
HAL Id: hal-03669388
https://hal.science/hal-03669388

Submitted on 16 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-smooth Bayesian learning for artificial neural
networks

Mohamed Fakhfakh, Lotfi Chaâri, Bassem Bouaziz, Faiez Gargouri

To cite this version:
Mohamed Fakhfakh, Lotfi Chaâri, Bassem Bouaziz, Faiez Gargouri. Non-smooth Bayesian learning
for artificial neural networks. Journal of Ambient Intelligence and Humanized Computing, In press.
�hal-03669388�

https://hal.science/hal-03669388
https://hal.archives-ouvertes.fr


Non-smooth Bayesian learning for artificial neural networks

Mohamed Fakhfakh1,2*, Lotfi Chaari2, Bassem Bouaziz1 and Faiez Gargouri1

1*University of Sfax, MIRACL laboratory, Tunisia.
2*University of Toulouse, INP, IRIT, France.

*Corresponding author(s). E-mail(s): mohamed.fakhfakh@toulouse-inp.fr;
Contributing authors: lotfi.chaari@toulouse-inp.fr; bassem.bouaziz@isims.usf.tn;

faiez.gargouri@isims.usf.tn;

Abstract

Artificial Neural Networks (ANNs) are being widely used in supervised Machine Learning (ML) to
analyze signals or images for many applications. Using an annotated learning database, one of the
main challenges is to optimize the network weights. A lot of work on solving optimization problems
or improving optimization methods in machine learning has been proposed successively such as
gradient-based method, Newton-type method, meta-heuristic method. Moreover, sparse regularizer
is designed to zero superfluous weights and hence remove unneeded connections. However, if one
wants to promote sparse networks, such as the `1 norm, one need use sparse regularizations, the
optimization process becomes challenging since the error to be minimized is no longer differentiable.
In this paper, we propose an MCMC-based optimization scheme formulated in a Bayesian framework.
The proposed scheme solves the above-mentioned sparse optimization problem using an efficient
sampling scheme and Hamiltonian dynamics. The designed optimizer is conducted on four datasets,
two COVID-19 and two standard datasets ( Fashion-MNIST and CIFAR-10). The results are verified
by a comparative study with three different CNNs, one of which is deeper than the others in order
to evaluate the effectiveness of our optimizer. Promising results show the usefulness of the proposed
method to allow ANNs, even with low complexity levels, reaching high accuracy rates of up to
94% in most of the experiments carried out. The proposed method is also faster and more robust
concerning overfitting issues. More importantly, the training step of the proposed method is much
faster than all competing algorithms.

Keywords: Artificial Neural Networks, Machine Learning, Optimization, Hamiltonian dynamics

1 Introduction

Machine learning (ML) Shakshuki et al. (2020) is a
subfield of artificial intelligence (AI). It has grown
at a remarkable rate, attracting a great number of
researchers which are intended to study how a sys-
tem can perform a task through learning. In fact,
an ML system does not follow instructions, but

learns from experience, for example, make predic-
tions or decisions by learning from data and keep
improving the performance by examining more
data. ML research achieved outstanding results on
several complex cognitive tasks, including Com-
puter Vision Alsarhan et al. (2021), Medical diag-
noses Chaabene et al. (2021); Sree et al. (2021),
Signal Processing Jaini et al. (2021), etc. During
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the last two decades, Deep Learning (DL) archi-
tectures Devunooru et al. (2021); Goyal and Singh
(2021) have demonstrated their ability to deal
with more voluminous and complex data. More-
over, it has gradually become the most widely used
computational approach in the field of ML, achiev-
ing outstanding results on several cognitive tasks,
matching or even beating those reached by human
performance. One of the benefits and difficulties
at the same time of DL is the ability to learn from
massive amounts of data.
In the same sense, Convolutional neural networks
(CNN) Drewek-Ossowicka et al. (2021); Sajja and
Kalluri (2021); Fakhfakh et al. (2020a); Ostad-Ali-
Askari et al. (2017); Ostad-Ali-Askari and Shayan
(2021) are one of the state-of-art deep learning
techniques. CNNs are designed to automatically
and adaptively learn spatial hierarchies of features
through backpropagation Rumelhart et al. (1986)
by using multiple building blocks, such as convo-
lution layers, pooling layers, and fully connected
layers. However, training a CNN is a challenging
task, especially for deep architecture involving a
high number of parameters (model weights) to be
estimated. Sophisticated optimization algorithms
need therefore to be used. This is indeed the key
step in order to fit a given architecture for learning
data to minimize the error between ground truth
and estimates.
In this sense, many optimization algorithms have
been proposed in recent years. The performance
of the algorithms strongly depends on the convex-
ity and differentiability of the target loss function.
Hence, choosing an optimization strategy that
seeks to find the global optima in the learning
stage is generally challenging. A non-appropriate
optimization technique may for instance lead the
network to lie at a local minimum during the train-
ing phase. Speeding up the optimization process
is also a challenging issue for large databases.
All learning models, particularly Deep Neural
Networks (DNN), are well known for being over-
parameterized, in fact, relatively few network
weights are actually necessary to accurately learn
data characteristics. They are also known to have
many redundant parameters Scardapane et al.
(2017); Cheng et al. (2015). Moreover, the large
number of weight parameters often leads to a
heavy memory cost and computation resources. To
address this computational issue, several strate-
gies for reducing the number of network weights

(weight sparsification) have been proposed, either
on pre-trained models or during the training
phase.
To promote sparsity of DNNs, three main cat-
egories of methods can be identified: pruning,
dropout, and sparse optimization based tech-
niques.
i) Pruning removes weight parameters that are
insensitive to the performance of established dense
networks. The main drawback is linked to the
pruning criteria which requires manual setups of
layer sensitivity. Heuristic assumptions are also
necessary throughout the pruning process Han
et al. (2015); Anwar et al. (2017).
ii) Dropout reduces the size of networks dur-
ing training by randomly dropping units along
with their connections from DNNs. This method
can reduce overfitting efficiently and improve the
performance. Nonetheless, training a Dropout net-
work, usually takes more time than training a
standard neural network Srivastava et al. (2014).
iii) Optimization-based methods promote sparsity
in networks by introducing a regularization term
into the cost function (loss) that promotes estima-
tion with a large number of zero weights. Sparse
neural networks are being widely investigated for
applications Fan et al. (2020); Han et al. (2017)
and could even achieve better performance than
their original networks.
Although optimization-based sparsification is the
most promising class, introducing sparse regulariz-
ers generally leads to non-differentiable cost func-
tions. Using gradient-based techniques is therefore
sub-optimal. Moreover, non-convex regularizers
such as the `0 one, are more likely to produce unbi-
ased model with sparser solutions. However, to the
best of our knowledge, there is no previous work
proposing a flexible optimization-based technique
allowing to handle convex and non-convex regular-
izers, with non-differentiable cost functions. The
originality of the present work lies in :

• The Bayesian formulation of the optimization
problem for DNNs. It is a powerful strategy for
finding the extrema of objective functions that
are expensive to evaluate.

• The proposed flexible and efficient optimization
procedure which solves the non-differentiability
problem and allows handling different regular-
izers.
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• The proposed method ensures convergence to
the global minimum of the formulated cost-
function in contrast to other techniques (for
example gradient based).

In this context, the use of Bayesian techniques
has made huge strides in a variety of disciplines
over the decades, and there are many practical
advantages. The core concept is to use a proba-
bilistic formulation to integrate all uncertainties
throughout the model. Resorting to Bayesian
techniques in our case is motivated by the ability
of these methods to incorporate flexible prior
models translating these uncertainties, while
reducing the user input as all the model parame-
ters and hyperparameters can be estimated from
the data. Moreover, Bayesian inference using
Markov Chain Monte Carlo (MCMC) methods
Chaari et al. (2014, 2016) guarantees insensitivity
to local minima issues. The target space can be
fully explored once sufficient mixing properties
are enjoyed by the sampled chains. Such methods
can also be used as an alternative to variational
methods for non-convex problems, where stan-
dard optimization techniques still suffer from
computational and convergence limitations. As
mentioned above, the goal of this paper is to
develop a Bayesian model to minimize the target
non-linear cost function. The main contribution
lies in the adaptation of non-smooth Hamiltonian
methods to fit sparse ANNs as weigths are sub-
ject to sparsity constraints. Under the Bayesian
formulation, this can be modeled using a Laplace
prior distribution.
On the other hand, despite the above-mentioned
advantages of Bayesian formulations and MCMC-
based inference schemes, these techniques remain
time-consuming. Moreover, non-smooth priors
such as the Laplace one make complicated the use
of standard sampling methods. This also holds for
gradient-based techniques when `1 regularizations
are used. It is worth noting that `1 regularization
is typically used for signal and image recovery
problems where the target data enjoys high spar-
sity levels, either in the original or a transform
space Loris et al. (2007). The `1 problem is also
used in the artificial neural networks literature
under both constrained Gen et al. (2020) and
Lagrangian Ashwini and Shital (2019) formu-
lations. In this sense, non-smooth Hamiltonian

methods allow designing of fast and efficient sam-
pling schemes while handling non-differentiable
energy functions. Our contribution is therefore
focused on a new Bayesian optimization scheme
adapted to train sparse neural networks without
user configuration.
The rest of this paper is organized as follows.
After an introduction covering the context of this
research, Section 2 is dedicated to the state of the
art. Then, the addressed problem is formulated in
Section 3. The proposed efficient Bayesian opti-
mization scheme is developed in Section 4 and
validated in Section 5. Therefore, The discussion
will be presented in section 6. Finally, The con-
clusion and future work are drawn in Section 7.

2 Related Work

The performance of a DL algorithm mainly
depends on the optimization procedure used dur-
ing the learning process. The essence of most
architectures is to build an optimization model
and learn the parameters from the available learn-
ing data. Although there is not a single solution to
find the optimal set of parameters (i.e. weights) for
a neural network with reasonable complexity, sev-
eral researches have focused on the improvement
of optimization algorithms in order to enhance the
efficiency of deep learning architectures in terms
of accuracy, robustness and convergence time.
Indeed, optimization methods can be divided into
three categories Sun et al. (2019); Zaheer and
Shaziya (2019): i) first-order optimization meth-
ods such as stochastic gradient; ii) high-order opti-
mization methods, mainly Newton’s algorithm;
and iii) heuristic / meta-heuristic derivative-free
optimization methods.
First-order optimization algorithms Xie and
Zhang (2021), minimize an objective function
parameterized by a model’s weight by updat-
ing the weights in the opposite direction of
gradients of the objective function. When non-
convex or non-differentiable functions are used,
these methods may suffer from slow convergence
and local minima issues. The Stochastic Gradi-
ent Descent (SGD) method Robbins and Monro
(1951); Sutskever et al. (2013) is one of the core
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techniques behind the success of deep neural net-
works since it alleviates the above-mentioned dif-
ficulties. Therefore, the limitation is using equal-
sized steps for all parameters, irrespective of
gradient behavior. Adaptive Moment Estimation
(Adam) Kingma and Ba (2014) is one of the
recent and popular variants. It allows computing
adaptive learning rates Bruno et al. (2021) for
each parameter. Other variants have been widely
used and have demonstrated their efficiency like
AdaDelta Sutskever et al. (2013) and Adamax
Kingma and Ba (2014).
High-order optimization Shanno (1970); Pajarinen
et al. (2019) attracts widespread attention, but
face more challenges. These methods are particu-
larly useful where the objective function is highly
non-linear and poorly conditioned. Newton-type
methods use curvature information in the form
of the Hessian matrix, in addition to the gra-
dient. They are mainly introduced to extend
high-order methods to large-scale data Bollapra-
gada et al. (2019). However, this family of meth-
ods has not been widely used in DL because of
high per-iteration costs to store the inverse Hes-
sian matrix. Other Newton-based methods have
also been developed in the optimization literature
Byrd et al. (2016).

When the derivative of the objective function
is not easy to calculate, gradient-free techniques
can be used Berahas et al. (2019). In this sense,
heuristic and metaheuristic techniques have been
widely used. The recent literature involves numer-
ous works using such techniques for ANN training
such as Particle Swarm Optimization (PSO) Shi
(2004), Genetic Algorithm (GA) Whitley et al.
(1990), Improved whale trainer (IWT) Khishe
and Mosavi (2019), Chimp Optimization Algo-
rithm (ChOA) Jia et al. (2021), salp swarm
algorithm (SSA) Khishe and Mohammadi (2019),
Adaptive Best-Mass Gravitational Search Algo-
rithm (ABGSA) Mosavi et al. (2019), Dragon-
fly Algorithm (DA) Khishe and Safari (2019),
The Arithmetic Optimization Algorithm (AOA)
Abualigah et al. (2021). However, the imple-
mentation strategy of heuristic and metaheuristic
algorithms in large-scale deep learning problems
is still rarely investigated Berahas et al. (2019).
Indeed, although metaheuristic techniques may
provide satisfactory solutions in a reasonable time,
their main limitation lies in the difficulty to han-
dle high-dimensional and complex optimization

problems, as well as convergence guarantees and
stability. For specific cases, federated optimization
has also been investigated in the recent literature
developing Federated Learning (FL) techniques
Konečnỳ et al. (2016); Li et al. (2020); Yurochkin
et al. (2019). Individual nodes hold a portion of
the data, and the goal is to create a single com-
mon model that fits the entire distribution. A
small batch gradient descent is generally used for
weights optimization. FL is mainly useful when
data portions can/must be kept locally on col-
laborating nodes. Specific variants such as fuzzy
consensus have also been proposed Po lap (2021).
Several approaches are investigated in the litera-
ture to solve the optimization issue for Machine
Learning field. We summarize some of the men-
tioned optimization methods in terms of years of
publications, purpose, advantages and disadvan-
tages in Table 1. As described, the optimization
approaches could be belong to some classes such
as high-order methods, and metaheuristic meth-
ods.
Moreover, the main advantages are mainly sum-
marized in term of convergence speed, adaptation
to high-dimensional optimization, precision, and
prevention of local minima. Despite the existence
of some works that may be suitable for non-convex
problems, they should be improved especially
for large-scale problems. Indeed, one can easily
notice the slower convergence and the possibility
of falling into a local optimum quite far from the
global optimum, most of the optimization algo-
rithms.
On the other hand, the Bayesian framework has
demonstrated its ability to provide reliable opti-
mization models enjoying solid convergence guar-
antees and high stability level. Moreover, the
flexibility of this framework allows introducing
sophisticated constraints, such as those related
to networks sparsification. As regards inference,
MCMC-based techniques may also be adapted
to large data problems Quiroz et al. (2016). A
Bayesian framework assumes that all parameters
are realizations of random variables. Likelihood
and prior distributions are formulated to model
the available information on the target parame-
ters. An estimator for these parameters is gener-
ally derived using a maximum a posteriori (MAP)
framework. However, the main difficulty is to
derive analytical closed-form expressions of the
estimators because of the posterior distribution
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form which can be complex if sophisticated priors
are used, such as those promoting sparsity. In this
case, MCMC techniques are generally used to sam-
ple coefficients from the target posterior Fakhfakh
et al. (2020b). The main limitation of such tech-
niques lies in the high complexity level, espe-
cially when multidimensional data are handled. In
such cases, efficient sampling methods have been
proposed in the literature such as the random
walk Metropolis Hastings (MH) algorithm Lee
et al. (2012) or the Metropolis-adjusted Langevin
algorithm (MALA) Roberts and Tweedie (1996).
Recently, sampling using Hamiltonian dynamics
Hanson (2001) has been investigated developing
the so called Hamiltonian Monte Carlo (HMC)
sampling. A more sophisticated algorithm has
been proposed in Chaari et al. (2016) called
non-smooth Hamiltonian Monte Carlo (ns-HMC)
sampling. This method solves the problem of
HMC schemes that cannot be used in the case of
exponential distributions with non-differentiable
energy function.
The optimization methods in ANNs still face
many challenges and open problems. There are
mainly two major challenges with respect to data
and model. The first one is insufficient training
data, while the second is a non-convex objective
function in DL architectures. In general, training
a deep network requires large datasets to achieve
good training. However, the lack of datasets to
estimate the parameters in the learning models
may lead to high variance Chang et al. (2017) and
overfitting Hawkins (2004) problems. Regulariza-
tion and Dropout are the most used techniques to
alleviate the above-mentioned problems.
In this paper, we investigate the use of ns-HMC for
the learning process of ANNs. Specifically, we pro-
pose a Bayesian optimization method to minimize
the target cost function and derive the optimal
weights vector. The proposed method targets reg-
ularization schemes promoting sparse networks
Mocanu et al. (2018). Indeed, gradient-based opti-
mization methods in this case are not very efficient
due to differentiability and convergence issues.
Learning performances can therefore be altered.
We demonstrate that using the proposed method
leads to high accuracy results with different CNN
architectures, which cannot be reached using com-
peting optimizers.

3 Problem formulation

It is well known that weights optimization is one
of the key steps to design an efficient artificial
neural network. For instance, if we consider a
classification problem, the ANN weight vector W
is updated during the learning phase by minimiz-
ing an error between the ground truth and the
labels estimated using the network. An iterative
procedure is generally performed, and gradient-
based optimization procedures are used. For the
sake of efficiency, regularization can also be per-
formed in order to have a more accurate weights
configuration.
Though deep neural network has good expressive
ability, its large model parameters which bring
a great burden on calculation is still a prob-
lem remain to be solved. This problem hinders
the development and application of DNNs, so
it is worthy of deduce the model parameters
without losing performance. Sparsing neural net-
works is one of the methods to effectively reduce
complexity which can improve efficiency and gen-
eralizability. The sparse optimization method can
be used for various tasks to produce sparse solu-
tions. The `1 penalty added to the classification
cost can be interpreted as a convexification of the
`0 penalty. In Han et al. (2015), weights with the
smallest amplitude in pretrained networks are
removed. Model sensitivity to weights can also
be used Tartaglione et al. (2018); Gomez et al.
(2019), where weights with a weak influence on
the network output are pruned. The `0 norm,
which counts the number of non-zero elements, is
the most intuitive form of sparse regularizers and
can promote the sparsest solution. However, min-
imizing `0 problem is usually NP-hard Natarajan
(1995). The `1 norm is the most commonly used
surrogate, which can be solved easily.
When applied in DNNs, sparse regularizer is sup-
posed to zero redundant weights and thus remove
unnecessary connections. However, if one aims at
promoting sparse networks, sparse regularizations
should be used, which makes the use of gradient-
based algorithms inefficient since the error to
be minimized in this case is no longer differen-
tiable. To the best of our knowledge, this is the
first work which utilizes a Bayesian optimization
based method for Deep learning architectures.
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Table 1: Summary of Optimization Methods.

Categories Method Years Purpose Advantages Disadvantages
SGD Rob-
bins and
Monro
(1951);
Sutskever
et al. (2013)

2013 The update param-
eters are calculated
using a randomly
sampled mini-
batch. The method
converges at a
sublinear rate.

The computa-
tional time for each
update does not
depend on the total
number of training
samples

Difficult setting
of an appropriate
learning rate. The
solution may be
trapped at the sad-
dle point in some
cases.

First-Order Adam
Kingma and
Ba (2014)

2014 To dynamically
adjust the learning
rate of each param-
eter, use gradient
first and second
order moment
estimations.

Stable gradient
descent process.
Suitable for most
non-convex opti-
mization problems
with large data
sets and high
dimensional space.

The method may
not converge in
some cases.

Adadelta
Zeiler (2012)

2012 Change the way
of total gradient
accumulation to
exponential moving
average.

Improves the inef-
fective learning
problem in the
late stage of Ada-
Grad. Suitable
for optimizing
non-stationary
and non-convex
problems.

In the late training
stage, the update
process may be
repeated around
the local minimum.

Adamax
Kingma and
Ba (2014)

2017 Generalization of
Adam. It is based
on adaptive lower-
order moment
estimation.

Infinite-order
norm makes the
algorithm stable.

The penalty param-
eter is related to
both the original
and dual residuals
whose value is diffi-
cult to determine.

Newton’s
Method
Avriel (2003)

2003 Calculates the
inverse of the
Hessian matrix
to obtain faster
convergence than
with first-order
approaches.

Faster convergence
than the first-order
gradient method.
Quadratic conver-
gence under certain
conditions.

Long computing
time and large stor-
age space at each
iteration.



HMC-CNN 7

Table 1: Summary of Optimization Methods.

Categories Method Years Purpose Advantages Disadvantages
High-order Quasi-

Newton
Method
Nocedal
and Wright
(2006)

2006 Uses a Hessian
matrix approx-
imation or its
inverse.

There is no need
to calculate the
Hessian matrix’s
inverse matrix,
which reduces the
computing time.
It is possible to
obtain superlin-
ear convergence in
most cases.

Large storage
space: not suit-
able for large-scale
problems.

Hessian
Free (HF)
Method
Martens
et al. (2010)

2010 Sub-optimization
with the conjugate
gradient: avoids
the computation
of inverse Hessian
matrix.

The second-order
gradient informa-
tion can be used.
There’s no need to
calculate Hessian
matrices directly.
Suitable for
high dimensional
optimization.

Computation cost
to calculate the
matrix-vector
product increases
linearly with the
training data. Not
appropriate for
large-scale issues.

Sochastic
Quasi-
Newton
Method Bot-
tou et al.
(2018)

2018 Employs tech-
niques of stochastic
optimization : e.g.
online-LBFGS
Schraudolph et al.
(2007) and SQN
Byrd et al. (2016).

Can handle large-
scale issues.

More complex that
the stochastic gra-
dient method.

IWT Khishe
and Mosavi
(2019)

2019 Using a suit-
able spiral shape
inspired by a
humpback whale
to improve the
exploitation phase
of the standard
whale optimization
algorithm.

Stronger global
search ability.
It can be used
to effectively
solve complex
constrained
optimization
problems.

Slow convergence
and easy to fall into
local optimum.

Derivative-
free
”Meta-
heuristic”

SSA Khishe
and Moham-
madi (2019)

2019 Is a bio-inspired
optimization algo-
rithm based on
swarming mecha-
nism of salps to
enhance accuracy
and reliability of
the solution.

Faster to execute
because of its
lower complexity.
Improved capabil-
ity in avoiding local
minima.

It may get stuck
in the local area,
which results in the
failure to obtain the
global optimal solu-
tion.
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Table 1: Summary of Optimization Methods.

Categories Method Years Purpose Advantages Disadvantages
DA Khishe
and Safari
(2019)

2019 Inspired by the
dynamic and
static swarming
behaviors of drag-
onflies to resolves
local optima
stagnation when
solving challenging
problems.

Simple and easy to
implement. Having
few parameters for
tuning.

It does not have
an internal mem-
ory that can lead to
premature conver-
gence to the local
optimum.

ABGSA
Mosavi et al.
(2019)

2019 Used to solve the
problem of imperti-
nent classification
accuracy, and to
block local min-
ima as well as low
convergence speed
for Multi-Layer
Perceptron Neural
Network.

Reduced complex-
ity and processing
time.

Unaffordable sam-
pling rate. Difficult
because of ran-
domness. Greatly
influenced by initial
solution.

Federated
optimization

fuzzy con-
sensus Po lap
(2021)

2021 The goal of FL
tasks is to learn a
single global model
that minimizes the
empirical risk func-
tion over the entire
training dataset.
The authors
extend FL using
a fuzzy consensus
method to improve
large-scale group
decision-making
(LSGDM).

In practical use, it
has a great advan-
tage due to the
possibility of quick
implementation
and classification
of the sample even
during the training
process. Capable of
providing the most
effective solution to
complex issues.

Adapting cen-
tralized training
workflows such
as hyperarameter
tuning, and inter-
pretability tasks
to the federated
learning setting
present roadblocks
to the widespread
adoption of FL in
practical settings.
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In this paper, we propose a method to allow
weights optimization under non-smooth regu-
larizations. Let us denote by x an input to be
presented to the ANN. The estimated label will
be denoted by ŷ(x,W ) as a non-linear function
of the input x and the weights vector W ∈ RN ,
while the ground truth label will be denoted by y.

Using a quadratic error with an `1 regulariza-
tion with M input data for the learning step, the
weights vector can be estimated as

Ŵ = arg min
W
L(W )

= arg min
W

M∑
m=1

‖ŷ(xm; W )− y(m)‖22 + λ‖W‖1,

(1)

where λ is a regularization parameter balancing
the solution between the data fidelity and regu-
larization terms, and M is the number of learning
data. It is worth noting that other regularization
terms can be used in Eq. (1) (`0, `p,...). The `1
norm is used to promote weights sparsity. Since
the optimization problem in Eq. (1) is not dif-
ferentiable, the use of gradient-based algorithms
with back-propagation is not possible and the
learning process is costly and very complicated.

In Section 4 we present a method to efficiently
estimate the weights vector without an increase
of learning complexity. The optimization problem
in Eq. (1) is formulated and solved in a Bayesian
framework. This formulation has two main advan-
tages. The first one is related to the flexibility of
such models to handle a large panel of regulariza-
tion terms through an exponential formulation to
mimic the variational form in Eq. (1). The sec-
ond advantage is related to the ability to design
fully automatic schemes without user interven-
tion/configuration. Indeed, this is very important,
especially for complex problems where parameters
fitting are complicated.

4 Bayesian optimization

As stated above, the weights optimization prob-
lem is formulated in a Bayesian framework. In this

sense, the problem parameters and hyperparam-
eters are assumed to follow probability distribu-
tions. More specifically, a likelihood distribution
is defined to model the link between the target
weights vector and the data, while a prior distribu-
tion is defined to model the prior knowledge about
the target weights.

4.1 Hierarchical Bayesian model

According to the principle of minimizing the error
between the reference label y and the estimated
one ŷ, and assuming a quadratic error (first term
in (1)), we define the likelihood distribution as

f (y; W,σ) ∝
M∏
m=1

exp

(
− 1

2σ2
‖ŷ(xm; W )− y(m)‖2

)
,

(2)
where σ2 is a positive parameter to be set.
As regards prior information about the target
weights, and to promote sparsity of the estimated
vector (and hence the sparsity of the deep net-
work), a common choice is to resort to an `1
penalization. Under a Bayesian framework, the
Laplace distribution can be used.

f(W ; λ) ∝
N∏
k=1

exp

(
−‖W

[k]‖1
λ

)
, (3)

where λ is a hyperparameter to be set. This prior
allows us to introduce exactly the same prior infor-
mation as the `1 norm in Eq. (1).
By adopting a MAP approach, we first need to
express the posterior distribution. Based on the
defined likelihood and prior, this posterior writes:

f(W ; y, σ, λ) ∝ f(y; W,σ)f(W ; λ)

∝
M∏
m=1

exp

(
− 1

2σ2
‖ŷ(xm; W )− y(m)‖2

)
×

N∏
k=1

exp

(
−‖W

[k]‖1
λ

)
. (4)

It is clear that this posterior is not straightforward
to handle in order to derive a closed-form expres-
sion of the estimate Ŵ . For this reason, we resort
to a stochastic sampling approach in order to
numerically approximate the posterior, and hence
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to calculate an estimator for Ŵ . The following
Section details the adopted sampling procedure.

4.2 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo Li et al. (2015) is a class
of sampling algorithms inspired by the Hamil-
tonian dynamics. It is a reformulation of the
theory of classical mechanics which is intended to
describe the motion of objects, and therefore to
model the dynamic physical systems Alder and
Wainwright (1959). A dynamic particle of mass m
can be characterized essentially by its positions W
and momentum q = mv, where v = ∂W

∂t which
represent the velocity of the particle. The Hamil-
tonian system models the total Kinetic of thus
particle, respectively, the potential energy E(W )
and the Kinetic energy K(v) = 1

2mv
2, which can

likewise be expressed as a function of momentum
by K(q) = 1

2mq
2. Thus, the Hamiltonian H(W, q)

can be expressed as:

H(W, q) = E(W ) +K(q), (5)

and the dynamics of the particle can be specified
by a set of coupled differential equations Neal et al.
(2011),

dq

dt
=
∂H

∂W
(6)

dW

dt
= −∂H

∂q
(7)

From any time interval of duration s, these
equations define a mapping Ts, from the state at
any time t to the state at time t+ s.

When estimating a random variable θ with
probability density function f(θ) in the HMC
method, we define an auxiliary momentum vari-
able q. The pdf of the Hamiltonian dynamic
energy defined in (5) is given by

fθ(W, q) ∝ exp(−H(W, q))

∝ f(W ; θ) exp(−K(q)).
(8)

HMC methods iteratively proceed with updating
W and q by sampling according to the distribu-
tion (8). The sampling of the model is performed
by two-step. The first sampling q according to
the multivariate Gaussian distribution N(0,IN ),
where IN is the N × N identity matrix. The

second step, updates both momentum q and posi-
tion W by proposing two candidates W ∗ and
q∗. These two candidates are generated by sim-
ulating the Hamiltonian dynamics, which are
discretized using some discretization techniques
which is leapfrog method Hanson (2001). The dis-
cretization can be performed using Lf steps of the
leapfrog method with a stepsize ε > 0: Lf can
either be manually fixed or automatically tuned
Wang et al. (2013).

4.3 ns-HMC

As the HMC is a successful approach for sampling
from continuous densities, however, it has diffi-
culty simulating Hamiltonian dynamics with non-
smooth functions, leading to poor performance.
A novel scheme called Non-smooth Hamiltonian
Monte Carlo (ns-HMC) has been proposed in
Chaari et al. (2016) to make feasible the use of
Hamiltonian dynamics of sampling even for target
distributions with non-smooth energy functions.
The sampling technique relies on some interesting
results from convex optimization and Hamilto-
nian Monte Carlo methods. The main idea of
the ns-HMC scheme is to modify the leapfrog
discretization scheme by introducing a step calcu-
lation the proximity operator of Eθ. The detailed
ns-HMC scheme is given by algorithm 1, where Lf
represent the number of leapfrog step and ε is the
stepsize.

However, analytic calculation of the proximity
operator for a wide class of energy functions is
not possible. This drawback prevents the use of
the ns-HMC algorithm in the case of sparse target
distributions where the proximity operator of the
energy function is difficult to be calculated.

In order to solve this problem, in Chaari
et al. (2017), a modified ns-HMC sampling
scheme, called general ns-HMC, have been pro-
posed involving a Bayesian calculation of the prox-
imity operator. Thus, instead of calculating the
proximity operator at each step as shown in the
Algorithm 1 that can be led to an increased com-
putational cost, with the general ns-HMC scheme,
the calculation of the proximity operator is only
calculated at the initialization step. The calcu-
lated value is then used to update the proximity
operator value at different points. Another advan-
tage of the method is that it does not depend on
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Algorithm 1: ns-HMC algorithm Chaari
et al. (2016)

- Initialize with some W (0,0), set the
iteration number r = 0, Lf and ε;
for r = 1, . . . , S do

- Sample q(r,0) ∼ N (0, IN );

- Compute q(r, 12 ε) = q(r,0) −
ε
2

[
W (r−1,0) − proxEθ (W (r−1,0))

]
;

- Compute W (r,ε) = W (r−1,0) +εq(r, 12 ε);
for lf = 1 to Lf − 1 do

* Compute q(r,(lf+ 1
2 )ε) = q(r,lf ε) −

ε
2

[
W (r,lf ε) − proxEθ (W (r,lf ε))

]
;

* Compute W (r,(lf+1)ε) =
W (r,lf ε) + εq(r,(lf+ 1

2 )ε);

end

- Compute q(r,(Lf+ 1
2 )ε) = q(r,Lf ε) −

ε
2

[
W (r,Lf ε) − proxEθ (W (r,Lf ε))

]
;

- Apply standard MH acceptation rule
by taking to q∗ = q(r,εLf ) and
W ∗ = W (r,εLf );

end

the initial point where the proximity operator is
calculated first.

4.4 Hamiltonian Sampling

Let us denote α =
λ

σ2
, θ = {σ2, λ}. For a weight

W k we define the following energy function

Ekθ (W k) =
α

2

M∑
m=1

‖ŷ(xm; W )− y(m)‖22 + ‖W k‖1.

(9)
The posterior in (4) can be reformulated as

f(W ; y, θ) ∝ exp

(
−

N∑
k=1

Ekθ (W k)

)
. (10)

To sample according to this exponential pos-
terior, and since direct sampling is not possible
due to the form of the energy function Ekθ , Hamil-
tonian sampling is adopted. Indeed, Hamiltonian
dynamics Hanson (2001) strategy has been widely
used in the literature to sample high dimensional
vectors. However, sampling using Hamiltonian
dynamics requires computing the gradient of the
energy function, which is not possible in our case

due to the `1 term. To overcome this difficulty, we
resort to a non-smooth Hamiltonian Monte Carlo
(ns-HMC) strategy. Indeed, this strategy requires
calculation of the proximity operator only at an
initial point and uses the shift property Moreau
(1965) to deduce the proximity operator during
the iterative procedure. As regards the proximity
operator calculation, let us denote by GL(W k) the
gradient of the quadratic term of the loss func-
tion L with respect to the weight W k. Let us also
denote by ϕ(W k) = ‖W k‖1. Following the prox-
imity operator standard definition, we can write
for any real z

proxEkθ (z) = p⇔z − p ∈ ∂Ekθ (p). (11)

Straightforward calculations lead to the follow-
ing expression of the proximity operator:

proxEkθ (z) = p⇔ z − p ∈ ∂Ekθ (p)

⇔ z − p ∈ ∂ϕ(p) +
α

2
GL(W k)

⇔ z − α

2
GL(W k)− p ∈ ∂ϕ(p)

⇔ p = proxϕ

(
z − α

2
GL(W k)

)
. (12)

Since proxϕ is nothing but the soft threshold-
ing operator Chaux et al. (2007), the proximity
operator in (12) can be easily calculated once a
single gradient step is applied (back-propagation)
to calculate GL(W k).
We therefore propose the following leapfrog dis-
cretization scheme to be integrated in Algorithm
1, where P0 = proxEθ (z

(0,0)):

q(r,(l+ 1
2 )ε) = q(r,lε) − ε

2

[
2z(r,lε) − z(0,0) − P0

]
z(r,(l+1)ε) = z(r,lε) + εq(r,(l+ 1

2 )ε)

q(r,(l+ 1
2 )ε) = q(r,lε) − ε

2

[
2z(r,lε) − z(0,0) − P0

]
.

(13)

The Gibbs sampler resulting from the pro-
posed leapfrog discretization scheme is summa-
rized in Algorithm 2.

The proposed candidates are given by q∗ =
q(r,εLf ) and z∗ = z(r,εLf ) after Lf leapfrog steps.
These candidates are then accepted based on
the standard MH rule, i.e., with the following
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Algorithm 2: Gibbs sampler using the
ns-HMC optimizer to sample z = W [k].

- Initialize with some z(0,0), set the
iteration number r = 0, Lf and ε;

- P0 = proxEθ (z
(0,0)) ;

for r = 1, . . . , S do
- Sample q(r,0) ∼ N (0, IN );

- q(r, 12 ε) =
q(r,0) − ε

2

[
2z(r−1,0) − z(0,0) − P0)

]
;

- z(r,ε) = z(r−1,0) + εq(r, 12 ε);
for lf = 1 to Lf − 1 do

* q(r,(lf+ 1
2 )ε) =

q(r,lf ε) − ε
2

[
2z(r,lf ε) − z(0,0) − P0

]
;

* z(r,(lf+1)ε) = z(r,lf ε)+εq(r,(lf+ 1
2 )ε);

end

- q(r,(Lf+ 1
2 )ε) =

q(r,Lf ε) − ε
2

[
2z(r,Lf ε) − z(0,0) − P0

]
;

- Apply MH acceptation rule to (z∗, q∗)
with q∗ = q(r,εLf ) and z∗ = z(r,εLf );

end

probability

min{1, exp[H(z(r), q(r))−H(z(∗), q(∗))]} (14)

where H is the Hamiltonian defined in (5).
After convergence, Algorithm 2 provides chains of
coefficients sampled according to the target distri-
bution of each W k. These chains can be used to
compute an MMSE (minimum mean square error)
estimator after discarding the samples correspond-
ing to the burn-in period.
It is worth noting that hyperprior distributions
can be put on λ and σ in order to integrate them
in the hierarchical Bayesian model. These hyper-
parameters can therefore be estimated from the
data at the expense of some additional complexity.

5 Experimental validation

In order to validate the proposed method, five
image classification experiments are conducted
using four datasets: two COVID-19 datasets
including Computed tomography (CT) images for
simple Angelov and Almeida Soares (2020) and
challenging classification Yang et al. (2020), and
two standard datasets, namely Fashion-MNIST
Xiao et al. (2017) and CIFAR-10 Recht et al.

(2018). Table 2 illustrates the setting details of the
different datasets.

In order to compare the proposed method with
the state of the art, three kinds of optimizers
are used : i) MCMC-based methods, precisely
the standard Metropolis-Hastings (MH) algo-
rithm Chib and Greenberg (1995) and its random
walk variant (rw-MH), ii) the most popular and
widely used techniques : Adam, Adamax, SGD
, Adadelta, and iii) three metaheuristics algo-
rithms: Improved Whale Trainer, Dragonfly Algo-
rithm, and Salp Swarm Algorithm. The parame-
ters setting of all these algorithms is detailed in
Table 3.
As regards coding, we used python programming
language with Keras and Tensorflow libraries on
an Intel(R) Core(TM) i7-2720QM CPU 2.20GHZ
architecture with 16 Go memory.

5.1 ConvNet Models

Two CNN architectures are used in this study.
Like the LeNet model LeCun et al. (1998), the
first one includes three convolutional and two
fully-connected (FC). The second one has five con-
volutional and three FC layers that are organized
similarly to VGG-Net Muhammad et al. (2018).
These architectures are shown in Table 4. All of
them involve convolutional layers with 3× 3 Ker-
nel filters in addition to 2 × 2 max-pooling, with
stride size equal to 1. All layers in the different
configurations used ReLU as an activation func-
tion except the output layer.
As deep neural networks can easily overfit when
trained with small datasets, the used CNNs are
extended with three regularizing techniques :

• Batch Normalization Ioffe and Szegedy (2015):
deals with the change of the feature space
distribution along with the model during the
training. The input of the layer is normalized to
be zero-mean with unitary variance. This step
not only acts as a regularizer, but also allows for
faster training, higher learning rates, and less
dependence on weights initialization.

• `1 Regularization Xu et al. (2010): `1 regular-
ization is the preferred choice when having a
high number of features as it provides sparse
solutions. It allows obtaining the computational
advantage because features with zero coeffi-
cients can be avoided. In our case, the used
regularization parameter was set to λ = 0.001.
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Table 2 Setting details of the used datasets.

Dataset Training set Test set # Classes

CT images for simple classification 1210 430 2
CT images for challenging classification 566 180 2

Fashion-MNIST 48000 12000 10
CIFAR-10 50000 10000 10

Table 3 Parameters setting for benchmark algorithms.

Algorithm Parameters Description Values
MH σ Stand. dev. of the proposal normal distribution 3

rw-MH σ Stand. dev. of the proposal normal distribution 5
lr Learning rate 10−3

Adam β1 1st moment estimates exponential decay rate 0.9
β2 2nd moment estimates exponential decay rate 0.999
ε Numerical stability constant 1e− 08
lr Learning rate 10−3

SGD momentum Acceleration rate 0.8
decay Learning rate decay over each update 1e− 6

lr Learning rate 10−3

Adadelta rho Decay rate 0.95
ε Numerical stability constant 1e− 08
lr Learning rate 10−3

Adamax β1 1st moment estimates exponential decay rate 0.9
β2 2nd moment estimates exponential decay rate 0.999
ε Numerical stability constant 1e− 08

minv Lower bound -2
IWT maxv Upper bound 2

size Number of particles 30
p s Spiral parameter 3

minv Lower bound -2
DA maxv Upper bound 2

size Number of particles 15
minv Lower bound -2

SSA maxv Upper bound 2
size Number of particles 30

• Dropout Srivastava et al. (2014) : random dis-
abling of neurons during training with proba-
bility (or percentage) p. Temporarily ignoring
some activations forces the other neurons to
learn a more robust representation of the input
data while reducing the sensitivity of specific
neurons. In our study, the dropout rate is set by
cross validation to p = 0.35.

5.2 Sparsity and stability analysis

In this section, we evaluate the sparsity and the
stability of the estimation of the weights with dif-
ferent values of λ and compare to Adam as a state
of the art optimizer. The CNN 1 architecture is
applied using the CT Covid-19 image database.
Table 5 reports accuracy, computational time, and
`1 norm of the estimated weights using different
values of the regularization parameter λ over 10
Monte Carlo runs. To further evaluate the spar-
sity level, Table 5 also reports the `0 pseudo-norm
values (number of non-zeros). Standard deviations
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Table 4 Convnet with regularization techniques.

CNN 1 CNN 2

Conv3x3-32:stride=1 Conv3x3-32:stride=1
BatchNormalization BatchNormalization

MaxPool 2x2 Conv3x3-32:stride=1
Dropout(0.2) BatchNormalization

MaxPool 2x2
Dropout(0.2)

Conv3x3-64:stride=1 Conv3x3-64:stride=1
BatchNormalization BatchNormalization

MaxPool 2x2 Conv3x3-64:stride=1
Dropout(0.3) BatchNormalization

MaxPool 2x2
Dropout(0.3)

Conv3x3-128:stride=1 Conv3x3-128:stride=1
BatchNormalization BatchNormalization

MaxPool 2x2 Conv3x3-128:stride=1
Dropout(0.4) BatchNormalization

MaxPool 2x2
Dropout(0.4)

Flattening Flattening

FC-64 FC-128
Dropout(0.3) Dropout(0.3)

FC-64
Dropout(0.2)

FC-softmax FC-softmax

over the 10 runs are provided in the table.
The obtained scores clearly indicate that our
method provides estimates with a higher spar-
sity level in comparison to Adam: the number of
non-zero weights is significantly lower than the
Adam optimizer. The proposed method provides
estimates with 14% higher sparsity level. More-
over, the reported low standard variation values in
Table 5 clearly indicate good stability properties
of the proposed method with respect to random
sampling in the MCMC procedure, which confirms
the good convergence properties. This stability
holds for accuracy, sparsity, sensitivity, specificity,
and computational time. Moreover, the same con-
clusions hold for all tested λ values. In other
words, the same conclusions hold for different
network sparsity levels.

5.3 Experiment 1 : COVID-19
classification using CT images

This section studies the performance of our opti-
mizer for classifying CT data into normal and

Covid-19 cases using a public dataset of CT scans
for SARS-CoV-2 identification. The dataset is
made up of of 1252 CT scans of size 230×230 that
are positive for SARS-CoV-2 infection (COVID-
19) and 1230 CT scans for negative patients.
These data have been collected from real patients
in hospitals from São Paulo, Brazil 1.
Table 6 reports accuracy, loss, sensitivity, speci-
ficity and computational time, for all optimizers
with CNN 1 and CNN 2. The reported scores
indicate that our ns-HMC outperforms the
competing optimizers, including metaheuristic
methods in terms of learning precision, and hence
classification performances. Accuracy values even
show a slight advantage in favor of the proposed
method for both the CNNs. The lack of perfor-
mance obtained by the metaheuristic methods
(IWT, DA, and SSA) caused by early convergence
experienced during the process of finding opti-
mum value. This phenomenon is due to the lack
of population diversity and known as premature
convergence. The proposed method enjoys faster
convergence properties while reaching global opti-
mum due to the Bayesian formulation with lower
loss rates.

The behavior of the algorithms during the
training step is displayed in Figures 1, and 2
where the curves clearly indicate a convergence
with high accuracy rate for most optimizers. A
significant difference between training and loss
curves may indicate potential overfitting obtained
with some optimizers. This gap is reduced using
the proposed optimizer. Interestingly, the same
behavior is observed for both CNN models.
Moreover, the accuracy increase between CNN 1
and CNN 2 is almost the same for all optimizers
(see Table 6). The higher performance of the
proposed method can be explained by a better
exploration of the searching space due to the
Bayesian formulation and the efficient sampling
scheme, which also helps reducing the computa-
tional time. Indeed, ns-HMC sampling integrates
a gradient information related to the geometry of
the target distribution, which finally leads to a
faster convergence of the used sampler.
It is worth noting that the curves irregularity for
Bayesian techniques (proposed method, MH and

1https://www.kaggle.com/plameneduardo/sarscov2-ctscan-
dataset
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Table 5 Accuracy, sensitivity, specificity, computational time (in minutes), `0 and `1 norms of the estimated weights for
CNN 1 using Adam and the proposed method with different values of λ.

Optimizer λ ‖ · ‖0 ‖ · ‖1 Acc. Time Sens. Spec.

ns-HMC
10−3 149113 48988 89.68 37.28 88.21 86.95

±9.07 ±9.10 ±0.04 ±0.63 ±0.06 ±0.08
10−2 142542 45476 90.02 38.79 89.02 88.57

±8.78 ±8.81 ±0.02 ±0.61 ±0.4 ±0.3
10−1 152904 51232 89.42 38.47 87.81 86.11

±9.11 ±9.19 ±0.05 ±0.70 ±0.5 ±0.6

Adam
10−3 180513 51727 86.91 52.12 84.36 81.25

±9.77 ±9.11 ±0.07 ±0.87 ±0.9 ±0.8
10−2 191229 67732 85.34 54.91 83.14 80.66

±10.28 ±10.63 ±0.12 ±1.08 ±1.12 ±1.09
10−1 189075 58823 85.49 53.85 84.09 82.49

±10.15 ±10.47 ±0.09 ±0.95 ±1.05 ±1.01

Table 6 Experiment 1: Results for CT image classification using CNN 1 and CNN 2 (Computational time in min, accuracy,
loss, sensitivity and specificity).

CNN 1 CNN 2

Optimizers Time (min) Acc. Loss Sens. Spec. Time (min) Acc. Loss Sens. Spec.

ns-HMC 37 0.90 0.10 0.89 0.87 58 0.92 0.09 0.90 0.89

MH 79.2 0.84 0.18 0.81 0.77 133.8 0.86 0.16 0.85 0.80
rw-MH 64.8 0.85 0.17 0.84 0.79 95.4 0.87 0.14 0.86 0.82

Adam 52 0.87 0.12 0.86 0.83 85.2 0.88 0.11 0.87 0.85
SGD 53 0.88 0.13 0.85 0.80 87.1 0.86 0.15 0.84 0.81
Adadelta 56 0.86 0.12 0.84 0.81 90.6 0.87 0.11 0.85 0.83
Adamax 53 0.87 0.13 0.86 0.84 87,6 0.87 0.12 0.86 0.85

IWT 59 0.84 0.21 0.81 0.78 70,2 0.86 0.19 0.84 0.83
DA 61 0.83 0.25 0.82 0.79 73.2 0.85 0.22 0.83 0.81
SSA 57 0.86 0.18 0.85 0.83 61.2 0.88 0.17 0.87 0.86

rw-MH) are due to the random sampling effect.
No monotonic behavior is expected.

5.4 Experiment 2 : challenging case

A more challenging classification case is addressed
in this experiment. The same CNNs are used
for CT images classification to identify Covid-
19 infections from other pneumonia. In contratst
to Experiment 1, this task is challenging due to
the rich content of CT images and similarity
between Covid-19 infection and other pneumonia.
The COVID-CT dataset contains 349 CT images
positive for COVID-19 belonging to 216 patients

and 397 CT images that are negative for COVID-
19. The dataset is open-sourced to the public 2.
We used 566 images for the train and 180 images
for the test with size of 230× 230.
The reported scores in Table 7 indicate that the
proposed method clearly outperforms the compet-
ing optimizers in both models to solve this chal-
lenging classification problem. Moreover, severe
performance decrease is observed for some opti-
mizers. IWT, DA, and SSA achieved an accuracy
slightly better than gradient and MCMC-based
methods. DA algorithm is the better performer
compared to all the competing algorithms on this
dataset, but has an accuracy less than our nc-
HMC optimizer of around 6%. This is mainly due

2https://www.kaggle.com/luisblanche/covidct
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Fig. 1 Experiment 1: Train and test curves using CNN 1.

to this challenging classification, which leads to a
more complex learning process.

5.5 Experiment 3 : Fashion-MNIST
image classification

In this scenario, the learning performance using
the competing optimization algorithms is evalu-
ated using the standard Fashion-MNIST dataset.
A training set of 60,000 images is used, while
the test set was made up of 10,000 images. Each
example is a 28 grayscale image, associated with
a label from 10 classes, with 7,000 images per
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Fig. 2 Experiment 1: Train and test curves using CNN 2.

class. For the model training, we used 48,000
images for the train set and 12,000 for the test.
The obtained results for the fashion-MNIST
dataset is given in Table 8. All the competing
optimizers did not perform well on this dataset
which could be because of the size of the dataset.
Our optimizer was the better performer with an
accuracy up to 93% for both architectures, signif-
icantly better than all the competing optimizers.
Indeed, as reported in Table 8, the computational
time of all the competing algorithms is generally
around 160 minutes for the CNN 1, more than
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Table 7 Experiment 2: Results for CT image classification - challenging case - using CNN 1 and CNN 2 (Computational time
in min, accuracy, loss, sensitivity and specificity).

CNN 1 CNN 2
Optimizers Time (min) Acc. Loss Sens. Spec. Time (min) Acc. Loss Sens. Spec.
ns-HMC 40 0.84 0.26 0.82 0.80 53 0.88 0.22 0.86 0.85

MH 71,4 0.73 0.38 0.71 0.69 92.4 0.76 0.34 0.74 0.72
rw-MH 59 0.76 0.36 0.75 0.72 94.8 0.77 0.32 0.75 0.74

Adam 58 0.71 0.43 0.69 0.68 81 0.73 0.36 0.72 0.71
SGD 59 0.65 0.45 0.64 0.62 82.2 0.68 0.42 0.67 0.65
Adadelta 61.8 0.67 0.42 0.65 0.63 87.6 0.70 0.38 0.69 0.67
Adamax 60.6 0.69 0.41 0.67 0.66 90 0.74 0.36 0.72 0.71

IWT 54 0.75 0.38 0.74 0.72 90 0.78 0.35 0.77 0.75
DA 57 0.78 0.36 0.77 0.76 87 0.81 0.33 0.80 0.76
SSA 51 0.76 0.37 0.76 0.75 83 0.79 0.36 0.78 0.77

twice the time needed for the proposed method.
The same conclusion for the deep architecture
CNN 2.

5.6 Experiment 4 : CIFAR-10 image
classification

In this scenario, the learning performance using
the competing optimization algorithms is evalu-
ated using the standard CIFAR-10 dataset. The
CIFAR-10 dataset consists of 60000 32x32 color
images in 10 classes, with 6000 images per class.
There are 50000 training images and 10000 test
images. The dataset is divided into five training
batches and one test batch, each with 10000
images. The test batch contains exactly 1000
randomly-selected images from each class. The
training batches contain the remaining images in
random order, but some training batches may
contain more images from one class than another.
Between them, the training batches contain
exactly 5000 images from each class.
Classification results for the CIFAR-10 dataset
are given in Table 9. The same conclusion can
be drawn as that of the Fashion-MNIST dataset.
The proposed Bayesian optimizer showed great
overall performance even if more classes are con-
sidered compared to all competing optimizers.

5.7 Comparison on Deep CNN :

This section studies the performances of our ns-
HMC method using a deep CNN on the standard

Fashion-MNIST dataset. The proposed deep CNN
is deeper than CNN 1 and CNN 2. It is made
up of four convolutional layers (5 X Conv3x3-32,
5 X Conv3x3-64, 5 X Conv3x3-128) and a FC-
softmax layer. All of them involve convolutional
layers with 3 X 3 Kernel filters in addition to 2 X
2 max-pooling, with stride size equal to 1.
The use of a deep CNN validates the effective-
ness and robustness of our approach in terms of
accuracy, loss, sensitivity, and specificity criteria
as shown in Table 10. Furthermore, most of the
competing optimizers clearly indicate an overfit-
ting effect like SGD, and Adadelta, in contrast
to the proposed method. Hence, one can easily
notice the highest global accuracy of our Bayesian
optimizer regardless of the depth architectures.

6 Discussion

In this paper, we proposed a novel optimization
method built in a Bayesian framework. The pro-
posed algorithm relies on a Hamiltonian Monte
Carlo scheme to solve the subsequent optimiza-
tion problem involving sparsity constraints, while
being adapted to large data problems under solid
convergence guarantees. The proposed method
has been validated on four different datasets in
order to assess: its i) efficiency on a classification
case where competing optimizers provide good
results, ii) fast convergence properties, and iii)
robustness with respect to the sample size. A
gold standard validation on the widely used both
Fashion-MNIST and CIFAR-10 databases have
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Table 8 Experiment 3: Results for Fashion-MNIST image classification - challenging case - using CNN 1 and CNN 2
(Computational time in min, accuracy, loss, sensitivity and specificity).

CNN 1 CNN 2

Optimizers Time (min) Acc. Loss Sens. Spec. Time (min) Acc. Loss Sens. Spec.

ns-HMC 70.5 0.92 0.22 90 88 308.4 0.93 0.19 91 89

MH 166.2 0.86 0.35 0.85 0.81 745.8 0.87 0.33 0.84 0.82
rw-MH 183.6 0.88 0.33 0.86 0.83 797.4 0.88 0.31 0.85 0.84

Adam 156.6 0.90 0.46 0.85 0.82 444 0.92 0.32 0.88 0.87
SGD 164.4 0.88 0.71 0.71 0.67 452.4 0.89 0.56 0.84 0.83
Adadelta 169.8 0.70 1.20 0.66 0.64 439.8 0.78 0.96 0.71 0.70
Adamax 149 0.91 0.49 0.88 0.82 448.2 0.91 0.26 0.88 0.87

IWT 180.2 0.82 0.37 0.79 0.73 486 0.83 0.36 0.80 0.79
DA 174 0.79 0.40 0.76 0.74 469 0.82 0.35 0.78 0.78
SSA 165.7 0.84 0.33 0.81 0.75 453 0.86 0.24 0.86 0.85

Table 9 Experiment 4: Results for CIFAR-10 image classification - challenging case - using CNN 1 and CNN 2 (Computational
time in min, accuracy, loss, sensitivity and specificity).

CNN 1 CNN 2

Optimizers Time (min) Acc. Loss Sens. Spec. Time (min) Acc. Loss Sens. Spec.

ns-HMC 85.7 0.91 0.25 89 87 331 0.92 0.21 90 87

MH 172 0.83 0.41 0.80 0.78 763.2 0.84 0.36 0.83 0.81
rw-MH 192.2 0.85 0.36 0.84 0.81 814.1 0.86 0.35 0.84 0.83

Adam 161 0.89 0.42 0.83 0.81 429 0.90 0.36 0.87 0.86
SGD 169 0.86 0.75 0.69 0.65 459.7 0.86 0.60 0.83 0.80
Adadelta 174.7 0.75 0.92 0.68 0.65 453.3 0.79 0.81 0.72 0.70
Adamax 155 0.90 0.33 0.88 0.85 507.8 0.91 0.24 0.87 0.85

IWT 186 0.80 0.35 0.78 0.74 531 0.81 0.34 0.79 0.78
DA 179 0.82 0.35 0.77 0.75 519 0.84 0.30 0.78 0.76
SSA 172.7 0.83 0.31 0.81 0.77 503 0.85 0.27 0.83 0.80

Table 10 Results for Fashion-MNIST image classification using Deep CNN (Computational time in min, accuracy, loss,
sensitivity and specificity).

Optimizers Time (min) Acc. Loss Sens. Spec.

ns-HMC 582 0.93 0.20 0.91 0.91

MH 977 0.84 0.41 0.80 0.76
rw-MH 986 0.85 0.37 0.83 0.78

Adam 701 0.91 0.55 0.88 0.85
SGD 705 0.88 0.46 0.82 0.79
Adadelta 707 0.80 0.63 0.70 0.72
Adamax 706 0.92 0.44 0.90 0.88

IWT 681 0.88 0.33 0.82 0.79
DA 677 0.85 0.37 0.81 0.77
SSA 694 0.90 0.31 0.86 0.84
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also been performed. Furthermore, three kinds
of comparisons are performed: i) with respect to
other state of the art optimizers (Adam, SGD
and Adadelta), ii) with respect to other MCMC-
based techniques (MH and rw-MH), and iii)
with respect to the novel metaheuristics methods
(IWT, DA, and SSA).
The complexity of a neural network can be
reduced by promoting sparse interconnection
structures. Empirical evidence shows that
deep architectures often require to be over-
parametrized (having more parameters than
training examples) in order to be successfully
trained Brutzkus et al. (2017); Mhaskar and
Poggio (2016). Indeed, the use of these networks
is useful to extract more implicit characteristics
that leads to good precision of the model, and
hence reduce the overfitting effect. However, once
input-output relations are properly represented
by a complex network, such a network may form
a starting point in order to find a simpler, sparser,
but sufficient architecture Brutzkus et al. (2017);
Mhaskar and Poggio (2016). Two CNNs which
one is deeper than others have been used with `1
regularization to promote sparse networks. This
allowed us to analyse how the proposed optimizer
behaves when the complexity level of the network
increases. From one side, experiments showed
that our optimizer enjoys better sparsity levels in
terms of `1 and `0 norms.
Experiments lead one to conclude that the pro-
posed non-smooth Hamiltonian sampling scheme
provides faster and more accurate convergence
with lower overfitting effects. The obtained gain
is not only due to the Bayesian formulation,
but also to the efficient inference scheme. From
another side, results showed that better accuracy
is always obtained with the most sophisticated
CNN in spite of the additional complexity.
The proposed method speeds up the learning time
for both architectures. Indeed, for the investigated
challenging classification problem (Experiment
2), a deeper network did not solve the overfit-
ting problem with standard optimizers, while our
method overcomes this limitation by providing
more accurate optimization of the target crite-
rion, and only need simple neural net architecture
to produce high accuracy. The sensitivity and
specificity scores justify the stable behavior of our
ns-HMC at different used datasets. Moreover, loss
and accuracy obtained with our method do not

fall when data complexity increases, in contrast
to other competing optimizers.
Metaheuristic methods have attracted consider-
able attention in the last years, mainly due to
their simple heuristics and ability to optimize
nondifferentiable functions. Indeed, the perfor-
mance of a metaheuristic can only be examined
in a problem where these are applicable. They do
not guarantee a global optimum, but it is near to
a global best solution. We can further conclude
from the results that our optimization strategy is
insensitive to local minima unlike to metaheuris-
tic which are already rarely conducted optimize
DL method Rere et al. (2016).
The main limitation of our proposed method con-
cerns that is trained on CPU and not GPU which
is commonly used for deep learning. Moreover,
λ is a hyperparameter to be set as a fixed value
in our method. The choice of the best value of λ
depends on the used model for a training dataset.
One of the challenges in the future is to extend
our optimizer by estimating this hyperparameter.

7 Conclusion

In this paper, we proposed a new Bayesian opti-
mization method to fit weights for sparse artificial
neural networks. The proposed method relies on
Hamiltonian dynamics with non-smooth regular-
izations, using a plug and play procedure. The
proposed ns-HMC optimizer showed promising
results with good classification performances and
high generalization properties, in addition to low
computational time in comparison with all the
competing algorithms including the commonly
used optimizers and most recent metaheuristics
methods. The use of standard datasets (Fashion-
MNIST and CIFAR-10) with multiple images
confirms the stability results of our optimizer
with a global accuracy more than 90% and a loss
of less than 2.5%.
The experiments showed the generalization of
our ns-HMC and their ability to be applied in
various classification problems. We can extend
our experiments in the future by integrating the
segmentation methods in Deep Learning by using
our optimizer. Moreover, We will focus on inves-
tigating parallel implementation of the proposed
method to further decrease computational time.
Investigating the use of the proposed method on
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recurrent networks will also be considered.
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