
HAL Id: hal-03669387
https://hal.science/hal-03669387v1

Preprint submitted on 16 May 2022 (v1), last revised 19 Sep 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Novel Loop Fission Technique Inspired by Implicit
Computational Complexity

Clément Aubert, Thomas Rubiano, Neea Rusch, Thomas Seiller

To cite this version:
Clément Aubert, Thomas Rubiano, Neea Rusch, Thomas Seiller. A Novel Loop Fission Technique
Inspired by Implicit Computational Complexity. 2022. �hal-03669387v1�

https://hal.science/hal-03669387v1
https://hal.archives-ouvertes.fr

A Novel Loop Fission Technique Inspired by
Implicit Computational Complexity?

Clément Aubert1[0000−0001−6346−3043], Thomas Rubiano2, Neea
Rusch1[0000−0002−7354−5330], and Thomas Seiller2,3[0000−0001−6313−0898]

1 School of Computer and Cyber Sciences, Augusta University
2 LIPN – UMR 7030 Université Sorbonne Paris Nord

3 CNRS

Abstract. This work explores an unexpected application of Implicit
Computational Complexity (ICC) to parallelize loops in imperative pro-
grams. Thanks to a lightweight dependency analysis, our algorithm allows
splitting a loop into multiple loops that can be run in parallel, resulting
in gains in terms of execution time similar to state-of-the-art automatic
parallelization tools when both are applicable. Our graph-based algorithm
is intuitive, language-agnostic, proven correct, and applicable to all types
of loops, even if their loop iteration space is unknown statically or at com-
pile time, if they are not in canonical form or if they contain loop-carried
dependency. As contributions we deliver the computational technique,
proof of its preservation of semantic correctness, and experimental results
to quantify the expected performance gains. Our benchmarks also show
that the technique could be seamlessly integrated into compiler passes or
other automatic parallelization suites. We assert that this original and
automatable loop transformation method was discovered thanks to the
“orthogonal” approach offered by ICC.

Keywords: Analysis and Verification of Parallel Program · Automatic Paral-
lelization · Loop Transformation · Implicit Computational Complexity

1 Original Approaches to Automatic Parallelization

1.1 Use Cases for Correct Automatic Parallelization

The demand for perpetually more performant systems has historically driven
innovation in hardware, by increasing numbers of transistors and improving
clock speeds, but with Dennard scaling and the end of Moore’s law in sight, the
focus is steadily shifting toward obtaining gains through high-performance and
parallel computing [35, Chapter 1]. Existing parallel programming APIs, such as
OpenMP [21], PPL [27], and oneTBB [18], facilitate this progression; but several

? This research is supported by the Thomas Jefferson Fund of the Embassy of France
in the United States and the FACE Foundation. Th. Rubiano and Th. Seiller are
also supported by the Île-de-France region through the DIM RFSI project “CoHOp”.

https://face-foundation.org/higher-education/thomas-jefferson-fund/
https://face-foundation.org/

2 C. Aubert et al.

outstanding issues remain: classic algorithms are written sequentially without
parallelization in mind and require reformatting to fit the parallel paradigm. Suit-
able sequential programs with opportunity for parallelization must be modified,
often manually, by inserting parallelization directives. This is a time-consuming
and error-prone process: numerous dependencies and multiple levels of function
calls must be analyzed to identify regions that can be safely parallelized, before
inserting the correct directives—a challenging task to programmers accustomed
to sequential execution environment. Lastly, the state explosion resulting from
parallelization makes it impossible to exhaustively test the code running on
parallel architectures [8].

The need for parallelization extends beyond software presently developed:
to leverage the potential speedup available on modern hardware, all programs—
including legacy software—should instruct the hardware to take advantage of its
available processors. This induces demand for automatic transformations of large
bodies of software to semantically equivalent parallel programs. Since inserting
incorrect parallel directives is easy, and can lead to performance degradation or
alteration in the program’s behavior, correct automatic parallelization can be
used in lieu of human ingenuity, and benchmarked to approximate the potential
gain. A useful automatic parallelization tool needs to deliver two things: a cost-
benefit analysis, to show it generates speedup on parallel architectures, and proof
of preservation of semantic correctness [13, Section 3.5].

Compilers offer an ideal integration point for many program analyses and
optimizations. Automatic parallelization is already a standard feature in devel-
oping industry compilers, optimizing compilers, and specialty source-to-source
compilers. Tools that perform local transformations, generally on loops, are
frequently conceived—but not necessarily implemented—as compiler passes. How
those passes are intertwined with sequential code optimizations can sometimes be
problematic [12]: as an example, OpenMP directives are by default applied early
in the compilation, or even at the front-end, and hence the parallelized source
code cannot benefit from sequential optimizations such as unrolling. Furthermore,
compilers tend to make conservative choices and often miss opportunities to
parallelize, e.g., on complex scientific and engineering codes [12,17].

Given this background, the need to parallelize source code automatically and
at scale is evident, but the existing approaches are not perfect. The contribution
presented in this paper offers an incremental improvement in this direction: it
introduces an automatable and graph-based computational method for semantic-
preserving loop transformation. By producing a transformed program, shown to
be amiable to integration or pipelining with existing automatic parallelization
tools, it fits the described landscape by offering potential to improve versatility
and richness of various existing parallel compilation toolchains.

1.2 Leveraging ICC for Correct and Universal Transformation

The technique presented in this paper is founded on Implicit Computational
Complexity (ICC) theory [15]: this work is part of a series [6] that explores how
ICC can provide new—sometimes orthogonal—approaches to problems such as

A Novel Loop Fission Technique Inspired by ICC 3

code optimization [28,29] or static analysis [5]. Critical to this approach is a
strong mathematical backbone that allows to “embed” in the program itself a
guarantee of its resource usage, using e.g., bounded recursion [10,26] or type
systems [9,23]. This orthogonal approach sometimes allows avoiding difficulties
other techniques must address and offers gain in terms of e.g., speed, but possibly
at the price of precision [5, Sect. C].

More precisely, the presented technique demonstrates how a dependency
analysis mechanism, first introduced in our previous work [28], can be further
leveraged to obtain loop-level parallelism: a form of parallelism concerned with
extracting parallel tasks from loops. We identify an original way of performing
loop fission, an optimization technique that breaks loops into multiple loops with
the same condition or index range, each taking only a part of the original loop’s
body. Our original technique possesses three notable properties:

Suitable to loops with unknown iteration spaces —program analysis does
not require knowing loop iteration space statically nor at compile time, mak-
ing it applicable to loops not in canonical form, which are often ignored
(Sect. A).

Loop-agnostic —the technique requires practically no structure from the loops:
in particular, they can be while, do ... while or for loops, have arbitrarily
complex update and termination conditions, loop-carried dependencies, and
arbitrarily deep loop nests.

Language-agnostic —the method can be used on any imperative language,
making it flexible and suitable for realization and integration with tools and
languages ranging from high-level to intermediate representations.

The intent of our work is not to replace polyhedral models [20]—that are
also pushing to remove some restrictions [11]—, advanced dependency analysis
or tools developed for very precise cases (such as loop tiling [12]), nor to build
concrete competing implementations. Our goal is to illustrate how ICC has
potential to introduce novel and orthogonal optimization techniques: we take as
a positive sign the fact that we can facilitate the discovery of equivalent parallel
implementations that are not reachable through a pre-established set of correct
transformation rules, as complementary to existing methods. This also benefit
our approach, making scheduling or optimization of caching out of the scope of
this work, since they can be deferred to the tool implementing our algorithm.

1.3 Our Contribution: From Theory to Benchmarks

Our contribution spans from theoretical foundations to concrete measurements,
to deliver a complete perspective on the design and expected real-time efficiency
of the introduced method. We present three contributions:

1. The design of a loop fission transformation—Sect. 3.1—that analyzes depen-
dencies of loop condition and body variables; establishes cliques between
statements, and splits independent cliques into multiple loops.

4 C. Aubert et al.

2. The correctness proof—Sect. 3.2—that guarantees the semantic preservation
of loop transformation.

3. Experimental results—Sect. 4—that evaluate the potential gain of the pro-
posed technique, including for loops with unknown iteration spaces, and
demonstrates its integratability with existing parallelization frameworks.

This paper is organized as follows: Sect. 2 defines the “building blocks” for
our program transformation method—its language and how dependencies are
computed—, Sect. 3 details the loop fission algorithm, Sect. 4 presents the
experimental results, and Sect. 5 concludes.

2 Background: Language and Dependency Analysis

2.1 A Simple While Imperative Language With Parallel Capacities

We work with a simple imperative WHILE-language, with semantics similar to C,
extended with a parallel command, similar to e.g., OpenMP’s directives [21],
allowing to execute its arguments in parallel. The grammar is given by:

var ::=i | j | . . . | s | t | . . . | x1 | x2 | . . . | zn | var[exp] (Variables)

exp ::=var | val | op(exp, . . . , exp) (Expression)

com ::=var = exp | if exp then com else com |
while exp do com | use(var, . . . , var) | skip |
com;com | parallel{com}{com} · · · {com} (Command)

A variable represents either an undetermined “primitive” datatype, e.g., not
a reference variable, or an array, whose indices are given by an expression. An
expression is either a variable, a value (e.g., integer literal) or the application
to expressions of some operator op, which can be e.g., relational (e.g., ==, <) or
arithmetic (e.g., +, -). We let V (resp. e, C) ranges over variables (resp. expression,
command), write e.g., if e then C for if e then C else skip, and sometimes
replace the semicolon with a new line. We assume commands to be correct, e.g.,
with operators correctly applied to expressions, no out-of-bounds errors, etc.

A WHILE program is thus a sequence of statements, each statement being either
an assignment, a conditional, a while loop, a function call 4or a skip. Statements
are abstracted into commands, which can be a statement, a sequence of commands,
or multiple commands to be run in parallel. The semantics of parallel is the
following: variables appearing in the arguments are considered local, and the
value of a given variable x after execution of the parallel command is the value
of the last modified local variable x. This implies possible race conditions, but
our transformation will be robust to those: we will assume given parallel-free

4 The use command represents any command which does not modify its variables but
use them and should not be moved around carelessly (e.g., a printf). In practice,
we currently treat all function calls as use, even if the function is pure.

A Novel Loop Fission Technique Inspired by ICC 5

programs, and will introduce parallel commands that either uniformly update
the variables accross commands, or update them in only one command.

For convenience we define the following sets of variables.

Definition 1. Let C be a command, we let Out(C) (resp. In(C), Occ(C)) be the
set of variables modified by (resp. used by, occuring in) C, as follows:

C Out(C) In(C) Occ(C)

x = e x Occ(e) x ∪Occ(e)
t[e1] = e2 t Occ(e1) ∪Occ(e2) t ∪Occ(e1) ∪Occ(e2)

if e then C1 else C2 Out(C1) ∪Out(C2) Occ(e) ∪ In(C1) ∪ In(C2) Occ(e) ∪Occ(C1) ∪Occ(C2)
while e do C Out(C) Occ(e) ∪ In(C) Occ(e) ∪Occ(C)

use(x1, . . ., xn) ∅ {x1, . . . ,xn} {x1, . . . ,xn}
skip ∅ ∅ ∅
C1; C2 Out(C1) ∪Out(C2) In(C1) ∪ In(C2) Occ(C1) ∪Occ(C2)

for Occ(x) = x Occ(t[e]) = t ∪Occ(e)

Occ(val) = ∅ Occ(op(e1, . . . , en)) = Occ(e1) ∪ · · · ∪Occ(en)

Our treatment of arrays is an over-approximation: we consider the array as
a single entity, and that changing one value in it changes it completely. This is
however satisfactory: since we will not split loop “horizontally” (e.g., splitting
the iteration space between threads) but “vertically” (e.g., splitting the tasks
between threads), we want each thread in the parallel command to have “full
control” of the array it modifies, and not to synchronize its writes with other
commands.

2.2 Datalow Graphs for Loop Dependency Analysis

The loop transformation algorithm relies fundamentally on its ability to analyze
data-flow dependencies between loop condition and variables in the loop body, to
identify opportunities for loop fission. In this section we sketch the principles of
this dependency analysis, founded on the theory of data-flow graphs, and how it
maps to the presented WHILE-language. This dependency analysis was influenced
by large body of works related to static analysis [1,22,25], semantics [24,34] and
optimization [28]; but is presented here in self-contained and compact manner.

Definition of Data-Flow Graphs A data-flow graph for a given command C

is a weighted relation on the set Occ(C). Formally, this is represented as a matrix
over a semi-ring, with the implicit choice of a denumeration of Occ(C).

Definition 2. A data-flow graph (dfg) for a command C is a |Occ(C)|×|Occ(C)|
matrix over a fixed semi-ring (S, +,×), with |Occ(C)| the cardinal of Occ(C). We
write M(C) the dfg of C, and explain how to construct it below.

To avoid resizing matrices whenever additional variables are considered, we
identify M(C) with its embedding in a larger matrix, i.e., we will abusively call
the dfg of C any matrix of the form M(C)⊕ Id, implicitly viewing the additional
rows/columns as variables not in Occ(C). We will use weighted relations, or

6 C. Aubert et al.

weighted bi-partite graphs, to illustrate these matrices. Examples will use the semi-
ring ({0, 1,∞}, max,×), which is the specific semiring considered in later sections
to represent dependencies: ∞ represents dependence, 1 represents propagation,
and 0 represents reinitialization or independence. Fig. 1 introduces these notions
and the graphical conventions used throughout this paper. Note that in the
case of dependencies, In(C) is exactly the set of variables that are source of a
“dependence” arrow, while Out(C) is the set of variables that either are targets
of dependence arrows or were reinitialized.

C ::=x = x + 1

y = y

z = 0

Out(C) = {x, y}
In(C) = {x}

Occ(C) = {x, y, z}

x

y

z

x

y

z

dependence

propagation

reinitialization

x y z()
x ∞ 0 0
y 0 1 0
z 0 0 0

C ::=t[i] = u[j]

Out(C) = {t}
In(C) = {i, u, j}

Occ(C) = {t, i, u, j}

t

i

u

j

t

i

u

j

t i u j


t 0 0 0 0
i ∞1 0 0
u ∞0 1 0
j ∞0 0 1

Fig. 1. Program examples, sets, and representations of their dependences

2.3 Constructing Data-Flow Graphs (dfgs)

The dfg of a command is computed by induction on the structure of the command.

Base cases (assignment, skip, use) The dfg for assignments are obtained
by straightforward generalization of the cases illustrated in Fig. 1, and M(skip)
is the “empty matrix” with 0 rows and columns.5

To account for use(x1, . . ., xn), we introduce a variable e—standing for
effect—not being part of the language, and let M(use(x1, . . ., xn)) be the matrix
with coefficients from each xi and e to e equal to ∞, and 0 coefficients otherwise.

Composition and multipaths The definition of dfg for a (sequential) compo-
sition of commands is an abstraction that allows treating a block of statements
as one command with its own dfg.

Definition 3. M(C1; C2; . . . ; Cn) is the matrix product M(C1)M(C2) · · ·M(Cn).

For two graphs, the product of their matrices of weights is represented in a
standard way, as a graph of length 2 paths; as illustrated in Fig. 2.

5 Identifying the dfg with its embeddings, it is hence the identity matrix of any size.

A Novel Loop Fission Technique Inspired by ICC 7

C1 C2 C1; C2
w = w + x; z = y + 2 x = y; z = z ∗ 2
w

x

y

z

w

x

y

z

w

x

y

z

w

x

y

z

w

x

y

z

w

x

y

z
∞ 0 0 0
∞ 1 0 0
0 0 1 ∞
0 0 0 0




1 0 0 0
0 0 0 0
0 ∞ 1 0
0 0 0 ∞



∞ 0 0 0
∞ 0 0 0
0 ∞ 1 ∞
0 0 0 0



Fig. 2. Data-Flow Graph of Composition.

Conditionals. We define the dfg of if e then C1 else C2 from the dfg of the
commands C1 and C2. First, consider a situation where both commands C1 and
C2 are potentially executed. In that case, the statement should be represented
by the overapproximation M(C1) + M(C2). However, all the modified variables
in C1 and C2 (e.g., Out(C1) ∪Out(C2)) depends on the variables used in e (e.g.,
occuring in e). For this reason, letting E be the vector with coefficient equal
to ∞ for the variables in e and 0 for all the other variables, O be the vector
containing the variables in Out(C1) ∪Out(C2), and (·)t be the matrix transpose,
we define Corr(e) = (EO)t, and have—as illustrated previously [28, Fig. 3]—:

Definition 4. M(if e then C1 else C2) = M(C1) + M(C2) + Corr(e).

While Loops. To define the dfg of a command while e do C from M(C), we
need, as for conditionals, the loop correction Corr(e), to account for the fact that
all the modified variables in C depends on the variables used in e:

Definition 5. M(while e do C) = M(C) + Corr(e).

This is different from our previous treatment of while loop [28, Definition
5], that required to compute the transitive closure of M(C): for this particular
transformation, this is not needed, as all the relevant dependencies are obtained
immediately—this also guarantee that loop-carried dependencies [38] do not
refrain from parallelizing the body of the loops, in our analysis.

3 Loop Fission Algorithm

3.1 Algorithm, Presentation and Intuition

Leveraging the presented dependency analysis, we can now define the specifics of
our loop transformation technique, given in Algo. 1 and explained below.

Given a loop C := while e do {C1; · · · ; Cn}, we first compute M(C1; . . . ; Cn),
and add the loop correction Corr(e). The dependence graph of the loop C is

8 C. Aubert et al.

Algorithm 1 Loop fission

Input: loop w = {while ∈ WHILE}
vertices← empty list
In,Out← of loop body variables
parent← parent statement of w
for all in, out ∈ c(In, Out) do

if in is dependency of out then
vertices += vertex(in, out)

end for
for all cond ∈ loop conditions do

vertices += (cond, body stmts)
end for
digraph ← from(vertices)
sccs ← reduce(digraph)
dag ← condensation(digraph, sccs)
subgraphs ← from dag
if |subgraphs| > 1 then

parent remove(w)
for all scc ∈ sccs do

parent insert loop from scc
end for

then defined as as the graph where the set of vertices is the set of commands
{C1; · · · ; Cn}, and there exists a directed edge from Ci to Cj if and only if there
exists variables x ∈ Out(Cj) and y ∈ In(Ci) such that M(C)(x, y) = ∞. Note
that all the commands are the sources of dependence edges whose target is the
commands modifying the variables occuring in e thanks to the correction.

The remainder of the loop transforming principle is simple: for each loop in
the analyzed program, after evaluating data dependencies in the loop condition
and variables in the loop body, it produces a graph representing the dependencies
between commands; then determines the cliques in the graph and forms strongly
connected components (sccs); the sccs are separated into subgraphs to produce
the final split loops, when applicable, and contain a copy of the loop header and
update commands.

Let us consider a program and its corresponding graph, in Fig. 3, where
strongly connected components (sccs) are shown as dotted rectangles: the
condensation graph is the graph whose vertices are sccs and edges are the edges
whose source and target belong to distinct sccs. Our algorithm splits this graph
into its branches, introducing duplications, and outputs a parallelizable version of
the initial program as follows. It first splits the graph into branches: for this, we
work not with the dependency graph directly but with the acyclic graph obtained
from its decomposition into sccs. This graph is known as the condensation of the
initial graph. The splitting algorithm produces automatically the corresponding
program and its covering (Definition 6), presented in Fig. 4 and 5.

A Novel Loop Fission Technique Inspired by ICC 9

j = pow(10, 6)
x1 = 1
i = 1
while i 6= j do

x1 = x1+y1+x2+i
y1 = y1 + i
y2 = y2 × y1
s[i] = x1

x2 = x1 + s[i]
u[i] = y2
t[i] = y2 × y2
i = i + 1

use(x1)

x1 = x1 + y1 + x2 + i y1 = y1 + i

y2 = y2 × y1
s[i] = x1 x2 = x1 + s[i]

u[i] = y2t[i] = y2 × y2

i = i + 1

Fig. 3. WHILE-language program and its corresponding dependency graph.

j = pow(10, 6)
x1 = 1
i = 1
parallel . A private copy of i, y1 and y2 needs to be given to each loop below.︷ ︸︸ ︷
while i 6= j do

x1 = x1 + y1 + x2 + i
y1 = y1 + i
s[i] = x1

x2 = x1 + s[i]
i = i + 1︸ ︷︷ ︸

︷ ︸︸ ︷
while i 6= j do

y1 = y1 + i
y2 = y2 × y1
u[i] = y2
i = i + 1︸ ︷︷ ︸

︷ ︸︸ ︷
while i 6= j do

y1 = y1 + i
y2 = y2 × y1
t[i] = y2 × y2
i = i + 1︸ ︷︷ ︸

use(x1) . The copies of i, y1 and y2 can be destroyed, all have the same values.

Fig. 4. Transformed program

x1 = x1 + y1 + x2 + i

s[i] = x1 x2 = x1 + s[i]

i = i + 1

y1 = y1 + i
y1 = y1 + i

i = i + 1

y2 = y2 × y1

t[i] = y2 × y2u[i] = y2

y1 = y1 + i

y2 = y2 × y1

i = i + 1

Fig. 5. Transformed program—covering

10 C. Aubert et al.

3.2 Correctness of the Algorithm

Formally, the transformation is described by means of particular kinds of coverings
of the dependency graph. Let us start with a formal definition.

Definition 6 ([14]). A covering of a (directed) graph G is a collection of sub-
graphs G1,G2, . . . ,Gk such that G = ∪ki=1Gi.

A saturated covering is a covering G1,G2, . . . ,Gk such that for all edge in G
with source in Gi, its target belongs to Gi as well.

Given a loop C := while e do {C1; · · · ; Cn}, we explained how one can com-
pute its dependency graph D(C) on the set of vertices {1, 2, . . . ,n} representing
the commands in the body of C. Given a saturated covering G1,G2, . . . ,Gk of
the graph G, we can define a sequence of loops and prove that the semantics
of the initial loop is preserved. This is done by showing that for any variable x

appearing in the initial loop, its final value is unchanged.

Definition 7. Let C := while e do {C1; · · · ; Cn} be a command, D(C) its de-
pendency graph, and G1,G2, . . . ,Gk a saturated covering of the graph G. We
define ~C = C1; . . . ; Ck where the command Cj is defined from Gj by Cj =
while e do {Ci1 ; · · · ; Cim} where {i1, . . . , im} is the set of vertices of Gj.

Theorem 1. The transformation C ~C preserves the semantic.

Proof (sketch). We show that for every variable x, the value of x after the
execution of C is equal to the value of x after the execution of ~C. Variables are
considered local to each loop Cj in ~C, so we need to avoid race condition. To do
so, we prove the following more precise result: for each variable x and each loop
Cj in ~C in which the value of x is modified, the value of x after executing C is
equal to the value of x after executing Cj .

The previous claim is then straightforward to prove, based on the property
of the covering. One shows by induction on the number of iterations k that for
all the variables x1, . . . ,xh appearing in Cj , the values of x1, . . . ,xh after k loop
iterations of Cj are equal to the values of x1, . . . ,xh after k loop iterations of
C. Note some other variables may be affected by the latter but the variables
x1, . . . ,xh do not depend on them (otherwise, they would also appear in Cj by
definition of the dependence graph and the covering).

4 Experimental Results

This section aims at experimentally substantiating two claims:

1. Our algorithm can parallelize loops that are completely ignored by—to our
knowledge (Sect. A)—all the other automatic parallelization tools, and result
in appreciable gain (Sect. 4.2),

2. Our code transformation provides a gain similar to the automatic paralleliza-
tion tool AutoPar-Clava—which “compare[s] favorably with closely related
auto-parallelization compilers” [4, p. 1]—when both are applicable, and can
be integrated in automatic parallelization pipelines (Sect. 4.3).

A Novel Loop Fission Technique Inspired by ICC 11

Taken together, those results confirm that our original loop fission can easily
be integrated in pre-existing tools and improve the performances of the resulting
code. We begin by briefly explaining our benchmarking strategy.

4.1 Benchmarking Strategy

The primary goal of our benchmarking strategy was to evaluate the potential
performance gain using the described algorithm and parallelization. The Poly-
Bench/C suite [30] was selected for this purpose because it contains programs
in the C programming language, which naturally maps to the syntax of WHILE
presented in Sect. 2, the parallel command being represented as OpenMP
directives. The suite has been crafted to offer different opportunities for loop
transformations, and comes with built-it timing utilities, which we use, to ob-
tain accurate and comparable results. One drawback is the suite’s sole focus on
“canonical” for loops, which prevented evaluating transformations of other kinds
of loops that our algorithm can split. This issue was resolved by introducing an
additional case study, measuring the performance of parallelized while loops,
discussed in Sect. 4.2.

To avoid evaluation of non-transformable programs, the suite was then re-
duced to the programs that were either suitable for loop fission or already had
the intended form. There were 6 such programs. Next these programs were
transformed manually to their post-fission form. Since the proposed technique
also involves parallelization, we defined two parallelization strategies: one where
OpenMP directives were inserted manually, and another using an automated
parallelizing source-to-source compiler, AutoPar-Clava [4]. The two approaches
are complementary and serve different purposes: the manual method enables
finding optimal directives; the automatic approach shows these tools can be
pipelined to obtain fully automatic parallelizing compilation toolchain.

The PolyBench/C benchmark timing script runs each program 5 times, taking
the average of 3 runs. The script also measure variance between the averaged times,
which in this study was constrained never to exceed 5%. Speedup is the ratio of
sequential and parallel executions, S = TSeq/TPar, where a value greater than 1
indicates parallel is outperforming the sequential execution. In presentation of
these results, the original sequential programs are always considered the baseline.

The benchmarks were ran on multiple gcc compiler optimization levels
(O0-O3), and data sizes supplied with the suite (MINI - EXTRALARGE) using a Linux
4.19.0-20-amd64 #1 SMP Debian 4.19.235-1 (2022-03-17) x86 64 GNU/Linux
machine, with 4 Intel(R) Core(TM) i5-6300U CPU @ 2.40GHz processors. Our
open source benchmarking is available at https://github.com/statycc/icc-fission.

4.2 Case Study: Parallel while Loops

The agnostic treatment of the various kinds of loops, including loops with un-
known iteration spaces, are some of the highlights of the presented technique.
It is however difficult to compare this approach to other techniques, because
most loop transformation and parallelization tools focus only on for loops and

https://github.com/statycc/icc-fission

12 C. Aubert et al.

PolyBench/C does not include while loop programs. The difficulty parallelizing
while loops arises from the need to synchronize evaluation of the loop recurrence
and termination condition, with improper synchronization resulting in overshoot-
ing the iterations [33]; rendering such loops effectively sequential. Our technique
addresses this challenge by recognizing the independence between loops resulting
from loop fission, thus producing parallelizable loop chains. A good candidate
for demonstrating this concept is the benchmark program 3mm, from which we
constructed a semantically equivalent program using while loops, 3mm while.

In general, special care is needed when inserting parallelization directives for
loops with unknown iteration spaces. Use of single directive prevents overshoot-
ing the loop termination condition and need for synchronization between threads,
enabling parallel execution by multiple threads on individual loop statements.
Fig. 6 demonstrates this strategy yields a consistent speedup, with geometric
mean of 1.8 across data sizes and gcc compiler optimization levels. While this
is expectedly slightly lower than speedup of 3.1 obtained on an equivalent for

loop program—texttt3mm is in Table 1—this is an encouraging result because
while loops are the most demanding types of loops to optimize, and generally
completely ignored. Similar examples illustrating that our analysis can apply to
e.g., loop-carrying dependency loops or loops whose iteration space is not known
at compilation time could be similarly crafted.

XS S M L XL
3mm_while

0

1

2

3

sp
ee

du
p

O0 O1 O2 O3

Size O0 O1 O2 O3

XS 1.69 1.90 1.68 1.71

S 1.73 1.86 2.10 1.75

M 1.52 2.39 2.29 2.17

L 1.85 1.89 1.67 1.82

XL 1.62 2.06 1.77 1.77

Fig. 6. Speedup of 3mm program implemented using while loops.

4.3 PolyBench Results

Fig. 7 visualizes the speedup obtained on manually parallelized and transformed
programs. Included in the figure are only those programs to which loop fission
could be applied. Parallelization directives were applied only to outer loops to
reduce parallelization overhead. Loop chains without flow dependencies were
placed inside a parallel block and parallelized using nowait. Shared variables
were marked private and reduction clauses were used when applicable.

While the performance gains are obvious, a few cases require explanation.
Speedup is not always obtained on very small data sizes (bicg, gesummv), because
these are very fast programs—less than 0.01 ms in clock time—with low iterations

https://github.com/statycc/icc-fission/blob/2c4f131ccfcce1332e08ed7af0f7cfd98737d546/original/3mm.c
https://github.com/statycc/icc-fission/blob/2c4f131ccfcce1332e08ed7af0f7cfd98737d546/case_study-b/3mm_while.c
https://github.com/statycc/icc-fission/tree/d684ee4546d9d73d379fa7fb5763c4822945b126/fission_manual
https://github.com/statycc/icc-fission/tree/d684ee4546d9d73d379fa7fb5763c4822945b126/fission_manual

A Novel Loop Fission Technique Inspired by ICC 13

XS S M L XL
bicg

0

1

2

3

4

5

sp
ee

du
p

O0 O1 O2 O3

XS S M L XL
fdtd-2d

0

1

2

3

4

5

sp
ee

du
p

O0 O1 O2 O3

XS S M L XL
gesummv

0

1

2

3

4

5

sp
ee

du
p

O0 O1 O2 O3

Fig. 7. Speedup obtained on Polybench/C benchmarks, after loop fission and manual
parallelization, on different data sizes and compiler optimization levels.

counts, and parallel synchronization produces more overhead to not result in
gain. Nonetheless, any program implemented without parallelism in mind would
obtain potential speedup, equalling up to the number of available processors.

Manual vs. Automatic Parallelization Finally, we compared three paral-
lelization strategies: 1. applying AutoPar-Clava to the original code, 2. applying
AutoPar-Clava to the code as transformed by our algorithm, 3. inserting man-
ually the OpenMP directive in the code resulting from our algorithm. Indeed,
while Autopar-Clava does not perform loop transformations, it offers a viable
alternative for placing the parallelization directives automatically. Our results,
presented in Table 1 (in Sect. B) makes it evident that all 3 alternative approaches
offer comparable results.6 This illustrates that, when applicable, our technique
produces results “as good as” a state-of-the-art parallelization tool, and that it
can actually be leveraged in its flow.

5 Conclusion

By reasoning about programs at a high-level and in terms of graphs, we obtained
an adaptable and correct code transformation, that can be used in a large
variety of situations—insensible to the actual tools or programming language
provided it is in an imperative style—and that offers notable gain on optimizations
that are frequently overlooked. Particularly, the ability to reason about loops
with unknown iteration spaces or loop-carried dependencies is significant, as this
property is not supported in the described form by similar existing tools (Sect. A).
Furthermore, our code transformation is lightweight, automatable, suitable to
various forms of implementations, and proven correct.

From there, multiple perspectives are open: integrating our method in existing
tools should not raise difficulties, but will require cost-benefit analysis along, at

6 Except in the case of fdtd-2d, where the automatic tool was unable to produce safe
parallelization directives, and no timing result could be obtained.

https://github.com/specs-feup/specs-lara/issues/1
https://github.com/specs-feup/specs-lara/issues/1

14 C. Aubert et al.

least, two axes. The first one is to determine if splitting the loop is performed in
the correct type of environment: since e.g., parallelizing only the inner-most loop
with OpenMP is detrimental to performances [35, Chapter 3, Nested], taking into
account the tool’s limitations will be crucial to result in actual gains. Second, the
cost of duplication some commands can void the gain obtained from parallelizing
some loops: luckily, our cost analysis [5] functions on the same imperative language,
re-uses some of the tools introduced here, and could help in evaluating the degree
of splitting in terms of cost-benefit analysis. Last but not least, Theorem 1 would
still be valid for this “conditional” loop-splitting algorithm: further discussion
and an extended example including these considerations can be found in the
appendix, Sect. C.

Acknowledgments The authors wish to express their gratitude to João Bispo
for explaining how to integrate AutoPar-Clava in their benchmark.

References

1. Abel, A., Altenkirch, T.: A predicative analysis of structural recursion. J. Funct.
Program. 12(1), 1–41 (2002). https://doi.org/10.1017/S0956796801004191

2. Amini, M.: Source-to-Source Automatic Program Transformations for GPU-like
Hardware Accelerators. Theses, Ecole Nationale Supérieure des Mines de Paris
(Dec 2012), https://pastel.archives-ouvertes.fr/pastel-00958033

3. Amini, M., Creusillet, B., Even, S., Keryell, R., Goubier, O., Guelton, S., Mcmahon,
J.O., Pasquier, F.X., Péan, G., Villalon, P.: Par4All: From Convex Array Regions
to Heterogeneous Computing. In: IMPACT 2012 : Second International Workshop
on Polyhedral Compilation Techniques HiPEAC 2012. Paris, France (Jan 2012),
https://hal-mines-paristech.archives-ouvertes.fr/hal-00744733

4. Arabnejad, H., Bispo, J., Cardoso, J.M.P., Barbosa, J.G.: Source-to-source com-
pilation targeting openmp-based automatic parallelization of C applications. J.
Supercomput. 76(9), 6753–6785 (Sep 2020). https://doi.org/10.1007/s11227-
019-03109-9

5. Aubert, C., Rubiano, T., Rusch, N., Seiller, T.: mwp-analysis improvement and
implementation: Realizing implicit computational complexity. In: Felty, A. (ed.)
7th International Conference on Formal Structures for Computation and De-
duction (FSCD). LIPIcs, Schloss Dagstuhl (Mar 2022), https://hal.archives-
ouvertes.fr/hal-03596285, to appear

6. Aubert, C., Rubiano, T., Rusch, N., Seiller, T.: Realizing Implicit Computational
Complexity (Mar 2022), https://hal.archives-ouvertes.fr/hal-03603510, ac-
cepted to the 28th International Conference on Types for Proofs and Programs

7. Bae, H., Mustafa, D., Lee, J., Aurangzeb, Lin, H., Dave, C., Eigenmann, R.,
Midkiff, S.P.: The cetus source-to-source compiler infrastructure: Overview and
evaluation. Int. J. Parallel Program. 41(6), 753–767 (2013). https://doi.org/
10.1007/s10766-012-0211-z

8. Baier, C., Katoen, J., Larsen, K.: Principles of Model Checking. MIT Press (2008)
9. Baillot, P., Terui, K.: Light types for polynomial time computation in lambda-

calculus. In: LICS. pp. 266–275. IEEE Computer Society (2004). https://doi.org/
10.1109/LICS.2004.1319621

https://github.com/joaobispo
https://github.com/specs-feup/clava/issues/58
https://github.com/statycc/icc-fission
https://doi.org/10.1017/S0956796801004191
https://pastel.archives-ouvertes.fr/pastel-00958033
https://hal-mines-paristech.archives-ouvertes.fr/hal- 00744733
https://doi.org/10.1007/s11227-019-03109-9
https://doi.org/10.1007/s11227-019-03109-9
https://hal.archives-ouvertes.fr/hal-03596285
https://hal.archives-ouvertes.fr/hal-03596285
https://hal.archives-ouvertes.fr/hal-03603510
https://types22.inria.fr/
https://doi.org/10.1007/s10766-012-0211-z
https://doi.org/10.1007/s10766-012-0211-z
https://doi.org/10.1109/LICS.2004.1319621
https://doi.org/10.1109/LICS.2004.1319621

A Novel Loop Fission Technique Inspired by ICC 15

10. Bellantoni, S.J., Cook, S.A.: A new recursion-theoretic characterization of the
polytime functions (extended abstract). In: Kosaraju, S.R., Fellows, M., Wigderson,
A., Ellis, J.A. (eds.) STOC. pp. 283–93. ACM (1992). https://doi.org/10.1145/
129712.129740

11. Benabderrahmane, M., Pouchet, L., Cohen, A., Bastoul, C.: The polyhedral model is
more widely applicable than you think. In: Gupta, R. (ed.) Compiler Construction,
19th International Conference, CC 2010, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus,
March 20-28, 2010. Proceedings. LNCS, vol. 6011, pp. 283–303. Springer (2010).
https://doi.org/10.1007/978-3-642-11970-5 16

12. Bertolacci, I.J., Strout, M.M., de Supinski, B.R., Scogland, T.R.W., Davis, E.C.,
Olschanowsky, C.: Extending openmp to facilitate loop optimization. In: de Supinski,
B.R., Valero-Lara, P., Martorell, X., Bellido, S.M., Labarta, J. (eds.) Evolving
OpenMP for Evolving Architectures - 14th International Workshop on OpenMP,
IWOMP 2018, Barcelona, Spain, September 26-28, 2018, Proceedings. LNCS, vol.
11128, pp. 53–65. Springer (2018). https://doi.org/10.1007/978-3-319-98521-
3 4

13. Chandra, R., Menon, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J.: Parallel
Programming in OpenMP. Morgan Kaufmann, Oxford, England (Oct 2000)

14. Chung, F.R.K.: On the coverings of graphs. Discret. Math. 30(2), 89–93 (1980).
https://doi.org/10.1016/0012-365X(80)90109-0

15. Dal Lago, U.: A short introduction to implicit computational complexity. In:
Bezhanishvili, N., Goranko, V. (eds.) ESSLLI. LNCS, vol. 7388, pp. 89–109. Springer
(2011). https://doi.org/10.1007/978-3-642-31485-8 3

16. Dave, C., Bae, H., Min, S., Lee, S., Eigenmann, R., Midkiff, S.P.: Cetus: A source-
to-source compiler infrastructure for multicores. Computer 42(11), 36–42 (2009).
https://doi.org/10.1109/MC.2009.385

17. Holewinski, J., Ramamurthi, R., Ravishankar, M., Fauzia, N., Pouchet, L.N.,
Rountev, A., Sadayappan, P.: Dynamic trace-based analysis of vectorization
potential of applications. In: Proceedings of the 33rd ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. p. 371–382.
PLDI ’12, Association for Computing Machinery, New York, NY, USA (2012).
https://doi.org/10.1145/2254064.2254108

18. Intel: oneTBB documentation (2022), https://oneapi-src.github.io/oneTBB/
19. Intel Corporation: Intel C++ Compiler Classic Developer Guide and Reference,

https://www.intel.com/content/dam/develop/external/us/en/documents/

cpp compiler classic.pdf

20. Karp, R.M., Miller, R.E., Winograd, S.: The organization of computations for
uniform recurrence equations. J. ACM 14(3), 563–590 (1967). https://doi.org/
10.1145/321406.321418

21. Klemm, M., de Supinski, B.R. (eds.): OpenMP Application Programming Interface
Specification Version 5.2. OpenMP Architecture Review Board (Nov 2021), https:
//www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf

22. Kristiansen, L., Jones, N.D.: The flow of data and the complexity of algorithms. In:
Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) New Computational Paradigms, First
Conference on Computability in Europe, CiE 2005, Amsterdam, The Netherlands,
June 8-12, 2005, Proceedings. LNCS, vol. 3526, pp. 263–274. Springer (2005).
https://doi.org/10.1007/11494645 33

23. Lafont, Y.: Soft linear logic and polynomial time. Theor. Comput. Sci. 318(1),
163–180 (2004). https://doi.org/10.1016/j.tcs.2003.10.018

https://doi.org/10.1145/129712.129740
https://doi.org/10.1145/129712.129740
https://doi.org/10.1007/978-3-642-11970-5_16
https://doi.org/10.1007/978-3-319-98521-3_4
https://doi.org/10.1007/978-3-319-98521-3_4
https://doi.org/10.1016/0012-365X(80)90109-0
https://doi.org/10.1007/978-3-642-31485-8_3
https://doi.org/10.1109/MC.2009.385
https://doi.org/10.1145/2254064.2254108
https://oneapi-src.github.io/oneTBB/
https://www.intel.com/content/dam/develop/external/us/en/documents/cpp_compiler_classic.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/cpp_compiler_classic.pdf
https://doi.org/10.1145/321406.321418
https://doi.org/10.1145/321406.321418
https://www.openmp.org/wp-content/uploads/OpenMP-API- Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API- Specification-5-2.pdf
https://doi.org/10.1007/11494645_33
https://doi.org/10.1016/j.tcs.2003.10.018

16 C. Aubert et al.

24. Laird, J., Manzonetto, G., McCusker, G., Pagani, M.: Weighted relational models
of typed lambda-calculi. In: LICS. pp. 301–310. IEEE Computer Society (2013).
https://doi.org/10.1109/LICS.2013.36

25. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. In: Hankin, C., Schmidt, D. (eds.) Conference Record of POPL 2001:
The 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, London, UK, January 17-19, 2001. pp. 81–92. ACM (2001). https:
//doi.org/10.1145/360204.360210

26. Leivant, D.: Stratified functional programs and computational complexity. In:
Van Deusen, M.S., Lang, B. (eds.) Conference Record of the Twentieth Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
pp. 325–333. ACM Press (1993). https://doi.org/10.1145/158511.158659

27. microsoft: Parallel patterns library (ppl) (2021), https://docs.microsoft.com/en-
us/cpp/parallel/concrt/parallel-patterns-library-ppl?view=msvc-170

28. Moyen, J., Rubiano, T., Seiller, T.: Loop quasi-invariant chunk detection. In:
D’Souza, D., Kumar, K.N. (eds.) Automated Technology for Verification and
Analysis - 15th International Symposium, ATVA 2017, Pune, India, October 3-6,
2017, Proceedings. LNCS, vol. 10482. Springer (2017). https://doi.org/10.1007/
978-3-319-68167-2 7

29. Moyen, J., Rubiano, T., Seiller, T.: Loop quasi-invariant chunk motion by peel-
ing with statement composition. In: Bonfante, G., Moser, G. (eds.) Proceedings
8th Workshop on Developments in Implicit Computational Complexity and 5th
Workshop on Foundational and Practical Aspects of Resource Analysis, DICE-
FOPARA@ETAPS 2017, Uppsala, Sweden, April 22-23, 2017. EPTCS, vol. 248, pp.
47–59 (2017). https://doi.org/10.4204/EPTCS.248.9, http://arxiv.org/abs/

1704.05169
30. Pouchet, L.N., Yuki, T.: PolyBench/C 4.1, https://web.cse.ohio-state.edu/

~pouchet.2/software/polybench/
31. Prema, S., Nasre, R., Jehadeesan, R., Panigrahi, B.: A study on popular auto-

parallelization frameworks. Concurrency and Computation: Practice and Experience
31(17), e5168 (Feb 2019). https://doi.org/10.1002/cpe.5168

32. Quinlan, D., Liao, C., Panas, T., Matzke, R., Schordan, M., Vuduc, R., , Yi, Q.:
Rose user manual: A tool for building source-to-source translators draft user manual
(version 0.9.11.115), http://rosecompiler.org/uploads/ROSE-UserManual.pdf

33. Rauchwerger, L., Padua, D.A.: Parallelizing while loops for multiprocessor systems.
In: Proceedings of the 9th International Symposium on Parallel Processing. p.
347–356. IPPS ’95, IEEE Computer Society, USA (1995)

34. Seiller, T.: Interaction graphs: Full linear logic. In: Grohe, M., Koskinen, E.,
Shankar, N. (eds.) Proceedings of the 31st Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016. pp.
427–436. ACM (2016). https://doi.org/10.1145/2933575.2934568

35. Suomela, J.: Programming parallel computers (2022), https://ppc.cs.aalto.fi/
36. TylerMSFT: Parallel Patterns Library (PPL), https://docs.microsoft.com/en-

us/cpp/parallel/concrt/parallel-patterns-library-ppl
37. Vitorović, A., Tomašević, M.V., Milutinović, V.M.: Manual parallelization versus

state-of-the-art parallelization techniques. In: Hurson, A. (ed.) Advances in Com-
puters, vol. 92, pp. 203–251. Elsevier (2014). https://doi.org/10.1016/B978-0-
12-420232-0.00005-2

38. Wikipedia contributors: Loop dependence analysis — Wikipedia, the
free encyclopedia (2022), https://en.wikipedia.org/w/index.php?title=

Loop dependence analysis&oldid=1080087398, [Online; accessed 15-May-2022]

https://doi.org/10.1109/LICS.2013.36
https://doi.org/10.1145/360204.360210
https://doi.org/10.1145/360204.360210
https://doi.org/10.1145/158511.158659
https://docs.microsoft.com/en-us/cpp/parallel/concrt/parallel-patterns-library-ppl?view=msvc-170
https://docs.microsoft.com/en-us/cpp/parallel/concrt/parallel-patterns-library-ppl?view=msvc-170
https://doi.org/10.1007/978-3-319-68167-2_7
https://doi.org/10.1007/978-3-319-68167-2_7
https://doi.org/10.4204/EPTCS.248.9
http://arxiv.org/abs/1704.05169
http://arxiv.org/abs/1704.05169
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://doi.org/10.1002/cpe.5168
http://rosecompiler.org/uploads/ROSE-UserManual.pdf
https://doi.org/10.1145/2933575.2934568
https://ppc.cs.aalto.fi/
https://docs.microsoft.com/en-us/cpp/parallel/concrt/parallel-patterns-library-ppl
https://docs.microsoft.com/en-us/cpp/parallel/concrt/parallel-patterns-library-ppl
https://doi.org/10.1016/B978-0-12-420232-0.00005-2
https://doi.org/10.1016/B978-0-12-420232-0.00005-2
https://en.wikipedia.org/w/index.php?title=Loop_dependence_analysis&oldid=1080087398
https://en.wikipedia.org/w/index.php?title=Loop_dependence_analysis&oldid=1080087398

A Novel Loop Fission Technique Inspired by ICC 17

A Limitations of Existing Automatic Parallelization Tools

We focus here on presenting the types of loop that other “popular” [31] auto-
parallelization frameworks for C cannot parallelize but that our algorithm could
split. In particular, we do not discuss loops containing function calls that have
side effects or control-flow modifiers (such as break; or continue;): neither our
algorithm nor the underlying dependency mechanisms of the discussed tools—to
the best of our knowledge—can accommodate those.

Most tools can process only “canonical loops”, defined e.g., in OpenMP’s
specification [21, 4.4.1 Canonical Loop Nest Form]: essentially, their structure
is of the form for (init-expr; test-expr; incr-expr) structured-block,
with incr-expr being a (single) increment or decrement by a constant or a
variable, and test-expr being a single comparison between a variable and a
variable or a constant. Additional constraints on loop dependences are sometimes
needed, e.g., the absence of loop-carried dependency [38] for cetus.

It is always hard to infer the absence of support, but we evaluated the lack
of formal discussion or example of e.g., while loop to be sufficient to determine
that the tool could not process while loops, unless of course they can trivially be
transformed into for loops of the required form [37, p. 236]. We refer to a recent
study [31, Section 2] for more detail on those notions and on the limitations of
some of the tools discussed below.

It seems further that some tools cannot parallelize loops whose body contains
e.g., if or switch statements [31, p. 18], but we have not investigated this claim
further: however, our algorithm can handle if—and switch too, if it was part of
our syntax—present in the body of the loop seamlessly.

Name for loop while loop do . . .while loop

cetus In canonical form∗ No
Par4all Unknown†

ROSE In canonical form§ No
icc Only if countable‡ No

PPL Unclear¶

Openmp In canonical loop nest form∗∗ No
AutoparClava Same limitations as openmp

∗ [cetus] currently handles all canonical loops of the form
for(i = lb; i < ub; i + = inc) ([16, p. 39])

[a] loop is marked as parallel if no scalar variable carries dependences and all
dependence arcs in the graph show non-loop-carried dependences with respect
to the loop. ([7, p. 761])

† Unfortunately, the project’s documentation is currently not accessible and the
publications related to this project [2,3] do not discuss loop limitations.

§ Even if the manual boldly claims

The implementation can successfully optimize arbitrary loop structures, in-
cluding complex, non-perfect loop nest ([32, p. 123])

http://par4all.github.io/documentation.html#users-guide

18 C. Aubert et al.

it later on specifies:

[Rose] utilizes traditional techniques developed to optimize loop nests in
Fortran programs. When optimizing C or C++ applications, this package
only recognizes and optimizes a particular for-loop that corresponds to the
DO loop construct in Fortran programs. Within the ROSE source-to-source
compiler infrastructure, such a loop is defined to have the following formats:

for (i = lb; i <= ub; i+ = positiveStep)

or for (i = ub; i >= lb; i+ = negativeStep) ([32, p. 124])

‡ Loops can be formed with the usual for and while constructs, provided the
loop iteration is countable:

The loop iterations must be countable; in other words, the number of iterations
must be expressed as one of the following:

– A constant.
– A loop invariant term.
– A linear function of outermost loop indices.

In the case where a loops exit depends on computation, the loops are not
countable. ([19, p. 2126])

¶ The documentation [36] does not discuss which types of loop are supported
clearly, but this tool seems to support only for (and for each) C++ loops.

∗∗ For more detail, refer to OpenMP’s documentation [21]. In short,

The canonical loop nest form allows the iteration count of all associated loops
to be computed before executing the outermost loop. ([21, Section 4.4.2])

B Benchmarking Parallel Versions of PolyBench/C

Table 1 presents the gain obtained by parallelizing six different programs from
the PolyBench/C suite, for different levels of optimization and data sizes, for the
following 4 program categories:

1. original: unmodified and sequential programs (used as a base to measure the
speedup),

2. original-autopar: original programs, where OpenMP directives are automati-
cally inserted by AutoPar-Clava [4],

3. fission-manual: programs after loop fission, where OpenMP directives are
inserted manually,

4. fission-autopar: programs after loops fission, where OpenMP directives are
automatically inserted by AutoPar-Clava.

A Novel Loop Fission Technique Inspired by ICC 19

Benchmark O0 O1 O2 O3

Name Data
size

orig.
auto

fiss.
auto

fiss.
man

orig.
auto

fiss.
auto

fiss.
man

orig.
auto

fiss.
auto

fiss.
man

orig.
auto

fiss.
auto

fiss.
man

3mm XS 2.28 2.29 2.31 2.46 2.50 2.75 1.73 1.73 1.98 1.81 1.96 2.04

S 2.76 2.79 2.58 3.91 3.92 3.95 4.19 4.19 4.21 3.42 3.41 3.47

M 2.24 2.23 2.23 3.63 3.61 3.63 3.42 3.40 3.43 3.45 3.44 3.47

L 3.56 3.49 3.48 3.97 3.85 3.91 4.16 4.05 3.98 4.40 4.45 4.44

XL 2.35 2.25 2.31 3.96 4.06 3.76 2.92 2.87 2.88 2.76 2.78 2.85

bicg XS 0.53 0.45 1.44 0.23 0.23 0.75 0.23 0.20 0.75 0.28 0.26 0.75

S 2.08 1.82 2.48 1.68 1.37 2.28 1.57 1.45 2.80 1.73 1.69 2.85

M 3.30 2.84 2.96 3.56 2.43 2.60 4.10 3.37 3.77 4.20 3.48 3.78

L 2.74 2.34 2.35 3.96 2.63 2.71 4.54 3.63 3.64 4.56 3.68 3.68

XL 2.71 2.30 2.32 3.77 2.60 2.59 4.27 3.46 3.46 4.30 3.50 3.50

deriche XS 2.03 2.08 1.63 2.24 2.19 2.26 2.36 2.54 2.29 2.20 2.22 2.35

S 2.33 2.28 1.76 2.20 2.33 1.94 2.42 2.53 2.01 2.34 2.29 2.08

M 2.73 2.74 1.96 3.03 3.05 2.44 3.10 3.20 2.38 2.95 3.03 2.56

L 1.73 1.73 1.39 1.70 1.55 1.72 1.75 1.75 1.65 1.72 1.71 1.86

XL 0.95 0.95 0.89 0.84 0.84 0.84 0.86 0.86 0.84 0.86 0.86 0.87

fdtd-2d XS 2.17 2.33 2.13 3.01 1.42 1.81 0.77 1.00

S 2.60 2.60 3.47 4.20 2.28 2.90 1.59 2.45

M 1.93 2.03 1.39 3.29 1.27 3.00 0.80 2.85

L 2.20 2.74 2.92 3.58

XL 2.07 2.20 2.36 1.80

gesummv XS 1.50 0.90 1.00 1.00 0.57 0.57 1.00 0.57 0.67 0.75 0.43 0.50

S 2.71 2.33 2.26 2.58 1.55 1.66 2.36 2.04 2.19 2.82 2.62 2.62

M 3.07 2.80 2.65 3.27 2.17 2.17 3.19 3.25 3.25 3.29 3.29 3.28

L 3.08 2.85 2.70 3.48 1.95 2.26 4.23 4.51 4.51 3.56 3.78 3.83

XL 2.27 2.10 1.99 3.16 2.02 1.99 3.16 3.32 3.32 3.15 3.31 3.32

mvt XS 1.73 1.73 2.17 1.43 1.43 2.00 0.83 0.83 1.25 0.83 1.00 1.25

S 2.73 2.75 2.85 3.64 3.56 3.56 2.54 2.49 2.85 2.51 2.38 2.71

M 3.10 3.06 3.44 4.33 4.33 4.38 3.14 3.14 3.16 3.15 3.19 3.20

L 2.28 2.30 2.22 3.53 2.97 3.49 2.53 2.50 2.51 2.51 2.57 2.50

XL 1.41 1.35 1.32 2.28 1.99 2.38 1.33 1.53 1.52 1.55 1.48 1.53

Table 1. Comparing speedup between original sequential programs and transformed
parallel programs, for various data sizes and compiler optimization levels.

20 C. Aubert et al.

C Cost-Benefit Considerations for Loop Fission

For the example transformations presented in Sect. 3.1, it may be that duplicating
the command y2 = y2 × y1 degrades the speed gain of the parallelization to the
point that it is not worth splitting the loop. Based on a more precise dependency
analysis, such as the mwp-analysis [5], which produces a weighted dependency
graph whose weights provide quantitative information on the dependency (linear,
weak polynomial, polynomial, super-polynomial). The splitting algorithm will
be adapted to use this information in order to allow for adaptive splittings. In
the above case, one may then obtain the cover and corresponding algorithm
presented in Sect. C. Note that Theorem 1 would still apply to this “conditional”
loop-splitting algorithm.

j = pow(10, 6)
x1 = 1
i = 1
parallel . A private copy of i and y1 needs to be given to each loop below.︷ ︸︸ ︷
while i 6= j do

x1 = x1 + y1 + x2 + i
y1 = y1 + i
s[i] = x1

x2 = x1 + s[i]
i = i + 1︸ ︷︷ ︸

︷ ︸︸ ︷
while i 6= j do

y1 = y1 + i
y2 = y2 × y1
u[i] = y2
t[i] = y2 × y2
i = i + 1︸ ︷︷ ︸

use(x1) . The copies of i and y1 can be destroyed, all have the same values.

x1 = x1 + y1 + x2 + i y1 = y1 + i y1 = y1 + i

y2 = y2 × y1s[i] = x1 x2 = x1 + s[i]

u[i] = y2t[i] = y2 × y2

i = i + 1 i = i + 1

Fig. 8. Optimized Example

	A Novel Loop Fission Technique Inspired by Implicit Computational Complexity

