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Abstract 56 

There is increasing evidence of a role for environmental contaminants in disrupting metabolic health in 57 

both humans and animals. Despite a growing need for well-understood models for evaluating adipogenic 58 

and potential obesogenic contaminants, there has been a reliance on decades-old in vitro models that have 59 

not been appropriately managed by cell line providers. There has been a quick rise in available in vitro 60 

models in the last ten years, including commercial availability of human mesenchymal stem cell and 61 

preadipocyte models; these models require more comprehensive validations but demonstrate real promise 62 

in improved translation to human metabolic health. There is also progress in developing three-63 

dimensional and co-culture techniques that allow for the interrogation of a more physiologically relevant 64 

state. While diverse rodent models exist for evaluating putative obesogenic and/or adipogenic chemicals 65 

in a physiologically relevant context, increasing capabilities have been identified for alternative model 66 

organisms such as Drosophila, C. elegans, zebrafish, and medaka in metabolic health testing. These 67 

models have several appreciable advantages, most notably the size, rapid development, large brood sizes, 68 

and ease of high-resolution lipid accumulation throughout the organisms. They are anticipated to expand 69 

the capabilities of metabolic health research, particularly when coupled with emerging obesogen 70 

evaluation techniques as described herein.  71 

  72 
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Abbreviations 73 
United States (US); white adipose tissue (WAT); peroxisome proliferator-activated receptor gamma 74 
(PPARγ); sterol-regulatory element-binding protein-1 (SREBP-1); liver X receptor alpha (LXRα); 75 
glucocorticoid receptor (GR); retinoid X receptor-alpha/beta (RXRα/β); estrogen receptor alpha (ERα); 76 
human preadipocytes (HPAd); Simpson-Golabi-Behmel syndrome (SGBS); mesenchymal stem cells 77 
(MSCs); Human multipotent adipose-derived stem cells (hMADS); toxicant-associated fatty liver 78 
diseases (TAFLD); non-alcoholic fatty liver disease (NAFLD); dimethylsulfoxide (DMSO); primary 79 
human hepatocytes (PHH); cytochrome P450 (CYP); aryl hydrocarbon receptor (AhR); constitutive 80 
androstane receptor (CAR); pregnane X receptor (PXR); di(2-ethylhexyl) phthalate (DEHP); 81 
dichlorodiphenyltrichloroethane (DDT); bisphenol A (BPA); polychlorinated biphenyls (PCBs); 82 
tetrabromobisphenol A (TBBPA); days post-fertilization (dpf); endocrine disrupting chemicals (EDCs); 83 
insulin-producing cells (IPCs); brown adipose tissue (BAT); uncoupling protein 1 (UCP1); OLTAM 84 
(ODD-Luc based Thermogenic Activity Measurement); ODD (oxygen-dependent degradation); hypoxia-85 
inducible factor 1 alpha (HIF1α); quantitative structure-activity relationship (QSAR); Toxicity Testing in 86 
the 21st Century (Tox21); Organization for Economic Cooperation and Development (OECD); New 87 
approach methodologies (NAMs); Adverse Outcome Pathways (AOPs); integrated approaches to testing 88 
and assessment (IATAs); National Institute for Environmental Health Sciences (NIEHS); PEPPER 89 
(Public-privatE Platform for the Pre-validation of Endocrine disRuptors. 90 
 91 

 92 

 93 

 94 

 95 

 96 

 97 

 98 

 99 

Essential Points 100 

There are increasing novel capabilities to identify and assess obesogens. 101 
 102 
There is still a reliance on using well-defined models with unclear translation to human health. 103 
 104 
There is still a need for comprehensive validations of novel metabolic health models. 105 
 106 
Computational models show some promise in future predictions and assessments of obesogens. 107 
 108 

 109 

  110 
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1. Introduction 111 

 112 

Over the last several decades, the global prevalence of metabolic disorders, specifically obesity, has risen 113 

at an alarming rate. Despite extensive investments in exploring interventions to address this health trend, 114 

the incidence rates continue to rise. In the United States (US), 8.9% of infants and toddlers [1, 2], 18.5% 115 

of 2-19 year old’s [1, 2], and 42.4% of adults (20+) [3] are currently classified as obese, with an 116 

additional 31.2% of the adult population classified as overweight [4]. Obesity consumes >$200 billion of 117 

the US health care expenditure annually and also drives increased risks of various comorbidities (e.g., 118 

type II diabetes, cardiovascular disease, hypertension) [5-8]. High societal costs [8, 9] have driven support 119 

for research into causal factors, including exposure(s) to environmental contaminants. Previous research 120 

estimated extremely high economic costs of obesity, diabetes, and associated health costs reasonably 121 

attributable to environmental contaminants in the European Union [9], even when only considering five 122 

chemicals for which sufficient epidemiological data were available. 123 

 124 

As detailed in the companion review, Obesity II, “obesogens” are environmental chemicals that increase 125 

the size of white adipose tissue (WAT) stores in the body as a result of exposure in vivo [10, 11]. 126 

Chemicals that can induce adipogenesis in cellular models in vitro but have not yet been shown to 127 

increase WAT stores in vivo are designated as potential obesogens [12]. Considering the complexity of 128 

human chemical exposures, the increasing reports of obesogens, and the rising incidence of metabolic 129 

disorders, it is critical to identify and validate comprehensive models (in silico, in vitro, and in vivo) for 130 

the identification and evaluation of obesogens. One of the major challenges in the obesity field is to 131 

develop a robust set of tests that can reveal adipogenic and/or obesogenic properties of chemicals and 132 

have strong predictive capacity in humans. These tests should be in line with the 3R principles (i.e., 133 

reducing the number of animals, refining experiments to minimize the number of animals used, and 134 

replacing animal experiments where possible). Practically speaking, the high costs of animal experiments 135 

limit the use of mammals in screening for potential obesogens. This supports an urgent need for increased 136 
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use of lower-order (in silico, in vitro) testing to prioritize higher-order (in vivo) testing. There is also an 137 

urgent need for new in vivo models that are less time and cost-intensive to support in vivo testing that is 138 

still required for the tens of thousands of chemicals used in commerce. While the number and diversity of 139 

cellular models of adipocyte differentiation and metabolic health is increasing, these require 140 

comprehensive validation to determine the strengths and weaknesses of each for their relevance to human 141 

metabolic health 142 

 143 

Despite the potential limitations of available animal models to reproduce human disease fully, they help 144 

evaluate exposure pathways, generation of in vivo metabolites, elucidating tissue and/or disease biology, 145 

and underlying molecular mechanisms involved in adverse health outcomes. The choice of the animal 146 

model should consider the degree to which the outcomes being examined are relevant to humans and the 147 

sensitivity of these outcomes to environmental chemicals. The relevance of the model to human health 148 

depends considerably on the evolutionary conservation of biological processes impacted by candidate 149 

chemical or pharmacological molecules between humans and the animal model used. It is likely that a 150 

single test might not reveal all relevant properties and that a battery of tests should be developed. This set 151 

of tests should address the following issues: 1) evaluate in vivo obesity according to its different 152 

characteristics, including the type and importance of different adipose depots; 2) reveal in vitro and in 153 

silico assays/models that reliably predict obesity; 3) identify in vivo biomarkers that are predictive of 154 

obesity, and 4) account for delays between exposure(s) to putative obesogens and the appearance of a 155 

phenotype. 156 

 157 

Mammalian models have been relied on for metabolic health testing due to clear translation of adipose 158 

physiology. However, non-mammalian model species are increasingly appropriate for the screening and 159 

rapid identification of chemicals and mixtures and the exploration of disease mechanisms. Knowledge 160 

acquired from non-mammalian model systems (e.g., vertebrates such as teleost fish and invertebrates such 161 

as flies and worms) can provide insights into mechanisms involved in regulating lipid metabolism and 162 
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transport processes that have been intractable by other approaches [13]. Due to the conservation of lipid 163 

metabolism processes among vertebrates, the zebrafish model has become an attractive alternative to 164 

rodents, with lower costs and time investments.  165 

 166 

2. In vitro assays 167 

The most well-established lower-order testing protocols are the adipogenesis cell assays, although newly 168 

developed cell models have allowed an increasing breadth of metabolic disruption assessment (Figure 1). 169 

Several in vitro models were developed in various species (primarily human and murine) to identify 170 

potential obesogens [14, 15]. These models generally assess three endpoints: commitment to the 171 

adipocyte lineage (via multipotent MSC models), preadipocyte proliferation (proliferation of early-stage 172 

adipocyte lineage cells), and differentiation into mature adipocytes (adipogenesis; generally determined 173 

via quantification of intracellular triglyceride accumulation).  174 

 175 

2.1 Preadipocyte models 176 

 Preadipocytes are already committed to the adipocyte lineage and thus can be used to examine both 177 

proliferation (via nuclear staining) and adipogenesis (via triglyceride quantification). These cells are in an 178 

early stage of adipocyte development and require activation of signaling pathways to promote further 179 

development/maturation. Adipogenesis can be achieved by treating cells with a “differentiation cocktail” 180 

that contains a variety of hormonal and/or growth factors to initiate the process. These factors are often 181 

different between laboratories, but generally always include a mixture of fetal bovine serum, insulin, and 182 

isobutylmethylxanthine (IBMX); some laboratories also include thyroid hormone and/or glucocorticoids, 183 

though the presence of these and concentrations varies widely. Once the cocktail is removed, the relative 184 

roles of various test chemicals in the role of differentiation (assessed via triglyceride accumulation) and 185 

proliferation (of adipocyte precursor cells) can be assessed [16-19]. 186 

 187 

The 3T3-L1 mouse cell line was isolated and described in the 1970s and has been utilized for decades as 188 
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an in vitro screen to examine the mechanisms regulating adipogenesis and evaluate potential adipogenic 189 

chemicals [16, 17, 20]. This cell line has been used to carefully explore mechanisms promoting and 190 

underlying various stages of adipogenesis [21, 22] and has been shown to appropriately select chemicals 191 

for further testing (linking in vitro results to in vivo health outcomes; e.g., bisphenol A and tributyltin) 192 

[23-31]. While this line has been well-characterized [21], its sourcing can be unreliable [32, 33]. For 193 

example, nuclear receptor expression related to adipogenesis is markedly different between lots and 194 

sources of this cell line [32]. These and other cell line integrity issues can contribute to discrepancies in 195 

replication efforts between laboratories [34, 35]. We recently undertook an interlaboratory reproducibility 196 

effort of 3T3-L1 responses to a positive control chemical (rosiglitazone) and three blinded test chemicals 197 

[35]. While the determination of “active” versus “inactive” were consistent across the ten participating 198 

laboratories, the potencies and efficacies of the blinded chemical responses varied by orders of 199 

magnitude. The cross-over study design allowed for determinations of the sources of variation, and our 200 

results demonstrated that inconsistencies of the cell line sources and differentiation protocol differences 201 

promoted most of the variation. Thus the harmonization of protocols across laboratories may help support 202 

consistent reporting of adipogenic results [35]. Despite these limitations, 3T3-L1 cells remain the most 203 

popular model for assessing adipogenic outcomes. Specifically, numerous publications have assessed 204 

bisphenols [26, 32, 36], brominated and organophosphate flame retardants [37-39], per and 205 

polyfluoroalkyl substances [40, 41], and diverse other environmental contaminants [20, 24, 37] and 206 

mixtures [42] using this cell model. There is an emerging interest in determinations of whether 207 

environmental contaminant exposures promote the development of normal or abnormal adipocytes, and 208 

some preliminary data has begun to evaluate this. For example, BPA enhanced levels of leptin, 209 

interleukin-6, and interferon gamma in mature adipocytes, resulting in hypertrophic adipocytes with 210 

impared insulin signaling, increased pro-inflammatory cytokine production, and reduced glucose 211 

utilization [43]. 212 

 213 

The OP9 mouse bone marrow-derived stromal cell line is another established preadipocyte model [19, 44] 214 
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that allows faster differentiation (2-3 versus 10-14 days). This cell line is considered to be a later stage 215 

preadipocyte than 3T3-L1 cells because it expressed key adipogenic factors such as CCAAT/enhancer-216 

binding proteins alpha and beta, peroxisome proliferator-activated receptor gamma (PPARγ), sterol-217 

regulatory element-binding protein-1 (SREBP-1), perilipin, and other adipocyte markers that are not 218 

expressed in basal 3T3-L1 cells before adipogenic induction [19]. Therefore, OP9 cells can be induced to 219 

accumulate triglycerides within two days, differentiation is not diminished by maintenance in culture at 220 

high cell density, their adipogenic potential is maintained for >100 passages, and they do not require 221 

contact inhibition and reversion to clonal expansion before initiating the differentiation induction [19]. 222 

These characteristics suggest a promising model with lower time and cost investments, though this does 223 

require careful validation to understand the translation of responses to human health effects. We have 224 

reported that these cells do differentially express nuclear receptors relative to 3T3-L1 cells, including 225 

PPARγ/α, liver X receptor alpha (LXRα), glucocorticoid receptor (GR), retinoid X receptor-alpha/beta 226 

(RXRα/β), and estrogen receptor alpha (ERα) [32]. As a result, responsiveness to adipogenic chemicals in 227 

OP9 cells is significantly different from 3T3-L1 cells, characterized by lower responsiveness via 228 

activation of GR and greater responsiveness via the RXR pathway [32, 45]. While still an uncommon 229 

model for assessing obesogens, OP9 cells have been used to evaluate bisphenols [32], pesticides [45], and 230 

other environmental contaminants [45].  231 

 232 

More recently, several human preadipocyte models have become available that hold promise for future 233 

evaluations of adipogenicity by environmental contaminants. Since the basis for much of our 234 

understanding of adipogenesis has been evaluated using the murine 3T3-L1 cells, utilizing these newer 235 

human models may help elucidate any species-specific differences that may be present. Many companies 236 

now supply primary human preadipocytes (HPAd) isolated from several human subcutaneous depots, 237 

visceral depots, and/or adipose surrounding the heart. Moreover, suppliers also provide source-specific 238 

HPAd cells, i.e., those sourced from donors with normal, overweight, or obese body mass indices and 239 

those with or without diabetes (e.g., see, https://www.zen-240 
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bio.com/products/cells/subcutaneous_adipocytes.php). These discrete preadipocyte populations allow 241 

more targeted questions and potentially a better molecular understanding of adipogenesis. However, 242 

human preadipocyte cell models are cryopreserved at the end of primary culture. They can generally be 243 

propagated at most two additional passages before losing their ability to differentiate into mature 244 

adipocytes [46, 47]. As such, these models, while potentially more translationally relevant to human 245 

health, are extremely costly, as numerous cryopreserved vials are needed to complete any well-designed 246 

experiment (e.g., multiple biological replicates). Limitations aside, researchers have begun to utilize 247 

human preadipocytes to assess adipogenic and anti-adipogenic effects of botanical and biological 248 

mixtures [48-50], bisphenols [51], and flame retardants [38]. 249 

 250 

The Simpson-Golabi-Behmel syndrome (SGBS) cell line addresses some of these limitations of using 251 

primary human preadipocytes. These cells were isolated from an infant with an extremely rare (250 252 

reported cases) metabolic health condition characterized by excess growth; this infant demonstrated 253 

expanded subcutaneous fat depots, and a sample of this tissue was obtained postmortem [52]. Profiling 254 

these cells suggests that they can be maintained and retain robust differentiation capability over 50 255 

passages [53], a significant advantage over normal human donor preadipocytes, and profiling has 256 

suggested morphological, biochemical, and functional similarities to differentiated adipocytes from 257 

healthy subjects [52, 54]. These cells also transiently express brown adipocyte markers [55-57], 258 

suggesting that this cell line might be useful for assessments of adipocyte browning. Proteomic and 259 

transcriptomic analyses of SGBS cells have been used to evaluate the molecular underpinnings of SGBS 260 

differentiation, with >1100 proteins and >300 genes differentially expressed in differentiated cells relative 261 

to undifferentiated [58]. However, some research comparing this model to existing models has suggested 262 

notable differences. Metabolomics and lipidomics profiling revealed a diverse grouping of lipid classes 263 

markedly changed throughout the differentiation process, suggesting a radically different metabolite 264 

profile than previously observed in 3T3-L1 cells [59]. SGBS cells have been used to evaluate the 265 

adipogenic effects of various bisphenols [60], though have not yet seen frequent use in this context. Other 266 
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human cell lines obtained from tumors or transformed can be differentiated into either white (Lisa, LS-14, 267 

AML-1, Chub-S7) or brown (PAZ6) adipocytes [61], but their use in toxicology is rare [60]. 268 

 269 

2.2 Mesenchymal stem cells (MSCs) 270 

Another option in assessing adipogenesis is the utilization of multipotent mesenchymal stromal stem cells 271 

(mesenchymal stem cells, MSCs). MSCs are multipotent cells that can assess adipocyte lineage 272 

commitment in addition to adipocyte differentiation [18, 62, 63]. MSCs are isolated from either bone 273 

marrow or adipose tissue, and cells from both sources have been used to assess adipogenesis. The use of 274 

MSC models has been reviewed previously in the context of obesogens and their potential impacts on cell 275 

commitment and subsequent differentiation [64]. Recent work described a novel protocol for separately 276 

evaluating adipogenic commitment and subsequent differentiation in primary MSCs [63], previously 277 

described for the C3H10T1/2 murine stem cell model [65, 66]. This protocol allows a complete 278 

characterization of potential obesogens and their role in disrupting cell commitment and differentiation. 279 

While the focus has been on evaluating effects on the adipocyte lineage, a growing body of research has 280 

begun to evaluate potential chemical impacts on osteogenic development using these models [67-70]. 281 

Some limited research has evaluated chemical impacts on development down the chondrogenic, 282 

myogenic, or other cell lineages [64]. Human MSCs are readily available from diverse vendors, although 283 

murine models are also routinely used [45, 70-72].  284 

 285 

Recent research elegantly described protocols for distinguishing assays to evaluate adipogenic lineage 286 

commitment and subsequent adipocyte differentiation [63]; briefly, cells can be pre-treated with test 287 

chemicals prior to the differentiation cocktail exposure. These pre-treated cells can be subsequently 288 

exposed to the differentiation cocktail and evaluated at the end of the differentiation window. The extent 289 

of triglyceride accumulation can be compared with standard adipogenesis plates; chemicals with effects 290 

on commitment should have equivalent effects to those differentiated for the full two weeks, whereas 291 

cells without effects on commitment should not accumulate more triglycerides than the vehicle control in 292 
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the commitment assays, regardless of effects in the standard adipogenesis assay [63].  293 

 294 

The human MSCs lack the issues inherent in the primary human preadipocyte models; they can be 295 

maintained in culture for several more passages, have less variability in sourcing, and are easier to isolate 296 

and culture, increasing the utility of this model. This should lead to an increased reliance on human MSCs 297 

for adipogenic in vitro testing. However, rigorous reproducibility assessments and comprehensive 298 

validation testing are still needed to ensure accurate translation to and/or prediction of in vivo and human 299 

health outcomes. Diverse bisphenols [72-74] and their mixtures [75], flame retardants [18], parabens [76], 300 

and other environmental contaminants [63, 77-79] have been evaluated using MSC models. Research in 301 

female MSCs demonstrated that RXR agonists attenuated glucose uptake; blunted adiponectin expression; 302 

promoted a sustained interferon signaling, inhibiting markers of adipocyte browning; and unlike 303 

activation of PPARγ, failed to downregulate proinflammatory and profibrotic transcripts [77]. As the 304 

authors described, these data implicated RXR agonists in the development of dysfunctional white adipose 305 

tissue that could potentially exacerbate obesity and/or diabetes risk in vivo. Future research is needed to 306 

evaluate these functional differences in adipocyte physiology to determine more subtle effects of 307 

obesogenic contaminants. There has also been some initial research to evaluate the interplay between 308 

lineage commitment, suggesting that exposures to certain chemicals can not only commit cells to the 309 

adipocyte lineage but can also suppress the osteogenic lineage [45]; this interplay between different cell 310 

lineages is an area of research that still requires further investigation and mechanistic assessment.  311 

 312 

Human multipotent adipose-derived stem cells (hMADS), obtained from human infant adipose tissue, 313 

have also been used to study the effects of aryl hydrocarbon receptor ligands that demonstrated an 314 

inflammatory response in pre-and adipocytes, a phenomenon observed in obesity [80]. hMADS were also 315 

used to screen 49 contaminants prioritized through ToxCast screening, reporting 26 active chemicals 316 

across diverse chemical groups (i.e., pesticides, phenolics, phthalates, etc.) [81].  317 

 318 
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2.3 Spheroid adipocyte models 319 

Spheroid cell cultures of both MSCs and preadipocytes are being developed and evaluated [82-87]. These 320 

culture techniques may allow some inherent benefits over the traditional adherent monolayer cultures. 321 

Spheroid culture of adipocyte models may improve differentiation efficiency relative to monolayer 322 

cultures [82-86, 88], reducing time and cost investment. The fundamental goal of spheroid models is to 323 

maintain greater in vivo or whole tissue-relevant signaling than monolayer models. Indeed, several papers 324 

have demonstrated greater adipogenic and osteogenic gene expression relative to monolayer cultures and 325 

a down-regulation of stemness markers [82, 83]. Other researchers have demonstrated increased plasticity 326 

of spheroid constructs through multiple generations of these cells able to commit to and differentiate into 327 

numerous cell lineages [89]. This plasticity might signal a greater variance in these models that requires 328 

further investigation. While these models have received no apparent use for the interrogation of putative 329 

obesogens, they have been demonstrated to exhibit improved relevance to the in vivo condition [90]. 330 

Specifically, researchers have demonstrated that human unilocular vascularized adipocyte spheroids have 331 

unilocular morphology and large lipid droplets, and these cells develop key features of adipocyte 332 

dysfunction (e.g., insulin resistance, impaired lipolysis, and disrupted adipokine secretion; [90, 91]) and 333 

respond to stress (toxin or culture-related) by secreting pro-inflammatory adipokines [92]. These spheroid 334 

cultures also maintain expression of markers specific to certain adipocyte types (e.g., brown) for longer 335 

than is possible in 2D culture [92]. These 3D cultures also exhibit more physiologically relevant gene 336 

expression (>4500 differentially expressed genes relative to 2D culture) and lipid profiles of >1000 lipid 337 

species resemble the in vivo condition [93]. As such, these models may allow for a clearer understanding 338 

of adipose physiology than was possible with monolayer cultures and hence requires further evaluation 339 

and comprehensive validation and testing; this should also include evaluation of known adipogenic and/or 340 

obesogenic contaminants to compare responses with existing models. 341 

 342 

2.4 Liver cell assays 343 
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Obesogens are also known to target liver (either directly or indirectly) and promote metabolic diseases 344 

such as toxicant-associated fatty liver diseases (TAFLD) or non-alcoholic fatty liver disease (NAFLD); 345 

thus, there is a need to have accurate in vitro hepatocyte models for testing chemicals. Liver cell assays 346 

are frequently used as surrogate models to predict in vivo hepatotoxicity related to chemicals and decipher 347 

the determinants of NAFLD development and progression. The use of various hepatocyte models for 348 

evaluating NAFLD and other metabolic disorders has been covered recently in detail [94-97]. These 349 

models have been used to evaluate diverse environmental contaminants, including bisphenols [98, 99], 350 

phthalates [99-101], pesticides [102], other environmental contaminants [99, 101], and therapeutics [103] 351 

for effects on NAFLD and other metabolic dysfunction. 352 

 353 

Among many liver cell lines, HepG2 cells a human hepatoma cell line commonly used for drug 354 

metabolism and hepatotoxicity studies. HepG2 cells express certain differentiated hepatic functions like 355 

lipoprotein metabolism, triglyceride metabolism, bile acid synthesis, glycogen synthesis, or insulin 356 

signaling, making them a useful tool for some studies targeting hepatotoxicity and drug metabolism 357 

[104]. HepG2 cells exposed to a low concentration of BPA alter lipid metabolism, mitochondrial function 358 

and promote lipid accumulation leading later one to steatosis [105]. Co-incubation of HepG2 with fatty 359 

acids palmitic acid and oleic acid, induced lipid accumulation in a dose-dependent manner which will 360 

contribute to steatosis [106].  361 

 362 

Comparatively, human THLE-2 and murine AML12 cell lines are derived from healthy liver cells and 363 

express characteristics of normal adult liver epithelial cells [107]. Insulin receptor expression was low in 364 

THLE-2 cells relative to AML12 and HepG2 cells, suggesting disparities in their application to insulin 365 

receptor signaling. Gluconeogenesis and hepatokine expression was impaired in both THLE-2 and 366 

AML12 cells; while expression of Angiopoietin Like 4 (ANGPTL4) was regulated by PPARδ activation 367 

similarly across THLE-2, AML12, and HepG2 cells, only HepG2 cells reflected the in vivo environment 368 
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with regulation by cAMP [107]. These models have been utilized to evaluate fatty acid induced lipid 369 

droplet accumulation and the presence and causes of heterogeneity in the lipid droplet content [108],  370 

 371 

The most prevalent human liver cell line is HepaRG. HepaRG cells can differentiate into hepatocyte-like 372 

and biliary-like phenotypes after dimethylsulfoxide (DMSO) (1.75 - 2%) exposure, and possess the ability 373 

to stably express several liver-specific genes such as albumin, aldolase B, CYP2E1 and CYP3A4 [109]. 374 

Changes in metabolites related to energy metabolism, oxidative stress, and insulin resistance have also 375 

been observed in differentiated HepaRG cells supplemented with an oleate/palmitate mixture [110]. 376 

These are consistent with alterations observed in the liver tissues of human patients and animal models of 377 

NAFLD [111, 112]. Altogether, these data further support the suitability of the fatty acid-supplemented 378 

HepaRG model to study the impact of obesogens on steatosis progression towards steatohepatitis in the 379 

context of the “two-hit” model [113]. In line with these data, an oleate/stearate mixture is sufficient to 380 

decrease the expression of CYP1A1, 1A2, 1B1 and decrease their activity after steatosis induction [114]. 381 

These results corroborate data obtained from NAFLD rodent models, especially regarding CYP1A1 and 382 

1A2 [115-117].  383 

 384 

In addition, several 3D liver culture models have also been developed to create a cell environment closer 385 

to in vivo conditions. In 3D cell cultures, cell growth and interaction with surrounding conditions exhibit 386 

higher differentiation and benefit from more extended culture than 2D cultures [118]. When cultured as 387 

3D spheroids, HepaRG cells express genes involved in lipoprotein metabolism, energetic lipid synthesis, 388 

gluconeogenesis, glycolysis, and bile acid metabolism, liver-specific functions, and xenobiotic 389 

metabolism enzymes [119, 120]. 390 

 391 

Primary human hepatocytes (PHH) are increasingly used to predict drug metabolism and liver enzyme 392 

induction in humans. However, PHH have inherent limitations: scarce and unpredictable availability, 393 

limited growth activity and lifespan, and early and variable phenotypic alterations in 2D culture. 394 
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Moreover, liver-specific functions, particularly cytochrome P450 (CYP) activities and their 395 

responsiveness to prototypical inducers, are not maintained with increasing time of culture. Liver-specific 396 

functions also usually decrease with time in culture and are differently altered [121, 122]. Cultivated in a 397 

3D collagen matrix, they proliferate, form hollow spheroids, and undergo robust hepatic differentiation. 398 

They can be maintained in this state for at least 28 days without decreasing survival rate and cellular 399 

polarity and require fewer cells to generate spheroids than 2D cultures [123]. PHH 3D-spheroid models 400 

co-cultured with liver sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells, increase human 401 

hepatocyte functionality (increased mRNA expression of APOB, CYP3A4, and albumin). Essential 402 

factors such as spheroid size, time in culture, and culture media composition affect basal levels of 403 

xenobiotic metabolism and liver enzyme inducibility via activators of hepatic receptors such as the aryl 404 

hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), and pregnane X receptor (PXR) 405 

[124]. Various co-culture techniques have also been developed for liver cell assays to recreate more tissue 406 

or disease-relevant environments for the evaluation of disease biology and toxicology [125]. 407 

 408 

Similarly, primary murine hepatocytes (PMHs) are readily isolated through rapid protocols and thus have 409 

improved availability relative to PHH [126]. PMHs have been well-described as a model to assess fat 410 

deposition, inflammatory responses, and mechanistic interrogation of fatty acid induced lipid 411 

accumulation by diverse contaminants [127-129]. 412 

 413 

2.5 Muscle cell assays 414 

While skeletal muscle is the main tissue responsible for utilization of glucose and is the main site of the 415 

development of insulin resistance, the impact of toxicants on skeletal muscle has not been extensively 416 

studied. Detecting effects in vitro can be difficult due to the specific cell culture requirements and 417 

stimulation of skeletal muscle fibers required to mimic physiological function. Since skeletal muscle 418 

plays a critical role in developing metabolic diseases, any chronic disturbances in muscle cells may 419 

contribute to insulin resistance and subsequent obesity.  420 
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 421 

The most widely used in vitro myocyte model is the murine myoblast cell line, C2C12. These cells can be 422 

differentiated into myotubes (immature muscle cells) over several days. BPA and estradiol have been 423 

demonstrated to suppress myogenic differentiation by inhibiting Akt signaling in C2C12 cells [130], 424 

potentially disrupting ER signaling. Tolylfluanid alters insulin signaling, mitochondrial function, and 425 

protein synthesis in C2C12 cells in a manner dependent on fatty acid levels [131]. The rat myoblast cell 426 

line, L6, has a longer differentiation time relative to C2C12 cells, as well as appreciable differences in 427 

mitochondrial respiration and glucose utilization [132]. In L6 rat myotubes, di(2-ethylhexyl) phthalate 428 

(DEHP) exposure was shown to affect insulin receptor expression, GLUT4 expression, as well as glucose 429 

uptake and oxidation, indicating that it may negatively influence insulin signaling [133]. The pesticides 430 

dichlorodiphenyltrichloroethane (DDT) and lindane impair insulin signaling in L6 myotubes, promoting 431 

insulin resistance-like conditions [134]. 432 

 433 

Human and rodent primary myoblasts are also used. However, they are unsuitable for extended cultures 434 

and more extensive screening studies due to relatively low numbers of cells obtained at a relatively high 435 

cost. Some polychlorinated biphenyls (PCBs) have been shown to inhibit myogenic differentiation of 436 

primary murine myoblasts and L6 cells [135]. In primary murine myoblasts differentiated to myotubes, 437 

low micromolar concentrations of BPA and tetrabromobisphenol A (TBBPA) were shown to affect 438 

calcium signaling and resting potential. In a similar study, using rabbit skeletal muscle microsomes, BPA 439 

and TBBPA were shown to differently affect the function of proteins involved in calcium signaling [136]. 440 

 441 

Notably, there are distinct differences between mature muscle tissue and myotubes derived from myoblast 442 

cell lines or primary myoblasts [132]. Myotubes have lower energy demand, lower oxidative 443 

phosphorylation, higher glycolysis, and lower insulin responsiveness [137]. There is a considerable 444 

knowledge gap regarding the effects of environmental chemicals in more complex and physiologically 445 

relevant skeletal muscle systems, which require additional validations. 446 
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 447 

3. In vivo assays 448 

While in vitro mechanistic studies are a critical component in environmental chemical research, these 449 

studies cannot replace the need for in vivo integrative models, particularly for adverse health outcomes 450 

that develop later in life following developmental exposures. Research examining the environmental 451 

health consequences of exposure to environmental chemicals using animal models has demonstrated that 452 

some adverse health effects of chemical exposures reported in humans are also apparent across other 453 

vertebrates [138]. These findings are essential for understanding the impact of environmental chemicals, 454 

including obesogens, across all vertebrates [139]. These tests are critical because the classification of 455 

obesogens into different classes according to the strength of evidence is highly dependent on the tests 456 

used. 457 

 458 

Beyond the classical rodent in vivo models used to investigate human obesity, new models have emerged 459 

based on alternative model organisms, e.g., bony fishes, worms, and flies [140] (Figure 2). These model 460 

organisms, including Danio rerio (zebrafish), Caenorhabditis elegans (C. elegans; roundworm), and 461 

Drosophila melanogaster (fruit flies), offer several advantages to accurate discernment of the metabolic 462 

processes involved in metabolic diseases such as obesity [141]. These organisms share small size, large 463 

numbers of progeny, relatively rapid development, and sequenced genomes. They are well suited to 464 

moderate throughput screening of chemicals to study metabolic diseases [142-146]. Moreover, most 465 

genes and gene families implicated in metabolic diseases are conserved among flies, worms, zebrafish 466 

and humans [144]. Below we present a short overview of the utility of each model and some summarized 467 

obesogenic chemical evaluation using these emerging models (Table 1).  468 

 469 

3.1 Danio rerio (Zebrafish) 470 

Zebrafish, a small tropical freshwater fish native to South Asia (e.g., India and Bangladesh), has found 471 

wide use in almost all areas of biological research [147, 148]. Zebrafish is one of the most widely used 472 
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models to study metabolic dysfunction. They have indeed all the critical organs that regulate energy 473 

homeostasis and metabolism, including adipose tissue, digestive organs, i.e., pancreas and liver, and 474 

skeletal muscles, all physiologically and anatomically like humans [141, 149, 150]. The rapid 475 

development of zebrafish promotes metabolically functional organs only a few days post-fertilization 476 

(dpf; e.g., pancreas and liver develop around three dpf). Organogenesis and biological processes can be 477 

easily monitored due to the extra-uterine development and the semitransparency of the embryo and larva 478 

stages that persist until a relatively late stage of development [151].  479 

 480 

Zebrafish store excess neutral triglycerides in lipid droplets within white adipocytes similar to mammals 481 

[152] and have well-described anatomically, physiologically, and molecularly distinct adipose depots 482 

throughout their bodies [153-155]. This contrasts with Drosophila and C. elegans, where fat is stored in 483 

non-specialized cells (within the fat body or within the intestine, respectively) that carry out several other 484 

functions besides lipid storage [156]. Regulations of body weight, appetite, lipid, and sugar homeostasis 485 

share similar mechanisms between humans and zebrafish and are similarly affected by endocrine 486 

disrupting chemicals (EDCs) [145, 157, 158]. The development of WAT starts in the pancreatic and 487 

abdominal adipose depots, then in various cranial and ocular depots, and finally expands throughout the 488 

fish. The appearance correlates with the size rather than the age of the fish [159-161]. The first adipocytes 489 

develop from 8-12 dpf or at a minimal larval size of approximately 5 mm [160].  490 

 491 

Zebrafish obesity models enable the evaluation of diet, chemical or genetic, phenotypic modifiers through 492 

several different techniques [162-165]. Measurement of total body triglycerides may be used as an 493 

indicator for evaluating adiposity and/or obesity progression [161]. Adipocytes can also be visualized and 494 

quantified by lipid staining with the Oil Red O neutral dye or with various fluorescent lipophilic dyes 495 

(e.g., Nile Red, Lipid Green) in live fish, adult zebrafish sections, or fixed zebrafish larvae. Since 496 

zebrafish larvae are transparent, live-imaging and fluorescent staining allow ready detection and 497 

quantification of intracellular lipid droplets and adipose tissue, including its regional body distribution 498 
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[166, 167]. These methodological advantages have been exploited for developing a bioassay to evaluate 499 

the obesogenic properties of chemicals in zebrafish larvae [161]. Zebrafish models can also help assess 500 

specific windows of sensitivity during life as well as transgenerational effects of obesogens [168-170] and 501 

can be used to study the interaction between the diet composition and metabolic health effects promoted 502 

by subsequent chemical exposures [114, 152, 159, 160, 171]. Interesting recent research demonstrated 503 

that long-term dietary vitamin D deficiency promoted stunted growth and increased central adiposity via 504 

both adipocyte hypertrophy and hyperplasia in both visceral and subcutaneous depots [172]. Through 505 

lipidomics analysis, these fish were demonstrated to have increased bioactive lipids that seemed to be 506 

mediated through disrupted endocannabinoid signaling [173].  507 

 508 

Zebrafish have been widely applied to obesogenic chemical testing, with expanding capacity for 509 

modulation of diverse metabolic disrupting effects [27, 169, 174-177]. Among other obesogenic chemical 510 

evaluations, developmental exposure of bisphenol S in combination with overfeeding promoted increased 511 

triacylglycerol and visceral adiposity via disrupted lipid metabolism [175], while BPA exposures both 512 

transiently and persistently disrupted food intake, increased body weights, and disrupted gene expression 513 

related to glucose and lipid metabolism [165]. Halogenated BPA analogs also promoted lipid 514 

accumulation in zebrafish larvae in a manner correlated with their activity as zebrafish PPARγ agonists 515 

[27]. Developmental exposures to nonylpthenol and nonylphenol polyethoxylates increased body weights 516 

and adiposity (in both viscera and subcutaneous adipose depots) and disrupted energy expenditure [79]. 517 

Tributyltin exposure has been described to increase body weights, hepatic triglycerides, and 518 

hepatosomatic index, along with disrupting genes related to adipogenesis, lipogenesis, and diverse other 519 

metabolism and growth-related pathways [178] as well as increasing adiposity [161]. Developmental 520 

cadmium exposures have also been demonstrated to increase lipid accumulation, though this effect was 521 

transient (observed at one and two months post fertilization but was no longer observed by 3.5 months 522 

[177]. Perfluorooctane sulfonate (PFOS) exposures have also been described to increase adiposity and 523 

Accepted manuscript / Final version



21 
 

disrupt pancreatic islet morphology and area in developmentally exposed zebrafish, along with increasing 524 

fatty acid concentrations and disrupting PPAR gene expression [169]. 525 

 526 

3.2 Oryzias latipes (Medaka) 527 

The Japanese rice fish, also known as the medaka, are a valuable model for environmental chemical and 528 

epigenetic transgenerational research [179]. Similar to zebrafish, this model can be used for estimating 529 

adipose tissue volumes and the effects of nutritional factors (dietary soy sauce oil) or various 530 

environmental chemicals such as per/polyfluoroalkyl substances and tributyltin chloride [180-182]. 531 

However, they lack the thorough characterization of adipose depots and the transparent bodies that 532 

zebrafish benefit from. They have also been utilized for determining transgenerational effects on 533 

metabolic health outcomes such as lipid metabolism [183]. Research using medaka has also evaluated 534 

chemical exposures and effects on bone formation [184], suggesting a potential strength for this model in 535 

the evaluation of differential MSC lineage commitment.  536 

 537 

Medka have not yet been widely used in obesogenic chemical evaluations, but some preliminary research 538 

suggests utility in this model for diverse obesogenic endpoints. Specifically, exposure of medaka to both 539 

tributyltin and perfluorooctane sulfonate (PFOS) individually promoted adipose accumulation in larvae, 540 

with mixtures of these two obesogens resulting in enhanced effects (even below the individual no-effect 541 

concentrations) [181]. In related research, tributyltin exposures disrupted signaling pathways related to 542 

PPAR signaling, hormonal metabolism, and genes related to obesity in humans via mRNA-Seq analysis 543 

in exposed zebrafish [185]. Similarly, BPA exposure was reported to disrupt genes related to lipid 544 

metabolism (cholesterol and lipid synethsis, regulation, and transport, etc.) in a sex-specific manner [186].  545 

 546 

3.3 C. elegans (Roundworm) 547 

The roundworm is a small nematode living in temperate soil environments that has been used as a model 548 

organism since the 1960s in everything from developmental biology to neurodegenerative disease and 549 
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aging. Although C. elegans is generally considered genetically and physiologically distant from humans, 550 

several studies have shown that the main regulatory pathways of energy homeostasis are shared between 551 

mammals and nematodes [144, 187, 188]. These advantages make C. elegans a suitable in vivo model to 552 

identify compounds that modulate fat storage and promote obesity [141, 189]. Both simple fluorescence 553 

(Nile red or Sudan-black probes) and biochemical (triglyceride assays) techniques can be used to quantify 554 

lipid amount and fat storage in these worms [188]. In addition, genetic approaches using mutant or 555 

transgenic animals can help evaluate molecular mechanisms underlying metabolic health effects [187, 556 

188]. Moreover, C. elegans can be readily used to measure food intake and energy expenditure [188, 557 

190]; several diets, food-derived or nutraceutical compounds, and fat-increasing compounds have been 558 

described to modulate fat accumulation [189-191]. Limitations of this model include lower conservation 559 

of biological pathways with humans and a lack of particular organs and circulatory systems [192]. C. 560 

elegans also lack PPARγ, though they do express orthologs of both PPARα and δ, and have no 561 

identifiable homolog for leptin [193, 194]. Perhaps unsurprisingly, they thus have no cells specifically 562 

designed for lipid storage (i.e. adipocytes), though they do still store lipids, primarily in intestinal and 563 

epidermal skin-like cells, which are comprised of diverse saturated, monounsatured, and polyunsatured 564 

fatty acids [193]. This model has also been used to assess transgenerational effects, with research 565 

demonstrating that starvation of the parental generaton promoted disrupted metabolism in the F3 566 

generation, whereas BPA exposures resulted in transgenerational modulation of epigenetic germline 567 

silencing through up to five subsequent (non-exposed) generations (reviewed in [195]).   568 

 569 

Despite these limitations, this model has been utilized widely in better understanding the genetics of fat 570 

accumulation, storage, and obesity [194, 196], and has been applied to obesogenic chemical evaluation 571 

successfully. Specifically, methylmercury exposure promotes triglyceride accumulation, lipid storage, and 572 

alter feeding behaviors [197], erythromycin promotes increased fat content and triacylglycerol levels as 573 

well as promoting overeating, presumably mediated through stimulation of serotonin, dopamine, and 574 

acetylcholine and/or disruption of lipogenesis and lipolysis [198]. Recent research demonstrated a non-575 
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monotonic increase in overall fat deposition and triglyceride content following bisphenol S exposures, 576 

along with modulation of fat synthesis and fatty acid oxidation gene expression [199].  577 

 578 

3.4 Drosophila melanogaster (Fruit fly) 579 

The fruit fly is one of the most used model organisms throughout biological research. The small size, 580 

short generation time, low cost, ease of breeding, and a large panel of genetic tools have spurred use in 581 

genetic and developmental biology research [192, 200]. Many studies have demonstrated the usefulness 582 

of this model in nutrition and obesity studies based on the manipulation of diet composition and genes 583 

involved in nutrient sensing and regulation of energy balance [201]. Although this model is anatomically 584 

different from mammals, many organ systems perform similar functions relative to mammals. For 585 

example, the fruit fly fat body covers metabolic functions of liver and adipose tissue (e.g., fat and 586 

carbohydrate storage). Instead of a fully differentiated pancreas, there are neurosecretory insulin-587 

producing cells (IPCs), which allow carbohydrate and lipid homeostasis via the production and secretion 588 

of an insulin-like peptide [146, 201]. Few studies have utilized this model to evaluate potential obesogens 589 

and/or obesity biology, though its suitability for evaluating endocrine impact(s) on development and 590 

fertility is well accepted [202]. The efficiency of this model in assessing obesogenic properties of EDCs is 591 

highlighted by several studies demonstrating alterations of lipid homeostasis with chemical exposure 592 

(e.g., DEHP) and subsequent increase in lipid/adipose accumulation and/or transgenerational effects [203-593 

205]. 594 

 595 

3.5 Rodents 596 

A critical issue in selecting an animal model is whether the outcomes examined are relevant to human 597 

anatomy, physiology, molecular mechanisms and show homology with humans, which has historically 598 

driven a reliance on rodent models (e.g., rats and mice). The use of rodents in metabolic health research is 599 

well-described and assessed by several previous reviews [206-208]. Here we will address other 600 

considerations for in vivo model organism research revealed through comprehensive evaluations in rodent 601 
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models. Many of these factors have yet to be evaluated or considered for the emerging models described 602 

above but will need to be assessed as they are increasingly used. 603 

 604 

Dozens of publications have clearly delineated the use of the rodent model in metabolic health research. 605 

A number of studies (reviewed in [207, 208]) have explicitly described the use of hypercaloric and/or 606 

high fat diets to promote metabolic disorders and the clear translation of this preclinical model to human 607 

metabolic syndrome. However, other approaches, such as creating a crowded uterus in pregnant mice due 608 

to prior hemiovariectorm, have also been used to generate metabolicly abnormal intrauterine growth 609 

restricted (IUGR) and macrosomic offspring in the same litter [209]. 610 

 611 

There are diverse genetic models of obesity, including db/db mice (leptin receptor mutation that promotes 612 

higher body weights, triglycerides, and cholesterol, hyperinsulinemia, and impaired glucose tolerance), 613 

ob/ob mice (leptin gene mutation resulting in inactive leptin protein and promoting obesity, 614 

hyperinsulinaemia and hyperglycaemia), fa/fa diabetic fatty rats (different leptin receptor mutation 615 

promoting hyperinsulinaemia, hypertriglyceridaemia, and increased serum inflammatory markers), and 616 

Otsuka Long-Evans Tokushima fatty rats (Pancreatic acini cells insensitive to cholecystokinin, which 617 

controls food intake, promoting obesity, hypertriglyceridaemia, impaired glucose tolerance), that have 618 

been described in detail previously [206]. Rodents can be robust models for body weight, adiposity, 619 

development of specific adipose depots, measurement of diverse lipid classes, glucose and insulin 620 

signaling, inflammatory markers, blood pressure, controlled measurement of food and water intake and 621 

metabolic activity, as well as NASH and NAFLD, among other metabolic outcomes [206].  622 

 623 

3.6 Use of inbred vs. outbred models 624 

Genetic diversity of model organisms (inbred versus outbred) can be an essential design consideration for 625 

chemical contaminant studies. Researchers may select an inbred rodent strain without background genetic 626 

variation to study the epigenetic basis of phenotypic diversity (e.g., inheritance of an epigenetic trait) 627 
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[210]. In contrast, a researcher may choose an outbred rodent (e.g., CD-1) for the genetically diverse 628 

background to assess toxicant-induced effects more rigorously. However, there are concerns that 629 

laboratory outbred rodent strains differ substantially between vendors and relative to bona fide outbred 630 

animals. Inbred rodents do not represent the spectrum of sensitivity required to model genetically diverse 631 

human populations accurately. For example, males at puberty have considerable heterogeneity in rodent 632 

responsiveness to estrogens [211]. The C57BL/6J inbred strain is exquisitely sensitive to estradiol after 633 

puberty relative to other mouse strains/stocks and exhibits hyper-estrogenization during fetal life, which 634 

becomes apparent in behavioral assays [212]. Interestingly, C57 mice are insensitive to xenoestrogens 635 

administered via the dam compared to the outbred, hyper-fertile CD-1 mouse, which exhibits high 636 

sensitivity fetal-neonatal response to xenoestrogens [213]. Given this, the choice of strain used can have 637 

demonstrable impacts on endpoint measurements.  638 

  639 

3.7 Animal feed as a source of variability 640 

Animal feed can be a substantial source of variability in toxins, phytoestrogens, sources of fats, and other 641 

components. Open formula feeds provide the proportion of nutrients, which is intended to reduce, but not 642 

eliminate, batch-to-batch variability. Closed formula (constant nutrition) feeds just provide information 643 

about the amount of protein, fat and fiber, but the sources may vary due to price and availability [214, 644 

215]. Thus, the choice of feed used in animal studies, impacted by price, can be a critical source of 645 

variability in outcomes of health-related research and can also be the basis for studies that do not replicate 646 

prior results [216]. For example, publications by Thigpen and colleagues reported that a batch of constant 647 

nutrition rodent feed (Purina® 5002) containing elevated levels of phytoestrogens (focusing on the soy 648 

isoflavones genistein and daidzein) interfered with the ability to see estrogenic effects of a positive 649 

control chemical, the potent estrogenic drug diethylstilbestrol (DES). However, DES effects were 650 

observed with another batch of 5002 feed that had much lower phytoestrogen levels. The rat strain used 651 

also mattered, with Sprague-Dawley rats showing no effect of use of soy feed, while the CD-1 mouse (the 652 
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model used by the National Toxicology Program), is, as discussed below, very sensitive to components of 653 

feed [217].  654 

 655 

This observation by Thigpen demonstrated that there can be significant batch-to-batch variability of 656 

phytoestrogen levels in laboratory animal feed with presumably the same nutrient profile; a constant level 657 

of soy protein in different batches of a feed can have markedly different levels of phytoestrogens, which 658 

vary in soy based on many environmental factors [216]. It has been assumed for some time that the only 659 

issue of concern with soy-based feeds was variability in the soy phytoestrogens genistein and daidzein, 660 

but findings described below suggest other components of soy-based feeds (e.g., contaminated fish meal, 661 

source of lipid) may also lead to significant differences in phenotype in mice. Second, the study revealed 662 

that specific batches of feed could promote replication failure relative to most prior studies reporting that 663 

DES (a known human carcinogen) disrupted development in mice, just as it did in humans [218]. 664 

Developmental exposure to DES also promoted obesity during later adulthood in mice maintained on a 665 

soy-based (NIH31) open formula feed [219]. This demonstrates that a core issue should be whether the 666 

feed used is resulting in an inability to see effects in response to treatments that others are reporting. Not 667 

surprising is that industry-funded research on BPA, which claimed to be a replication of findings from 668 

multiple laboratories [220], in fact, had used 5002 feed [221, 222]. This led to a failure to demonstrate a 669 

BPA-induced effect in both CF-1 mice and Crl:CD Sprague-Dawley (CD-SD) rats. This research also 670 

failed to demonstrate effects of DES with this food (included as positive control) [221], suggesting an 671 

inappropriate model to detect BPA-induced effects [223]. 672 

 673 

In other studies, the expected developmental effects of DES were again shown not to occur in CD-1 mice 674 

fed 5002 feed, but were found if the mice were fed the constant nutrition, soy-based Purina® 5008/5001 675 

breeder and maintenance feeds, respectively. Specifically, relative to Purina® 5008 fed to pregnant CD-1 676 

mice, the 5002 feed significantly estrogenized and elevated fetal serum estradiol in fetuses. Critically, the 677 

5008 feed had >50% higher total estrogenic activity (detected in a human breast cancer cell bioassay) as 678 
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well as higher amounts of genistein and daidzein relative to the 5002 feed, substantiating that 5002 feed 679 

interfered with finding DES effects, but this was not mediated by elevated genistein and daidzein or total 680 

estrogenic activity as initially proposed [224]. 681 

 682 

In addition to problems related to the use of soy-based 5002 feed, feeding casein-based low phytoestrogen 683 

5K96 feed to pregnant CD-1 mice also elevated endogenous serum estradiol in fetuses compared to CD-1 684 

mice fed Purina® 5008; 5K96 casein feed thus also promoted estrogenization of mouse fetuses, similar to 685 

effects in mice exposed as fetuses to xenoestrogens such as DES or BPA [225]. Relevant to this review, 686 

the 5K96 feed resulted in morbid obesity in adult CD-1 male mice (all internal organs were encased in 687 

fat) compared to Purina 5008/5001 or Harlan Teklad 8604, another soy-based constant nutrition feed 688 

[225, 226].  689 

 690 

Another example of feed-based impact on a supposed “non-replication” experiment was when prior 691 

metabolic effects of BPA and DES were not found is a study in which the control CD-1 mice were 692 

morbidly obese and did not show the previously reported effects of fetal exposure to BPA or DES [227] 693 

while maintained on the casein-based AIN93G feed [228]. The fetal mice whose mothers were fed casein-694 

based 5K96 or soy-based 5002 feeds potentially had elevated aromatase (estrogen synthetase) activity, 695 

thus elevating fetal estradiol levels, compared to other soy-based feeds. Various flavonoids and lignans 696 

have been reported to inhibit aromatase activity in a human preadipocyte cell culture assay [229], 697 

although the components of the different feeds that caused these effects remain unknown.   698 

 699 

There have been many articles published about the issue of non-replication in laboratory research, mostly 700 

attempting to sensationalize the problem [230], but clearly, there are issues, such as variability in feed, 701 

that are a major contributing factor in non-replication in laboratory animal research. The above findings 702 

demonstrate the critical importance of, whenever possible, including a positive control in toxicological or 703 

pharmacological studies that will provide information about the sensitivity and validity of the assays and 704 
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results [223]. The vast diversity of animal feed components, including the casein or soy backbone and 705 

multiple sources of protein and lipids, can markedly impact research findings related to metabolic health. 706 

 707 

3.8 The role of positive controls in animal model selection 708 

A National Toxicology Program (NTP) panel addressed animal models for EDCs or drug research. It 709 

stated: “Because of clear species and strain differences in sensitivity, animal model selection should be 710 

based on responsiveness to active endocrine agents of concern (i.e., responsive to positive controls), not 711 

on convenience and familiarity.” The rat strain (CRL: CD(SD)) is used by many investigators to examine 712 

gestational exposure to estrogenic chemicals and drugs, although this rat strain required over a 15-fold 713 

higher dose of ethinylestradiol to show a response relative to women [231]. It is well known that selecting 714 

for very high fecundity (CD-SD rats average 14-15 pups per litter), results in low sensitivity to estrogenic 715 

drugs and chemicals [232]. 716 

 717 

It is also possible that the characteristics selected for in the generation of the CD-SD rat strain, with large 718 

litter size and accelerated postnatal growth, may make them resistant to contaminant exposures, reducing 719 

their future sensitivity and usefulness as a model; this strain is generally used in all FDA and in many 720 

commercial laboratory toxicology studies. Some strains have undergone selection for large litter sizes for 721 

over 100 generations in commercial laboratories, with the largest 5-10% of litters selected every 722 

generation for >100 generations, regardless of whether they were exposed to pesticides (in feed or used in 723 

the colony), xenoestrogens in their cage materials, or diseases in the colony, etc. The result is laboratory 724 

animal strains that are precocious, excellent breeders and produce large litters. However, the laboratory 725 

animal suppliers selected large litter animals not sensitive to environmental chemicals [211, 232]. Thus, 726 

before proceeding with experiments using environmental chemicals such as potential obesogens, it is 727 

critical to examine the sensitivity of the animal model to appropriate positive controls (e.g., DES for 728 

estrogenic testing) for the endpoint examined to ensure that each experimental design is sensitive to the 729 
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environmental chemical being examined. 730 

 731 

3.9 Animal housing 732 

The caging used in an experiment is an additional key factor. This was clearly described in studies of 733 

BPA, the monomer used to make polycarbonate cages and bottles. Due to harsh washing of the cages, 734 

BPA was found to leach from the polycarbonate cages; this was further shown to expose both control and 735 

intervention animals to this xenoestrogen, negatively influencing the experimental determinations of 736 

successful meiosis in mouse oocytes [233-235]. It is also worth noting that the vast majority of aquatic 737 

housing systems use polycarbonate; there is likely to be leaching of BPA from these and potential 738 

recirculation of the chemical throughout the system. While some alternatives do exist [e.g., polysulfone 739 

(PS) or glass], they are often cost-prohibitive. Polycarbonate (PC) consists of BPA molecules linked by 740 

ester bonds that are subject to hydrolysis under elevated temperature or either high or low pH. PS is a co-741 

polymer of BPA and bisphenol S (BPS) that is linked by ether bonds and is stable under temperature and 742 

pH conditions that hydrolyze BPA bonds in polycarbonate, though PS cages are more expensive. It is 743 

essential to ascertain the potential impacts of the housing materials (for rodents, also water bottles) on 744 

testing estrogenic or other metabolism disrupting chemicals. 745 

 746 

3.10 Assays for detecting thermogenic brown fat activity 747 

Beige and brown thermogenic fat produces heat during non-shivering thermogenesis to regulate body 748 

temperature by burning calories (i.e., glucose and lipids) [236]. These tissues help regulate glucose and 749 

lipid levels, making them high-priority targets for future therapeutics in the treatment and prevention of 750 

obesity and other metabolically related diseases [237]. The functionality of beige and brown fat and the 751 

discovery that these tissues exist in adults have made the development of reliable assays a critical step to 752 

better quantify and harness their therapeutic potential as well as to identify chemicals that promote or 753 

inhibit function.  754 

 755 
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The energy expenditure in beige and brown adipose tissue (BAT) is made possible through the activity of 756 

uncoupling protein 1 (UCP1) in brown and beige fat, which uncouples mitochondrial respiration from 757 

ATP production, leading to the generation of heat [237]. Reporter systems that focus on UCP1 levels 758 

have been developed to measure the activity of thermogenic fat and have been used as a screening tool to 759 

identify novel small molecules that can induce thermogenesis within these tissues. Specifically, the 760 

ThermoMouse model measures thermogenesis via luciferase activity linked to levels of UCP1 expression 761 

in BAT following environmental stimuli (e.g., decreased temperatures) [238], which has also been 762 

adapted as an in vitro assay to screen small molecules for luciferase activity [238]. This assay has 763 

supported screening of potential drug targets that promote UCP1, and which could provide a foundation 764 

for future BAT-mediated drug therapies that could induce thermogenesis and energy expenditure [239-765 

243].  766 

 767 

The OLTAM (ODD-Luc based Thermogenic Activity Measurement) system was developed to assay the 768 

activity of UCP1 independent thermogenesis in beige and BAT. In this in vivo model, a transgenic mouse 769 

that expressed the ODD (oxygen-dependent degradation) domain of hypoxia-inducible factor 1 alpha 770 

(HIF1α), tagged with luciferase, was used to measure hypoxia. Hypoxia has been shown to take place 771 

during nonshivering thermogenesis in beige and brown fat and is an indicator of thermogenesis [244]. An 772 

in vitro system was developed using the stromal vascular fraction of isolated brown adipocytes from these 773 

mice to measure cell-based thermogenic activity [244]. These cells could be used to evaluate the action of 774 

chemicals on the function of thermogenic beige and brown adipocytes. 775 

 776 

Measuring changes in heat generated within BAT offers another tool to assay thermogenic activity. 777 

Noninvasive imaging techniques lack sensitivity and specificity due to the distance between the 778 

instrument and the tissue, and invasive techniques lack sensitivity due to their inability to directly and 779 

safely insert into BAT and their inability to detect more minute temperature fluctuations [245]. Xenon-780 

enhanced computed tomography enabled accurate measurement of BAT within mice due to the lipophilic 781 
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preference of xenon gas [246], which has been further enhanced through later research [245]. 782 

ERthermAC, a small molecule fluorescent dye that responds to changes in intracellular heat, is another 783 

tool that has been found to assay chemically stimulated thermogenesis in both rodent and human brown 784 

adipocytes [247], and has provided evidence comparable to existing indirect methods of measurement.  785 

 786 

Lastly, UCP1-expressing brown adipose cells isolated from supraclavicular depots in humans have 787 

revealed that the molecular makeup of these cells more closely resembled mouse beige adipocytes than 788 

brown adipocytes [248]. In addition, humans who initially possessed no BAT, were found to create new 789 

BAT within the supraclavicular region. This suggests that human BAT is derived from the browning of 790 

beige fat. One could develop assays based on these cells to identify chemicals that promote or inhibit the 791 

production of these thermogenic adipocytes. 792 

 793 

4. In silico tests 794 

Computational strategies offer promising tools for developing animal-free models for human risk 795 

assessment of obesogens. Traditional computational methods using structural information of chemicals 796 

(quantitative structure-activity relationship (QSAR), Read Across) have already been outlined as a 797 

general strategy for non-animal testing approaches, for example, by the US National Research Council 798 

(Tox21, Toxicity Testing in the 21st Century) [249] and the Organization for Economic Cooperation and 799 

Development (OECD) guidelines. New approach methodologies (NAMs), including silico methods, are 800 

increasingly important in toxicant risk assessment [250].  801 

 802 

With the recent advance in omics and high throughput screening, the amount of information on 803 

gene/protein activity in response to obesogenic chemicals has expanded substantially, thereby enabling 804 

the development of innovative approaches such as integrative systems biology/toxicology models. 805 

Systems toxicology uses advanced bioinformatics and statistical tools to integrate heterogeneous data 806 

types (functional genomic profile of obesogens, protein-protein interactions, protein-tissue associations, 807 
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disease annotations, etc.) to mimic the complexity of the biological organization, to identify 808 

uncharacterized putative associations between an obesogen and its biological targets, and therefore to 809 

prioritize further experimental testing, thereby associating these chemicals with the disease [251, 252]. 810 

 811 

Adverse Outcome Pathways (AOPs) are structured frameworks representing relationships between 812 

molecular initiating events, key events, and adverse outcomes. The OECD proposed AOPs to enable 813 

robust mechanistic evidence for chemical safety and risk assessment [253]. However, for chemical risk 814 

assesssments, a pragmatic approach has been proposed for applying AOP criteria in evaluating the safety 815 

of a chemical [254], since a comprehensive understanding of the initiating events and molecular pathways 816 

linking chemicals to adverse outcomes is unrealistic; for a chemical such as BPA with over 10,000 817 

publications and clearly understood to result in adverse effects [255], understanding all of the AOPs is 818 

still a work in progress. AOPs describe and connect data from various sources, i.e., databases and the 819 

scientific literature. Key information used to build AOPs can also be gathered using computational 820 

approaches based on artificial intelligence, such as frequent itemset mining and text mining [256]. AOP-821 

helpFinder is a recent hybrid tool that combines text mining and graph theory, helping identify the 822 

existing linkages between variables (e.g., an obesogen and a biological event) by automatically screening 823 

the available scientific abstracts [257]. Using this tool, it was possible to link exposure to bisphenol S 824 

with obesity [258]. Integrative systems toxicology modeling and text mining can also link obesogens to 825 

AOPs, as proposed recently for bisphenol F [259].  826 

 827 

5. The Future of Screening for Obesogens 828 

A single approach or assay will not yield all the information needed to identify and classify obesogens. 829 

Data from epidemiological studies should be integrated with experimental data from animal models to 830 

support the evidence for the obesogenic potential of an identified chemical. It is advisable to adopt a 831 

tiered approach to identify and characterize EDCs, which can ultimately inform their classification as 832 

obesogens, which has been proposed previously [260]. For example, if robust biomarkers such as 833 
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epigenetic modifications (e.g., DNA methylation), growth factors, or metabolites are identified through in 834 

vivo experimental studies, they can be matched with findings from human studies. In vitro methods that 835 

assess these changes will support prioritized screening for putative obesogens, which can then be 836 

classified accordingly. Structured frameworks, such as the integrated approaches to testing and 837 

assessment (IATAs), allow categorization of different tests that support the linkage of a chemical with an 838 

adverse outcome and with the different events leading to that outcome. IATAs are expected to be used for 839 

large scale obesogen testing and appear to be more time- and cost-effective than current approaches [261]. 840 

Additional in vitro tests are needed, including assays that will develop and characterize brown and beige 841 

adipocytes to be used to define further the sites and actions of potential and actual obesogens.  842 

 843 

Approaches like this have been previously attempted using the ToxCast dataset. The National Institute for 844 

Environmental Health Sciences (NIEHS) hosted a workshop in 2011 to develop models for predicting 845 

obesogenic and/or diabetogenic outcomes using ToxCast and Tox21 data [262]. Expert panels developed 846 

(among others) a model to predict chemicals likely to promote adipocyte differentiation. An early 847 

application of this model reported poor performance in predicting both active and inactive adipogenic 848 

chemicals and suggested that better validation of primary high throughput screening assays was required 849 

before using ToxCast data for this purpose [62]. Later analysis updated the predictive model and reported 850 

more promising effects [81]. Computational modeling cannot substitute for experimental (in vitro and in 851 

vivo studies) but can help prioritize obesogens, assess human health risks and trigger new epidemiological 852 

and experimental studies. To be useful for screening purposes, computational models need to be grounded 853 

in real-world data and continually refined such that predicted activities match the results of in vitro and in 854 

vivo screening assays. 855 

 856 

Indeed, there is consensus regarding the need for standardized testing methods to identify new chemicals 857 

that trigger metabolic dysfunction. In this context, initiatives like the French PEPPER (Public-privatE 858 

Platform for the Pre-validation of Endocrine disRuptors characterization methods, https://ed-pepper.eu) 859 
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platform may facilitate development of pre-validated methods and assays in toxicology for identification 860 

of novel EDCs [263]. In Europe, a collaborative group of eight projects, named EURION [264], was 861 

established in 2019. EURION aimed to develop integrative tests to identify new EDCs. Among 862 

EURION’s projects, three projects focus on obesity and metabolic disorders (OBERON [265], GOLIATH 863 

[266], and EDCMET [267]), which are expected to deliver standardized batteries of tests for the 864 

identification of novel obesogens.  865 

 866 

As the field of obesity and adiposity research develops, more research will likely utilize some of the 867 

alternative models described above. While historically less utilized than rodents, these models have some 868 

advantages that are likely to see increased use in the coming years. Among these are the relatively lower 869 

cost and rapid development of assays and models that may allow for superior chemical mixture 870 

assessments than using rodent models. In vitro models have also continued to expand, with an anticipated 871 

shift to greater use of normal human cell models, three-dimensional culture techniques, and co-cultures 872 

techniques that may recreate the physiology present in the tissue microenvironment more accurately. 873 

Recent advances in high content analysis provide promising grounds for increased throughput of 874 

adipogenesis models, which would enable the screening of larger number of chemicals and their mixtures 875 

with increased sensitivity and the possibility to differentiate the changes in adipocyte number as well as 876 

size [42, 75]. Predictive models are still early in development but have shown some promise in predicting 877 

likely active adipogenic and/or obesogenic chemicals. Predictive models based on key concepts for 878 

obesogens (such as those recently described for EDCs and hepatotoxicants [268, 269]) are likely to 879 

support determinations of obesogens and their causal mechanisms of action. They should be prioritized on 880 

an international level, such as the OECD.  881 

 882 
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Figure Legends 1743 

 1744 

Figure 1: In vitro models used for testing the effect of metabolic disrupting chemicals on various 1745 

pathways. Common uses of the various cell models are described.  1746 
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 1747 

Figure 2: Advantages and disadvantages of in vivo models for metabolic disrupting chemical evaluation. 1748 
Common or emerging model organisms used in metabolic health research are discussed and various 1749 
characteristics are described.  1750 
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Table 1: Obesogenic chemical testing in emerging in vivo models (zebrafish, medaka, roundworm, 1752 
fruit fly) 1753 

 1754 

Species Mode of action  Representative References 
Danio rerio Obesity phenotype 

Increased weight, adiposity, and/or lipid accumulation 
Cadmium: [177], [270] 
DDT mixture: [271] 
Nonylphenol and polyethoxylates: [79] 
Bisphenols: [272], [27], [165] 
Phthalates: [176], [273], [174]| 
PFOS: [169] 

NAFLD phenotype  
Steatosis, fatty liver changes  

Cadmium: [270] 
Benzo(a)pyrene: [274], [275] 
Bisphenols: [276], [277], [278], [279], [280] 
Phthalates: [281], [282] 

Metabolism changes 
Metabolomics, lipids, fatty acids, diabetic phenotype, etc. 

Bisphenols: [283], [278], [165] 
Phthalates: [176], [284], [174] 
PFOS: [169] 

Oryzias 
latipes 

Obesity phenotype 
Increased weight, adiposity, and/or lipid accumulation 

TBT: [182] 
TBT/PFOS: [181] 

NAFLD phenotype  
Steatosis, fatty liver changes 

 

Metabolism changes 
Metabolomics, lipids, fatty acids, diabetic phenotype, etc. 

TBT: [182] 
Bisphenols: [186] 
 

C. elegans Obesity phenotype 
Increased weight, adiposity, and/or lipid accumulation 

Bisphenols: [199], [285] 
Erythromycin: [198] 
PFOA: [286] 

NAFLD phenotype  
Steatosis, fatty liver 

 

Metabolism changes 
Metabolomics, lipids, fatty acids, diabetic phenotype, etc. 

Bisphenols: [199] 
Erythromycin: [198] 
Methylmercury: [197] 
PFOA: [286] 

Drosophila 
melanogas
ter 

Obesity phenotype 
Increased weight, adiposity, and/or lipid accumulation 

DEHP: [287] 

NAFLD phenotype  
Steatosis, fatty liver changes  

 

Metabolism changes 
Metabolomics, lipids, fatty acids, diabetic phenotype, etc. 

PFOA: [288] 
PFOS: [289] 

 1755 

Summary table of obesogenic activity testing in the zebrafish, medaka, roundworm, and fruit fly models. 1756 
Representative obesogenic chemical testing (non-exhaustive) is included to detail the diversity of 1757 
contaminants examined.  1758 
 1759 
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