

Identification of selective inhibitors against BACE 1 over BACE 2 in Alzheimer's disease by Quantitative Structure-Activity Relationship (QSAR)

Yoanna Álvarez Ginarte, Roy González Aleman, Taher Yacoub, Fabrice Leclerc, Luis A. Montero Cabrera, Roy González, Montero Cabrera

▶ To cite this version:

Yoanna Álvarez Ginarte, Roy González Aleman, Taher Yacoub, Fabrice Leclerc, Luis A. Montero Cabrera, et al.. Identification of selective inhibitors against BACE 1 over BACE 2 in Alzheimer's disease by Quantitative Structure-Activity Relationship (QSAR). Neuroscience and Neurotechnology in the 21st century Symposium / BioHabana2022, Apr 2022, La Havane, Cuba. hal-03669386

HAL Id: hal-03669386 https://hal.science/hal-03669386v1

Submitted on 16 May 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

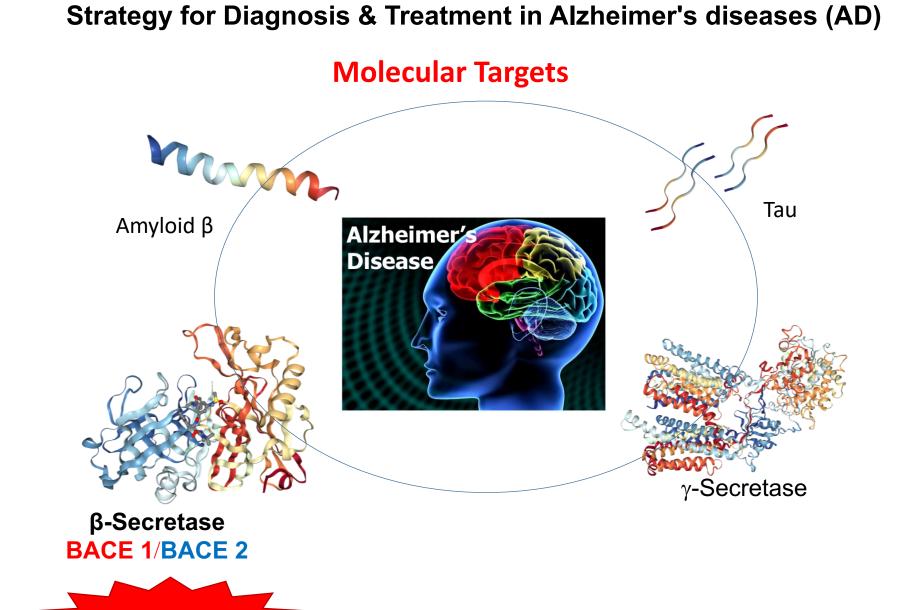
Author info: Yoanna M Álvarez Ginarte¹, Roy González Alemán^{1,3}, Taher Yacoub², Fabrice Leclerc², Luis A Montero Cabrera³

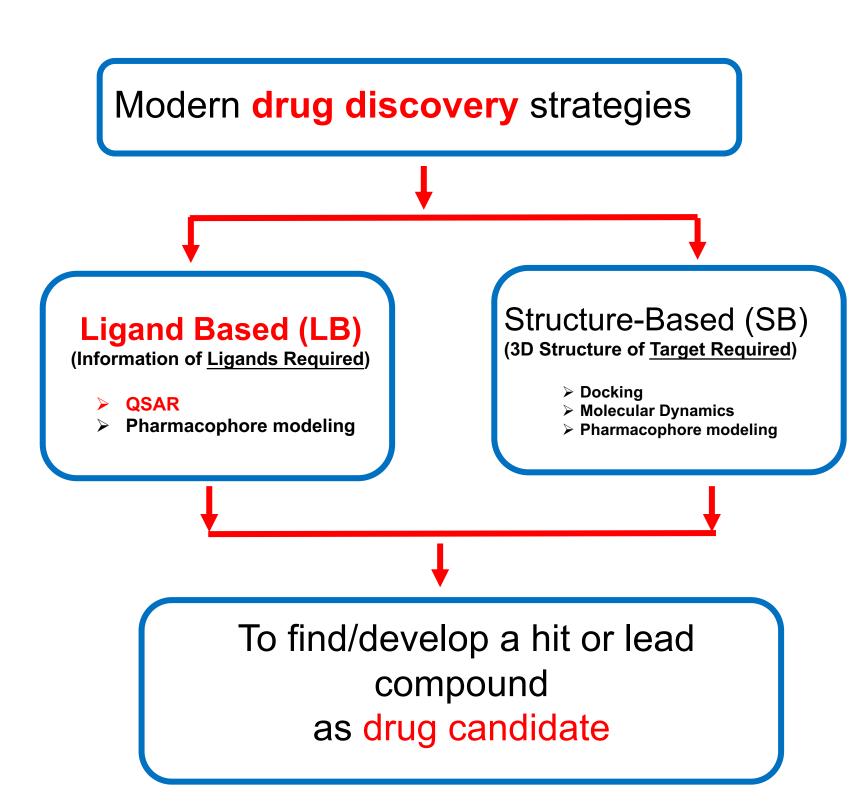
- ¹ Laboratory of Computational and Theoretical Chemistry, Faculty of Chemistry, University of Havana, Cuba, yoanna@fq.uh.cu
- ² I2BC CNRS-CEA-Université Paris Sud, Paris Saclay, France, <u>fabrice.leclerc@u-psud.fr</u>
- ³ Laboratory of Computational and Theoretical Chemistry, Faculty of Chemistry, University of Havana, Cuba, lmc@fq.uh.cu

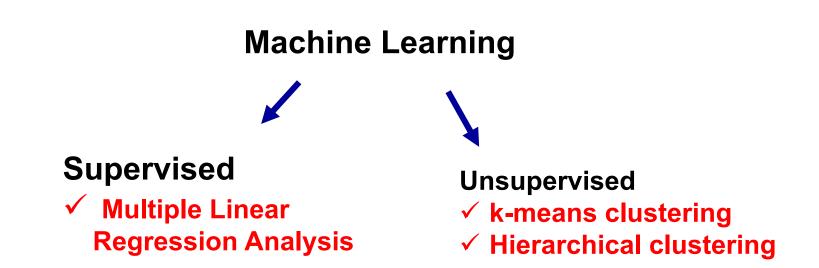
25 – 29 April 2022 / Havana Convention Palace

biohabana.biocubafarma.cu

BioHabana




Identification of selective inhibitors against BACE 1 over BACE 2 in Alzheimer's disease by Quantitative Structure-Activity Relationship (QSAR)



Selective inhibitors against

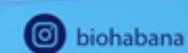
BACE 1/ BACE 2

Some steps of the drug discovery process require the use of Machine Learning techniques to construct statistically validated models

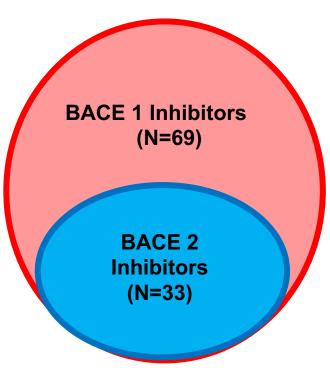
We aim to develop Quantitative Structure-Activity Relationship (QSAR) models to Identification of selective inhibitors against BACE 1/ BACE 2 in Alzeheimer's disease for a data set of N-Phenylpicolinamide derivatives

Author info: Yoanna M Álvarez Ginarte¹, Fabrice Leclerc², Luis A Montero Cabrera³

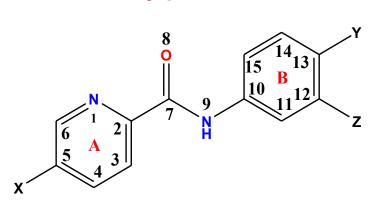
- Laboratory of Computational and Theoretical Chemistry, Faculty of Chemistry, University of Havana, Cuba, yoanna@fq.uh.cu
- ² I2BC CNRS-CEA-Université Paris Sud, Paris Saclay, France, fabrice.leclerc@u-psud.fr
- 3 Laboratory of Computational and Theoretical Chemistry, Faculty of Chemistry, University of Havana, Cuba, Imc@fq.uh.cu


25 – 29 April 2022 / Havana Convention Palace

biohabana.biocubafarma.cu


BioHabana

biohabana@gmail.com BioHabana



Input Data Set

Pharmacophore Derivatives

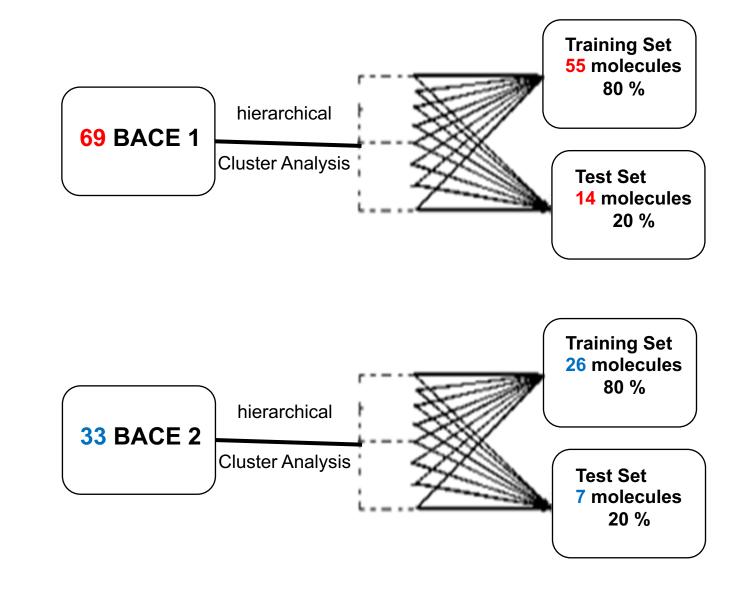
N-Phenylpicolinamide

A: an (hetero)aromatic ring, B: an (hetero)aromatic ring and an amide linker is installed between A- and B-rings allowing the B-ring to enter deep into the pocket. X, Y, Z: Substituent groups, Position 4: C or N atom

- ✓ Compounds with biochemical activity below 1 µM were selected for further inhibition assay
- ✓ The IC₅₀ value is the concentration of compound which inhibits BACE 1 and BACE 2 binding by 50 %
- ✓ In our study, the negative logarithm of the biological activity, plC₅₀, was used as the dependent variable to determine **QSAR** correlation equations
- ✓ Active molecule (pIC50 greater or similar than 6) and inactive molecule (pIC50 lower than 6)

Bioorganic & Medicinal Chemistry Letters. Volume 29, Issue 6, 15 March 2019, Pages 761-777

Estimation of molecular properties (descriptors)


BLOCK	TOTAL	SELECTION	EXCLUDE
1. Constitutional indices	50	14	36
2. Ring descriptors	35	5	30
3. Geometrical descriptors	38	0	38
4. Randic molecular profiles	41	0	41
5. Functional group counts	154	1	153
6. Pharmacophore descriptors	165	3	162
7. 2D Atom Pairs	1596	4	1592
8 3D Atom Pairs	36	0	36
9. Charge descriptors	15	0	15
10. Molecular properties	27	11	16
11. <u>Drug-like indices</u>	30	6	24
12. Chirality descriptors	70	•	70
TOTAL	2257	(44)	2213

Exclusion criteria:

- > At least one value as zero
- Constant values
- Not applicable

Selection of training and test sets using Cluster Analysis

Cluster analysis is used in QSAR models to build the training and test sets as well as to determine the structural diversity of the dataset

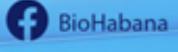
> The two-dimensional (2D) chemical structures of the inhibitors were

generated using ChemDraw Ultra and saved in mol format.

> The 3D structure of each inhibitors were obtained by the geometrical optimization of each molecule using Kohn-Sham's DFT B3LYP/6-31G method included in Gaussian 09 program routines

Author info: Yoanna M Álvarez Ginarte¹, Fabrice Leclerc², Luis A Montero Cabrera³


- ¹ Laboratory of Computational and Theoretical Chemistry, Faculty of Chemistry, University of Havana, Cuba, yoanna@fg.uh.cu
- ² I2BC CNRS-CEA-Université Paris Sud, Paris Saclay, France, fabrice.leclerc@u-psud.fr
- 3 Laboratory of Computational and Theoretical Chemistry, Faculty of Chemistry, University of Havana, Cuba, Imc@fq.uh.cu


25 – 29 April 2022 / Havana Convention Palace

biohabana.biocubafarma.cu

biohabana@gmail.com

BioHabana

Significant and Predictive QSAR model of BACE 1 inhibitors

 $PIC_{50} = -0.44 F03[C-C] + 0.60 MR99 + 0.19 TPSA(Tot) + 0.45 LOGP + 2.78 LLS_02-3.13$

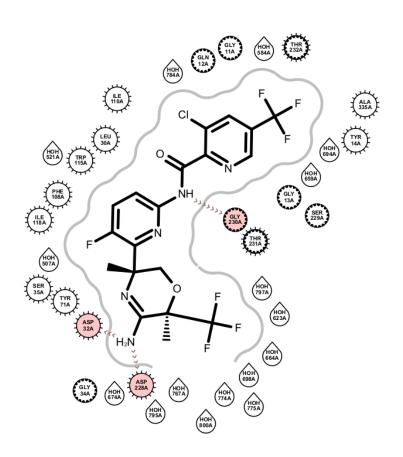
Training sets : n=55; R=0.90; $R^2 = 0.81$; s=0.26; F=42.71; Q2=0.76; P=0.00

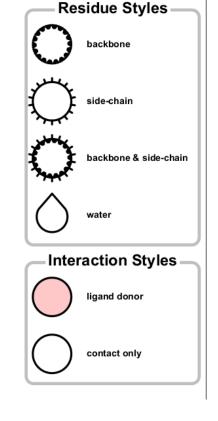
Test sets: n=14; R=0.80; R² =0.64; s=0.70; F=21.43

F03[C-C]	MR	TPSA	LOGP	LLS_02: A lead-like score
Frequency	Molar	Topological	Octanol/Water	(8 rules)
of C - C at topological distance 3	Refractivity	polar surface area using N,O,S,P polar contributions	partition coefficient	$LS = \frac{nRules}{tRules}$ nRules: $number$ of satisfied rules. tRules: total number of rules
Electronic	Steric	Electronic	Lypophilicity	Lypophilicity-Steric-Electronic
				rules
(-)	(+)	(+)	(+)	(+)

Significant and Predictive QSAR model of BACE 2 inhibitors

 $PIC_{50} = -2.05 \text{ SCBO} + 1.29 \text{ D/Dtr}06 + 8.94 \text{ DLS_cons} + 7.07 \text{ LLS_01} - 10.85 \text{ QEDu} + 9.53$


Training sets: n=28; R=0.91; $R^2 = 0.83$; s=0.42; F=22.47; Q2=0.75; P=0.00

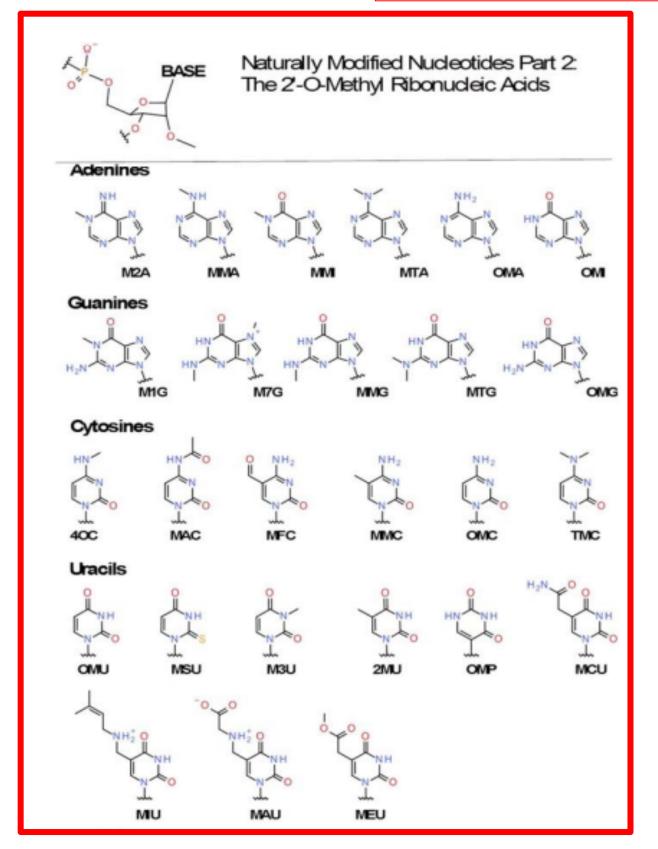

Test sets: n=6; R=0.92; $R^2=0.85$; s=0.48; F=22.98

SCBO: Sum	D/Dtr06:	DLS_cons:	LLS_01: modified	QEDu: Quantitative		
of	Distance/Detour	DRAGON	Lead-Like Score	Estimation of Drug-		
Conventional	ring index of	consensus Drug-		likeness		
Bond Orders	order 6	Like Score		(unweighted)		
(H-depleted)						
		(7 rules)	(6 rules)	(8 rules)		
		$r \sim nRules$				
		$LS = \frac{nRules}{tRules}$				
		nRules: <i>number</i> of satisfied rules				
		tRules: total number of rules				
Steric	Steric	Lypophilicity-	Lypophilicity-Steric-	Lypophilicity-Steric-		
		Steric-Electronic	Electronic	Electronic		
(-)	(+)	(+)	(+)	(-)		

Several BACE1/BACE 2 inhibitors have been progressed into clinical trials

Clinical Trials BACE 1 INHIBITOR

Clinical Trials BACE 2 INHIBITOR


Frederik Rombouts , Ken-ichi Kusakabe , Chien-Chi Hsiao & Harrie J. M. Gijsen (2020): Small-molecule BACE1 inhibitors: a patent literature review (2011 to 2020), Expert Opinion on Therapeutic Patents, DOI: 10.1080/13543776.2021.1832463

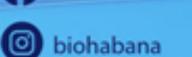
- ➤ Challenges for BACE1 inhibitors, notably achieving central penetration and avoiding toxicity, been progressively overcome in the past 10 years
- ➤ The most recent progress was made in getting high BACE1/BACE2 selectivity, which further reduces the toxicity risk.

157 Modified Ribonucleotides

Five Selective
β-Secretase (BACE1)
Inhibitors over
BACE2

Author info: Yoanna M Álvarez Ginarte¹, Fabrice Leclerc², Luis A Montero Cabrera³

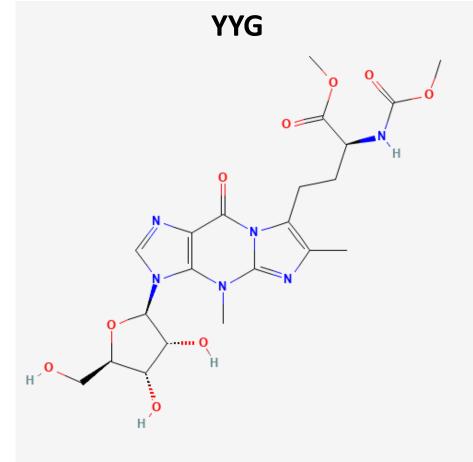
- ¹ Laboratory of Computational and Theoretical Chemistry, Faculty of Chemistry, University of Havana, Cuba, yoanna@fq.uh.cu
- ² I2BC CNRS-CEA-Université Paris Sud, Paris Saclay, France, <u>fabrice.leclerc@u-psud.fr</u>
- 3 Laboratory of Computational and Theoretical Chemistry, Faculty of Chemistry, University of Havana, Cuba, Imc@fq.uh.cu

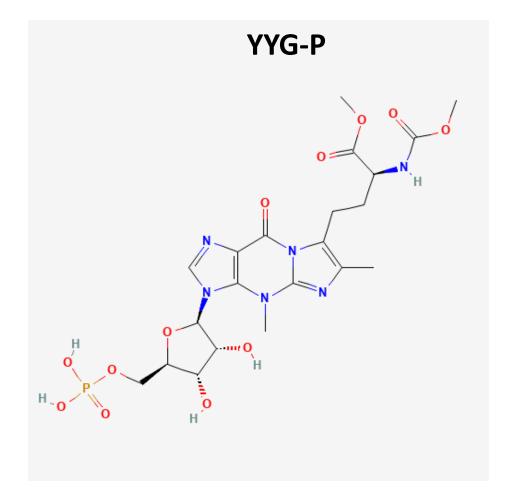


biohabana@gmail.com

BioHabana

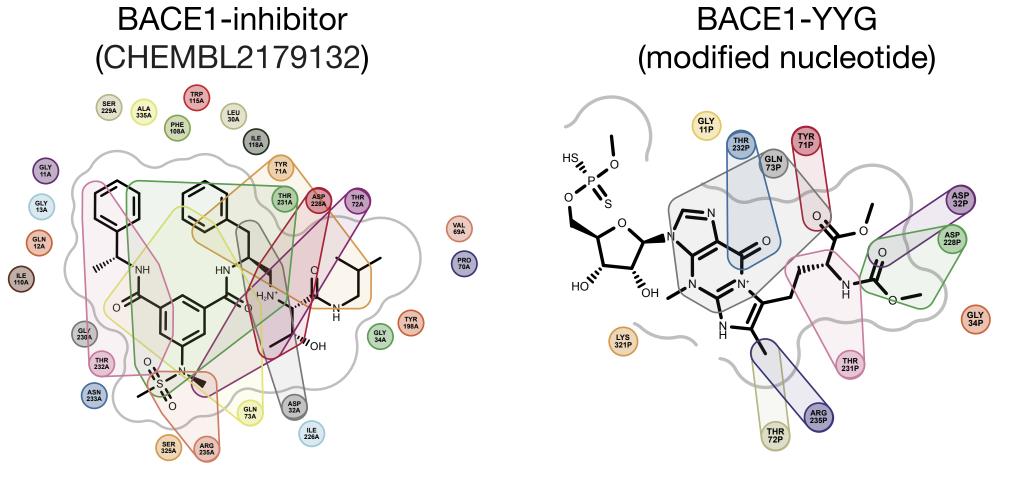
in BioHabanaCuba




25 - 29 April 2022 / Havana Convention Palace

Example of Selective β-Secretase (BACE1) Inhibitors over BACE2

BACE $1_{Cal.} = 10.00$ F03[C-C]/10 = 2 MR99/10 = 13.06 TPSA(Tot)/10 = 24.80 MLOGP = -0.60 $LLS_02 = 0.63$



BACE $2_{Cal.} = 4.65$ SCBO/10 = 5.20 D/Dtr06/100 = 0.92 DLS_cons = 0.50 LLS_01= 0.17 QEDu = 0.10 BACE $1_{Cal.} = 8.50$ F03[C-C]/10 = 2 MR99/10 = 11.97 TPSA(Tot)/10 = 19.17 MLOGP = -0.89 $LLS_02 = 0.75$

BACE 2_{Cal.} = 5.75 SCBO/10 = 4.70 D/Dtr06/100 = 0.80 DLS_cons = 0.62 LLS_01= 0.17 QEDu = 0.18

Possible binding mode of YYG modified nucleotide at the β-Secretase (BACE1) active site: common contacted residues

Conclusions

- 1) The combined possibilities of quantum and physicochemicals MD's, together with the Machine Learning techniques, allowed us to generate QSAR models, capable of discriminating between Selective β-Secretase (BACE 1) Inhibitors over BACE 2.
- 2) Hydrophobic, Steric and Electronic significant molecular descriptors included in the predictive QSAR model of BACE 1 and BACE 2 inhibitors allow the structural interpretation of the biological process, evidencing the main role of the shape of molecules, its hydrophobicity and its electronic properties in the transport and the Ligand–Receptor interaction.
- 3) QSAR models allowed the identification of five modified nucleotides as selective inhibitors against BACE 1/ BACE 2 in Alzheimer's disease. Phosphate group in the selective modified nucleotides have a positive impact in the inhibitor's activity. According the value of the significant molecular descriptors include in the QSAR models of BACE 1, a Phosphate group increases the MR, TPSA and LOG P values with a positive contribution to the BACE 1 inhibitor activity.

Perspectives

- 1. Integrative model QSAR/structural data of BACE1(BACE2)-ligand complexes
- 2. MCSS calculations on BACE1 with modified nucleotides (in progress)