. If ∆ ⊆ Q × Σ × Q is the transition
relation, and (p, a) ∈ Q × Σ, we will note ∆(p, a) = {q ∈ Q, (p, a, q) ∈ ∆}. If X ⊆ Q, we

E. Hazard and D. Kuperberg 7:5

note ∆(X, a) =
⋃
p∈X ∆(p, a).

To simplify definitions, all automata in this paper will be assumed to be complete (by
adding a rejecting sink state if needed). This means that for all (p, a) ∈ Q× Σ, we assume
∆(p, a) 6= ∅. The rejecting sink state will often be implicit in our constructions and examples.

We will consider non-deterministic automata on finite words (NFAs). A run of such
an automaton on a word a1a2 . . . an ∈ Σ∗ is a sequence of states q0q1 . . . qn ∈ Q∗ (q0 being
the initial state), such that, for all i ∈ [0, n− 1], we have qi+1 ∈ ∆(qi, ai+1). Such a run is
accepting if qn ∈ F , i.e. if the run belongs to Q∗F . As usual, the language of an automaton
A, denoted L(A), is the set of words that admit an accepting run.

We will also deal with automata on infinite words, and we recall here some of the standard
acceptance conditions for such automata. A run on an infinite word w ∈ Σω is now an infinite
sequence of states, i.e. an element of Qω, starting in q0 and following as before transitions
of the automaton according to the letters of w. Such a run of Qω is accepting in a safety
(resp. reachability, Büchi, co-Büchi) automaton if it belongs to Fω (resp. Q∗FQω, (Q∗F)ω,
Q∗Fω). States from F will be called Büchi states in Büchi automata, and states from Q \ F
will be called co-Büchi states in co-Büchi automata.

Finally, we also mention the parity acceptance condition: it uses a ranking function rk
from Q to an interval of integers [i, j]. A run is accepting if the minimal rank appearing
infinitely often is even (following the convention of [4]).

We will also use standard game notions such as arena, play and strategy. See e.g. [16] for
a complete definition of these objects.

2.3 Games

A game G = (V0, V1, vI , E,W) of infinite duration between two players 0 and 1 consists of: a
finite set of positions V being a disjoint union of V0 and V1; an initial position vI ∈ V ; a
set of edges E ⊆ V × V ; and a winning condition W ⊆ V ω. We will later use names more
explicit than 0 and 1 for the players, describing their roles in the various games we will define.

A play is an infinite sequence of positions v0v1v2 · · · ∈ V ω such that v0 = vI and for all
n ∈ N, (vn, vn+1) ∈ E. A play π ∈ V ω is winning for Player 0 if it belongs to W . Otherwise
π is winning for Player 1.

A strategy for Player 0 (resp. 1) is a function σ0 : V ∗ × V0 → V (resp. σ1 : V ∗ × V1 → V),
describing which edge should be played given the history of the play u ∈ V ∗ and the current
position v ∈ V . A strategy σP has to obey the edge relation, i.e. there has to be an edge in
E from v to σP (u, v). A play π = v0v1v2 . . . is consistent with a strategy σP of a player P if
for every n such that vn ∈ VP we have vn+1 = σP (v0 . . . vn−1, vn).

A strategy for Player 0 (resp. Player 1) is positional (or memoryless) if it does not use
the history of the play, i.e. it can be seen as a function V0 → V (resp. V1 → V).

We say that a strategy σP of a player P is winning if every play consistent with σP is
winning for P . In this case, we say that P wins the game G.

A game is positionally determined if exactly one of the players has a positional winning
strategy in the game.

In the interest of readability, when describing games in the paper, we will not give explicit
definitions of the sets V0, V1 and E, but give slightly more informal descriptions in terms of
possible actions of players at each round. It is straightforward to build a formal description
of the game from such a description.

CSL 2023

7:6 Explorable Automata

p0

p1 p2 . . . pk

pf

Explorable Ak

a
a

a

a1 a2
ak

q0

q1

q2

q3

Non-explorable C

Σ

Σ

a

b

b

a

Σ

Figure 1 An explorable and a non-explorable automata

2.4 Explorability
We start by introducing the k-explorability game, which is the central tool allowing us to
define the class of explorable automata.

I Definition 1 (k-explorability game). Consider a non-deterministic automaton A on finite
or infinite words, and an integer k. The k-explorability game on A is played on the arena
Qk. The two players are called Determiniser and Spoiler, and they play as follows.

The initial position is the k-tuple S0 = (q0, . . . , q0).
At step i from a position Si−1 ∈ Qk, Spoiler chooses a letter ai ∈ Σ, and Determiniser
chooses Si ∈ Qk such that for every token l ∈ [0, k − 1], Si−1(l) ai−→ Si(l) is a transition
of A (where Si(l) stands for the l-th component in Si).

The play is won by Determiniser if for all β ≤ ω such that the word (ai)1≤i<β is in L(A),
there is a token l < k being accepted by A, meaning that the sequence (Si(l))i<β is an
accepting run2. Otherwise, the winner is Spoiler.
We will say that A is k-explorable if Determiniser wins the k-explorability game (i.e. has a
winning strategy, ensuring the win independently of the choices of Spoiler).
We will say that A is explorable if it is k-explorable for some k ∈ N.

I Example 2. Consider the automata from Figure 1. The NFAAk on alphabet {a, a1, . . . , ak}
is k-explorable, but not (k − 1)-explorable. It can easily be adapted to a binary alphabet, by
replacing in the automaton a1, . . . , ak by distinct words of the same length.

On the other hand, the NFA C is a non-explorable NFA accepting all words on alphabet
Σ = {a, b}. Indeed, Spoiler can win the k-explorability game for all k, by eliminating tokens
one by one, choosing at each step the letter b if q1 is occupied by at least one token, and the
letter a otherwise.

I Example 3. The NFA Bk from Figure 2 with 3k + 1 states on alphabet Σ = {a, b} is
explorable, but requires 2k tokens. Indeed, since when choosing the 2ith letter Spoiler can
always pick the state pi or ri containing the least amount of tokens to decide whether to play
a or b, the best strategy for Determiniser is to split his tokens evenly at each qi. This means
he needs to start with 2k tokens to end up with at least one token in qk after a word of Σ2k.

Let us mention a few facts that follow from the definition of explorability:

2 This condition β ≤ ω is actually accounting separately for the two cases of finite and infinite words,
corresponding respectively to β < ω and β = ω.

E. Hazard and D. Kuperberg 7:7

q0

p1

r1

q1

p2

r2

q2 . . . qk−1

pk

rk

qk

Σ

Σ

a

b

Σ

Σ

a

b

Σ

Σ

a

b

Figure 2 An explorable automaton Bk requiring exponentially many tokens

I Lemma 4.
Any finite language is explorable.
If A is k-explorable, then it is n-explorable for all n ≥ k.
If A is k-explorable and B is n-explorable, then
A ∪ B (with states Q = {q0} ∪QA ∪QB) is (k + n)-explorable,
the union product A× B (with F = (FA ×QB) ∪ (QA × FB)) is max(k, n)-explorable,
the intersection product A× B (with F = FA × FB) is (kn)-explorable.

Proof. If L(A) is finite, it is enough to take k = |L(A)| tokens to witness explorability: for
each u ∈ L(A), the token tu assumes that the input word is u and follows an accepting run
of A over u as long as input letters are compatible with u. As soon as an input letter is not
compatible with u, the token tu is discarded and behaves arbitrarily for the rest of the play.

If A is k-explorable and n ≥ k, then Determiniser can win the n-explorability game by
using the same strategy with the first k tokens and making arbitrary choices with the n− k
remaining tokens.

If A and B are k- and n-explorable respectively, then Determiniser can use both strategies
simultaneously with k + n tokens in A ∪ B, using k tokens in A and n tokens in B. If the
input word is in A (resp. B), then the tokens playing in A (resp. B) will win the play.

In the union product A× B, it is enough to take max(k, n) tokens: if 0 ≤ i < min(k, n),
the token number i follows the strategy of the token i in A on the first coordinate, and
the strategy of the token i in B in the second one. If min(k, n) ≤ i < max(k, n), say wlog
k ≤ i < n, the token i follows an arbitrary strategy on the A-component and the strategy of
token i on the B-component.

However, Determiniser may need up to kn tokens to play in A×B when the accepting set
is FA × FB: the token (i, j) will use the strategy of the token i in the k-explorability game
of A together with the strategy of the token j in the n-explorability game of B. This lower
bound of kn cannot be improved: consider for instance the intersection product Ak ×An,
where Ak,An are from Example 2, using as alphabet the cartesian product of their respective
alphabets: {a, a1, a2, . . . , ak} × {a, b}. J

Notice that a similar notion was introduced in [19] under the name width. In [19], the
emphasis is put on another version of the explorability game, where tokens can be duplicated,
and |Q| is an upper bound for the number of necessary tokens. In this work, we will on the
contrary focus on non-duplicable tokens. However, some results of [19] still apply here. In
particular the following holds:

I Theorem 5 ([19, Rem. 6.9]). Given an NFA A and an integer k, it is ExpTime-complete
to decide whether A is k-explorable (even if we fix k = |QA|/2).

We aim here at answering a different question:

CSL 2023

7:8 Explorable Automata

I Definition 6 (Explorability problem). The explorability problem is the question, given a
non-deterministic automaton A, of deciding whether it is explorable (i.e., whether there exists
k ∈ N such that it is k-explorable).

Questions: Is the explorability problem decidable? If yes, what is its complexity?
We will first give some motivation for this problem in Section 2.5.

2.5 Link with HD automata
An automaton A is History-Deterministic (HD) if it is 1-explorable, i.e. if there is a strategy
σ : Σ∗ → Q resolving the non-determinism based on the word read so far, with the guarantee
that the run piloted by this strategy is accepting whenever the input word is in L(A). See
e.g. [6] for an introduction to HD automata.

We will give here an additional and stronger link between explorable and HD automata.
In this part, we will mainly be interested in automata on infinite words.

The arguments in this section are already hinted at in [3], and made explicit in the
context of quantitative automata in [9]. We sketch them here for completeness, in order to
give some context for the relevance of the class of explorable automata.

One of the main open problems related to HD automata on infinite words is to decide,
given a non-deterministic parity automaton, whether it is HD. For now, the problem is only
known to be in PTime for co-Büchi [20] and Büchi [3] automata. Extending this result even
to 3 parity ranks is still open, and only a naive ExpTime upper bound [17] is known in this
case. The following result shows that explorability is relevant in this context:

I Theorem 7. Given an explorable parity automaton A of fixed parity index, it is in PTime
to decide whether it is HD.

This is one of the motivations to get a better understanding of explorable automata.
Indeed, if we can obtain an efficient algorithm for recognizing them, or if we are in a context
guaranteeing that we are only dealing with explorable automata, this result shows that
we can obtain an efficient algorithm for recognizing HD automata. Alternatively, even if
membership to the class of explorable automata is provably hard to decide in general (as
it will turn out), there can be some contexts where explorable automata are sufficient for
the intended purposes. An example is given in [9], where it is shown that for LimSup and
LimInf automata, Eve winning the game G2 (defined below) implies that the automaton is
explorable. Since Theorem 7 actually shows that Eve winning G2 characterizes HDness for
explorable automata, in this case it implies that the automaton is HD, as was shown in [9].

The rest of this section will be devoted to give a proof sketch of Theorem 7. See Appendix
?? for formal details.

Let A be an explorable parity automaton, of fixed parity index [i, j].
We briefly recall the definition of the k-token game Gk(A) defined in [3], for an arbitrary

k ∈ N. At each round, Adam plays a letter a ∈ Σ, then Eve moves her token according to an
a-transition, and finally Adam moves his k tokens according to a-transitions. Eve wins the
play if her token builds an accepting run, or if all of Adam’s tokens build a rejecting run.

We will prove that the game G2(A) is won by Eve if and only A is HD. Since G2(A) can
be solved in PTime for fixed parity index [3], this is enough to conclude.

First, it is clear that if A is HD, then Eve wins G2(A) [3]: Eve can simply play her HD
strategy with her token, ignoring Adam’s tokens.

The interesting direction is the converse: we assume that Eve wins G2(A), and we show
that under this assumption, A is necessarily HD. We use the following lemma:

E. Hazard and D. Kuperberg 7:9

I Lemma 8 ([3, Thm. 14]). Eve wins G2(A) if and only if Eve wins Gk(A) for all k ≥ 2.

Since A is explorable, there is k ∈ N such that A is k-explorable. Let τk be a winning
strategy for Determiniser in the k-explorability game of A, and σk be a winning strategy for
Eve in Gk(A). We show that we can combine these two strategies to yield a HD strategy σ
for A. This proof follows the same idea as in [3] where the explorability hypothesis is not
available, but A is assumed to be Büchi. The strategy σ will store k virtual tokens in its
memory. When the automaton reads a new letter a ∈ Σ, these k tokens will be updated
according to τk. Then the choice of σ will follow the strategy σk against these k tokens.
Notice that the strategies τk and σk might use additional memory, but this is completely
transparent in this proof scheme. If the input word is in L(A), then by correctness of τk,
one of the k virtual tokens will accept. Thus, by correctness of σk, the run chosen by σ will
be accepting. Therefore, σ is a correct HD strategy, witnessing that A is HD. This concludes
the proof sketch of Theorem 7.

3 Decidability and complexity of the explorability problem

In this section, we prove that the explorability problem is decidable and ExpTime-complete.
We start by showing in Section 3.1 decidability of the explorability problem for NFAs

using the results of [4] as a black box. This yields an algorithm in 2-ExpTime. We give
in Section 3.2 a polynomial reduction in the other direction, thereby obtaining ExpTime-
hardness of the NFA explorability problem. To obtain a matching upper bound and show
ExpTime-completeness, we use again [4], but this time we must “open the black box” and
dig into the technicalities of their ExpTime algorithm while adapting them to our setting.
We do so in Section 3.3, directly treating the more general case of Büchi automata.

3.1 2-ExpTime algorithm via a black box reduction
Let us start by recalling the population control problem (PCP) of [4].

I Definition 9 (k-population game). Given an NFA B with a distinguished target state
f ∈ QB, and an integer k ∈ N, the k-population game is played similarly to the k-explorability
game, only the winning condition differs: Spoiler wins if the game reaches a position where
all tokens are in the state f .

The PCP asks, given B and f ∈ QB, whether Spoiler wins the k-population game for all
k ∈ N. Notice that this convention is opposite to explorability, where positive instances are
defined via a win of Determiniser. The PCP is shown in [4] to be ExpTime-complete. We
will present here a direct exponential reduction from the explorability problem to the PCP.

Let A = (Σ, QA, qA0 , FA,∆A) be an NFA. Our goal is to build an exponential NFA B
with a distinguished state f such that (B, f) is a negative instance of the PCP if and only if
A is explorable.

We choose QB = (QA ×P(QA))] {f,⊥}, where f,⊥ are fresh sink states. The alphabet
of B will be ΣB = Σ] {atest}, where atest is a fresh letter.

The initial state of B is qB0 = (qA0 , {qA0 }). Notice that we do not need to specify accepting
states in B, as acceptance plays no role in the PCP.

We finally define the transitions of B in the following way:
(p,X) a−→ (q,∆A(X, a)) if a ∈ Σ and q ∈ ∆A(p, a),
(p,X) atest−→ f if p /∈ FA and X ∩ FA 6= ∅.
(p,X) atest−→ ⊥ otherwise.

CSL 2023

7:10 Explorable Automata

We aim at proving the following Lemma:

I Lemma 10. For any k ∈ N, A is k-explorable if and only if Determiniser wins the
k-population game on (B, f).

Notice that as long as letters of Σ are played, the second component of states of B evolves
deterministically and keeps track of the set of reachable states in A. Moreover, the letter
atest also acts deterministically on QB. Therefore, the only non-determinism to be resolved in
B is how the first component evolves, which amounts to building a run in A. Thus, strategies
driving tokens in A and B are isomorphic. It now suffices to observe that Spoiler wins the
k-population game on (B, f) if and only if he has a strategy allowing to eventually play atest
while all tokens are in a state of the form (q,X) with q /∈ FA and X ∩ FA 6= ∅. This is
equivalent to Spoiler winning the k-explorability game of A, since X ∩FA 6= ∅ witnesses that
the word played so far is in L(A).

This concludes the proof that A is explorable if and only if (B, f) is a negative instance
of the PCP. So given an NFA A that we want to test for explorability, it suffices to build
(B, f) as above, and use the ExpTime algorithm from [4] as a black box on (B, f). Since B
is of exponential size compared to A, we obtain the following result:

I Theorem 11. The NFA explorability problem is decidable and in 2-ExpTime.

3.2 ExpTime-hardness of NFA explorability
We will perform here an encoding in the converse direction: starting from an instance (B, f)
of the PCP, we build polynomially an NFA A such that A is explorable if and only if (B, f)
is a negative instance of the PCP.

It is stated in [4] that, without loss of generality, we can assume that f is a sink state in
B, and we will use this assumption here.

Let C be the 4-state automaton of Example 2, that is non-explorable and accepts all
words on alphabet ΣC = {a, b}. Recall that, as an instance of the PCP, B does not come
with an acceptance condition. We can assume that its accepting set is FB = QB \ {f}.

We will take for A the product automaton B × C on alphabet ΣA = ΣB × ΣC, with
the union acceptance condition: A accepts whenever one of its components accepts. The
transitions of A are defined as expected: (p, p′) a1,a2−→ (q, q′) in A whenever p a1−→ q in B and
p′

a2−→ q′ in C.
Since L(C) = (ΣC)∗, we have L(A) = (ΣA)∗. The intuition for the role of C in this

construction is the following: it allows us to modify B in order to accept all words, without
interfering with its explorability status.

We claim that for any k ∈ N, A is k-explorable if and only if Determiniser wins the
k-population game on (B, f).

Assume that A is k-explorable, via a strategy σ. Then Determiniser can play in the
k-population game on (B, f) using σ as a guide. In order to simulate σ, one must feed to it
letters from ΣC in addition to letters from ΣB chosen by Spoiler. This is done by applying
a winning strategy for Spoiler in the k-explorability game of C. Assume for contradiction
that, at some point, this strategy σ reaches a position where all tokens are in a state of the
form (f, q) with q ∈ QC . Since f is a sink state, when the play continues it will eventually
reach a point where all tokens are in (f, q3), where q3 is the rejecting sink of C. This is
because we are playing letters from ΣC according to a winning strategy for Spoiler in the
k-explorability game of C, and this strategy guarantees that all tokens eventually reach q3 in
C. But this state (f, q3) is rejecting in A, and L(A) = (ΣA)∗, so this is a losing position for

E. Hazard and D. Kuperberg 7:11

Determiniser in the k-explorability game of A. Since we assumed σ is a winning strategy
in this game, we reach a contradiction. This means that following this strategy σ together
with an appropriate choice for letters from ΣC , we guarantee that at least one token never
reaches the sink state f on its B-component. This corresponds to Determiniser winning in
the k-population game on (B, f).

Conversely, assume that Determiniser wins in the k-population game on (B, f), via a
strategy σ. The same strategy can be used in the k-explorability game of A, by making
arbitrary choices on the C component. As before, this corresponds to a winning strategy in
the k-explorability game of A, since there is always at least one token with B-component in
FB = QB \ {f}. This completes the hardness reduction, and allows us to conclude:

I Theorem 12. The NFA explorability problem is ExpTime-hard.

I Remark 13. Using standard arguments, it is straightforward to extend Theorem 12 to
ExpTime-hardness of explorability for automata on infinite words, using any of the acceptance
conditions defined in Section 2.1.

Let us give some intuition on why we can obtain a polynomial reduction in one direction,
but did not manage to do so in the other direction. Intuitively, the explorability problem is
“more difficult” than the PCP for the following reason. In the PCP, Spoiler is allowed to play
any letters, and the winning condition just depends on the current position. On the contrary,
the winning condition of the k-explorability game mentions that the word chosen by Spoiler
must belong to the language of the NFA. In order to verify this, we a priori need to append
to the arena an exponential deterministic automaton for this language, and this is what is
done in Section 3.1. This complicated winning condition is also the source of difficulty of
recognizing HD parity automata.

3.3 ExpTime algorithm for Büchi explorability
I Theorem 14. The explorability problem can be solved in ExpTime for Büchi automata
(and all simpler conditions: NFA, safety, reachability).

Due to space constraints, we will only sketch the proof of Theorem 14 here. A more
detailed account is given in Appendix ??.

The algorithm is adapted from the ExpTime algorithm for the PCP from [4]. We will
recall here the main ideas of this algorithm, and describe how we adapt it to our setting.

Let A be an NFA, together with a target state f . The idea in [4] is to abstract the
population game with arbitrary many tokens by a game called the capacity game. This game
allows Determiniser to describe only the support of his set of tokens, i.e. the set of states
occupied by tokens. The sequence of states obtained in a play can be analyzed via a notion
of bounded capacity, in order to detect whether it actually corresponds to a play with finitely
many tokens. This notion can be approximated by the more relaxed finite capacity, which
is a regular property that is equivalent to bounded capacity in a context where games are
finite-memory determined. This property of finite capacity can be verified by a deterministic
parity automaton, yielding a parity game that can be won by Spoiler if and only if (A, f) is
a positive instance of the PCP. Since this parity game has size exponential in A, this yields
an ExpTime algorithm for the PCP.

Here, we will perform the following tweaks to this construction. We now start with a
Büchi automaton A, and want to decide whether it is explorable.

First, we need to control that the infinite word played by Spoiler is in L(A). This requires
to build a deterministic parity automaton D recognising L(A), and incorporate it into the

CSL 2023

7:12 Explorable Automata

arena. The size of D is exponential with respect to A. We then follow [4] and build the
capacity game augmented with D. This time, a sequence of supports is winning if infinitely
many of them contain an accepting state. We emphasize that we use here a particularity of
the Büchi condition: observing the sequences of support sets of tokens is enough to decide
whether one of the tokens follows an accepting run. The same particularity was used in [3],
and was a crucial tool allowing to give a PTime algorithm for Büchi HDness. Since this
modification still allows us to manipulate supports as simple sets, we can make use of the
capacity game as before. See Appendix ??, Remark ?? for an example showing that a naive
adaptation of this construction to co-Büchi automata would not be correct.

Finally, we show that we can as in [4] obtain a parity game of exponential size character-
izing explorability of A, yielding the wanted ExpTime algorithm.

We also remark that, as in [4], this construction gives a doubly exponential upper bound
on the number of tokens needed to witness explorability. Moreover, the proof from [4] that
this is tight also stands here.

4 Explorability with countably many tokens

In this section, we look at the same problem of explorability of an automaton, but we now
allow for infinitely many tokens. More precisely, we will redefine the explorability game to
allow an arbitrary cardinal for the number of tokens, then consider decidability problems
regarding that game. This notion will mainly be interesting for automata on infinite words.

4.1 Definition and basic results
The following definition extends the notion of k-explorability to non-integer cardinals:

I Definition 15 (κ-explorability game). Consider an automaton A and a cardinal κ. The
κ-explorability game on A is played on the arena (QA)κ, between Determiniser and Spoiler.
They play as follows.

The initial position is S0 associating q0 to all κ tokens.
At step i, from position Si−1, Spoiler chooses a letter ai ∈ Σ, and Determiniser chooses
Si such that for every token α, Si−1(α) ai−→ Si(α) is a transition in A.

The play is won by Determiniser if for all β ≤ ω such that the word (ai)1≤i<β is in L(A),
there is a token α ∈ κ building an accepting run, meaning that the sequence (Si(α))i<β is an
accepting run. Otherwise, the winner is Spoiler.

We will say in particular that A is ω-explorable if Determiniser wins the game with
ω tokens. We use here the notation ω for convenience, it should be understood as the
countably infinite cardinal ℵ0. We will however explicitly use the fact that such an amount
of tokens can be labelled by N, in order to describe strategies for Spoiler or Determiniser
in the ω-explorability game. The following lemma gives a first few results on generalized
explorability.

I Lemma 16.
Determiniser wins the explorability game on A with |L(A)| tokens.
ω-explorability is not equivalent to explorability.
There are non ω-explorable safety automata.

Proof. For the first item, a strategy for Determiniser is to associate a token to each word
of L(A) and to have it follow an accepting run for that word. Let us add a few details
on the cardinality of L(A). First, a dichotomy result has been shown in [23] (even in the

E. Hazard and D. Kuperberg 7:13

q0 q1 q2

a

a b

a, b

q0

q1

q2

a
a

a

b

Figure 3 Two safety automata. Left: ω-explorable but not explorable. Right: not ω-explorable.

more general case of infinite trees): if L(A) is not countable, then it has the cardinality of
continuum, and this happens if and only if L(A) contains a non ultimately periodic word. In
this case, we can simply associate a token with every possible run. In the other case where
L(A) is countable, we have to associate an accepting run to each word, and this can be
done without needing the Axiom of Countable Choice: a canonical run can be selected (e.g.
lexicographically minimal).

We now want to prove that there are automata that are ω-explorable but not explorable.
One such automaton is given in Figure 3 (left), where the rejecting sink state is omitted.
Against any finite number of tokens, Spoiler has a strategy to eliminate them one by one,
by playing a while Determiniser sends tokens to q1, and b the first time q1 is empty after
the play of Determiniser. On the other hand, with tokens indexed by ω, Determiniser can
keep the token 0 in q0, and send token i to q1 at step i. Those strategies are winning, which
proves both non explorability and ω-explorability of the automaton.

The last item is proven by the second example from Figure 3. A winning strategy for
Spoiler against countable tokens consists in labelling the tokens with integers, then targeting
each token one by one (first token 0, then 1, 2, etc.). Each token is removed using the correct
two-letters sequence (a, then b if the token is in q1 or a if it is in q2). With this strategy,
every token is removed at some point, even if there might always be tokens in the game. J

The first item of Lemma 16 implies that the ω-explorability game only gets interesting
when we look at automata over infinite words: since any language of finite words over a finite
alphabet is countable, Determiniser wins the corresponding ω-explorability game. We will
therefore focus on infinite words in the following.

Let us emphasize the following slightly counter-intuitive fact: in the ω-explorability game,
it is always possible for Determiniser to guarantee that infinitely many tokens occupy each
currently reachable state. However, even in a safety automaton, this is not enough to win
the game, as it does not prevent that each individual token might be eventually “killed” at
some point. As the following Lemma shows, this phenomenon does not occur in reachability
automata on infinite words.

I Lemma 17. Any reachability automaton is ω-explorable.

Proof. Notice first that although the argument is very similar to the one for finite words, we
cannot use exactly the same property: a reachability language can still be uncountable, so
using one token per word of the language is not possible.

For every w ∈ Σ∗ such that there is a finite run ρ leading to an accepting state,
Determiniser can use a single token following ρ. This token will accept all words of w · Σω.
Since Σ∗ is countable, we only need countably many such tokens to cover the whole language,
hence the result.

Let us give another equally simple view: a winning strategy for Determiniser in the
ω-explorability game is to keep infinitely many tokens in each currently reachable state, as

CSL 2023

7:14 Explorable Automata

described above. Since acceptance in a reachability automaton is witnessed at a finite time,
this strategy is winning. J

4.2 ExpTime algorithm for co-Büchi automata
We already know, from the example of Figure 3, that the result from Lemma 17 does not
hold in the case of safety automata. However, we have the following decidability result, which
talks about co-Büchi automata, and therefore still holds for safety automata as a subclass of
co-Büchi.

I Theorem 18. The ω-explorability of co-Büchi automata is decidable in ExpTime.

To prove this result, we will use the following elimination game. A will from here on
correspond to a co-Büchi (complete) automaton. We start by building a deterministic
co-Büchi automaton D for L(A) (e.g. using the breakpoint construction [22]).

I Definition 19 (Elimination game). The elimination game is played on the arena P(QA)×
QA ×QD. The two players are named Protector and Eliminator, and the game proceeds as
follows, starting in the position ({qA0 }, qA0 , qD0).

From position (B, q, p) Eliminator chooses a letter a ∈ Σ.
If q is not a co-Büchi state, Protector picks a state q′ ∈ ∆A(q, a).
If q is a co-Büchi state, Protector picks any state q′ ∈ ∆A(B, a). Such an event is called
elimination.
The play moves to position (∆A(B, a), q′, δD(p, a)).

Such a play can be written (B0, q0, p0) a1−→ (B1, q1, p1) a2−→ (B2, q2, p2) . . ., and Eliminator
wins if infinitely many qi and finitely many pi are co-Büchi states.

Intuitively, what is happening in this game is that Protector is placing a token that
he wants to protect in a reachable state, and Eliminator aims at bringing that token to a
co-Büchi state while playing a word of L(A). If Protector eventually manages to preserve his
token from elimination on an infinite suffix of the play, he wins.

I Lemma 20. The elimination game can be solved in polynomial time (in the size of the
game).

Proof. To prove this result, we simply need to note that the winning condition is a parity
condition of fixed index. If we label the co-Büchi states pi with rank 1, the co-Büchi states
qi with rank 2, and the others with 3, then take the lowest rank in (Bi, qi, pi) (ignoring Bi),
Eliminator wins if and only if the inferior limit of ranks is even. As any parity game with 3
ranks can be solved in polynomial time [10], this is enough to get the result. J

We want to prove the equivalence between this game and the ω-explorability game to
obtain Theorem 18.

I Lemma 21. A is ω-explorable if and only if Protector wins the elimination game on A.

Proof. First, let us suppose that Eliminator wins the elimination game on A. To build a
strategy for Spoiler in the ω-explorability game of A, we first take a function f : N → N
such that for any n ∈ N, |f−1(n)| is infinite (for instance f is described by the sequence
0, 0, 1, 0, 1, 2, 0, 1, 2, 3, . . .). The strategy for Spoiler will focus on sending token f(0), then
f(1), then f(2), etc. to a co-Büchi state.

Let σ be a memoryless winning strategy for Eliminator in the elimination game (recall
that parity games do not require memory [15]). Spoiler will follow this strategy σ in the

E. Hazard and D. Kuperberg 7:15

ω-explorability game, by keeping an imaginary play of the elimination game in his memory:
M = P(QA)×QA ×QD × N.

At first, the memory holds the initial state ({qA0 }, qA0 , qD0 , 0), and the current target is
given by the last component: it is the token f(0).
From (B, q, p, n) Spoiler plays in both games the letter a given by σ(B, q, p).
Once Determiniser has played, Spoiler moves the memory to (∆A(B, a), q′, δD(p, a), n)
where q′ is the new position of the token f(n), except if q was a co-Büchi state, in which
case we move to (∆A(B, a), q′, δD(p, a), n+ 1) where q′ is the new position of the token
f(n+ 1). We then go back to the previous step.

This strategy builds a play of the elimination game in the memory, that is consistent with σ.
We know that σ is winning, which implies that the word played is in L(A), and that every
n ∈ N is visited (each elimination increments n, and there are infinitely many of those). An
elimination happening while the target is the token f(n) corresponds, on the exploration
game, to that token visiting a co-Büchi state. Ultimately this means that Determiniser did
not provide any accepting run, while Spoiler did play a word from L(A), and therefore won.

Let us now consider the situation where Protector wins the elimination game, using some
strategy τ . We want to build a winning strategy for Determiniser in the ω-explorability
game. Similarly, this strategy will keep track of a play in the elimination game in its memory.
Determiniser will maintain ω tokens in any reachable state, while focusing on a particular
token which follows the path of the current target in the elimination game. When that token
visits a co-Büchi state, we switch to the new token specified by τ .

Since τ is winning in the elimination game, either the word played by Spoiler is not in
L(A), which ensures a win for Determiniser, or there are no eliminations after some point,
meaning that the target token at that point never visits another co-Büchi state, which also
implies that Determiniser wins. J

With Lemmas 20 and 21 we get a proof of Theorem 18, since the elimination game
associated to A is of exponential size and can be built using exponential time.

4.3 ExpTime-hardness of the ω-explorability problem
I Theorem 22. The ω-explorability problem for (any automaton model embedding) safety
automata is ExpTime-hard.

We give a quick summary of the proof in this section. The full proof can be found
in Appendix ??. The main idea will be to reduce the acceptance problem of a PSpace
alternating Turing machine (ATM) to the ω-explorability problem of some automaton that
we build from the machine. This reduction is an adaptation of the one from [4] showing
ExpTime-hardness of the NFA population control problem (defined in Section 3.1).

The computation of an ATM can be seen as a game between two players, who respectively
aim for acceptance and rejection of the input. These players influence the output by choosing
the transitions when facing a non-deterministic choice, that can belong to either one of them.

Let us first describe the automaton built in [4]. In that reduction, the choices made by
the ATM players are translated into choices for Determiniser and Spoiler. The automaton
has two main blocks: one dedicated to keeping track of the machine’s configuration, which
we call Config, and another focusing on the simulation of the ATM choices, which we call
Choices. In Config, there is no non-determinism: the tokens move following the transitions of
the machine given as input to the automaton. In Choices, Determiniser can pick a transition
by sending his token to the corresponding state, while Spoiler uses letters to pick his.

CSL 2023

7:16 Explorable Automata

The automaton constructed this way will basically read a sequence of runs of the ATM.
At each run, some tokens must be sent into both blocks. Reaching an accepting state of a
run lets Spoiler send some tokens from Choices to his target state, specifically those whose
choices for the transitions of the ATM were followed. He can then restart with the remaining
tokens until all are in the target. This process will ensure a win for Spoiler if he has a winning
strategy in the ATM game. If he does not, then Determiniser can use a strategy ensuring
rejection in the ATM game to avoid the configurations where he loses tokens, provided he
starts with enough tokens.

This equivalence between acceptance of the ATM and the automaton being a positive
instance of the PCP provides the ExpTime-hardness of their problem.

In our setup, getting rid of tokens one by one is not enough: Spoiler needs to be able to
target a specific token and send it to the target state (which is now the rejecting state ⊥)
in one run. If he can do that, repeating the process for every token, without omitting any,
ensures his win. If he cannot, then Determiniser has a strategy to pick a specific token and
preserving it from ⊥, and therefore wins.

This is why we adapt our reduction to allow Spoiler to target a specific token, no matter
where it chooses to go. To do so, we change the transitions so that winning a run lets Spoiler
additionally send every token from Config into ⊥. With that and the fact that he can already
target a token in Choices, we get a winning strategy for Spoiler when the ATM is accepting.

If the ATM is rejecting, Spoiler is still able to send some tokens to ⊥, but he no longer
has that targeting ability, which is how Determiniser is able to build a strategy preserving a
specific token to win. To ensure the sustainability of this method, Determiniser needs to
keep ω additional tokens following his designated token, so that he always has ω tokens to
spread into the gadgets every time a new run starts.

Overall, we are able to compute in polynomial time from the ATM a safety automaton
that is ω-explorable if and only if the ATM rejects its input. Since acceptance of a polynomial
space ATM is known to be ExpTime-hard, we obtain Theorem 22.

Conclusion
We introduced and studied the notions of explorability and ω-explorability, for automata on
finite and infinite words. We showed that these problems are ExpTime-complete for Büchi
condition in the first case and co-Büchi condition in the second case.

It is plausible that these results could be generalized to higher parity conditions, for
instance by replacing the notion of support set by Safra trees, but this is outside the scope
of this paper, and we leave this investigation for further research.

We showed that the original motivation of using explorability to improve the current
knowledge on the complexity of the HDness problem for all parity automata cannot be
directly achieved, since deciding explorability is at least as hard as HDness. Although this
is a negative result, we believe it to be of importance. Moreover, some contexts naturally
yield explorable automata, such as [9] where it leads to a PTime algorithm deciding the
HDness of quantitative LimInf and LimSup automata. More generally, explorability is a
natural property in the study of degrees of nondeterminism, and this notion could be used in
other contexts as a middle ground between deterministic and non-deterministic automata.

References
1 Bader Abu Radi and Orna Kupferman. Minimization and canonization of GFG transition-based

automata. CoRR, abs/2106.06745, 2021.

E. Hazard and D. Kuperberg 7:17

2 Bader Abu Radi, Orna Kupferman, and Ofer Leshkowitz. A hierarchy of nondeterminism.
In 46th International Symposium on Mathematical Foundations of Computer Science, MFCS
2021, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

3 Marc Bagnol and Denis Kuperberg. Büchi good-for-games automata are efficiently recognizable.
In 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2018, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018.

4 Nathalie Bertrand, Miheer Dewaskar, Blaise Genest, Hugo Gimbert, and Adwait Amit Godbole.
Controlling a population. Log. Methods Comput. Sci., 15(3), 2019.

5 Udi Boker. Between deterministic and nondeterministic quantitative automata (invited talk).
In Florin Manea and Alex Simpson, editors, 30th EACSL Annual Conference on Computer
Science Logic, CSL 2022, February 14-19, 2022, Göttingen, Germany (Virtual Conference),
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

6 Udi Boker, Denis Kuperberg, Orna Kupferman, and Michał Skrzypczak. Nondeterminism in
the presence of a diverse or unknown future. In Automata, Languages, and Programming -
40th International Colloquium, ICALP 2013, Lecture Notes in Computer Science. Springer,
2013.

7 Udi Boker, Denis Kuperberg, Karoliina Lehtinen, and Michał Skrzypczak. On the succinct-
ness of alternating parity good-for-games automata. In 40th IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2020, LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

8 Udi Boker and Karoliina Lehtinen. History determinism vs. good for gameness in quantitative
automata. In 41st IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2021, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021.

9 Udi Boker and Karoliina Lehtinen. Token games and history-deterministic quantitative
automata. In Foundations of Software Science and Computation Structures - 25th International
Conference, FOSSACS 2022, Lecture Notes in Computer Science. Springer, 2022.

10 Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding
parity games in quasipolynomial time. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, pages 252–263. ACM, 2017.

11 Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Generalized parity games.
In Helmut Seidl, editor, Foundations of Software Science and Computational Structures, 10th
International Conference, FOSSACS 2007, Lecture Notes in Computer Science. Springer, 2007.

12 Thomas Colcombet. The theory of stabilisation monoids and regular cost functions. In
Automata, languages and programming. Part II, volume 5556 of Lecture Notes in Comput.
Sci., pages 139–150, Berlin, 2009. Springer.

13 Thomas Colcombet. Forms of determinism for automata (invited talk). In 29th International
Symposium on Theoretical Aspects of Computer Science, STACS 2012, LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2012.

14 Thomas Colcombet and Nathanaël Fijalkow. Universal graphs and good for games automata:
New tools for infinite duration games. In Foundations of Software Science and Computation
Structures - 22nd International Conference, FOSSACS 2019, Lecture Notes in Computer
Science. Springer, 2019.

15 E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy
(extended abstract). In 32nd Annual Symposium on Foundations of Computer Science, San
Juan, Puerto Rico, 1-4 October 1991, pages 368–377. IEEE Computer Society, 1991.

16 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite
Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], volume
2500 of Lecture Notes in Computer Science. Springer, 2002.

17 Thomas A. Henzinger and Nir Piterman. Solving games without determinization. In Computer
Science Logic, 20th International Workshop, CSL 2006, 2006.

CSL 2023

7:18 Explorable Automata

18 Juraj Hromkovic, Juhani Karhumäki, Hartmut Klauck, Georg Schnitger, and Sebastian Seibert.
Measures of nondeterminism in finite automata. Electronic Colloquium on Computational
Complexity (ECCC), 7, 01 2000.

19 Denis Kuperberg and Anirban Majumdar. Computing the width of non-deterministic automata.
Log. Methods Comput. Sci. (LMCS), 15(4), 2019.

20 Denis Kuperberg and Michał Skrzypczak. On determinisation of good-for-games automata.
In Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015,
Lecture Notes in Computer Science. Springer, 2015.

21 Karoliina Lehtinen and Martin Zimmermann. Good-for-games ω-pushdown automata. In LICS
2020: 35th Annual ACM/IEEE Symposium on Logic in Computer Science, pages 689–702.
ACM, 2020.

22 Satoru Miyano and Takeshi Hayashi. Alternating finite automata on ω-words. Theoret. Comput.
Sci., 32(3):321–330, 1984.

23 Damian Niwiński. On the cardinality of sets of infinite trees recognizable by finite automata.
In Mathematical Foundations of Computer Science 1991, 16th International Symposium,
MFCS’91, Lecture Notes in Computer Science. Springer, 1991.

24 Alexandros Palioudakis, Kai Salomaa, and Selim G. Akl. Worst case branching and other
measures of nondeterminism. Int. J. Found. Comput. Sci., 28(3):195–210, 2017.

25 Sven Schewe. Minimising good-for-games automata is NP-complete. In 40th IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS
2020, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

26 Andreas Weber and Helmut Seidl. On the degree of ambiguity of finite automata. Theor.
Comput. Sci., 88(2):325–349, 1991.

E. Hazard and D. Kuperberg 7:19

A Appendix

A.1 Link with HD automata

The proof of the following statement is sketched at the end of Section 2.5, we describe it
here in more detail.

I Lemma 23. If A is k-explorable and Eve wins Gk(A), then A is HD.

Let us note Q = QA the set of states of A. We will build an explicit strategy witnessing
that A.

In the proof sketch of Section 2.5, we defined τk to be a winning strategy for Determiniser
in the k-explorability game, and σk a winning strategy for Eve in Gk(A).

Let us explicit in detail the shape of these strategies. The strategy τk has access to the
history of the play in the k-explorability game, and must decide on a move for Determiniser.
Notice that it is always enough to know the history of the opponent’s moves (here the letters
of Σ played so far), since this allows to compute the answer of Determiniser at each step,
and therefore build a unique play. Thus, we can take for τk a function Σ∗ → Qk. If the word
played so far is u ∈ Σ∗, the tuple of states reached by the k tokens moved according to τk is
τk(u) ∈ Qk, with in particular τk(ε) = (qA0 , . . . , qA0).

If w = a1a2 · · · ∈ Σω, and i ∈ N, let us note (qiw,1, . . . , qiw,k) = τk(a1 . . . ai). That is qiw,j
is the state reached by the jth token after i steps in the run induced by τk and w. If j ∈ [1, k],
let us note ρw,j the infinite run q0

w,jq
1
w,jq

2
w,j . . . , followed by the jth token in this play. By

definition of τk, we have the guarantee that for all w ∈ L(A), there exists j ∈ [1, k] such that
ρw,j is accepting.

If u = a1 . . . an ∈ Σ∗ is a finite word, we define τ ′k(u) = (τk(ε), τk(a1), τk(a1a2) . . . , τk(u)),
this is a description of the k partial runs induced by τk on u.

Let us now turn to the strategy σk of Eve in Gk(A). The type of this strategy is
σk : Σ∗× (Qk)∗ → Q. Indeed, this time, the history of Adam’s moves must contain his choice
of letters together with his choices of positions for his k tokens. So σk(u, γ) gives the state
reached by Eve’s token after a history (u, γ) for the moves of Adam. Notice that at each
step, Eve must move before Adam in this game Gk(A), so γ does not contain the choice
of Adam on the last letter of u. This means that except for u = ε, we can always assume
|u| = |γ|+ 1 in a history (u, γ).

We have the guarantee that if Adam plays an infinite word w together with runs ρ1, . . . , ρk
on w, at least one of which is accepting, then the run yielded by σk against (w, (ρ1, . . . , ρk))
is accepting.

We finally define the HD strategy σ for A, of type Σ∗ → Q, by induction: σ(ε) = qA0 ,
and σ(ua) = σk(ua, τ ′k(u)).

This amounts to playing the strategy σk in Gk(A), against Adam playing a word w and
moving his k tokens according to the strategy τk against w. If the infinite word w = a1a2 . . .

chosen by Adam is in L(A), then by correctness of τk one of the k runs ρw,1, . . . , ρw,k yielded
by τk is accepting. Hence, by correctness of σk, the run σ(ε)σ(a1)σ(a1a2) yielded by σ

(based on σk) is accepting. This concludes the proof that σ is a correct HD strategy for A,
witnessing that A is HD.

A.2 ExpTime algorithm for Büchi explorability

We will prove here Theorem 14 from Section 3.3.

CSL 2023

7:20 Explorable Automata

I Theorem. The explorability problem can be solved in ExpTime for Büchi automata (and
all simpler conditions: NFA, safety, reachability).

In this part, A = (Σ, Q, qA0 ,∆A, FA) is a non-deterministic Büchi automaton. We
start by computing in exponential time an equivalent deterministic parity automaton D =
(Σ, QD, qD0 , δD, FD), via any standard method.

The algorithm described in this section is adapted from [4]. Many results from this
previous work still hold in our framework. We will however need to adapt some constructions
and give new arguments, both to fit our explorability framework, and to generalize from
NFAs to Büchi automata.

I Definition 24 (Transfer graph). A transfer graph G is a subset of Q×Q. We say that it
is compatible with a letter a if every edge in G corresponds to a transition in A labelled by
a, i.e. for any (q, r) ∈ G, we have (q, a, r) ∈ ∆A. In other words, G is a subgraph of the
transition graph of the letter a.

Given a transfer graph G and a set of states X ⊆ Q, we note G(X) = {q ∈ Q | ∃r ∈
X, (q, r) ∈ G}. We call respectively Dom(G) and Im(G) the projections of G on its first and
second coordinate, i.e. Dom(G) = {q ∈ Q | ∃r ∈ Q, (q, r) ∈ G} and Im(G) = G(Q).

The composition of transfer graphs is defined the natural way: G ·H = {(x, z) | ∃y, (x, y) ∈
G ∧ (y, z) ∈ H}.

I Definition 25 (Support game). The support game is played in the arena P(Q)×QD, called
support arena. It is played as follows by Determiniser and Spoiler.

The starting support is S0 = ({qA0 }, qD0).
At any given step with support (B, q), Spoiler chooses a letter a ∈ Σ, then Determiniser
chooses a transfer graph G compatible with a, and with Dom(G) = B. The play then
moves to (Im(G), δD(q, a)).

A play can be represented by a sequence (B0, q0) a1,G1−→ (B1, q1) a2,G2−→ (B2, q2)
We say that Spoiler wins the play if the run q0q1q2 . . . of D is parity accepting, while only

finitely many Bi contain Büchi states (from FA).

Note that a winning strategy for Determiniser in the support game cannot in general
be interpreted as a witness of explorability. This is illustrated by the automaton C from
Example 2. For any k ∈ N, the k-explorability game is won by Spoiler on that automaton,
while Determiniser wins the support game. Intuitively, the support game does not account
for the limits of resources for Determiniser.

On the other hand, a winning strategy for Spoiler in this support game does translate
into a non-explorability witness, i.e. a strategy for Spoiler in the k-explorability game for
any k. The support game is therefore “too easy” for Determiniser, and this is what we try to
correct in the following.

I Definition 26 (Projection of a play). Given a play S0
a1−→ S1

a2−→ S2 . . . in the k-explorability
game, the projection of that play in the support arena is the play (B0, q0) a1,G1−→ (B1, q1) a2,G2−→
(B2, q2) . . ., where:

Bi is the support of Si (states occupied in Si),
q0 = qD0 and qi+1 = δD(ai+1, qi) for all i,
Gi+1 = {(Si(j), Si+1(j)) | j ∈ [0, k − 1]}.

This corresponds to forgetting the multiplicity of tokens and only keeping track of the transitions
that are used.

E. Hazard and D. Kuperberg 7:21

I Definition 27 (Realisable play). A play in the support arena is realisable if it is the projection
of a play in the k-explorability game for some k ∈ N.

We would like to restrict plays in the support arena to realisable ones only. To do so, we
define the notion of capacity as follows.

I Definition 28 (Accumulator and capacity [4]). In a play (B0, q0) a1,G1−→ (B1, q1) a2,G2−→
(B2, q2) . . ., an accumulator is a sequence (Tj)j∈N such that for any j, Tj ⊆ Bj and Tj+1 ⊇
Gi+1(Tj). An edge (q, r) ∈ Gj+1 is an entry for (Tj)j∈N at index i if q /∈ Tj and r ∈ Tj+1.

A play has finite capacity if every accumulator has finitely many entries, and infinite
capacity otherwise. It has bounded capacity if the number of entries of its accumulators is
bounded.

This definition gives us tools to talk about realisable plays in a more practical way, as
shown by the following Lemma. Note that although the explorability game is replaced by
the population control game in [4], the same proof still applies here.

I Lemma 29 ([4, Lem 3.5]). A play is realisable if and only if it has bounded capacity.

Moreover, the proof of ?? can also be used to get the following result, which we will use
later. Note that we talk about the explorability game in this Lemma, but this only concerns
its arena, regardless of the winning condition. The proof holds because the arena from [4] is
identical.

I Lemma 30 ([4, Lem 3.5]). If Determiniser has a strategy τ in the support arena such
that any play compatible with τ has capacity bounded by c, then he has a strategy τ ′ in
the 2c+1-tokens explorability game such that any play compatible with τ ′ has its projection
compatible with τ .

We will use the notion of capacity to define the following game, using finite capacity
instead of bounded to obtain a winning condition.

I Definition 31 (Capacity game). The capacity game is played in the support arena. Given
a play (B0, q0) a1,G1−→ (B1, q1) a2,G2−→ (B2, q2) . . ., Spoiler wins if it is a winning play in the
support game, or if it has infinite capacity.

I Lemma 32 ([4, Prop 3.8]). Either Spoiler or Determiniser wins the capacity game, and
the winner has a winning strategy with finite memory.

Proof. Although this result talks about slightly different objects than in [4, Prop 3.8], their
proof actually still stands with our definitions of capacity game and support game. The
proof proceeds by building a non-deterministic Büchi automaton verifying that the capacity
is infinite, determinising it into a parity automaton, and incorporating it into the arena to
yield a parity game equivalent to the capacity game. The winner of this parity game has a
positional strategy, which corresponds to a finite memory strategy in the capacity game. J

I Lemma 33 (adapted from [4, Prop 3.9]). If Spoiler wins the capacity game, then he wins
the k-explorability game for any k.

Proof. Here Spoiler can simply apply the strategy for the capacity game to the explorability
game, by remembering only the information that is relevant from the point of view of the
capacity game (i.e. the supports and transfer graphs). This will simulate a realisable play of
the capacity game, which has bounded capacity by Lemma ??. Since the strategy is winning

CSL 2023

7:22 Explorable Automata

in the capacity game, and this simulated play cannot have infinite capacity, Spoiler wins
the underlying support game. This ensures the win for Spoiler in the explorability game:
he plays a word of L(A) as witnessed by the acceptance of D, while finitely many Büchi
states are witnessed by tokens of Determiniser. We use here the particular property of Büchi
condition: one of the tokens follows an accepting run if and only if it occurs infinitely many
times that the support set occupied by tokens contains a Büchi state. J

I Lemma 34 (adapted from [4, Prop 3.10]). If Determiniser wins the capacity game using
finite memory M , then he wins the k-explorability game for some k ∈ N.

Proof. We first prove that under these conditions, Determiniser can win the capacity game
while ensuring a capacity bounded by |M | × |QD| × 4|Q|.

Let us consider a winning strategy τ with memory M for Determiniser in the capacity
game. We take a play (B0, q0) a1,G1−→ (B1, q1) a2,G2−→ (B2, q2) . . . compatible with τ , and we
show that its capacity is bounded by |M | × |QD| × 4|Q|.

Given an accumulator T = (Ti)i∈N, if there are two integers i < j such that mi = mj

(memory states at steps i and j), Bi = Bj , qi = qj and Ti = Tj , then one can build a
play that loops on the corresponding interval, while still being compatible with τ . This
accumulator cannot have infinitely many entries, so T does not have any entry in the interval
[i, j]. As a consequence, if i and j are entry times, we have (mi, Bi, qi, Ti) 6= (mj , Bj , qj , Tj),
which means there can be at most |M | × 2|Q| × |QD| × 2|Q| = |M | × |QD| × 4|Q| entries in
the accumulator T .

We now know that the capacity of any play compatible with τ is bounded by |M |×|QD|×
4|Q|. Take k = 21+|M |×|QD|×4|Q| . Lemma ?? then provides a strategy for Determiniser in
the k-explorability game, that ensures that the successive supports (i.e. the sets of states
occupied by tokens) contain Büchi states infinitely often. This means that at least one token
visits Büchi states infinitely often, since there are finitely many tokens. This ensures a win
for Determiniser. J

These Lemmas ?? and ?? give a way to solve the explorability problem if we can efficiently
find the winner of the corresponding capacity game. Note that we could use the parity
game built in the proof of Lemma ?? to solve the problem, but this would yield a doubly
exponential algorithm, since the size of the game is doubly exponential (with exponentially
many priorities).

The following gives an exponential time algorithm for solving the capacity game, and
therefore the explorability problem.

I Definition 35 (Leaks and separations). If G and H are two transfer graphs, we say that G
leaks at H if there are three states q, x, y such that (q, y) ∈ G ·H, (x, y) ∈ H and (q, x) /∈ G.

We say that G separates states r and t if there is a q such that (q, r) ∈ G and (q, t) /∈ G.
The separator of G, noted Sep(G), is the set of all such (r, t).

We will now define the tracking list of a play. The point of that list will be to provide an
easy way to detect indices that leak infinitely often.

I Definition 36 (Tracking list). The tracking list Ln at step n is a list of transfer graphs
{G[i1, n], . . . , G[ikn

, n]}. It is defined inductively, with L0 the empty list, and Ln computed
as follows.

We update every G[i, n− 1] in Ln−1 into G[i, n] by composing with Gn.
We then add G[n− 1, n] = Gn at the end of the list.

E. Hazard and D. Kuperberg 7:23

And finally, we clean the list, by removing any graph with a separator identical to the
previous one.

If for some i, G[i, n] ∈ Ln for every n > i, we say that i is remanent.

Note that whenever i < j < n, we have Sep(G[i, n]) ⊆ Sep(G[j, n]).
To properly use these tracking lists, it suffices to know that the following result holds.

For more details, we refer the reader to [4].

I Lemma 37 ([4, Lem 4.4]). A play has infinite capacity if and only if there is a remanent
index that leaks infinitely often.

We now define a game GA associated to A, that extends the support arena using tracking
lists to detect infinite capacity plays. Once again, this is an adaptation from [4].

The states of GA are in P(Q)×QD × G≤|Q|
2 , where G≤|Q|2 is the set of lists of at most

|Q|2 transfer graphs. Each state can be written as (B, q, L) where B is a subset of Q, q is a
state of D, and L is a tracking list. The initial state is ({qA0 }, qD0 , ε).

The transitions are the ones that can be written (B, q, L) a,G,p−→ (B′, q′, L′) with the
following conditions.

(B, q) a,G−→ (B′, q′) is a transition from the support arena.
L′ is obtained by updating L with G, as detailed in the definition of tracking list.
Take L = {H1, . . . ,Hk} and L′ = {H ′1, . . . ,H ′k′}. Let p′ be the smallest index such that
Hp′ leaks at G, or k + 1 if there is no such index. Let p′′ be the smallest index such that
H ′p′′ 6= Hp′′ · G, or k + 1 if there is none. We then take p = min(2p′ + 1, 2p′′) (which
implies that p ∈ [2, 2|Q|2 + 1]).

To choose a transition, Spoiler first chooses a letter, then Determiniser picks a transition
graph compatible with that letter. The rest is determined by the conditions above. This
creates a play that can be denoted as (B0, q0, L0) a1,G1,p1−→ (B1, q1, L1) a2,G2,p2−→

The winning condition for Spoiler goes as follows. Either the inferior limit of (pi)i>0 is
odd, or the run (qi)i≥0 is accepting while there are finitely many accepting states seen in
(Bi)i≥0.

I Lemma 38 (adapted from [4, Thm 4.5]). Spoiler wins GA if and only if he wins the capacity
game.

Proof. First note that strategies in the support arena can be easily translated to GA and
conversely, since in both cases Spoiler only chooses letters while Determiniser picks transfer
graphs, and the rest is determined by these data.

If Spoiler has a winning strategy in GA, then he can play the same strategy in the capacity
game. Such a play can be written as (B0, q0) a1,G1−→ (B1, q1) a2,G2−→ . . ., and the play of GA
happening in the memory of Spoiler is (B0, q0, L0) a1,G1,p1−→ (B1, q1, L1) a2,G2,p2−→ We use
the notation Ln = {H1

n, . . . ,H
kn
n }.

Since Spoiler plays according to a winning strategy in the simulated game GA, at least
one of his winning conditions for that game holds in this play.

If the limit parity is 2p+ 1 for some p, then for any n large enough, Hp
n is the same as

Hp+1
n (otherwise there would be a parity less than 2p+ 1 later) and leaks infinitely often, so

Spoiler wins the capacity game.
If the run (qi)i≥0 is accepting while there are finitely many accepting states seen in

(Bi)i≥0, then this also ensures the win for Spoiler in the capacity game.
In both cases, the play is therefore won by Spoiler.

CSL 2023

7:24 Explorable Automata

q0

q1

q2

a

a

a

b

a

b

Figure 4 A co-Büchi automaton on which the projection of a play in not enough to determine
the winner (the dotted lines represent co-Büchi transitions)

On the other hand, if Spoiler wins the capacity game, he can also use the same strategy
in GA, with the same correspondence between the winning conditions.

J

We can finally conclude with the main result of this section:

I Theorem. The Büchi explorability problem can be solved in ExpTime.

Proof. To prove this result, it is enough to prove that the game GA can be solved in
exponential time in the size of A, since the answer to that problem also answers the
explorability of A. We show that the winning condition of the game GA for Spoiler can
be seen as a disjunction of parity conditions. Formally, it is of the form Parity∨(Parity∧
Co-Büchi). But it is straightforward to turn the second disjunct into a parity condition with
twice as many priorities. Thus, GA can be seen as a generalized parity game. Such games are
studied in [11], which gives us an algorithm for solving GA in time O(m4dm2) (2d)!

d!2 , where d
is the number of priorities and m the size of the game.

If we take n = |A|, using the fact that m = O(2n), we get the complexity O(24nd+2n) (2d)!
d!2 ,

which can be simplified into O(24n3+2n(2n2)n2) = O(25n3+2n) using the fact that d is bounded
by n2 in transition-based acceptance, and by n in state-based acceptance. This gives us an
exponential bound for the time complexity of this problem. J

I Remark 39. We can also be interested in the number of tokens needed for Determiniser to
witness explorability of an automaton. By inspecting our proof, we can see that we obtain a
doubly exponential upper bound. Moreover, we can use the same construction as in [4, Prop
6.3] to show that this is tight, i.e. some automata require a doubly exponential number of
tokens to witness explorability.

I Remark 40. This algorithm only works as such in the case of Büchi automata. The next
step would be to adapt it to co-Büchi, with the hope that a solution for both these models
might lead to one for parity automata. However, in order to use a similar method in the
co-Büchi case, we would want some way to check the winning condition for a play in the
explorability game using only the projection of that play in the support arena. This is not
possible with the current definitions of these games: we can create plays in the explorability
game with the same projection, but different winners. Take the automaton from Figure
??. If we play the 2-explorability game on that automaton, Determiniser has a strategy to
ensure that the support are always maximal, alternating between {q0} and {q1, q2}. However,

E. Hazard and D. Kuperberg 7:25

Spoiler can either choose to always take the co-Büchi transition with the same token, or to
alternate between tokens. He only wins in the second case.

A.3 ExpTime-hardness of the ω-explorability problem
This part focuses on proving Theorem 22 stating the ExpTime-hardness of the ω-explorability
problem for safety automata, which also proves the optimality of the algorithm from Sec-
tion 4.2.

We reduce from the acceptance problem of a PSpace alternating Turing machine. This
is again inspired from [4].

We take an alternating Turing machine M = (ΣM, QM,∆M, qM0 , qMf) with QM =
Q∃]Q∀. It can be seen as a game between two players: existential (∃) and universal (∀).
On a given input, the game creates a run by starting from qM0 , and letting ∃ (resp. ∀) solve
the non-determinism in states from Q∃ (resp. Q∀) by picking a transition from ∆. Player
∃ wins if the play reaches the accepting state qMf , and w is accepted if and only if ∃ has a
winning strategy. We assume thatM uses polynomial space P (n) in the size n of its input,
i.e. the winning strategies can avoid configurations with tape longer than P (n). We also fix
an input word w ∈ (ΣM)∗.

We will assume for simplicity that ΣM = {0, 1} and that the machine alternates between
existential and universal states, starting with an existential one (meaning that q0 ∈ Q∃ and
the transitions are either Q∃ → Q∀ or Q∀ → Q∃). In our reduction, this will mean that we
give the choice of the transition alternatively to Spoiler (playing ∃) and Determiniser (∀).

We create a safety automaton A = (Q,Σ, q0,∆,⊥) with:
Q = QM] Pos]Mem] Trans] {q0, store,⊥,>} where:

Pos = [1, P (n)]
Mem = {mb,i | b ∈ {0, 1}, i ∈ [1, P (n)]}
Trans = {E} ∪ {At | t ∈ ∆M}

Σ = {at,p | t ∈ ∆M and p ∈ [1, P (n)]}] {init, end, restart, win}] {checkq | q ∈
QM}] {checkb,i | (b, i) ∈ {0, 1} × [1, P (n)]}.
⊥ is a rejecting sink state: a run is accepting if and only if it never reaches this state.

Let us give the intuition for the role of each state of A. First, the states in QM, Pos and
Mem are used to keep track of the configuration ofM, as described in Lemma ??. Those
in Trans are used to simulate the choices of ∃ and ∀ (played by Spoiler and Determiniser
respectively). The state store keeps tokens safe for the remaining of a run when Spoiler
decides to ignore their transition choice. The sinks > and ⊥ are respectively the one Spoiler
must avoid at all cost, and the one in which he wants to send every token eventually.

We now define the transitions in ∆. The states > and ⊥ are both sinks (> accepting and
⊥ rejecting). We then describe all transitions labelled by the letter at,p with p ∈ Pos and
t = (q, q′, b, b′, d) ∈ ∆M, where q and q′ are the starting and destination states of t, b and b′
are the letters read and written at the current head position, and d ∈ {L,R} is the direction
taken by the head. These transitions are:

q → q′.
p→ p′ with p′ = p+ 1 if d = R, or p− 1 if d = L. It goes to > if p′ /∈ [1, P (n)].
mb,p → mb′,p, and mb′′,p′′ → mb′′,p′′ for any b′′ and any p′′ 6= p.
E → At′ for any transition t′.
At → E.

CSL 2023

7:26 Explorable Automata

q0 E At

store ⊥

init
at,p, at′,p

at,p

at′,pΣ \ {end, checkq, checkb,i}

end
end

Σ

end

Figure 5 Gadget for simulating the choice of ∀ in the alternation (transitions labelled by check
are not represented, and t′ represents any transition different from t).

q′′ → > for any q′′ 6= q.
m1−b,p → > (1− b is the boolean negation of b).
p′ → > for any p′ 6= p.
At′ → store for any transitions t′ 6= t.

The first three bullet points manage the evolution of the configuration ofM. The next two
deal with the alternation between players, and the next three punish Spoiler if the transition
is invalid (the check letters will handle the case where Determiniser is the one giving an
invalid transition). The last one saves the tokens that are not chosen for the transition.

The other letters give the following transitions.
init goes from q0 to the states E, qM0 , and 1 ∈ Pos, and also to the states mb,i

corresponding to the initial content of the tape, i.e. all mb,i such that b is the i-th letter
of w (or 0 if i > |w|).
end labels transitions from any non-accepting state ofM to >, from store to q0, and
from any other state to ⊥.
checkq creates a transition from At to ⊥ for any t ∈ ∆ starting from q. It also creates a
transition from q to >. Any other state is sent back to q0. Intuitively, playing that letter
means that q is not the current state and that any transition starting from q is invalid.
checkb,i creates a transition from At to ⊥ for any t ∈ ∆ reading b on the tape. It also
creates transitions from any j ∈ Pos \ {i} and from mb,i to >. Any other state is sent to
q0. Intuitively, playing that letter means that the current head position is i, and that its
content is not b, so any transition reading b is invalid.

To summarize, the states of A can be seen as two blocks, apart from q0, > and ⊥: those
dealing with the configuration of M (QM, Pos and Mem), and those from the gadget of
Figure ?? which deal with the alternation and non-deterministic choices.

The following result provides tools to manipulate the relation between A andM.

I Lemma 41. Let us consider a play of the ω-explorability game on A, that we stop at some
point. Suppose that the letters at,p played since the last init are at1,p1 , . . . , atk,pk

. If > is
not reachable from q0 with this sequence, then we can define a run ρ ofM on w taking the
sequence of transitions t1, . . . , tk. The following implications hold:

Token present in implies that at the end of ρ

q ∈ QM the current state is q
p ∈ Pos the head is in position p

mb,i ∈ Mem the tape contains b at position i
E it is the turn of ∃
At it is the turn of ∀

E. Hazard and D. Kuperberg 7:27

Proof. These results are obtained by straightforward induction from the definitions. The
unreachability of > is used to ensure that only valid transitions are played. J

We will now prove that A is ω-explorable if and only if the Turing machineM rejects
the word w. Let us first assume that w ∈ L(M). There is a winning strategy σ∃ for ∃ in
the alternating Turing machine game, and Spoiler will use that strategy in the explorability
game to win against ω tokens. He will consider that the tokens are labelled by integers, and
always target the smallest one that is not already in ⊥. He proceeds as follows.

Spoiler plays init from a position where every token is either in q0 or ⊥. We can assume
from here that Determiniser sends tokens to each possible state, and just add imaginary
tokens if he does not. Additionally, if the target token does not go to E, then Spoiler
creates an imaginary target token in E that will play only valid transitions (we will
describe what this means later). Its purpose is to ensure that we actually reach an
accepting state ofM to destroy the real target token.
When there are tokens in E, Spoiler plays letters according to σ∃. More formally,
if the letters played since init are at1,p1 . . . ati,pi

, then Spoiler plays ati+1,pi+1 where
ti+1 = σ∃(t1, . . . , ti) and pi+1 = pi + 1 or pi − 1 depending on the head movement in ti.
After such a play, Determiniser can move tokens to any state At. If there are more than
one occupied state, Spoiler picks the one containing the current target token (possibly
imaginary).

If that state corresponds to an invalid transition (wrong starting state or wrong tape
content at the current head position), then Spoiler plays the corresponding check
letter. Formally, if the target token (not the imaginary one, since Spoiler can avoid
invalid transitions for that one) is in At, Spoiler plays checkq if the starting state q of
t does not match the current state of the tape (given by Lemma ??), or checkb,i if the
current head position is i and does not contain b. In both cases, the target token is
sent to ⊥ with no other token reaching > (by Lemma ??). This sends us back to the
first step, but with an updated target.
If the state instead corresponds to a valid transition, then Spoiler can play the
corresponding at,p, where p is the current head position (again, given by Lemma ??),
then go back to the previous step (where there are tokens in E).

If no invalid transition is reached, the run eventually gets to an accepting state ofM
because σ∃ is winning. This corresponds to a stage where Spoiler can safely play end to
get rid of the target token along with all tokens outside of store, by sending them to ⊥
(the only reason not to play end would be the existence of tokens in non-accepting states
of QM). This sends us back to the first step, but with an updated target.

This strategy guarantees that after k runs, at least the first k tokens are in state ⊥, and
therefore cannot witness an accepting run. We also know that the final word is accepted by
A, because an accepting run can be created by going to the state store as soon as possible
in each factor corresponding to a run ofM.

Conversely, if there is a winning strategy σ∀ for the universal player in the alternation
game onM(w), then we can build a winning strategy for Determiniser in the ω-explorability
game. This strategy is more straightforward than the previous one, as we can focus on the
tokens sent to E (while still populating each state when init is played, but these other
tokens follow a deterministic path until the next init).

Determiniser will initially choose a specific token, called leader. He then sends ω tokens
to every reachable state when Spoiler plays init, with the leader going to E. Determiniser
then moves the tokens in the leader’s state according to σ∀. Spoiler cannot send the leader to
⊥, since the only way to do that would be using the letter end, but this would immediately

CSL 2023

7:28 Explorable Automata

ensure the win for Determiniser, as there will always be some token in non-accepting states
ofM (because σ∀ is winning), and those tokens would be sent to > upon playing end. This
means that Spoiler has no way to send the leader to ⊥ without losing the game, and therefore
Determiniser wins.

Note that with that strategy, Spoiler can still safely send some tokens to ⊥ by playing the
wrong transition, which sends the tokens following the leader to store, then some well-chosen
check letter to send the remaining ones to ⊥. However, Determiniser will start the next
run with still ω tokens, including the leader. This is why the choice of a specific leader is
important, as it can never be safely sent to ⊥.

This proves that the automaton A created fromM and w (using polynomial time) is
ω-explorable if and only if M rejects w. This completes the proof, since the acceptance
problem is ExpTime-hard for alternating Turing machines using polynomial space.

	1 Introduction
	2 Explorable automata
	2.1 Preliminaries
	2.2 Automata
	2.3 Games
	2.4 Explorability
	2.5 Link with HD automata

	3 Decidability and complexity of the explorability problem
	3.1 2-ExpTime algorithm via a black box reduction
	3.2 ExpTime-hardness of NFA explorability
	3.3 ExpTime algorithm for Büchi explorability

	4 Explorability with countably many tokens
	4.1 Definition and basic results
	4.2 ExpTime algorithm for co-Büchi automata
	4.3 ExpTime-hardness of the omega-explorability problem

