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Abstract

This paper concerns some spectral properties of the scalar dynamical system defined
by a linear delay-differential equation with two positive delays. More precisely, the
existing links between the delays and the maximal multiplicity of the characteristic
roots are explored, as well as the dominance of such roots compared with the spectrum
localization. As a by-product of the analysis, the pole placement issue is revisited with
more emphasis on the role of the delays as control parameters in defining a partial pole
placement guaranteeing the closed-loop stability with an appropriate decay rate of the
corresponding dynamical system.

Keywords: delay dynamics; multiplicity-induced-dominancy (MID); pole placement.

1 Introduction

The stability and control of time-delay systems are problems of recurring interest since delays
may appear as appropriate means in modeling transport and propagation in interconnected
cyber-physical systems (subject or not to communication constraints), modeling latency ef-
fects due to finite signal propagation and/or processing speed in open and closed-loop systems,
or representing incubation periods, maturation times, age structure in population dynam-
ics. It is well-accepted by now that delays may have two complementary and contradictory
facets. On the one hand, delays induce dynamics instability as well as bad behaviors and
performances of the control schemes, but, on the other hand, a delay can also be seen as
a (controller) parameter that can eliminate instabilities; see, for instance, [27] for a deeper
discussion on delay models and the dichotomous character mentioned above. There exists
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an abundant literature on the stability and control of dynamical systems described by delay-
differential equations and, without being exhaustive, we refer to [1, 9, 10, 14,23,28].

In the sequel, we focus on two aspects: firstly, using delay as a control parameter not
only for stabilizing purposes but also for improving closed-loop performance, and secondly,
extending a method for partial pole placement, called multiplicity-induced-dominancy (MID),
from the case of single delay to that of two delays.

The idea of using a delay as a control parameter is not new and there exist several results
and methods in the literature. In particular, controlling chains of integrators/oscillators by a
chain of n delay blocks1 showed that a simple control structure can be used to stabilize such
systems (see, for instance, [18, 24]). Moreover, it is commonly accepted that the delays do
not necessarily improve the dynamics properties of the closed-loop systems. In the sequel,
we will discuss such ideas throughout an extremely simple setting. More precisely, in the
case of an integrator controlled by two delay blocks, we will see that the spectral abscissa of
the closed-loop system can be improved by using small gains and small delays in the control
law. In other words, the second delay block turns out to be useful for improving the of the
closed-loop system’s performances, at least in terms of pole placement. We believe that such
ideas can be extended to more general configurations but this research angle is out of the
scope of our paper.

To explain better the second concept, that of MID, consider the differential equation

y(n)(t) +
N∑
j=0

n−1∑
k=0

ak,jy
(k)(t− τj) = 0, (1)

where n,N are positive integers, ak,j is real for k ∈ {0, . . . , n−1} and j ∈ {0, . . . , N}, τ0 = 0,
and τj for j ∈ {1, . . . , N} are positive real numbers representing the delays of the equation.
Equation (1) is known as a delay-differential equation of retarded type (see, e.g.,[14] for the
corresponding classification). It is well-known that the trivial solution of the differential
equation (1) is exponentially stable if and only if the holomorphic function

∆0(s) =
N∑
j=0

pj(s)e
−sτj (2)

never vanishes in a right-half plane

Rα := {s ∈ C | <(s) ≥ α} (3)

for some strictly negative real number α, where we have set p0(s) = sn +
n−1∑
k=0

ak,0s
k and

pj(s) =
n−1∑
k=0

ak,js
k for j ∈ {1, . . . , N}. In other words, the stability of the system (1) depends

on the location of the roots of ∆0(·) in the complex plane. It is also worth mentioning that
∆0, known as the characteristic function of (1), has an infinite number of roots, which are
called characteristic roots of (1).

1A delay block simply represents a couple formed by a “delay” and a “gain”.
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Holomorphic functions of the form (2) are known as quasipolynomials. For a quasipoly-
nomial under the form (2), one usually defines its degree D as D = N +

∑N
j=0 dj, where,

for j ∈ {1, . . . , N}, dj denotes the degree of the polynomial pj. For a root λ ∈ C of a
quasipolynomial, this root has maximal multiplicity if there is not a root with a strictly
greater multiplicity than the multiplicity of λ. The Pólya–Szegő bound from [26, Part Three,
Problem 206.2] asserts that the degree D of ∆0 turns out to be a sharp upper bound for the
multiplicity of a root of the quasipolynomial ∆0(·). A root λ ∈ C of a quasipolynomial is said
to be strictly dominant (resp., dominant) if there is not a distinct root with a real part greater
than or equal (resp., strictly greater) than the real part of λ. When a quasipolynomial admits
a dominant root, then this root determines the stability of the associated delay-differential
equation.

The relations between the notions of roots of maximal multiplicity and dominance have
been explored in some recent works, such as [4,6,21,22], in which it is shown that, for some
particular classes of quasipolynomials, a root with maximal multiplicity is dominant. More
precisely, we say that a quasipolynomial verifies the multiplicity-induced-dominancy (MID)
property if it possesses a (strictly) dominant root of maximal multiplicity, and the previous
references prove the MID property for some quasipolynomials of the form (2) with N = 1,
corresponding thus to delay-differential equations of the form (1) with a single delay. To the
best of the authors’ knowledge, extensions of the MID property to the case of multiple delays
have not yet been considered in the literature. This paper addresses such an extension in
one of the simplest configuration, a scalar delay-differential equation including two delays.

One of the motivations for the study of the MID property comes from control theory,
and more precisely from the stabilization of systems with a time delay. Indeed, the problems
of stabilizing or improving the stability of a system can be seen from the spectral point of
view as the problem of “pushing” the dominant root far away from the imaginary axis in the
complex left half-plane, which can be achieved with a delayed feedback by selecting the free
parameters in order to guarantee the existence of a root of maximal multiplicity, which will
then necessarily be dominant if the MID property holds, a strategy used in [5, 6, 21].

In this paper, we focus on the MID property for the scalar equation with two delays

y′(t) + a0y(t) + a1y(t− τ1) + a2y(t− τ2) = 0, (4)

whose associated characteristic quasipolynomial is

∆(s) = s+ a0 + a1e
−sτ1 + a2e

−sτ2 . (5)

From a stability viewpoint, it is not an easy task to check when the quasipolynomial defined
in (5) is nonvanishing on one of a complex right half-plane Rα of the form (3) with α < 0
and to study how the stability property depends on the five parameters a0, a1, a2, τ1, and τ2.
A numerical investigation of the stability regions of the equation (4) was previously carried
out in [3,19]. A qualitative analysis was proposed by [13]. Unfortunately, the corresponding
ideas cannot be naturally extended to more general quasipolynomials including two delays.
Inspired by the triangle geometry, a different angle was adopted in [11], where the authors
introduced an appropriate classification of the so-called frequency-sweeping curves , leading
to a characterization of the stability regions in the delay-parameter space. The proposed
method is simple and easy to use but it does not allow explicitly addressing the case of
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multiple characteristic roots. Still in a geometric framework, an extension of the approach
to handle some “less degenerate” double roots was proposed by [17], but with no attempt
to address some generic multiplicities. Finally, by using a different method based on the
Weierstrass–Malgrange preparation theorem, [20] has analyzed the asymptotic behavior of
the double characteristic roots in a more general setting.

The contribution of the present paper is fourfold: (i) it extends the MID property to
the case of multiple delays by showing the validity of the effective dominancy of a spectral
value with maximal multiplicity for the scalar equation with two delays (4); (ii) from a
control-oriented motivation, we provide an appropriate rightmost root assignment approach
emphasizing the interest in considering the delays as control parameters to improve the decay
rate of the closed-loop system; (iii) we propose a new method to address multiplicity issues
of the corresponding characteristic functions. To the best of the authors’ knowledge, such
a method represents a novelty in the literature and we believe that it can be appropriately
extended to more complicated case studies; (iv) it gives some insights on the minimization of
the spectral abscissa of (5). More precisely, we exploit the dominance of the spectral value
with the maximal admissible multiplicity rather than to generically characterize the rightmost
spectral value and then optimize it, which is a technically challenging question. Such an idea
opens an interesting perspective in using small delays and small gains to optimize the spectral
abscissa.

The remaining of the paper is organized as follows: Section 2 recalls some important
definitions and facts on the stability of retarded time-delay systems. The statement of our
main result is provided in Section 3, which is illustrated by an example in Section 4. Section 5
illustrates how the stability of a controlled system defined by a simple integrator can be
improved by choosing two delays in the control when we have a constraint on the gains.
Concluding remarks and insights opening new perspectives in the optimization of the trivial
solution decay for time-delay systems are presented in Section 6. Finally, the technical
propositions necessary to prove the main results are proved in Appendix A.

Notations. In this paper, the sets of positive integers, real numbers, nonzero real numbers,
complex numbers, and nonzero complex numbers are denoted, respectively, by N, R, R∗, C,
and C∗. Given s ∈ C, its real and imaginary parts are denoted, respectively, by <(s) and
=(s). We denote the open ball in C centered at some point a ∈ C and with radius R > 0 by
B(a,R).

2 Definitions and prerequisites

2.1 Quasipolynomials and the Pólya–Szegő bound

In this section, we briefly recall the result from [26, Part Three, Problem 206.2] on the
location of roots of quasipolynomials and provide some of its consequences. Recall that a
quasipolynomial Q is an entire function Q : C→ C given by

Q(s) =
N∑
j=0

Pj(s)e
rjs, (6)
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where N is a nonnegative integer, s ∈ C, r0, . . . , rN are pairwise distinct real numbers, and,
for j ∈ {0, . . . , N}, Pj is a nonzero polynomial with complex coefficients of degree dj ≥ 0. The

degree of Q is the integer D = N +
∑N

j=0 dj. The result from [26, Part Three, Problem 206.2]
is the following.

Proposition 2.1. Let Q be a quasipolynomial of degree D given under the form (6), α, β ∈ R
be such that α ≤ β, and rδ = maxj,k∈{0,...,N} rj − rk. Let mα,β denote the number of roots of
Q contained in the set {s ∈ C | α ≤ =(s) ≤ β} counting multiplicities. Then

rδ(β − α)

2π
−D ≤ mα,β ≤

rδ(β − α)

2π
+D.

In the sequel, we shall need the following consequence of Proposition 2.1, which provides
the maximal possible multiplicity of a root of a quasipolynomial.

Corollary 2.2. Let Q be a quasipolynomial of degree D. Then any root s0 ∈ C of Q has
multiplicity at most D. In addition, if s0 ∈ C is a root of Q of multiplicity exactly equal to
D, then it is the unique root of Q in the set{

s ∈ C
∣∣∣∣ |=(s)−=(s0)| <

2π

rδ

}
, (7)

where rδ is defined as in the statement of Proposition 2.1.

Proof. Let s0 ∈ C be a root of Q. Letting β = α = =(s0) in Proposition 2.1, one deduces
that the number of roots s of Q with =(s) = =(s0), counted according to their multiplicities,
is at most D. Hence, in particular, s0 has multiplicity at most D.

Assume that the multiplicity of s0 is equal to D. Let α = =(s0) and β ∈
(
α, α + 2π

rδ

)
.

By Proposition 2.1, mα,β < D+ 1 and, since mα,β is an integer, we have mα,β ≤ D. Since s0
has multiplicity D, we deduce that s0 is the unique root of Q whose imaginary part belongs

to [α, β]. As α = =(s0) and β ∈
(
α, α + 2π

rδ

)
is arbitrary, we deduce that s0 is the unique

root of Q whose imaginary part belongs to
[
=(s0),=(s0) + 2π

rδ

)
. Repeating this argument

now with β = =(s0) and α ∈
(
β − 2π

rδ
, β
)

, we obtain that s0 is the unique root of Q in the

set defined in (7).

2.2 Control and optimization problem

For a0 ∈ R, we consider the control system

y′(t) + a0y(t) = u(t) (8)

with the delayed feedback

u(t) =
N∑
i=1

aiy(t− τi), (9)

where N a positive integer, ai ∈ R for i ∈ {1, . . . , N}, and solutions t 7→ y(t) are real-valued
functions of time t. We have 0 < τ1 < · · · < τN , which represent the delays of the system.
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Since the system (8) has constant coefficients, we can take t0 = 0 as initial time of the system
and, if we take as initial data a continuous function φ : [−τN , 0]→ R, there exists an unique
continuous solution y : [−τN ,+∞) → R such that y(θ) = φ(θ) for θ ∈ [−τN , 0] and y(t)
satisfies the equation (8) for t ≥ 0. We are interested to govern the asymptotic behavior of
the solutions of (8) with the delayed feedback u.

Definition 2.3. For α0 ∈ R, the system (8) is said to have exponential rate α0 if there exists
a constant C > 0 such that

|y(t)| ≤ Ceα0t sup
−τ1≤θ≤0

|y(θ)|, t ≥ 0,

for all y(·) continuous solution of the system (8).
The best exponential rate α of the system (8) is the infimum of its exponential rates, i.e.,

α := inf{α0 ∈ R | α0 is an exponential rate of (8)}.

Moreover, if α < 0, the origin of the system (8) is said to be exponentially stable with decay
rate α.

The best decay rate of system (8) can be fully characterized in the frequency domain
through the spectral abscissa. The characteristic quasipolynomial corresponding to (8)–(9)
is

∆(s) = s+ a0 −
N∑
i=1

aie
−sτi . (10)

Note that, by Corollary 2.2, any root of ∆ has multiplicity at most N + 1.

Definition 2.4. A root s0 ∈ C of ∆(·) is called a spectral value of multiplicity at least m ∈ N
if ∆(k)(s0) = 0 for k ∈ {0, . . . ,m−1}, where ∆(k) denotes the k-th derivative of ∆. A root s0
has maximal multiplicity if there is no other root of ∆ with larger multiplicity. The spectral
abscissa a of the system (8) is defined as

a := sup{<(s) | s ∈ C and ∆(s) = 0}.

For system (8), it turns out that the spectral abscissa a is equal to the best exponential
rate α, see, e.g., [14, Chapter 7, Lemma 6.2 and Theorem 6.1]).

We now formalize the notion of MID property.

Definition 2.5. The quasipolynomial ∆(·) is said to verify the multiplicity-induced-dominancy
(MID) property if it has a root s0 with maximal multiplicity which is strictly dominant, i.e.,
for all s ∈ C

∆(s) = 0 =⇒ <(s) < <(s0) or s = s0. (11)

Note that, if s0 is a dominant root of a quasipolynomial, then its spectral abscissa is
<(s0).

Since the spectral abscissa of (8)–(9) determines the exponential decay rate of its solutions,
a natural question in control theory is whether one may select the available parameters of
the system in order to minimize its spectral abscissa.
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Definition 2.6. Let a0 ∈ R and τ1, . . . , τN be positive real numbers. The spectral mini-
mization problem for (10) with respect to the free coefficients a1, . . . , aN is the minimization
problem

inf
(a1,...,aN )∈RN

sup{<(s) | s ∈ C and ∆(s) = 0}.

The value of the above infimum is denoted by αmin.

It is important, in a view to stabilize the system (8)–(9) or to ameliorate the exponential
decay of its solutions, to be able to control its spectral abscissa. An effective way to know
the spectral abscissa is when there exists a dominant root and a classical control strategy is
to minimize this root.

2.3 Motivating example: feedback with a single delay

When one has a single delay in the controller expression (9), i.e., N = 1, an application of
Theorem 2 in [15] gives a complete characterization of the minimal spectral abscissa and the
link with the MID property. In particular, it is shown that the minimal spectral abscissa is
obtained exactly for a root with the maximal multiplicity two.

Proposition 2.7. Let s∗ ∈ R. Then s∗ is a spectral value of maximal multiplicity 2 of the
equations (8)–(9) if and only if

s∗ = −a0 −
1

τ1
and a1 = −e

−1−τ1a0

τ1
. (12)

Furthermore, if the above conditions are satisfied, then s∗ is strictly dominant and the minimal
spectral abscissa is reached at this spectral value, i.e., αmin = s∗.

3 Statement of the main result

The main result of the paper concerns the system (8) with a feedback law (9) with two delays,
i.e., N = 2. More precisely, we consider the delay-differential equation

y′(t) + a0y(t)− a1y(t− τ1)− a2y(t− τ2) = 0, (13)

whose characteristic quasipolynomial is the function ∆ : C→ C defined for s ∈ C by

∆(s) = s+ a0 − a1e−sτ1 − a2e−sτ2 . (14)

Corollary 2.2 implies that a root s0 of ∆ with multiplicity 3 has maximal multiplicity. Our
main result provides a choice of s0, a1, and a2 ensuring that the quasipolynomial ∆(·) satisfies
the MID property, in which case we also have the exact expression of the spectral abscissa.

Theorem 3.1. Let a0, a1, a2, s0 be real numbers and τ1, τ2 be positive real numbers with τ1 6=
τ2. The closed-loop system (13) admits s0 as a spectral value with maximal multiplicity 3 if
and only if

s0 = −a0 −
1

τ1
− 1

τ2
, a1 = − τ2

τ1(τ2 − τ1)
es0τ1 , a2 =

τ1
τ2(τ2 − τ1)

es0τ2 . (15)
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Furthermore, in that case, s0 is the spectral abscissa of system (13) and the MID property
holds.

Remark 3.2. The spectral abscissa s0 = −a0 − 1
τ1
− 1

τ2
obtained in Theorem 3.1 is smaller

than s∗ = −a0 − 1
τ1

, the minimal spectral abscissa obtained with a feedback containing a
single delay (Proposition 2.7). It means that the addition of a delay τ2 in the feedback defined
in the equation (9) improves the stability of the system (8). More precisely, the only way to
increase the stability of the system (8) with one delayed feedback consists in taking a small
delay τ1, which induces a large value for the gain a1 from (12). Instead, if we take a two
delayed feedback, stability is improved without having necessarily to increase the size of the
coefficients into the controller. We go on a further discussion on that subject in Section 5.

Remark 3.3. Contrarily to Proposition 2.7, Theorem 3.1 provides no conclusions on whether
s0 solves the spectral minimization problem for (8)–(9) in the case N = 2. Whether this is
true is an interesting open problem.

Remark 3.4. Condition (15) requires equalities to be satisfied, and a natural and fundamen-
tal question from the point of view of applications is whether the spectral abscissa of (13)
remains close to s0 if (15) is satisfied in an approximate sense, i.e., if the spectral abscissa of
(13) is close to s0 if a0, a1, a2, τ1, and τ2 are close enough to values satisfying the equalities
in (15). The answer to this question is affirmative, since (13) is a delay-differential equation
of retarded type, for which the spectral abscissa is known to be a continuous function of the
parameters of the system (see, e.g., [23, Theorem 1.15]).

The proof of Theorem 3.1 exploits two ideas. The first one is to remark that a root s0 of
∆ with maximal multiplicity 3 enforces the choice of the root s0 and the coefficients a1 and
a2 according to (15). This is the subject of the next proposition.

Proposition 3.5. Let ∆ be the quasipolynomial defined in (14). A root s0 ∈ R of ∆ has a
maximal multiplicity 3 if and only if (15) is satisfied.

Proposition 3.5 is easy to establish because it reduces to a simple quasipolynomial interpo-
lation problem, which itself can be written in terms of a linear algebraic problem. Henceforth
we have an expression of the root s0 and the coefficients a1 and a2, and it remains to prove
that the root s0 is the spectral abscissa of the system (8). The second idea which enters in
action is the fact that a root s0 with maximal multiplicity 3 is strictly dominant.

Proposition 3.6. Let ∆ be the quasipolynomial defined in (14). If s0 ∈ R is a root with
maximal multiplicity 3 of ∆, then it is a strictly dominant root.

For s0 ∈ R, notice first that Proposition 3.5 determines the choice of s0 and the coefficients
of the system (8) in the condition (15), while Proposition 3.6 implies that s0 is a strictly
dominant root of ∆. We deduce that s0 is the spectral abscissa of the system (8) and we
obtain Theorem 3.1. The nontrivial point of the proof of Theorem 3.1 is Proposition 3.6. Let
us say a brief word about the strategy to reach the conclusion of Proposition 3.6. The first
step is to prove that s0 is a strictly dominant root of ∆ when τ2 is near τ1 , which is shown
by considering the limits τ1 → τ2. We then prove that, if strict dominance is lost for some τ1
and τ2, we obtain a contradiction with the first step. The full proofs of Proposition 3.5 and
Proposition 3.6 are given in Appendix A.
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4 Stabilization and numerical simulations

One of the applications of Theorem 3.1 is in the stabilization of first-order delay-differential
equations by means of a delayed feedback. To illustrate this idea, we consider a nonlinear
time-delay system of retarded type with two delays appearing in the biological modeling of
the evolution of the number of platelets in the blood (see [2]). This model will be used as a
toy model. It does not aim for an application and an interpretation in biology but it serves
the purpose of giving an illustration of the method.

In [2], the authors propose the nonlinear delay-differential equation with two delays

y′(t) = −γy(t) + g(y(t− τ1))− g(y(t− τ2))e−γT (16)

to model the evolution of the number of platelets in the blood: The variable y is the pop-
ulation of platelets, τ1 > 0 represents the maturation age, τ2 > τ1 the age of death, and
T = τ2 − τ1 is the lifespan of a mature platelet. The positive function g is defined by
g(t) = g0

θnt
θn+tn

, where n, g0, and θ are positive real numbers, and the parameter γ > 0 is
an age-independent rate of destruction for platelets. Note that the origin is an equilibrium
point of (16) which, according to [2], is known to be unstable when g0 >

γ
1−e−γT . Under

this latter assumption, the system also admits another constant equilibrium point, given by

yeq = θ
(
g0

1−e−γT
γ
− 1
)1/n

.

Let us now assume that one disposes of a control u(t) in (16), i.e., that we have the
delay-differential equation

y′(t) = −γy(t) + g(y(t− τ1))− g(y(t− τ2))e−γT + u(t). (17)

Given a target concentration of platelets y∗ > 0, we wish to choose the control u(t) in order
to render y∗ a locally asymptotically stable equilibrium point of (17). For that purpose, we
choose u(t) under the feedback form

u(t) = u0 + α1y(t− τ1) + α2y(t− τ2), (18)

where u0, α1, and α2 are real constants to be designed. Note that, in order for y∗ to be an
equilibrium point of (17)–(18), one must have

u0 = (γ − α1 − α2)y∗ − (1− e−γT )g(y∗). (19)

Thanks to standard results on linearization of time-delay systems (see, e.g., [12, Chap-
ter 4]), the equilibrium point y∗ of (17)–(19) is locally asymptotically stable if the origin of
the linearized system

w′(t) = −γw(t) + (α1 + g′(y∗))w(t− τ1) +
(
α2 − g′(y∗)e−γT

)
w(t− τ2) (20)

is asymptotically stable. Applying Theorem 3.1, we deduce that, by choosing

s0 = −γ − 1

τ1
− 1

τ2
, α1 = −g′(y∗)−

τ2
τ1(τ2 − τ1)

es0τ1 , α2 = g′(y∗)e
−γT +

τ1
τ2(τ2 − τ1)

es0τ2 ,

the origin of the linearized system (20) is exponentially stable, and hence the equilibrium y∗
of (17)–(19) is locally asymptotically stable.
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We now give numerical results with parameters

n = 2.2, θ = 0.04, γ = 3, T1 = 9, T2 = 10, g0 = 4,

which are those from [2]. In this case, the nonzero equilibrium is yeq ≈ 0.02428, and we
choose to stabilize the system around the value y∗ = 0.01, in which case the numerical values
of s0, α1, and α2 are

s0 ≈ −3.164, α1 ≈ −3.439, α2 ≈ 3.218 · 10−13.

Figure 1(a) illustrates2 the spectrum of the linearized system (20) (blue circles) as well as
that of the corresponding linear system with no feedback control, i.e., (20) with α1 = α2 =
0 (orange triangles). We observe that, without feedback control, the linearized system is
unstable, and the proposed feedback control efficiently stabilizes the system, with s0 ≈ −3.164
as its spectral abscissa. Figure 1(b) provides the simulation of trajectories of the linearized
system (20) (dashed orange line) and of the original nonlinear system (16) with the proposed
feedback law (18) (continuous blue line) for a constant initial condition equal to 1

2
y∗ = 0.005.
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Figure 1: (a) Spectrum of the linearized system, with (blue circles) and without (orange
triangles) the designed feedback control. (b) Trajectories of (20) (continuous blue line) and
of (16)–(19) (dashed orange line).

2Computations of the spectra were performed with Python’s cxroots package [25], and the search of
spectral values was limited to the rectangle {s ∈ C | −10 ≤ <(s) ≤ 20, |=(s)| ≤ 5}.
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5 Constrained stabilization of a simple integrator

In order to illustrate the interest of Theorem 3.1, let us consider the control system defined
by the simple integrator, i.e., the control system

y′(t) = u(t), (21)

where y(t) ∈ R is the state and u(t) ∈ R is the control. In this section, we consider the
stabilization of (21) by linear feedback laws, with or without delays, with constraints in the
corresponding controller’s gains.

In case of no delays, assume that

u(t) = ay(t) (22)

with the constraint that |a| ≤ 1. In this case, the characteristic function is ∆(·) of closed-loop
system y′(t)−ay(t) = 0 is given by ∆(s) = s−a, with a single root at s = a, also equal to the
spectral abscissa of that closed-loop system. In particular, the best achievable exponential
decay rate for (21) (i.e., the minimal spectral abscissa for (21)) with the feedback law (22)
and with the constraint |a| ≤ 1 is equal to γ = −1, attained for a = −1.

Let us now consider, instead of (22), the linear feedback law with a single delay given by

u(t) = ay(t− τ), (23)

where τ > 0 is the delay, and still with the constraint |a| ≤ 1. In this case, the characteristic
function ∆(·) of the closed-loop system y′(t)− ay(t− τ) = 0 is defined as ∆(s) = s− ae−sτ .
Using the results from [15] (see Proposition 2.7 above), one can show that the minimal
spectral abscissa for (21) with the feedback law (23) and with the constraints |a| ≤ 1 and
τ > 0 is equal to γ = −e ≈ −2.718, attained for a = −1 and τ = e−1 ≈ 0.3679.

Thanks to Theorem 3.1, we can actually design feedback control laws with two delays
and constraints on the gains yielding an even smaller spectral abscissa for the corresponding
closed-loop system. Indeed, consider the linear feedback law with two delays given by

u(t) = a1y(t− τ1) + a2y(t− τ2), (24)

where τ1 and τ2 are positive delays with τ2 > τ1, and with the constraint |a1|+ |a2| ≤ 1. The
closed-loop system is y′(t)−a1y(t−τ1)−a2y(t−τ2) = 0 and the corresponding characteristic
function is ∆(s) = s−a1e−sτ1−a2e−sτ2 . Let us select a1 and a2 as in Theorem 3.1, i.e., given
by (15). The constraint that |a1|+ |a2| ≤ 1 then reads

τ2
τ1(τ2 − τ1)

es0τ1 +
τ1

τ2(τ2 − τ1)
es0τ2 ≤ 1,

and, by Theorem 3.1, the spectral abscissa of the closed-loop system is γ = − 1
τ1
− 1

τ2
. A

numerical constrained minimization algorithm3 shows that the smallest spectral abscissa that
can be achieved with the feedback law (24), the constraints |a1|+|a2| ≤ 1 and τ2 > τ1 > 0, and
choosing a1 and a2 as in Theorem 3.1 is γ ≈ −3.353, attained for a1 ≈ −0.9882, a2 ≈ 0.01176,
τ1 ≈ 0.4063, and τ2 ≈ 1.122. In particular, this spectral abscissa is smaller than the smallest

11



−14 −12 −10 −8 −6 −4 −2 0

Real part

−200

−150

−100

−50

0

50

100

150

200

Im
ag

in
ar

y
p

ar
t

Spectra of the closed-loop systems

No delays

One delay

Two delays

Figure 2: Spectra of (21) with the feedback law (22) with no delays (blue triangle), the
feedback law (23) with one delay (orange squares), and the feedback law (24) with two delays
(green pentagons), when the parameters of these feedback laws are chosen as described in
the text.

spectral abscissa −e that can be achieved with the single-delay feedback law (23) with the
constraint |a| ≤ 1.

Figure 2 shows the spectra4 of (21) with the feedback laws (22), (23), and (24) with the
above choices of parameters. We remark that the delayed feedback law (23) with a single
delay allows one to improve the spectral abscissa with respect to the delay-free proportional
feedback law (22), and that the spectral abscissa can be further improved with the feedback
law with two delays (24) by exploiting the result of Theorem 3.1.

Remark 5.1. For the feedback laws (22) and (23), the above choices of parameters can be
shown to be those that minimize the spectral abscissa under the provided constraints on
the coefficients of the feedback laws, either by simple arguments in the case of (22) or by
Proposition 2.7 in the case of (23). However, the above choice of parameters for the feedback
law (24) was selected under the additional constraint that these parameters satisfy (15), by
performing a numerical minimization of the spectral abscissa under this constraint. Whether
this coincides with the minimization of the spectral abscissa of (21) over all feedback laws (24)
satisfying |a1| + |a2| ≤ 1 is an open question (see also Conjecture 1 below). Note, however,
that the particular choice of parameters for (24) above already performs better than any
possible choice of parameters for (22) and (23) satisfying the corresponding constraints.

3Computations were carried out using the function minimize from Python’s scipy.optimize module
[29], using the method of trust region with constraints trust-const from [7].

4Spectrum computations have been performed using Python’s cxroots module [25]. The search for roots
was restricted to the rectangle {z ∈ C | −30 ≤ <(z) ≤ 2, |=(z)| ≤ 200}.
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6 Conclusion and perspectives

We addressed a question on the MID property when the system (8) has a two delayed
feedback, i.e., N = 2, and we illustrated the usefulness of this property from a control-
theoretical viewpoint. We do hope that this kind of consideration and the MID property
will hold as well when we have N > 2 delays. It would allow to use multiple delays to
increase the stability of the system (12) without an explosion in the coefficients of the delayed
feedback. However, it seems that an analog of Theorem 3.1 in the case N > 2 would not hold
without bounds on the delays as illustrated in Figure 3, which represents the spectrum of the
quasipolynomial ∆(·) defined in (10) with N = 3, τ1 = 0.917686, τ2 = 1, τ3 = 1.067836, and
a0, a1, a2 and a3 chosen in order to guarantee that s0 = 0 is a root with maximal multiplicity
four5. Figure 3 shows that the root of maximal multiplicity 0 is not strictly dominant.

0.0 0.5 1.0 1.5 2.0

Real part

−40

−20

0

20

40

Im
ag

in
ar

y
p

ar
t

Spectrum of a system with three delays

Figure 3: Spectrum of a quasipolynomial ∆(·) from (10) with N = 3 and a root of maximal
multiplicity four at s0 = 0.

We saw that with one single delayed feedback the MID property allows to reach the
minimal spectral abscissa and we surmise that it is also the case when we have a two-delayed
feedback. More precisely, we propose the following conjecture.

Conjecture 1. For arbitrary a1, a2 ∈ R, the minimal spectral abscissa for the system (8)
with two delays is:

αmin = a0 −
1

τ1
− 1

τ2
.

5The spectrum has been computed with Python’s cxroots package [25] in the rectangle {s ∈ C | |<(s)| ≤
10, |=(s)| ≤ 50}.
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A Proofs

The main result of the paper, Theorem 3.1, is an immediate consequence of Propositions 3.5
and 3.6. Their proofs are given in Sections A.1 and A.2, respectively. Without loss of
generality, we assume in the sequel of the section that τ2 > τ1.

A.1 Proof of Proposition 3.5

In order to simplify the proof of Proposition 3.5, we first consider a normalization of the
quasipolynomial ∆ from (14). The next proposition, whose proof is immediate, provides
the explicit normalization considered here, which consists of a linear change of variable in
the complex plane chosen in such a way as to translate the multiple root to the origin and
normalize the largest delay to 1.

Proposition A.1. Let τ1 and τ2 be such that 0 < τ1 < τ2, λ = τ1/τ2 ∈ (0, 1), and s0 ∈ R.
Let ∆ be the quasipolynomial from (14). Define the quasipolynomial Q(·, λ) : C → C by
Q(s, λ) = τ2∆(s0 + s

τ2
) for s ∈ C, where. Then

Q(s, λ) = s+ ã0 + ã1e
−λs + ã2e

−s, (25)

where
ã0 = (s0 + a0)τ2, ã1 = −a1τ2e−s0τ1 , ã2 = −a2τ2e−s0τ2 . (26)

Moreover, the bijection s 7→ τ2(s−s0) maps the roots of ∆(·) to the roots of Q(·, λ) preserving
their multiplicities and the order of their real parts. In particular, a dominant root (resp.,
strictly dominant root) of ∆ is mapped to a dominant root (resp., strictly dominant root) of
Q(·, λ).

16



Proof of Proposition 3.5. From Proposition A.1, we have that s0 is a root of multiplicity 3 of
the quasipolynomial ∆(·) if and only if s = 0 is a root of multiplicity 3 of Q(·, λ), where Q(·, λ)
is the quasipolynomial defined in the Proposition A.1. We also recall that, by Corollary 2.2,
the maximal multiplicity of any root of Q(·, λ) is 3, and thus 0 is a root of multiplicity 3 of

Q(·, λ) if and only if Q(0, λ) = ∂Q
∂s

(0, λ) = ∂2Q
∂λ2

(0, λ) = 0. Hence, 0 is a root with multiplicity
three of Q(·, λ) if and only if ã0, ã1 and ã2 satisfy the linear system1 1 1

0 −λ −1
0 λ2 1

ã0ã1
ã2

 =

 0
−1
0

 . (27)

An immediate inspection shows that system (27) is invertible and that ã0, ã1 and ã2 are
uniquely determined. Moreover, we have

ã0 = −λ+ 1

λ
, ã1 = − 1

λ(λ− 1)
, ã2 =

λ

λ− 1
. (28)

The expressions on (15) can now be easily obtained by combining (26) and (28).

Remark A.2. Under equation (28), the quasipolynomial Q(·, λ) from (25) becomes

Q(s, λ) = s− λ+ 1

λ
− λ

1− λ
e−s +

1

λ(1− λ)
e−λs. (29)

A.2 Proof of Proposition 3.6

Proving Proposition 3.6 amounts to showing that, given s0 ∈ R, if the coefficients of ∆ satisfy
condition (15), then s0 is a strictly dominant root of ∆. Proposition A.1 shows that this is
tantamount to prove that, for every λ ∈ (0, 1), the root 0 of the quasipolynomial of Q(·, λ)
from (29) is strictly dominant.

To do that, we decompose the proof in two steps. First, we show that either Proposi-
tion 3.6 holds or there exists a branch of nontrivial roots of Q in the right half-plane defined
on some interval (λ, 1) ⊂ (0, 1). The second step consists in ruling out the existence of such
a branch of roots. We first provide the precise definition of branch of roots and its extensions
used in the sequel.

Definition A.3. Let Q(·, λ), λ ∈ (0, 1) be the family of quasipolynomials defined in (29). A
branch of roots of Q is any function s : I → C so that I ⊂ (0, 1) is an open interval and s(λ)
is a root of Q(·, λ) for every λ ∈ I. If s : (λ, λ)→ C is a branch of roots of Q, an extension
ŝ of s is a branch of roots of Q with same regularity as s, which is defined on (λ, λ̂) where
λ̂ ∈ [λ, 1] and such that s = ŝ on (λ, λ).

In other words, an extension of s is always assumed to be an extension to the right of
the domain that has same regularity as s. When there is no ambiguity, we will also denote
extensions of s by the same letter s.

In the sequel, we shall also need Hurwitz Theorem, a classical result in complex analysis
on the behavior of roots of sequences of analytic functions, which we recall now (see, e.g.,
[8, Chapter VII, Theorem 2.5]).
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Theorem A.4. Let G ⊂ C be open and connected and (fn)n∈N be a sequence of analytic
functions defined in G and converging to a nontrival analytic function f : G→ C uniformly
on every compact subset of G. Then, for every open ball B ⊂ G so that the closure of B is
included in G, if f has no zeros at the boundary of B, then fn and f have the same number
of zeros in B (counted with their multiplicities) for n large enough.

A.2.1 Branches of roots in the right half-plane

The main result of this section is Proposition A.10, which states that either Proposition 3.6
holds true or there exists a branch of nontrivial roots in the closed complex right half-plane
defined on an interval of the form (λ, 1) ⊂ (0, 1).

We start by a preliminary result showing that any nontrivial root ofQ(·, λ0) in the complex
right half-plane is necessarily simple and hence gives rise to a branch of roots of Q.

Lemma A.5. Let λ0 ∈ (0, 1) and assume that s0 ∈ C is a root of Q(·, λ0) with <(s0) ≥ 0
and s0 6= 0. Then s0 is a simple root of Q(·, λ0), i.e., ∂sQ(s0, λ0) 6= 0, and there exists an
analytic branch s : I → C of roots of Q such that λ0 ∈ I, s(λ0) = s0, and

s′(λ0) = −(1− 2λ0)s(λ0) + 2λ0 − 2λ0e
−s(λ0) − s(λ0)e−λ0s(λ0)

λ0(1− λ0) + λ20e
−s(λ0) − λ0e−λ0s(λ0)

. (30)

Proof. Consider Q̃ : C× (0, 1)→ C defined by

Q̃(s, λ) = λ(1− λ)Q(s, λ) = λ(1− λ)s− 1 + λ2 − λ2e−s + e−λs. (31)

For every s ∈ C and λ ∈ (0, 1), we have

∂sQ̃(s, λ) = λ(1− λ) + λ2e−s − λe−λs, (32)

∂λQ̃(s, λ) = (1− 2λ)s+ 2λ− 2λe−s − se−λs. (33)

From Q̃(s0, λ0) = 0, we deduce that

λ20e
−s0 = λ0(1− λ0)s0 − 1 + λ20 + e−λ0s0 . (34)

Inserting (34) into (32), one obtains

∂sQ(s0, λ0) = −(1− λ0)(1− λ0s0 − e−λ0s0). (35)

In particular, we have =(∂sQ̃(s0, λ0)) = (1 − λ0)
(
λ0ω0 − e−λ0r0 sin(λ0ω0)

)
, where r0 =

<(s0) and ω0 = =(s0). Since r0 ≥ 0 and (r0, ω0) 6= (0, 0), we deduce in particular that
=(∂sQ̃(s0, λ0)) 6= 0 thanks to the classical properties of the sinc function, yielding that s0
is a simple root of Q(·, λ0). The existence of the above mentioned branch of roots s is an
immediate consequence of the simplicity of the nontrivial root s and the implicit function
theorem for analytic functions (see, e.g., [16, Theorem 2.1.2]), and (30) follows immediately
from (32) and (33).

We next provide some properties on such analytic branches of roots. We first notice that,
as an immediate consequence of Hurwitz Theorem, since 0 is a triple root of Q(·, λ) for every
λ ∈ (0, 1), no other branch of roots of Q can pass through the origin.
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Lemma A.6. Let s : I → C be a continuous branch of roots of Q and assume that there
exists λ0 ∈ I such that s(λ0) 6= 0. Then s(λ) 6= 0 for every λ ∈ I.

Proof. Assume, to obtain a contradiction, that the set {λ ∈ I | s(λ) = 0} is nonempty.
Since s is not constantly equal to 0 over the interval I, there exists a sequence (λn)n∈N in
I converging to some λ∗ ∈ I with s(λn) 6= 0 for every n ∈ N and s(λ∗) = 0. Since 0 is a
root of multiplicity three of Q(·, λ∗), by Hurwitz Theorem, there exist neighborhoods U ⊂ C
of 0 and V ⊂ (0, 1) of λ∗ such that, for every λ ∈ V , Q(·, λ) admits exactly three roots
(counted with their multiplicity) in U . As 0 is a triple root of Q(·, λ) for every λ ∈ (0, 1),
we then deduce that, for λ ∈ V , 0 is the only root of Q(·, λ) in U . However, since λn → λ∗
as n→ +∞, we deduce that λn ∈ V for n large enough. Since s is continuous, we also have
s(λn) ∈ U for n large enough. We thus obtain the desired contradiction since s(λn) 6= 0 is a
root of Q(·, λn).

We now exploit the consequences of Pólya–Szegő bound stated in Corollary 2.2 to deduce
that continuous branches of nontrivial roots never cross the real axis.

Lemma A.7. Let s : I → C be a continuous branch of nontrivial roots of Q. Then =(s(λ)) 6=
0 for every λ ∈ I and, in particular, the sign of =(s(λ)) is constant.

Proof. Since 0 is a root of multiplicity 3 of Q(·, λ), it follows from Corollary 2.2 that 0 is
the unique real root of Q(·, λ), yielding the first part of the conclusion. The second part is a
consequence of the continuity of λ 7→ =(s(λ)).

We now show a boundedness property of branches of roots of Q which holds away from
the extremities λ = 0 and λ = 1.

Lemma A.8. Let s : I → C be a continuous branch of roots of Q and assume that {<(s(λ)) |
λ ∈ I} is lower bounded. Then, for every compact set K ⊂ (0, 1), there exists C > 0 such
that |s(λ)| ≤ C for every λ ∈ I ∩K.

Proof. Let α = inf{<(s(λ)) | λ ∈ I}, λmin = inf K, and λmax = supK. Then, using the fact
that Q(s(λ), λ) = 0 together with (29), we obtain that, for every λ ∈ I ∩K, we have

|s(λ)| ≤ λ+ 1

λ
+

λ

1− λ
∣∣e−s(λ)∣∣+

1

λ(1− λ)

∣∣e−λs(λ)∣∣
≤ λmin + 1

λmin

+
λmax

1− λmax

e−α +
1

λmin(1− λmax)
eλmax|α|.

The latter quantity only depends on K and α, and provides thus the required bound.

Our next result shows that, if a branch of roots crosses the imaginary axis outside of the
origin, then it necessarily crosses it from the left to the right.

Lemma A.9. Let s : I → C be an analytic branch of roots of Q and λ0 ∈ I be such that
<(s(λ0)) = 0 and s(λ0) 6= 0. Then

<(s′(λ0)) > 0. (36)
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Proof. To simplify the notations in the proof, let ω = =(s(λ0)). Note that, by Lemma A.5,
s(λ0) is a simple root of Q(·, λ0). By taking the real and imaginary parts, we have that
Q(iω, λ0) = 0 if and only if

cos(λ0ω)− λ20 cos(ω) + λ20 − 1 = 0, (37)

sin(λ0ω)− λ20 sin(ω) + λ20ω − λ0ω = 0. (38)

Let Q̃ be defined as in the proof of Lemma A.5. In the sequel, we study the numerator and
the denominator of the right-hand side of (30) separately.

Step 1: Computation of ∂sQ̃(iω, λ0).

For s = iω and λ = λ0, one obtains from (32) that

∂sQ̃(iω, λ0) = λ0(1− λ0) + λ20e
−iω − λ0e−iλ0ω

= λ0(1− λ0) + λ20(cos(ω)− i sin(ω))− λ0(cos(λ0ω)− i sin(λ0ω)).
(39)

Setting R1(ω, λ0) = <(∂sQ̃(iω, λ0)) and using (37), we compute

R1(ω, λ0) = −λ0 cos(λ0ω) + λ20 cos(ω)− λ20 + λ0

= −λ0(λ20 cos(ω)− λ20 + 1) + λ20 cos(ω)− λ20 + λ0

= λ20(1− λ0)(cos(ω)− 1).

(40)

Similarly, setting I1(ω, λ0) = =(∂sQ̃(iω, λ0)) and using (38), we have

I1(ω, λ0) = λ0 sin(λ0ω)− λ20 sin(ω)

= λ0(λ
2
0 sin(ω)− λ20ω + λ0ω)− λ20 sin(ω)

= λ20(1− λ0)(ω − sin(ω)).

(41)

Step 2: Computation of ∂λQ̃(iω, λ0).

For s = iω and λ = λ0, one obtains from (33) that

∂λQ̃(iω, λ0) = (1− 2λ0)iω + 2λ0 − 2λ0e
−iω − iωe−iλ0ω

= (1− 2λ0)iω + 2λ0 − 2λ0(cos(ω)− i sin(ω))− iω(cos(λ0ω)− i sin(λ0ω)).
(42)

Setting R2(ω, λ0) = <(∂λQ̃(iω, λ0)) and using (38), we compute

R2(ω, λ0) = 2λ0 − 2λ0 cos(ω)− ω sin(λ0ω)

= 2λ0 − 2λ0 cos(ω)− ω(λ20 sin(ω)− λ20ω + λ0ω)

= 2λ0 − 2λ0 cos(ω)− ωλ20 sin(ω) + λ20ω
2 − λ0ω2.

(43)

Similarly, setting I2(ω, λ0) = =(∂λQ̃(iω, λ0)) and using (37), we have

I2(ω, λ0) = (1− 2λ0)ω + 2λ0 sin(ω)− ω cos(λ0ω)

= (1− 2λ0)ω + 2λ0 sin(ω)− ω(λ20 cos(ω)− λ20 + 1)

= 2λ0(sin(ω)− ω) + λ20ω(1− cos(ω)).

(44)
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Step 3: Sign of the real part of s′(λ0).

From equations (39) and (42), we deduce that

<(s′(λ0)) = −R1(ω, λ0)R2(ω, λ0) + I1(ω, λ0)I2(ω, λ0)

(R2
1(ω, λ0) + I21 (ω, λ0))

. (45)

In particular, <(s′(λ0)) has the same sign as the numerator of the right-hand side of (45).
Using (40), (41), (43), and (44), we have

−R1(ω, λ0)R2(ω, λ0)− I1(ω, λ0)I2(ω, λ0)
= λ30(1− λ0)

(
(1− cos(ω))(2− 2 cos(ω)− ωλ0 sin(ω) + λ0ω

2 − ω2)

+ (sin(ω)− ω)(2(sin(ω)− ω) + λ0ω(1− cos(ω))
)

= λ30(1− λ0)
(
2(1− cos(ω))2 + 2(sin(ω)− ω)2 − ω2(1− cos(ω))

)
= 2λ30(1− λ0)(ω cos(ω/2)− 2 sin(ω/2))2.

(46)

Hence <(s′(λ0)) ≥ 0. In order to prove that this inequality is strict, we first use the equality
cos2(λ0ω) + sin2(λ0ω) = 1 together with (37) and (38) to obtain that

2(λ0 + 1)(1− cos(ω))− (1− λ0)ω2 − 2 sin(ω)ωλ0 = 0. (47)

Isolating λ0, we obtain

λ0 =
ω2 − 2(1− cos(ω))

2(1− cos(ω)) + ω2 − 2 sin(ω)ω
=

ω2 + 2(cos(ω)− 1)

(ω − sin(ω))2 + (1− cos(ω))2
. (48)

Let us now assume, to obtain a contradiction, that <(s′(λ0)) = 0. Hence, by (46), we have
tan(ω

2
) = ω

2
and

(1− cos(ω))2 + (sin(ω)− ω)2 =
ω2

2
(1− cos(ω)).

Inserting the above into (48), we get

λ0 =
2(ω2 + 2(cos(ω)− 1))

ω2(1− cos(ω))
. (49)

On the other hand, the equality tan(ω
2
) = ω

2
implies that

ω2

4
= tan2(ω

2
) =

1− cos(ω)

1 + cos(ω)
,

i.e.,
4(cos(ω)− 1) = −ω2(1 + cos(ω)).

Inserting the above into the numerator of (49), we deduce that λ0 = 1, yielding the required
contradiction. Hence, (36) is proved.

Using the previous result, we can now show that, if a branch is in the right half-plane at
some λ0, it must remain there for all larger λ and it will be defined until λ = 1.
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Proposition A.10. Let s : (λ, λ) → C be an analytic branch of roots of Q and λ0 ∈ (λ, λ)
be such that <(s(λ0)) ≥ 0. Then s admits a unique extension (still denoted by s) defined on
(λ, 1). In addition, this extension satisfies <(s(λ)) ≥ 0 for every λ ∈ (λ, 1). Moreover, either
s ≡ 0 on (λ, 1) or s(λ) 6= 0 for every λ ∈ (λ, 1).

Proof. The case s(λ0) = 0 is trivial since, in this case, s can be extended to the function
s : (0, 1) → C defined by s(λ) = 0 for every λ ∈ (0, 1), and this extension is unique by
Hurwitz Theorem. Hence, in the sequel, we assume that s(λ0) 6= 0.

By Lemma A.6, we have that any extension of s will never be equal to 0. We now
claim that any extension of s will remain in the closed right-half plane for all λ ≥ λ0 in its
domain of definition. Indeed, let us consider an extension s : I → C to an interval I with
(λ, λ) ⊂ I. Assume, to obtain a contradiction, that there exists λ1 ∈ I with λ1 > λ0 such
that <(s(λ1)) < 0. As λ 7→ <(s(λ)) is C1, we deduce that there exists λ∗ ∈ [λ0, λ1) such that
<(s(λ∗)) = 0 and <(s′(λ∗)) ≤ 0. This, however, contradicts Lemma A.9, proving the claim.

As a consequence of the above and Lemma A.5, for any extension of s, s(λ) is a simple
root of Q(·, λ) for every λ ≥ λ0 in the domain of the extension. Hence, arguing by Hur-
witz Theorem, extensions of s necessarily coincide on the intersection of their domains. In
particular, if s admits an extension to (λ, 1), then it is necessarily unique.

To prove that s admits an extension to (λ, 1), let

λmax = sup{λ ∈ [λ0, 1] | s admits an extension to (λ, λ)}

and assume, to obtain a contradiction, that λmax < 1, and consider an extension of s to
(λ, λmax). Since [λ0, λmax] is compact and s belongs to the closed right half-plane on [λ0, λmax),
we deduce by Lemma A.8 that there exists C > 0 such that |s(λ)| ≤ C for every λ ∈
[λ0, λmax). By Lemma A.5, we deduce that, up to increasing C, we have |s′(λ)| ≤ C for
every λ ∈ [λ0, λmax). In particular, s(λ) is Lipschitz continuous on [λ0, λmax), and thus
limλ→λmax s(λ) exists, and it is nonzero by Hurwitz Theorem. We can thus extend s to a
Lipschitz continuous function on (λ, λmax] with Q(s(λmax), λmax) = 0. By Lemma A.5, there
exists a neighborhood I of λmax in (0, 1) and an analytic branch ŝ : I → C of roots of Q such
that ŝ(λmax) = s(λmax). Arguing by Hurwitz Theorem, one deduces that s and ŝ coincide
on (λ, λmax] ∩ I, and thus s can be extended to (λ, λmax] ∪ I. This, however, contradicts the
maximality of λmax, yielding the conclusion.

A.2.2 End of the proof of Proposition 3.6

To proceed, it is enough to rule out of the existence of a branch of nontrivial roots of Q in
the right half-plane provided by Proposition A.10. We start by proving that any such branch
is uniformly bounded.

Lemma A.11. Let s : (λ, 1)→ C be an analytic branch of nontrivial roots of Q and assume
that there exists λ0 ∈ (λ, 1) such that <(s(λ0)) ≥ 0. Then s is bounded on [λ0, 1).

Proof. Notice first that, by Proposition A.10, we have <(s(λ)) ≥ 0 for every λ ∈ [λ0, 1). For
λ ∈ [λ0, 1), define x(λ) = <(s(λ)) and y(λ) = =(s(λ)) and note that x(λ) ≥ 0. Since Q(·, λ)
is a quasipolynomial with real coefficients, its nonreal roots appear in complex-conjugate
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pairs and, combining this fact with Lemma A.7, we assume, with no loss of generality, that
y(λ) > 0 for every λ ∈ (λ, 1).

We first claim that x(·) is bounded on [λ0, 1). Indeed, assume, to obtain a contradiction,
that there exists a sequence (λn)n∈N in [λ0, 1) such that λn → 1 and x(λn) → +∞ as
n→ +∞. For every λ ∈ [λ0, 1), since Q(s(λ), λ) = 0, we have

s(λ)− λ+ 1

λ
=
e−λs(λ)

1− λ

(
λe−S(λ) − 1

λ

)
, (50)

where we have set S(λ) = (1 − λ)s(λ). After multiplying (50) by 1 − λ and using the fact
that e−λns(λn) → 0 as n → +∞, we deduce that S(λn) → 0 as n → +∞. Using a Taylor
expansion of the term e−S(λn), we obtain that

s(λn)− λn + 1

λn
=
e−λns(λn)

1− λn

(
λn
(
1− S(λn) +O

(
S(λn)2

))
− 1

λn

)
= −e−λns(λn)

(
1

λn
+ 1 + λns(λn) + s(λn)O(S(λn))

)
.

(51)

By factoring in the above equation terms containing s(λn), one gets

s(λn) =
1− e−λs(λn)

1 + λne−λns(λn) + e−λns(λn)O(S(λn))

(
1 +

1

λn

)
. (52)

The right-hand side of the above equation converging to 2 as n → +∞, we reach a contra-
diction and prove the claim on x.

Since s is a branch of roots, by taking the real and imaginary parts of the identity
(1− λ)Q(s(λ), λ) = 0 and multiplying by ex(λ), we deduce that, for every λ ∈ (λ, 1),

(1− λ)ex(λ)x(λ)− 1− λ2

λ
ex(λ) = λ cos(y(λ))− e(1−λ)x(λ)

λ
cos(λy(λ)) (53)

(1− λ)ex(λ)y(λ) = −λ sin(y(λ)) +
e(1−λ)x(λ)

λ
sin(λy(λ)). (54)

Taking into account that x is bounded, one can simplify (54) to obtain that, as λ→ 1,

sin(y(λ))− 1

λ2
sin(λy(λ)) = −1− λ

λ
ex(λ)y(λ) +O(1− λ). (55)

Using that 1/λ2 = 1 +O(1− λ) as λ→ 1, one obtains

sin(y(λ))− sin(λy(λ)) = −1− λ
λ

ex(λ)y(λ) +O(1− λ). (56)

Assuming that s is not bounded means that its imaginary part is not, i.e., the continuous
function λ 7→ y(λ) is unbounded as λ tends to one. Then one can assume with no loss of
generality that there exists a sequence (λn)n∈N so that

λn −−−−→
n→+∞

1, y(λn) =
π

2
+ 2nπ
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for n large enough. Considering (56) along the sequence (λn)n∈N yields the equation

1− sin(λny(λn))

(1− λn)y(λn)
= −e

x(λn)

λn
+
O(1)

y(λn)

for n large enough. The left-hand side of the above equation is clearly nonnegative while
the limsup of the right-hand side, as n tends to infinity, is upper bounded by −1. We have
reached a contradiction and hence proved that s is bounded on [λ0, 1).

The next step consists in proving that any analytical branch of nontrivial roots of Q in
the right half-plane defined in an interval of the form (λ, 1) can be extended as an analytic
function in a right neighborhood of 1. For that purpose, one must identify the limit of Q(·, λ)
as λ tends to 1. A Taylor expansion proves that the quasipolynomial Q(·, λ) tends uniformly
to the nontrivial holomorphic function s 7→ s−2+e−s(s+2) on compact sets of C as λ tends
to 1. In the sequel we use Q(·, 1) to denote it. Moreover, it has been proved in [22] that 0 is
a dominant root of Q(·, 1) of multiplicity 3 and the other roots are simple and exactly of the
form 2ζi, where ζ ∈ R is any nontrivial solution of the equation tan(x) = x with x ∈ R.

We have then the following lemma.

Lemma A.12. Let s : (λ, 1)→ C be an analytic branch of nontrivial roots of Q and assume
that there exists λ0 ∈ (λ, 1) such that <(s(λ0)) ≥ 0. Then there exist ε > 0 and an analytic
function ŝ : (λ, 1 + ε) → C such that Q(ŝ(λ), λ) = 0 for λ ∈ (λ, 1 + ε), ŝ(1) = 2ζi for a
nonzero real number ζ, and s = ŝ on (λ, 1).

Proof. By Lemma A.11, s is bounded on [λ0, 1), and thus, arguing by Hurwitz Theorem, s(λ)
must converge to a nontrivial root 2ζi of Q(·, 1) as λ tends to 1.

Let U be an open neighborhood of (2ζi, 1) in C2 and consider the natural extension of Q
to U (i.e., Q(s, λ) is given by (29) if λ 6= 1 and Q(s, 1) = s−2+e−s(s+2)), still denoted by Q.
A trivial computation from (29) shows that the partial derivatives ∂sQ(s, λ) and ∂λQ(s, λ)
exist and are analytic for (s, λ) ∈ U \(2ζi, 1). Moreover, ∂sQ(s, λ) and ∂λQ(s, λ) admit limits
as (s, λ) converges to (2ζi, 1), so that ∂sQ and ∂λQ are continuous on U . We deduce that
Q(·, ·) is analytic on U . In addition, we compute ∂sQ(2ζi, 1) = 1− e−2ζi(1 − 2ζi), and thus
∂sQ(2ζi, 1) 6= 0 since otherwise 1 = e−2ζi(1− 2ζi) and one would get that ζ = 0 after taking
the modulus. The conclusion of the lemma follows by applying the analytic implicit function
theorem.

We are now in position to conclude the proof of Proposition 3.6.

Proof of Proposition 3.6. By Proposition A.1, one is left to show that, for every λ ∈ (0, 1),
the root 0 of the quasipolynomial of Q(·, λ) from (29) is strictly dominant. Assume, to
obtain a contradiction, that this is not the case, and let λ0 ∈ (0, 1) and s0 ∈ C be such
that Q(s0, λ0) = 0, s0 6= 0, and <(s0) ≥ 0. Combining Lemma A.5, Proposition A.10, and
Lemma A.12, there exist λ ∈ (0, λ0), λ > 1, and an analytic function s : (λ, λ) → C such
that Q(s(λ), λ) = 0 for every λ ∈ (λ, λ), <(s(λ)) ≥ 0 for every λ ∈ [λ0, 1), and s(1) = 2ζi for
some ζ ∈ R∗.

Let us compute s′(1) and s′′(1). Since s is analytic, we have

s(λ) = α0 + α1(1− λ) + α2(1− λ)2 +O
(
(1− λ)3

)
(57)
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for λ in a neighborhood of 1, where α0 = 2ζi, α1 = −s′(1), and α2 = 1
2
s′′(1). In particular,

we compute

e−s(λ) = e−α0

(
1− α1(1− λ) +

(
α2
1

2
− α2

)
(1− λ)2 +O

(
(1− λ)3

))
. (58)

We also expand (29) in a neighborhood of λ = 1, obtaining

Q(s, λ) = s− 2 + e−s(s+ 2) +

((
1 + s+

s2

2

)
e−s − 1

)
(1− λ)

+

((
1 + s+

s2

2
+
s3

6

)
e−s − 1

)
(1− λ)2 +O

(
(1− λ)3

)
,

(59)

where O ((1− λ)3) is uniform with respect to s on compact subsets of C. Inserting (57) and
(58) in (59), one obtains that, as λ→ 1,

0 = Q(s(λ), λ) = (α0 + 2)e−α0 + α0 − 2 +

(
α2
0 + 2α0 + 2− 2α1(1 + α0)

2
e−α0 + α1 − 1

)
(1− λ)

+

(
α3
0 + 3(1− α1)α

2
0 + 3(2− 2α2 + α2

1)α0 + 6(1− α2)

6
e−α0 + α2 − 1

)
(1− λ)2

+O
(
(1− λ)3

)
.

(60)

We deduce from (60) that

(α0 + 2)e−α0 + α0 − 2 = 0, α1 =
α0

2
, α2 =

α0(α0 + 10)

24
. (61)

As α0 = 2ζi with ζ ∈ R∗, α1 = −s′(1), and α2 = 1
2
s′′(1), it follows from (61) that <(s′(1)) = 0

and <(s′′(1)) = − ζ2

3
< 0, yielding that <(s(λ)) < 0 for λ in a real neighborhood of 1, in

contradiction with the fact that <(s(λ)) ≥ 0 for every λ ∈ [λ0, 1).
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