
HAL Id: hal-03669387
https://hal.science/hal-03669387v2

Submitted on 19 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributing and Parallelizing Non-canonical Loops
Clément Aubert, Thomas Rubiano, Neea Rusch, Thomas Seiller

To cite this version:
Clément Aubert, Thomas Rubiano, Neea Rusch, Thomas Seiller. Distributing and Parallelizing Non-
canonical Loops. Verification, Model Checking, and Abstract Interpretation (VMCAI 2023), Jan 2023,
Boston (MA), United States. �10.1007/978-3-031-24950-1_1�. �hal-03669387v2�

https://hal.science/hal-03669387v2
https://hal.archives-ouvertes.fr


Distributing and Parallelizing Non-canonical
Loops ?

Clément Aubert1[0000−0001−6346−3043], Thomas Rubiano2, Neea
Rusch1[0000−0002−7354−5330], and Thomas Seiller2,3[0000−0001−6313−0898]

1 School of Computer and Cyber Sciences, Augusta University
2 LIPN – UMR 7030 Université Sorbonne Paris Nord

3 CNRS

Abstract. This work leverages an original dependency analysis to paral-
lelize loops regardless of their form in imperative programs. Our algorithm
distributes a loop into multiple parallelizable loops, resulting in gains in
execution time comparable to state-of-the-art automatic source-to-source
code transformers when both are applicable. Our graph-based algorithm
is intuitive, language-agnostic, proven correct, and applicable to all types
of loops. Importantly, it can be applied even if the loop iteration space is
unknown statically or at compile time, or more generally if the loop is
not in canonical form or contains loop-carried dependency. As contribu-
tions we deliver the computational technique, proof of its preservation of
semantic correctness, and experimental results to quantify the expected
performance gains. We also show that many comparable tools cannot
distribute the loops we optimize, and that our technique can be seamlessly
integrated into compiler passes or other automatic parallelization suites.

Keywords: Program Transformation · Automatic Parallelization · Loop Opti-
mization · Abstract Interpretation · Program Analysis · Dependency Analysis

1 Original Approaches to Automatic Parallelization

1.1 The Challenge of Unknown Iteration Space

Loop fission (a.k.a. loop distribution) is an optimization technique that breaks
loops into multiple loops, with the same condition or index range, each taking
only a part of the original loop’s body. Such transformation creates opportunity
for parallelization and reduces program’s running time. For instance, the loop

while(t[i] != j){

s1[i] = j*j;

s2[i] = 1/j;

i++;}

would become

while(t[i1] != j)

{s1[i1] = j*j; i1++;}

while(t[i2] != j)

{s2[i2] = 1/j; i2++;}

under

? This research is supported by the Thomas Jefferson Fund of the Embassy of France
in the United States and the FACE Foundation. Th. Rubiano and Th. Seiller are
also supported by the Île-de-France region through the DIM RFSI project “CoHOp”.

https://face-foundation.org/higher-education/thomas-jefferson-fund/
https://face-foundation.org/


2 C. Aubert et al.

this transformation. In the transformed program, variable i is substituted with two
copies, i1 and i2, and we obtain two while loops that can be executed in parallel.4

The gain, in terms of time, results from the fact that the original loop could only
be executed sequentially, while the transformed loops can each be assigned to one
core. If we consider similarly structured loops that perform resource-intensive
computation or that can be distributed in e.g., 8 loops running on 8 cores, it
becomes intuitive how this technique can yield measurable performance gain.

This example straightforwardly captures the idea behind loop fission. Of
course, as a loop with a short body, it misses the richness and complexities of
realistic software. It is therefore very surprising that all the existing loop fission
approaches fail at transforming such an elementary program! The challenge comes
from the kind of loop presented. Applying loop fission to “canonical” (Def. 15)
loops or loops whose number of iterations can be pre-determined is an established
convention. But our example of a non-canonical loop with a (potentially) unknown
iteration space cannot be handled by those approaches (Sect. 4).

In this paper we present a loop fission technique that can resolve this limitation,
because it can be applied to all kinds of a loops.5 The technique is applicable to
any programming language in the imperative paradigm, lightweight and proven
correct. The loop fission technique derives these capabilities from a graph-based
dependency analysis, first introduced in our previous work [33]. Now we refine
this dependency analysis and explain how it can be leveraged to obtain loop-level
parallelism: a form of parallelism concerned with extracting parallel tasks from
loops. We substantiate our claim of running time improvement by benchmarking
our technique in Sect. 5. The results show, in cases where iteration space is
unknown, that we obtain gain up to the number of parallelizable loops, and that
in other cases the speedup is comparable to alternative techniques.

1.2 Motivations for Correct, Universal and Automatic Parallelization

The increasing need to discover and introduce parallelization potential in programs
fuels the demand for loop fission. To leverage the potential speedup available on
modern multicore hardware, all programs—including legacy software—should
instruct the hardware to take advantage of its available processors.

Existing parallel programming APIs, such as OpenMP [25], PPL [32], and
oneTBB [22], facilitate this progression, but several issues remain. For exam-
ple, classic algorithms are written sequentially without parallelization in mind
and require reformatting to fit the parallel paradigm. Suitable sequential pro-
grams with opportunity for parallelization must be modified, often manually,
by carefully inserting parallelization directives. The state explosion resulting
from parallelization makes it impossible to exhaustively test the code running on
parallel architectures [12]. These challenges create demand for correct automatic

4 In practice, private copies of i are automatically created by e.g., the standard parallel
programming API for C, OpenMP. Its pragma directives are illustrated in Fig. 5

5 We focus on while loops, but other kinds of loops (for, do...while, foreach) can
always be translated into while and general applicability follows.



Distributing and Parallelizing Non-canonical Loops 3

parallelization approaches, to transform large bodies of software to semantically
equivalent parallel programs.

Compilers offer an ideal integration point for many program analyses and
optimizations. Automatic parallelization is already a standard feature in devel-
oping industry compilers, optimizing compilers, and specialty source-to-source
compilers. Tools that perform local transformations, generally on loops, are
frequently conceived as compiler passes. How those passes are intertwined with
sequential code optimizations can however be problematic [14]. As an example,
OpenMP directives are by default applied early in the compilation and hence
the parallelized source code cannot benefit from sequential optimizations such as
unrolling. Furthermore, compilers tend to make conservative choices and miss
opportunities to parallelize [14,21].

The loop fission technique presented in this paper offers an incremental
improvement in this direction. It enables discovery of parallelization potential
in previously uncovered cases. In addition, the flexibility of the system makes it
suitable to integration and pipelining with existing parallelization tools at various
stages of compilation, as discussed in Sect. 6.

1.3 Our Technique: Properties, Benefits and Limitations

Our technique possesses four notable properties, compared to existing techniques:

Suitable to loops with unknown iteration spaces —our method does not
require knowing loop iteration space statically nor at compile time, making
it applicable to loops which are often ignored.

Loop-agnostic —our method requires practically no structure from the loops:
they can be while, do ... while or for loops, have arbitrarily complex
update and termination conditions, loop-carried dependencies, and arbitrarily
deep loop nests.

Language-agnostic —our method can be used on any imperative language,
and without manual annotations, making it flexible and suitable for appli-
cation and integration with tools and languages ranging from high-level to
intermediate representations.

Correct —our method is easy to prove correct and intuitive, largely because it
does not apply to loop bodies with pointers or complex function calls.

All the approaches we know of fail in at least one respect. For instance,
polyhedral optimizations cannot transform loops with unknown iteration spaces,
since they work on static control parts of programs, where all control flow and
memory accesses are known at compile time [20, p. 36]. More importantly, all the
“popular” [35] automatic tools fail to optimize do...while loops, and require
for and while loops to have canonical forms, that generally require the trip
count to be known at compilation time. We discuss these alternative approaches
in detail in Sect. 4.

The main limitation of our approach is with function calls and memory
accesses. Although we can treat loops with pure function calls, we exclude



4 C. Aubert et al.

treatment of loops that contain explicit pointer manipulation, pointer arithmetic
or certain function calls. We reserve the introduction of these enhancements as
future extensions of our technique. In the meantime, and with these limitations in
mind, we believe our approach to be a good complement to existing approaches.
Polyhedral models [24]—that are also pushing to remove some restrictions [13]—,
advanced dependency analyses, or tools developed for very precise cases (such as
loop tiling [14]), should be used in conjunction with our technique, as their use
cases diverge (Sect. 6).

1.4 Contributions: From Theory to Benchmarks

We deliver a complete perspective on the design and expected real-time effi-
ciency of our loop fission technique, from its theoretical foundations to concrete
measurements. We present three main contributions:

1. The loop fission transformation algorithm—Sect. 3.1—that analyzes depen-
dencies of loop condition and body variables, establishes cliques between
statements, and splits independent cliques into multiple loops.

2. The correctness proof—Sect. 3.2—that guarantees the semantic preservation
of loop transformation.

3. Experimental results [8]—Sect. 5—that evaluate the potential gain of the
proposed technique, including loops with unknown iteration spaces, and
demonstrates its integrability with existing parallelization frameworks.

But first, we present and illustrate the dependency analysis that enables our
loop fission technique.

2 Background: Language and Dependency Analysis

2.1 A Simple While Imperative Language With Parallel Capacities

We use a simple imperative while language, with semantics similar to C, extended
with a parallel command, similar to e.g., OpenMP’s directives [25], allowing to
execute its arguments in parallel.6 Our language supports arrays but not pointers,
and we let for and do...while loops be represented using while loops. It is easy
to map to fragments of C, Java, or any other imperative programming language
with parallel support.

The grammar is given Fig. 1. A variable represents either an undetermined
“primitive” datatype, e.g., not a reference variable, or an array, whose indices are
given by an expression. We generally use s and t for arrays. An expression is
either a variable, a value (e.g., integer literal) or the application to expressions of
some operator op, which can be e.g., relational (==, <, etc.) or arithmetic (+, -,
etc.). We let V (resp. e, C) ranges over variables (resp. expression, command) and
W range over while loops. We also use combined assignment operators and write

6 OpenMP’s pragma omp parallel directive is illustrated in Sect. 5.



Distributing and Parallelizing Non-canonical Loops 5

var ::=i | j | . . . | s | t | . . . | x1 | x2 | . . . | zn | var[exp] (Variables)

exp ::=var | val | op(exp, . . . , exp) (Expression)

com ::=var = exp | if exp then com else com |
while exp do com | use(var, . . . , var) | skip |
com;com | parallel{com}{com} · · · {com} (Command)

Fig. 1. A simple imperative while language

e.g., x++ for x += 1. We assume commands to be correct, e.g., with operators
correctly applied to expressions, no out-of-bounds errors, etc.

A program is thus a sequence of statements, each statement being either an
assignment, a conditional, a while loop, a function call 7or a skip. Statements are
abstracted into commands, which can be a statement, a sequence of commands,
or multiple commands to be run in parallel. The semantics of parallel is the
following: variables appearing in the arguments are considered local, and the
value of a given variable x after execution of the parallel command is the value
of the last modified local variable x. This implies possible race conditions, but our
transformation (detailed in Sect. 3) is robust to those: it assumes given parallel-
free programs, and introduces parallel commands that either uniformly update
the (copy of the) variables across commands, or update them in only one command.
The rest of this section assumes parallel-free programs, that will be given as
input to our transformation explained in Sect. 3.1.

For convenience we define the following sets of variables.

Definition 1. Given an expression e, we define the variables occurring in e by:
Occ(x) = x Occ(t[e]) = t ∪Occ(e)

Occ(val) = ∅ Occ(op(e1, . . . , en)) = Occ(e1) ∪ · · · ∪Occ(en)

Definition 2. Let C be a command, we let Out(C) (resp. In(C), Occ(C)) be the
set of variables modified by (resp. used by, occurring in) C as defined in Table 1.
In the use(x1, . . . , xn) case, f is a fresh variable introduced for this command.

Our treatment of arrays is an over-approximation: we consider the array as
a single entity, and that changing one value in it changes it completely. This is
however satisfactory: since we do not split loop “vertically” (e.g., distributing
the iteration space between threads) but “horizontally” (e.g., distributing the
tasks between threads), we want each thread in the parallel command to have
control of the array it modifies, and not to have to synchronize its writes with
other commands.

7 The use command represents any command which does not modify its variables but
use them and should not be moved around carelessly (e.g., a printf). In practice,
we currently treat all function calls as use, even if the function is pure.



6 C. Aubert et al.

C Out(C) In(C) Occ(C) = Out(C) ∪ In(C)

x = e x Occ(e) x ∪Occ(e)

t[e1] = e2 t Occ(e1) ∪Occ(e2) t ∪Occ(e1) ∪Occ(e2)

if e then C1 else C2 Out(C1) ∪Out(C2) Occ(e) ∪ In(C1) ∪ In(C2) Occ(e) ∪Occ(C1) ∪Occ(C2)

while e do C Out(C) Occ(e) ∪ In(C) Occ(e) ∪Occ(C)

use(x1, . . . , xn) f {x1, . . . , xn} {x1, . . . , xn, f}
skip ∅ ∅ ∅
C1; C2 Out(C1) ∪Out(C2) In(C1) ∪ In(C2) Occ(C1) ∪Occ(C2)

Table 1. Definition of Out, In and Occ for commands

2.2 Data-flow Graphs for Loop Dependency Analysis

The loop transformation algorithm relies fundamentally on its ability to analyze
data-flow dependencies between loop condition and variables in the loop body, to
identify opportunities for loop fission. In this section we define the principles of
this dependency analysis, founded on the theory of data-flow graphs, and how it
maps to the presented while language. This dependency analysis was influenced
by a large body of works related to static analysis [1,26,29], semantics [27,38] and
optimization [33]; but is presented here in self-contained and compact manner.

We assume the reader is familiar with semi-rings, standard operations on
matrices (multiplication and addition), and on graphs (union and inclusion).

Definition of Data-Flow Graphs A data-flow graph for a given command C

is a weighted relation on the set Occ(C). Formally, this is represented as a matrix
over a semi-ring, with the implicit choice of a denumeration of Occ(C).8

Definition 3 (dfg). A data-flow graph (dfg) for a command C is a |Occ(C)|×
|Occ(C)| matrix over a fixed semi-ring (S, +,×), with |Occ(C)| the cardinal of
Occ(C). We write M(C) the dfg of C and M(C)(x, y) for the coefficient in M(C)
at the row corresponding to x and column corresponding to y.

How a data-flow graph is constructed, by induction over the command, is
explained in Sect. 2.3. To avoid resizing matrices whenever additional variables
are considered, we identify M(C) with its embedding in a larger matrix, i.e.,
we abusively call the dfg of C any matrix containing M(C) and the multiplica-
tion identity element on the other diagonal coefficients, implicitly viewing the
additional rows/columns as variables not in Occ(C).

2.3 Constructing Data-Flow Graphs

The data-flow graph (dfg) of a command is constructed by induction on the
structure of the command. In the remainder of this paper, we use the semi-
ring ({0, 1,∞}, max,×) to represent dependencies: ∞ represents dependence, 1
represents propagation, and 0 represents reinitialization.

8 We will use the order in which the variables occur in the program as their implicit
order most of the time.



Distributing and Parallelizing Non-canonical Loops 7

Base cases (assignment, skip, use) The dfg for an assignment C is computed
using In(C) and Out(C):

Definition 4 (Assignment). Given an assignment C, its dfg is given by:

M(C)(x, y) =


∞ if x ∈ Out(C) and y ∈ In(C) (Dependence)

1 if x = y and x /∈ Out(C) (Propagation)

0 otherwise (Reinitialization)

We illustrate in Fig. 2 some basic cases and introduce the graphical conventions
of using weighted relations, or weighted bi-partite graphs, to illustrate the matrices.
Note that in the case of dependencies, In(C) is exactly the set of variables that
are source of a dependence arrow, while Out(C) is the set of variables that either
are targets of dependence arrows or were reinitialized.

C Out(C), In(C) M(C) (as a graph) M(C)

w = 3
Out(C) = {w}

In(C) = ∅

w w
reinitialization (w

w 0
)

x = y
Out(C) = {x}

In(C) = {y}

x

y

x

y
depen

dence

propagation

( x y

x 0 0
y ∞ 1

)

w = t[x + 1]
Out(C) = {w}

In(C) = {t, x}

w

t

x

w

t

x


w t x

w 0 0 0
t ∞ 1 0
x ∞ 0 1



t[i] = u + j
Out(C) = {t}

In(C) = {i, u, j}

t

i

u

j

t

i

u

j


t i u j

t 0 0 0 0
i ∞ 1 0 0
u ∞ 0 1 0
j ∞ 0 0 1



Fig. 2. Statement examples, sets, and representations of their dependences

Note that we over-approximate arrays in two ways: the dependencies of the
value at one index are the dependencies of the whole array, and the index at
which the value is assigned is a dependence of the whole array (cf. the solid
arrow from i to t in the last example of Fig. 2). This is however enough for our
purpose, and simplify our treatment of arrays.

The dfg for skip is simply the empty matrix, but the dfg of use function
calls requires a fresh “effect” variable to anchor the dependencies.

Definition 5 (skip). We let M(skip) be the matrix with 0 rows and columns.9

9 Identifying the dfg with its embeddings, it is hence the identity matrix of any size.



8 C. Aubert et al.

Definition 6 (use). We let M(use(x1, . . ., xn)) be the matrix with coefficients
from each xi to f, and from f to f equal to ∞, and 0 coefficients otherwise, for
f a freshly introduced variable. Graphically, we get:

f

x1...

xn

f

x1...

xn

...

Composition and multipaths The definition of dfg for a (sequential) compo-
sition of commands is an abstraction that allows treating a block of statements
as one command with its own dfg.

Definition 7 (Composition). We let M(C1; . . . ; Cn) be M(C1)× · · · ×M(Cn).

For two graphs, the product of their matrices of weights is represented in a
standard way, as a graph of length 2 paths; as illustrated in Fig. 3—where C1
and C2 are themselves already the result of compositions of assignments involving
disjoint variables, and hence straightforward to compute.

C1 C2 C1; C2
w = w + x; z = y + 2 x = y; z = z ∗ 2
w

x

y

z

w

x

y

z

w

x

y

z

w

x

y

z

w

x

y

z

w

x

y

z


w x y z

w ∞ 0 0 0
x ∞ 1 0 0
y 0 0 1 ∞
z 0 0 0 0

 ×


w x y z

w 1 0 0 0
x 0 0 0 0
y 0 ∞ 1 0
z 0 0 0 ∞

 =


w x y z

w ∞ 0 0 0
x ∞ 0 0 0
y 0 ∞ 1 ∞
z 0 0 0 0



Fig. 3. Data-Flow Graph of Composition.

Correction Conditionals and loops both requires a correction to compute their
dfgs. Indeed, the dfgs of if e then C1 else C2 and while e do C require more
than the dfg of its body. The reason for this is that all the modified variables
in C1 and C2 or C (e.g., Out(C1) ∪ Out(C2) or Out(C)) depend on the variables
occuring in e (e.g., in Occ(e)). To reflect this, a correction is needed:

Definition 8 (Correction). For e an expression and C a command, we define
e’s correction for C, Corr(e)C, to be Et ×O, for



Distributing and Parallelizing Non-canonical Loops 9

– Et the (column) vector with coefficient equal to ∞ for the variables in Occ(e)
and 0 for all the other variables,

– O the (row) vector with coefficient equal to ∞ for the variables in Out(C)
and 0 for all the other variables.

As an example, let us re-use the programs C1 and C2 from Fig. 3, to construct
w > x’s correction for C1; C2, that we write Corr(w > x)C1;C2 :

Et O Et ×O
w ∞
x ∞
y 0
z 0


w x y z

∞ 0 0∞ (Out(C1))
+ 0 ∞ 0∞ (Out(C2))
= ∞∞ 0∞ (Out(C1; C2))

( )( )( )


w x y z

w ∞∞ 0∞
x ∞∞ 0∞
y 0 0 0 0
z 0 0 0 0


This last matrix represents the fact that w and x, through the expression

w > x, control the values of w, x and z if C1 and C2’s execution depend of it.

Conditionals. To construct the dfg of if e then C1 else C2, there are two
aspects to consider:

1. First, our analysis does not seek to evaluate whether C1 or C2 will get executed.
Instead, it will overapproximate and assume that both will get executed,
hence using M(C1) + M(C2).

2. Second, all the variables assigned in C1 and C2 (e.g., Out(C1) ∪ Out(C2))
depends on the variables occurring in e. For this reason, Corr(e)C1;C2 needs
to be added to the previous matrix.

Putting it together, we obtain:

Definition 9 (if). We let M(if e then C1 else C2) be M(C1)+M(C2)+Corr(e)C1;C2 .

Re-using the programs C1 and C2 from Fig. 3 and Corr(w > x)C1;C2 , we obtain:

M


if(w>x)

then w = w + x;

z = y + 2

else x = y;

z = z ∗ 2

 =


w x y z

w ∞ 0 0 0
x ∞ 1 0 0
y 0 0 1∞
z 0 0 0 0

+


w x y z

w 1 0 0 0
x 0 0 0 0
y 0∞ 1 0
z 0 0 0∞

+


w x y z

w ∞ ∞ 0 ∞
x ∞ ∞ 0 ∞
y 0 0 0 0
z 0 0 0 0


The boxed value represents the impact of x on itself: C1 has the value 1, since

x is not assigned in it. On the other hand, C2 has 0 for coefficient, since the value
of x is reinitialized in it. The correction, however, has a ∞, to represent the fact
that the value of x controls the values assigned in the body of C1 and C2—and
x itself is one of them. As a result, we have again the value ∞ in the matrix
summing them three, since x controls the value it gets assigned to itself—as it
controls which branch ends up being executed. On the other hand, the circled
value at (w, y) is a 0 since y’s value is not controlled by w, since neither C1 nor C2
assign y: regardless of e’s truth value, y’s value will remain the same.



10 C. Aubert et al.

While Loops. To define the dfg of a command while e do C from M(C), we
need, as for conditionals, the correction Corr(e)C, to account for the fact that all
the modified variables in C depend on the variables used in e:

Definition 10 (while). We let M(while e do C) be M(C) + Corr(e)C.10

As an example, we let the reader convince themselves that the dfg of

while(t[i] != j){

s1[i] = j*j;

s2[i] = 1/j;

i++

}

is


t i j s1 s2

t 1∞ 0 ∞ ∞
i 0∞ 0 ∞ ∞
j 0∞ 1 ∞ ∞
s1 0 0 0 0 0
s2 0 0 0 0 0

. Intuitively, one can note that

the rows for s1 and s2 are filled with 0s, since those variables do not control any
other variable and are assigned in the body of the loop. On the other hand, t, i
and j all three control the values of i, s1 and s2, since they determine if the
body of the loop will execute. The variables t and j are the only one whose value
is propagated (e.g., with a 1 on their diagonal), since they are not assigned in this
short example. The command i++ is the only command that has the potential to
impact the loop’s condition. We call it an update command:

Definition 11 (Update command). Given a loop W := while e do C, the
update commands Cu are the commands in C such that M(W)(x, y) = ∞ for
x ∈ Out(Cu) and y ∈ Occ(e).

3 Loop Fission Algorithm

We now present our loop transformation technique and prove its correctness.

3.1 Algorithm, Presentation and Intuition

Our algorithm, presented in Algo. 1, requires essentially to

1. Pick a loop at top level,
2. Compute its condensation graph (Def. 13)—this requires first the dependence

graph (Def. 12), which itself uses the dfg,
3. Compute a covering (Def. 14) of the condensation graph,
4. Create a loop per element of the covering.

Even if our technique could distribute nested loops, it would require adjust-
ments that we prefer to omit to simplify our presentation. None of our examples
in this paper require to distribute nested loops. Note, however, that our algorithm
handles loops containing themselves loops.

10 This is different from our previous treatment of while loop [33, Definition 5], that
required to compute the transitive closure of M(C): for the transformation we present in
Sect. 3, this is not needed, as all the relevant dependencies are obtained immediately—
this also guarantees that our analysis can distribute loop-carried dependencies.



Distributing and Parallelizing Non-canonical Loops 11

Definition 12 (Dependence graph). The dependence graph of the loop W :=
while e do {C1; · · · ; Cn} is the graph whose vertices is the set of commands
{C1; · · · ; Cn}, and there exists a directed edge from Ci to Cj if and only if there
exists variables x ∈ Out(Cj) and y ∈ In(Ci) such that M(W)(x, y) =∞.

The last example of Sect. 2.3 gives i++s1[i] = j*j s2[i] = 1/j .
Note that all the commands in the body of the loop are the sources of dependence
edges whose target is the update commands: for our example, this means that
every command will be the source of an arrow whose target is i++. This comes
from the correction, even if the condition does not explicitly appear in the
dependence graph.

The remainder of the loop transforming principle is simple: once the graph
representing the dependencies between commands is obtained, it remains to
determine the cliques in the graph and forms strongly connected components
(sccs); and then to separate the sccs into subgraphs to produce the final
parallelizable loops that contain a copy of the loop header and update commands.

Definition 13 (Graph helpers). Given the dependence graph of a loop W,

– its strongly connected components ( sccs) are its strongly connected sub-
graphs,

– its condensation graph GW is the graph whose vertices are sccs and edges
are the edges whose source and target belong to distinct sccs.

In our example, the sccs are the nodes themselves, and the condensation graph

is i++s1[i] = j*j s2[i] = 1/j . Excluding the update command
i++, there are now two nodes in the condensation graph, and we can construct
the parallel loops by 1. inserting a parallel command, 2. duplicating the loop
header and update command, 3. inserting the command in the remaining nodes
of the condensation graph in each loop. For our example, we obtain, as expected,

parallel

 while(t[i] != j){

s1[i] = j*j;

i++}


 while(t[i] != j){

s2[i] = 1/j;

i++}

 .

Formally, what we just did was to split the saturated covering.

Definition 14 (Coverings [16]). A covering of a graph G is a collection of
subgraphs G1,G2, . . . ,Gj such that G = ∪ji=1Gi.

A saturated covering of G is a covering G1,G2, . . . ,Gk such that for all edge
in G with source in Gi, its target belongs to Gi as well. It is proper if none of
the subgraph is a subgraph of another.

The algorithm then simply consists in finding a proper saturated covering of
the loop’s condensation graph, and to split the loop accordingly. In our example,
the only proper saturated covering is

{ i++s1[i] = j*j , i++ s2[i] = 1/j }.



12 C. Aubert et al.

If the covering was not proper, then the i++ node on its own would be in it,
leading to create a useless loop that performs nothing but updating its own
condition.

Algorithm 1 Loop fission

Input: A loop W := while e do {C1; · · · ; Cn} . Pick a loop W at top level

Compute the condensation graph GW of W, . cf. Def. 13
Compute the saturated covering G1, . . . ,Gj of GW: . cf. Def. 14
while a node n in GW is not part of a subgraph Gl do

Create a new subgraph Gi containing n,
Recursively add to Gi the nodes targeted by edges whose source is in Gi,

Compute the proper saturated covering G1, . . . ,Gk of GW:
for all Gi in the saturated covering do

If ∃Gl in the saturated covering s.t. Gi is a subgraph of Gl, then remove Gi

end for
Create one while loop per subgraph in the proper saturated covering:
for all Gi in the proper saturated covering do

Let Wi := while e do {Ci1 ; · · · ; Cim} where {Ci1 , . . . , Cim} are the vertices of Gi,
inserted in the same order as they are in W.
end for

Output: if k > 1, ~W := parallel{W1}{ . . . }{Wk}, else ~W := W.

Sometimes, duplicating commands that are not update commands is needed
to split the loop. We illustrate this principle with a more complex example that
involve function call and multiple update commands in Fig. 4.

3.2 Correctness of the Algorithm

We now need to prove that the semantics of the initial loop W is equal to the
semantics of ~W given by Algo. 1. This is done by showing that for any variable
x appearing in W, its final value after running W is equal to its final value after
running ~W. We first prove that the loops in ~W has the same iteration space as W:

Lemma 1. The loops in ~W have the same number of iterations as W.

Proof. Let Wi be a loop in ~W. By property of the saturated covering, the update
commands are in the body of Wi: there is always an edge from any command to the
update commands due to the loop correction, and hence the update commands
are part of all the subgraphs in the saturated covering. Furthermore, if there
exists a command C that is the target of an edge whose source is an update
command Cu, then C and Cu are always both present in any subgraph of the
saturated covering. Indeed, since there are edges from Cu to C and from C to Cu,
they are part of the same node in the condensation graph.

Since the condition of Wi is the same as the condition of W, and since all the
instructions that impact (directly or indirectly) the variables occurring in that



Distributing and Parallelizing Non-canonical Loops 13

M



while(i != j){

i++;

j--;

a = t[i];

use(a);

b = t[a]

}


=



i j a t b f

i ∞ ∞ ∞ 0 ∞ ∞
j ∞ ∞ ∞ 0 ∞ ∞
a 0 0 0 0 ∞ ∞
t 0 0 ∞ 1 ∞ 0
b 0 0 0 0 0 0
f 0 0 ∞ 0 0 ∞


i++ j--a = t[i]

use(a) b = t[a]

The proper saturated covering has two subgraphs: one contains everything but use(a)

and the other contains everything but b = t[a]. Since both use(a) and b = t[a]

depend on a = t[i], this latter command needs to be duplicated, even if it is not an
update command:

parallel


while(i != j){

i++;

j--;

a = t[i];

use(a)}




while(i != j){

i++;

j--;

a = t[i];

b = t[a]}


Fig. 4. Distributing a more complex while loop

condition are present in Wi, we conclude that the number of iterations of Wi and
W are equal.

Theorem 1. The transformation W ~W given in Algo. 1 preserves the semantic.

Proof (sketch). We show that for every variable x, the value of x after the
execution of W is equal to the value of x after the execution of ~W. Variables are
considered local to each loop Wi in ~W, so we need to avoid race condition. To do
so, we prove the following more precise result: for each variable x and each loop
Wi in ~W in which the value of x is modified, the value of x after executing W is
equal to the value of x after executing Wi.

The previous claim is then straightforward to prove, based on the property of
the covering. One shows by induction on the number of iterations k that for all the
variables x1, . . . , xh appearing in Wi, the values of x1, . . . , xh after k loop iterations
of Wi are equal to the values of x1, . . . , xh after k loop iterations of W. Note some
other variables may be affected by the latter but the variables x1, . . . , xh do
not depend on them (otherwise, they would also appear in Wi by definition of
the dependence graph and the covering). Since the number of iteration match
(Lemma 1), the claim is proven.

4 Limitations of Existing Alternative Approaches

In the beginning of this paper, we made the bold claim that other loop fission ap-
proaches do not handle unknown iteration spaces, which makes our loop-agnostic
technique interesting. In this section we discuss these alternative approaches, their



14 C. Aubert et al.

capabilities, and provide evidence to support this claim. We also give justification
for the need to introduce our loop analysis into this landscape.

4.1 Comparing Dependency Analyses

Since its first inception, loop fission [2] has been implemented using different
techniques and dependency mechanisms. Program dependence graph (PDG) [18]
can be used to identify when a loop can be distributed [3, p. 844], but other—
sometimes simpler—mechanisms are often used in practice. For instance, a patch
integrating loop fission into LLVM [28] tuned the simpler data dependence graph
(DDG) to obtain a Loop Fission Interference Graph (FIG) [30]. GCC, on the other
hand, build a partition dependence graph (PG) based on the data dependency
given by a reduced dependence graph (RG) to perform the same task [19]. In this
paper, we introduce another loop dependency analysis, not to further obfuscate
the landscape, but because it allows us to express our algorithm simply and—more
importantly—to verify it mathematically.11

We assume that the more complex mechanisms listed above (PDG, DDG
or PG) could be leveraged to implement our transformation, but found it more
natural to express ourselves in this language. We further believe that the way
we compute the data dependencies is among the lightest, and with a very low
memory footprint, as it requires only one pass on the source code to construct a
matrix whose size is the number of variables in the program.

4.2 Assessment of Existing Automated Loop Transformation and
Parallelization Tools

While we conjecture that other mechanisms could, in theory, treat loops of any
kind like we do, we now substantiate our claim that none of them do: in short,
any loop with non-basic condition or update statement is excluded from the
optimizations we now discuss. We limit this consideration to tools that support
C language transformations, because it is our choice implementation language
for experimental evaluation in Sect. 5. We also focus on presenting the kinds of
loops that other “popular” [35] automatic loop transformation frameworks do
not distribute, but that our algorithm can distribute. In particular, we do not
discuss loops containing control-flow modifiers (such as break; or continue;):
neither our algorithm nor OpenMP nor the underlying dependency mechanisms
of the discussed tools—to the best of our knowledge—can accommodate those.

Tools that fit the above specification include Cetus, a compiler infrastructure
for the source-to-source transformation; Clava, a C/C++ source-to-source tool
based on Clang; Par4All, an automatic parallelizing and optimizing compiler;
Pluto, an automatic parallelizer and locality optimizer for affine loop nests;
ROSE, a compiler-based infrastructure for building source-to-source program
transformations and analysis tools; Intel’s C++ compiler (icc), and TRACO, an

11 This analysis also shares interesting links to a static analysis of values growth [10,9],
as discussed more in-depth in a first draft [7].

https://engineering.purdue.edu/Cetus/
https://github.com/specs-feup/clava
https://github.com/Par4All/par4all
http://pluto-compiler.sourceforge.net/
http://rosecompiler.org/
http://traco.sourceforge.net/


Distributing and Parallelizing Non-canonical Loops 15

automatic parallelizing and optimizing compiler, based on the transitive closure of
dependence graphs. While these tools perform various automatic transformations
and optimizations, only ROSE and icc perform loop fission [35, Section 3.1].

Based on our assessment, most of these tools process only canonical loops:

Definition 15 (Canonical Loop [25, 4.4.1 Canonical Loop Nest Form]).
A canonical loop is a loop of the form

for (init-expr; test-expr; incr-expr) structured-block

for incr-expr a (single) increment or decrement by a constant or a variable, and
test-expr a single comparison between a variable and a variable or a constant.

Additional constraints on loop dependences are sometimes needed, e.g., the
absence of loop-carried dependency for Cetus. It seems further that some tools
cannot parallelize loops whose body contains e.g., if or switch statements [35,
p. 18], but we have not investigated this claim further. However, our algorithm
can handle if—and switch too, if it was part of our syntax—present in the
body of the loop seamlessly.

It is always hard to infer the absence of support, but we evaluated the lack
of formal discussion or example of e.g., while loop to be sufficient to determine
that the tool cannot process while loops, unless of course they can trivially be
transformed into for loops of the required form [39, p. 236]. We refer to a recent
study [35, Section 2] for more detail on those notions and on the limitations of
some of the tools discussed in Table 2.

Name Fission for loop while loop do . . .while loop ref.

Cetus − In canonical form − [17, p. 39], [11, p. 761]

Clava − In canonical form − [6]

icc X Only if countable − [23, p. 2126]

Par4All − Unknown [4,5]

Pluto − Only static control structures [15]

ROSE X In canonical form − [36, p. 124]

TRACO − In canonical form − [34]

OpenMP − In canonical form − [25]

Table 2. Feature support comparison of automated transformation and parallelization
tools.

5 Evaluation

We performed an experimental evaluation of our loop fission technique on a suite
of parallel benchmarks. Taking the sequential baseline, we applied the loop fission
transformation and parallelization. We compared the result of our technique to
the baseline and to an alternative loop fission method implemented in ROSE.

We conducted this experiment in C programming language because it naturally
maps to the syntax of the imperative while language presented in Sect. 2. We

http://rosecompiler.org/


16 C. Aubert et al.

implement the parallel command as OpenMP directives. For instance, the
sequential baseline program on the left of Fig. 5 becomes the parallel version on
right,12 after applying our loop fission transformation and parallelization.

j = 0;

while (j<M)

{

s[j] += r[j]*A[j];

q[j] += A[j]*p[j];

j++;

}

#pragma omp parallel private(j)

{ // Each "pragma" block below

// have its own copy of j.

#pragma omp single nowait

{ // "nowait" lets the next

// block start in parallel.

j = 0;

while (j<M) {

s[j] += r[j]*A[j];

j++;

}

}

#pragma omp single

{

j = 0;

while (j<M) {

q[j] += A[j]*p[j];

j++;

}

}

} // Both blocks must be terminated

// before passing this point.

Fig. 5. Code transformation example

The evaluation experimentally substantiated two claims about our technique:

1. It can parallelize loops that are completely ignored by other automatic loop
transformation tools, and results in appreciable gain, upper-bounded by the
number of parallelizable loops produced by loop fission.

2. Concerning loops that other automatic loop transformation tools can dis-
tribute, it yields comparable results in speedup potential. We also demonstrate
how insertion of parallel directives can be automated, which supports the
practicality of our method.

These results combined confirm that our loop fission technique can easily be
integrated into existing tools to improve the performances of the resulting code.

12 This example is inspired by benchmark bicg from PolyBench/C and presented in
our artifact.

http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://github.com/statycc/loop-fission/blob/a695aba2aeab2f4d68a67ab9633535210d930bc6/fission/bicg.c
https://github.com/statycc/loop-fission/blob/a695aba2aeab2f4d68a67ab9633535210d930bc6/fission/bicg.c


Distributing and Parallelizing Non-canonical Loops 17

5.1 Benchmarks

Special consideration was necessary to prepare an appropriate benchmark suite
for evaluation. We wanted to test our technique on a range of standard problems,
across different domains and data sizes, and to include problems containing while

loops. Because our technique is specifically designed for loop fission, we also
needed to identify problems that offered potential to apply this transformation.
Finding a suite to fit these parameters is challenging, because standard parallel
programming benchmark suites offer mixed opportunity for various program
optimizations and focus on loops in canonical form.

We resolved this challenge by preparing a curated set, pooling from three
standard parallel programming benchmark suites. PolyBench/C is a polyhedral
benchmark suite, representing e.g., linear algebra, data mining and stencils;
and commonly used for measuring various loop optimizations. NAS Parallel
Benchmarks are designed for performance evaluation of parallel supercomputers,
derived from computational fluid dynamics applications. MiBench is an embedded
benchmark suite, with everyday programming applications e.g., image-processing
libraries, telecommunication, security and office equipment routines. From these
suites, we extracted problems that offered potential for loop fission, or already
assumed expected form, resulting in 12 benchmarks. We detail these benchmarks
in Table 4. Because these three suites are not mutually compatible, we leveraged
the timing utilities from PolyBench/C to establish a common and comparable
measurement strategy. To assess performance of other kinds of loops that our
algorithm can distribute, but which do not occur prevalently in these benchmarks,
we converted a portion of problems to use while loops.

Comparison target We compared our approach to ROSE Compiler. It is a
rich compiler architecture that offers various program transformations and auto-
matic parallelization, and supports multiple compilation targets. ROSE’s built-in
LoopProcessor tool supports loop fission for C-to-C programs. This input/output
specification was necessary to allow observation of the transformation results
and fit with the measurement strategy we defined previously. To our knowledge,
ROSE is the only tool that satisfies these evaluation requirements.

Experimental setup We ran the benchmarks using a Linux 5.10.0-18-amd64
#1 SMP Debian 5.10.140-1 (2022-09-02) x86 64 GNU/Linux machine, with 4
Intel(R) Core(TM) i5-6300U CPU @ 2.40GHz processors, and gcc compiler
version 7.5.0. The evaluation was performed in a containerized environment on
Docker version 20.10.18, build b40c2f6. For each benchmark, we recorded the
clock time 5 times, excluded min and max, and averaged the remaining 3 times
to obtain the result. We constrained variance between recorded times not to
exceed 5%. We ran experiments on 5 input data sizes, as defined in PolyBench/C:
MINI, SMALL, MEDIUM, LARGE and EXTRALARGE (abbr. XS, S, M, L, XL). We also
tested 4 gcc compiler optimization levels -O0 through -O3. Speedup is the ratio
of sequential and parallel executions, S = TSeq/TPar, where a value greater than

http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://www.nas.nasa.gov/software/npb.html
https://www.nas.nasa.gov/software/npb.html
https://vhosts.eecs.umich.edu/mibench/
http://rosecompiler.org/


18 C. Aubert et al.

1 indicates parallel is outperforming the sequential execution. In presentation
of these results, the sequential benchmarks are always considered the baseline,
and speedup is reported in relation to the transformed versions. Our open source
benchmarks, and instructions for reproducing the results, are available online [8].

5.2 Results

In analyzing the results, we distinguish two cases: distributing and parallelizing
loops with potentially unknown iterations, and loops with pre-determined itera-
tions (typically while and for loops, respectively). The difficulty of parallelizing
the former arises from the need to synchronize evaluation of the loop recurrence
and termination condition. Improper synchronization results in overshooting the
iterations [37], rendering such loops effectively sequential.

Loop fission addresses this challenge by recognizing independence between
statements and producing parallelizable loops. Special care is needed when
inserting parallelization directives for such loops. This remains a limitation of
automated tools and is not natively supported by OpenMP. We resolved this
issue by using the OpenMP single directive, to prevent overshooting the loop
termination condition and need for synchronization between threads, enabling
parallel execution by multiple threads on individual loop statements. The strategy
is simple, implementable, and we show it to be effective. However, it is also upper-
bounded in speedup potential by the number of parallelizable loops produced
by the transformation. This is a syntactic constraint, rather than one based on
number of available cores.

The results, presented in Table 3, show that our approach, paired with
the described parallelization strategy, yields a gain relative to the number of
independent parallelizable loops in the transformed benchmark. We observe this
e.g., for benchmarks bicg, gesummv, and mvt, as presented in Fig. 6. We also
confirm that ROSE’s approach did not transform these loops, and report no gain
for the alternative approach.

Comparison with ROSE The remaining benchmarks, with known iteration
spaces, can be transformed by both evaluated loop fission techniques: ours and
ROSE’s LoopProcessor. In terms of transformation results, we observed relatively
similar results for both techniques. We discovered one interesting transformation
difference, with benchmark gemm, which ROSE handles differently from our
technique.

After transformation, the program must be parallelized by inserting OpenMP
directives. This parallelization step can be fully automatic and performed with
e.g., ROSE or Clava, demonstrating that pipelining the transformed programs
is feasible. For evaluations, we used manual parallelization for our technique
and automatic approach for ROSE. However, we also noted that the automatic
insertion of parallelization directives yielded, in some cases, suboptimal choices,
such as parallelization of loop nests. This added unnecessary overhead to execution
time, and negatively impacted the results obtained for ROSE, e.g., for benchmarks

https://github.com/statycc/loop-fission/blob/ecbf4e42a438c783266e2f477eb927832b3ee903/alt/gemm.c#L72-L102
https://github.com/statycc/loop-fission/blob/8446e8dbe2e6ab11a392aa7dae64eb53dde4852c/fission/gemm.c#L88-L100
https://github.com/statycc/loop-fission/blob/8446e8dbe2e6ab11a392aa7dae64eb53dde4852c/fission/gemm.c#L88-L100
https://github.com/specs-feup/clava/


Distributing and Parallelizing Non-canonical Loops 19

XS S M L XL
bicg

0

1

2

3

sp
ee

du
p

O0 O1 O2 O3

XS S M L XL
gesummv

0

1

2

3

sp
ee

du
p

O0 O1 O2 O3

XS S M L XL
mvt

0

1

2

3

sp
ee

du
p

O0 O1 O2 O3

Fig. 6. Speedup of selected benchmarks implemented using while loops. Note the
influence of various compiler optimization levels, -O0 to -O3 on each problem, and
how parallelization overhead tends to decrease as input data size grows from MINI to
EXTRALARGE. The gain is lower for mvt because it assumes fissioned form in the original
benchmark. bicg and gesummv obtain higher gain from applied loop distribution.

fdtd-2d and gemm, as observable in the results. It is possible this issue could be
mitigated by providing annotations and more detailed instructions for applying
the parallelization directives. In other experiments with alternative parallelization
tools [7, Sect. 4.3], we have been successful at finding optimal parallelization
directives automatically, and therefore conclude it is achievable. We again refer
to Table 3 for a detailed presentation of the experimental evaluation results.

6 Conclusion

This work is only the first step in a very exciting direction. “Ordinary code”, and
not only code that was specifically written for e.g., scientific calculation or other
resource-demanding operations, should be executed in parallel to leverage our
modern architectures. As a consequence, the much larger codebase concerned with
parallelization is much less predictable and offers more diverse loop structures.
Focusing on resource-demanding programs led previous efforts not only to focus
on predictable loop structures, but to completely ignore other non-canonical loops.
Our effort, based on an original dependency analysis, leads to re-integrate such
loops in the realm of parallel optimization. This alone, in our opinion, justifies
further investigation in integrating our algorithm into specialized tools.

As presented in Fig. 6, our experimental results offer some variability, but
they need to be put in context: loop distribution is often only the first step in the
optimization pipeline. Loops that have been split can then be vectorized, blocked,
unrolled, etc., providing additional gain in terms of speed. Exactly as for loop
fusion [31], a more global treatment of loops is needed to strike the right balance
and find the optimum code transformation. Such a journey will be demanding
and complex, but we believe this work enables it by reintegrating all loops in
the realm of parallel optimization.



20 C. Aubert et al.

Benchmark -O0 -O1 -O2 -O3

Name Size ours rose ours rose ours rose ours rose

3mm XS 2.71 0.07 2.26 0.02 1.71 0.02 1.73 0.01

S 2.80 0.22 3.78 0.09 3.49 0.05 3.35 0.05

M 2.20 0.46 3.44 0.27 3.08 0.13 3.05 0.13

L 2.85 1.92 3.11 1.16 2.89 0.66 2.97 0.66

XL 2.16 2.31 3.13 1.83 2.24 1.05 2.25 1.04

bicg XS 1.45 0.96 1.00 1.00 1.33 1.00 1.33 1.00

S 1.68 0.98 1.08 1.00 2.33 1.01 2.39 1.02

M 1.62 0.97 1.00 0.98 2.36 0.96 2.50 1.00

L 1.61 0.96 0.90 0.94 2.05 0.95 2.06 0.95

XL 1.62 0.96 0.89 0.95 2.13 0.93 2.11 0.94

colormap XS 2.14 1.01 1.50 1.02 1.54 1.04 1.52 1.01

S 2.08 0.97 1.57 1.00 1.54 1.02 1.43 0.99

M 1.98 0.95 1.46 0.96 1.49 0.98 1.19 1.00

L 1.93 1.03 1.42 0.98 1.44 0.98 1.20 1.01

XL 1.82 1.00 1.53 0.97 1.55 0.99 1.16 1.00

conjgrad XS 2.43 1.45 1.82 0.69 2.77 0.65 2.50 0.52

S 2.50 2.39 1.91 2.03 2.84 1.88 2.96 1.65

M 2.56 2.58 1.94 2.66 2.93 2.44 3.20 2.33

L 2.38 2.62 1.73 2.96 2.92 2.92 3.24 2.91

XL 2.29 2.61 1.59 2.55 2.72 2.57 2.99 2.39

cp50 XS 1.90 0.97 1.97 1.00 2.18 1.01 2.09 1.01

S 1.94 0.95 2.00 1.02 2.08 1.00 2.07 1.00

M 1.89 0.98 1.76 0.97 1.83 0.99 1.82 0.98

L 1.74 0.98 1.49 0.96 1.51 0.96 1.50 0.96

XL 1.63 0.99 1.16 0.96 1.07 0.98 1.11 0.96

deriche XS 2.00 0.90 1.93 0.51 2.18 0.53 2.11 0.51

S 2.30 1.49 2.16 1.05 2.17 1.04 2.14 1.03

M 2.68 2.35 2.88 2.20 2.68 2.22 2.72 2.20

L 1.79 1.75 2.08 2.03 2.05 2.05 2.07 2.04

XL 1.12 1.12 1.65 1.61 1.67 1.67 1.60 1.64

Benchmark -O0 -O1 -O2 -O3

Name Size ours rose ours rose ours rose ours rose

fdtd-2d XS 2.34 0.27 1.48 0.05 1.81 0.06 1.15 0.03

S 2.57 0.59 2.68 0.15 3.12 0.17 2.47 0.09

M 2.23 0.82 2.01 0.29 2.47 0.30 2.60 0.24

L 2.15 1.20 1.89 0.65 1.98 0.61 2.16 0.71

XL 2.17 1.38 1.47 0.79 1.50 0.73 1.68 0.86

gemm XS 2.73 0.09 2.33 0.02 2.43 0.02 1.20 0.01

S 2.87 0.21 3.98 0.05 3.09 0.04 3.01 0.02

M 2.57 0.56 3.42 0.12 3.40 0.12 2.73 0.05

L 2.44 1.50 1.79 0.35 1.87 0.36 2.20 0.25

XL 2.44 1.95 1.85 0.60 1.85 0.70 1.96 0.50

gesummv XS 1.33 1.00 0.50 0.67 0.67 0.67 1.00 1.00

S 1.67 0.95 1.08 1.03 2.09 1.03 1.94 1.01

M 1.77 0.98 1.03 1.00 2.19 1.00 2.25 1.00

L 1.71 0.94 0.90 0.93 2.04 0.93 2.08 0.97

XL 1.92 0.98 0.96 0.98 2.03 0.99 2.05 0.98

mvt XS 1.63 1.00 1.40 0.88 1.00 1.00 1.00 1.00

S 1.76 1.01 1.93 1.01 1.73 1.02 1.62 1.00

M 1.55 0.96 1.90 1.00 1.69 1.02 1.70 1.03

L 1.52 0.98 1.64 0.97 1.51 0.98 1.53 1.00

XL 1.52 0.98 1.66 0.99 1.42 1.00 1.42 1.00

remap XS 1.43 0.97 0.54 1.00 0.54 1.00 0.64 1.00

S 2.07 0.94 1.20 1.02 1.13 1.03 1.19 1.01

M 2.43 0.99 3.13 0.96 3.36 0.98 2.89 0.97

L 2.09 1.00 1.34 0.97 1.54 1.02 1.74 1.00

XL 2.11 1.00 1.28 0.99 1.52 0.99 1.57 1.00

tblshft XS 3.19 3.27 2.70 2.65 2.68 2.73 2.82 2.82

S 3.37 3.45 2.82 2.84 2.89 2.86 3.05 3.08

M 3.31 3.62 2.93 3.00 2.79 2.85 3.21 3.19

L 3.05 3.40 2.17 2.32 2.38 2.32 2.40 2.39

XL 3.08 3.48 1.91 1.85 1.64 1.69 1.96 1.96

Table 3. Speedup comparison between original sequential and transformed parallel
benchmarks, comparing our loop fission technique with ROSE Compiler, for various
data sizes and compiler optimization levels. We note that the problems containing
only while loop (in bold) are not transformed by ROSE and therefore report no gain.
The other results vary depending on parallelization strategy, but as noted with e.g.,
problems conjgrad and tblshft, we obtain similar speedup for both fission strategies
when automatic parallelization yields optimal OpenMP directives.

Benchmark Description for loop while loop Source

3mm 3D matrix multiplication X PolyBench/C
bicg BiCG sub kernel of BiCGStab linear solver X PolyBench/C

colormap TIFF image conversion of photometric palette X MiBench
conjgrad Conjugate gradient routine X NAS-CG

cp50 Ghostscript/CP50 color print routine X X MiBench
deriche Edge detection filter X PolyBench/C
fdtd-2d 2-D finite different time domain kernel X PolyBench/C
gemm Matrix-multiply C=alpha.A.B+beta.C X PolyBench/C

gesummv Scalar, vector and matrix multiplication X PolyBench/C
mvt Matrix vector product and transpose X PolyBench/C

remap 4D matrix memory remapping X NAS-UA
tblshift TIFF PixarLog compression main table bit shift X X MiBench

Table 4. Descriptions of evaluated parallel benchmarks.



Distributing and Parallelizing Non-canonical Loops 21

References

1. Abel, A., Altenkirch, T.: A predicative analysis of structural recursion. Jour-
nal of Functional Programming 12(1), 1–41 (2002). https://doi.org/10.1017/
S0956796801004191

2. Abu-Sufah, Kuck, Lawrie: On the performance enhancement of paging systems
through program analysis and transformations. IEE Transactions on Computers
C-30(5), 341–356 (1981). https://doi.org/10.1109/TC.1981.1675792

3. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools (2nd Edition). Addison Wesley (Aug 2006)

4. Amini, M.: Source-to-Source Automatic Program Transformations for GPU-like
Hardware Accelerators. Theses, Ecole Nationale Supérieure des Mines de Paris
(Dec 2012), https://pastel.archives-ouvertes.fr/pastel-00958033

5. Amini, M., Creusillet, B., Even, S., Keryell, R., Goubier, O., Guelton, S., Mcmahon,
J.O., Pasquier, F.X., Péan, G., Villalon, P.: Par4All: From Convex Array Regions
to Heterogeneous Computing. In: IMPACT 2012 : Second International Workshop
on Polyhedral Compilation Techniques HiPEAC 2012. Paris, France (Jan 2012),
https://hal-mines-paristech.archives-ouvertes.fr/hal-00744733

6. Arabnejad, H., Bispo, J., Cardoso, J.M.P., Barbosa, J.G.: Source-to-source compila-
tion targeting openmp-based automatic parallelization of C applications. The Jour-
nal of Supercomputing 76(9), 6753–6785 (Sep 2020). https://doi.org/10.1007/
s11227-019-03109-9

7. Aubert, C., Rubiano, T., Rusch, N., Seiller, T.: A Novel Loop Fission Technique In-
spired by Implicit Computational Complexity (May 2022), https://hal.archives-
ouvertes.fr/hal-03669387v1, draft

8. Aubert, C., Rubiano, T., Rusch, N., Seiller, T.: Loop fission benchmarks
(Sep 2022). https://doi.org/10.5281/zenodo.7080145, https://github.com/

statycc/loop-fission

9. Aubert, C., Rubiano, T., Rusch, N., Seiller, T.: mwp-analysis improvement and
implementation: Realizing implicit computational complexity. In: Felty, A.P. (ed.)
7th International Conference on Formal Structures for Computation and Deduction
(FSCD 2022). Leibniz International Proceedings in Informatics, vol. 228, pp. 26:1–
26:23. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2022). https://doi.org/
10.4230/LIPIcs.FSCD.2022.26

10. Aubert, C., Rubiano, T., Rusch, N., Seiller, T.: pymwp: MWP analysis in Python
(Sep 2022), https://github.com/statycc/pymwp/

11. Bae, H., Mustafa, D., Lee, J., Aurangzeb, Lin, H., Dave, C., Eigenmann, R.,
Midkiff, S.P.: The cetus source-to-source compiler infrastructure: Overview and
evaluation. Int. J. Parallel Program. 41(6), 753–767 (2013). https://doi.org/
10.1007/s10766-012-0211-z

12. Baier, C., Katoen, J., Larsen, K.: Principles of Model Checking. MIT Press (2008)
13. Benabderrahmane, M., Pouchet, L., Cohen, A., Bastoul, C.: The polyhedral model is

more widely applicable than you think. In: Gupta, R. (ed.) Compiler Construction,
19th International Conference, CC 2010, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus,
March 20-28, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6011, pp.
283–303. Springer (2010). https://doi.org/10.1007/978-3-642-11970-5 16

14. Bertolacci, I.J., Strout, M.M., de Supinski, B.R., Scogland, T.R.W., Davis, E.C.,
Olschanowsky, C.: Extending openmp to facilitate loop optimization. In: de Supinski,
B.R., Valero-Lara, P., Martorell, X., Bellido, S.M., Labarta, J. (eds.) Evolving

https://doi.org/10.1017/S0956796801004191
https://doi.org/10.1017/S0956796801004191
https://doi.org/10.1109/TC.1981.1675792
https://pastel.archives-ouvertes.fr/pastel-00958033
https://hal-mines-paristech.archives-ouvertes.fr/hal- 00744733
https://doi.org/10.1007/s11227-019-03109-9
https://doi.org/10.1007/s11227-019-03109-9
https://hal.archives-ouvertes.fr/hal-03669387v1
https://hal.archives-ouvertes.fr/hal-03669387v1
https://doi.org/10.5281/zenodo.7080145
https://github.com/statycc/loop-fission
https://github.com/statycc/loop-fission
https://doi.org/10.4230/LIPIcs.FSCD.2022.26
https://doi.org/10.4230/LIPIcs.FSCD.2022.26
https://github.com/statycc/pymwp/
https://doi.org/10.1007/s10766-012-0211-z
https://doi.org/10.1007/s10766-012-0211-z
https://doi.org/10.1007/978-3-642-11970-5_16


22 C. Aubert et al.

OpenMP for Evolving Architectures - 14th International Workshop on OpenMP,
IWOMP 2018, Barcelona, Spain, September 26-28, 2018, Proceedings. Lecture Notes
in Computer Science, vol. 11128, pp. 53–65. Springer (2018). https://doi.org/
10.1007/978-3-319-98521-3 4

15. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. SIGPLAN Not. 43(6), 101–113
(jun 2008). https://doi.org/10.1145/1379022.1375595

16. Chung, F.R.K.: On the coverings of graphs. Discrete Mathematics 30(2), 89–93
(1980). https://doi.org/10.1016/0012-365X(80)90109-0

17. Dave, C., Bae, H., Min, S., Lee, S., Eigenmann, R., Midkiff, S.P.: Cetus: A source-
to-source compiler infrastructure for multicores. Computer 42(11), 36–42 (2009).
https://doi.org/10.1109/MC.2009.385

18. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and its
use in optimization. ACM Transactions on Programming Languages and Systems
9(3), 319–349 (jul 1987). https://doi.org/10.1145/24039.24041

19. gcc.gnu.org git - gcc.git/blob - gcc/tree-loop-distribution.c, https:

//gcc.gnu.org/git/?p=gcc.git;a=blob;f=gcc/tree-loop-distribution.c;h=

65aa1df4abae2c6acf40299f710bc62ee6bacc07;hb=HEAD#l39

20. Grosser, T.: Enabling Polyhedral Optimizations in LLVM. Master’s thesis, Univer-
sität Passau (4 2011), https://polly.llvm.org/publications/grosser-diploma-
thesis.pdf

21. Holewinski, J., Ramamurthi, R., Ravishankar, M., Fauzia, N., Pouchet, L.N.,
Rountev, A., Sadayappan, P.: Dynamic trace-based analysis of vectorization
potential of applications. In: Proceedings of the 33rd ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. p. 371–382.
PLDI ’12, Association for Computing Machinery, New York, NY, USA (2012).
https://doi.org/10.1145/2254064.2254108

22. Intel: oneTBB documentation (2022), https://oneapi-src.github.io/oneTBB/
23. Intel Corporation: Intel C++ Compiler Classic Developer Guide and Reference,

https://www.intel.com/content/dam/develop/external/us/en/documents/

cpp compiler classic.pdf

24. Karp, R.M., Miller, R.E., Winograd, S.: The organization of computations for
uniform recurrence equations. Journal of the ACM 14(3), 563–590 (1967). https:
//doi.org/10.1145/321406.321418

25. Klemm, M., de Supinski, B.R. (eds.): OpenMP Application Programming Interface
Specification Version 5.2. OpenMP Architecture Review Board (Nov 2021), https:
//www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf

26. Kristiansen, L., Jones, N.D.: The flow of data and the complexity of algorithms. In:
Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) New Computational Paradigms, First
Conference on Computability in Europe, CiE 2005, Amsterdam, The Netherlands,
June 8-12, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3526, pp.
263–274. Springer (2005). https://doi.org/10.1007/11494645 33

27. Laird, J., Manzonetto, G., McCusker, G., Pagani, M.: Weighted relational models
of typed lambda-calculi. In: LICS. pp. 301–310. IEEE Computer Society (2013).
https://doi.org/10.1109/LICS.2013.36

28. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program analy-
sis & transformation. In: 2nd IEEE / ACM International Symposium on Code Gener-
ation and Optimization (CGO 2004), 20-24 March 2004, San Jose, CA, USA. pp. 75–
88. IEEE Computer Society (2004). https://doi.org/10.1109/CGO.2004.1281665,
https://ieeexplore.ieee.org/xpl/conhome/9012/proceeding

https://doi.org/10.1007/978-3-319-98521-3_4
https://doi.org/10.1007/978-3-319-98521-3_4
https://doi.org/10.1145/1379022.1375595
https://doi.org/10.1016/0012-365X(80)90109-0
https://doi.org/10.1109/MC.2009.385
https://doi.org/10.1145/24039.24041
https://gcc.gnu.org/git/?p=gcc.git;a=blob;f=gcc/tree-loop- distribution.c;h=65aa1df4abae2c6acf40299f710bc62ee6bacc07;hb=HEAD#l39
https://gcc.gnu.org/git/?p=gcc.git;a=blob;f=gcc/tree-loop- distribution.c;h=65aa1df4abae2c6acf40299f710bc62ee6bacc07;hb=HEAD#l39
https://gcc.gnu.org/git/?p=gcc.git;a=blob;f=gcc/tree-loop- distribution.c;h=65aa1df4abae2c6acf40299f710bc62ee6bacc07;hb=HEAD#l39
https://polly.llvm.org/publications/grosser-diploma- thesis.pdf
https://polly.llvm.org/publications/grosser-diploma- thesis.pdf
https://doi.org/10.1145/2254064.2254108
https://oneapi-src.github.io/oneTBB/
https://www.intel.com/content/dam/develop/external/us/en/ documents/cpp_compiler_classic.pdf
https://www.intel.com/content/dam/develop/external/us/en/ documents/cpp_compiler_classic.pdf
https://doi.org/10.1145/321406.321418
https://doi.org/10.1145/321406.321418
https://www.openmp.org/wp-content/uploads/OpenMP-API- Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API- Specification-5-2.pdf
https://doi.org/10.1007/11494645_33
https://doi.org/10.1109/LICS.2013.36
https://doi.org/10.1109/CGO.2004.1281665
https://ieeexplore.ieee.org/xpl/conhome/9012/proceeding


Distributing and Parallelizing Non-canonical Loops 23

29. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. In: Hankin, C., Schmidt, D. (eds.) Conference Record of POPL 2001:
The 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, London, UK, January 17-19, 2001. pp. 81–92. ACM (2001). https:
//doi.org/10.1145/360204.360210

30. [loopfission]: Loop fission interference graph (fig), https://reviews.llvm.org/

D73801

31. Mehta, S., Lin, P., Yew, P.: Revisiting loop fusion in the polyhedral framework. In:
Moreira, J.E., Larus, J.R. (eds.) ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’14, Orlando, FL, USA, February 15-19,
2014. pp. 233–246. ACM (2014). https://doi.org/10.1145/2555243.2555250

32. microsoft: Parallel patterns library (ppl) (2021), https://docs.microsoft.com/en-
us/cpp/parallel/concrt/parallel-patterns-library-ppl?view=msvc-170

33. Moyen, J., Rubiano, T., Seiller, T.: Loop quasi-invariant chunk detection. In:
D’Souza, D., Kumar, K.N. (eds.) Automated Technology for Verification and
Analysis - 15th International Symposium, ATVA 2017, Pune, India, October 3-6,
2017, Proceedings. Lecture Notes in Computer Science, vol. 10482. Springer (2017).
https://doi.org/10.1007/978-3-319-68167-2 7

34. Palkowski, M., Klimek, T., Bielecki, W.: TRACO: an automatic loop nest par-
allelizer for numerical applications. In: Ganzha, M., Maciaszek, L.A., Paprzy-
cki, M. (eds.) 2015 Federated Conference on Computer Science and Informa-
tion Systems, FedCSIS 2015, Lódz, Poland, September 13-16, 2015. Annals of
Computer Science and Information Systems, vol. 5, pp. 681–686. IEEE (2015).
https://doi.org/10.15439/2015F34

35. Prema, S., Nasre, R., Jehadeesan, R., Panigrahi, B.: A study on popular auto-
parallelization frameworks. Concurrency and Computation: Practice and Experience
31(17), e5168 (Feb 2019). https://doi.org/10.1002/cpe.5168

36. Quinlan, D., Liao, C., Panas, T., Matzke, R., Schordan, M., Vuduc, R., , Yi, Q.:
Rose user manual: A tool for building source-to-source translators draft user manual
(version 0.9.11.115), http://rosecompiler.org/uploads/ROSE-UserManual.pdf

37. Rauchwerger, L., Padua, D.A.: Parallelizing while loops for multiprocessor systems.
In: Proceedings of the 9th International Symposium on Parallel Processing. p.
347–356. IPPS ’95, IEEE Computer Society, USA (1995)

38. Seiller, T.: Interaction graphs: Full linear logic. In: Grohe, M., Koskinen, E.,
Shankar, N. (eds.) Proceedings of the 31st Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016. pp.
427–436. ACM (2016). https://doi.org/10.1145/2933575.2934568

39. Vitorović, A., Tomašević, M.V., Milutinović, V.M.: Manual parallelization versus
state-of-the-art parallelization techniques. In: Hurson, A. (ed.) Advances in Com-
puters, vol. 92, pp. 203–251. Elsevier (2014). https://doi.org/10.1016/B978-0-
12-420232-0.00005-2

https://doi.org/10.1145/360204.360210
https://doi.org/10.1145/360204.360210
https://reviews.llvm.org/D73801
https://reviews.llvm.org/D73801
https://doi.org/10.1145/2555243.2555250
https://docs.microsoft.com/en-us/cpp/parallel/concrt/ parallel-patterns-library-ppl?view=msvc-170
https://docs.microsoft.com/en-us/cpp/parallel/concrt/ parallel-patterns-library-ppl?view=msvc-170
https://doi.org/10.1007/978-3-319-68167-2_7
https://doi.org/10.15439/2015F34
https://doi.org/10.1002/cpe.5168
http://rosecompiler.org/uploads/ROSE-UserManual.pdf
https://doi.org/10.1145/2933575.2934568
https://doi.org/10.1016/B978-0-12-420232-0.00005-2
https://doi.org/10.1016/B978-0-12-420232-0.00005-2

	Distributing and Parallelizing Non-canonical Loops  

