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This article considers the temporal logic of the lexicographic products of unbounded dense linear orders and provides via mosaics a complete decision procedure in nondeterministic polynomial time for the satisfiability problem it gives rise to.

Introduction

The mosaic method originates in algebraic logic, see [START_REF] Németi | Decidable versions of first order logic and cylindric-relativized set algebras[END_REF], where the existence of a model is proved to be equivalent to the existence of a finite set of partial models verifying some conditions. It has also been applied for proving completeness and decidability of temporal logics over linear flows of time. See [5, section 6.4], or [START_REF] Caleiro | On the mosaic method for many-dimensional modal logics: a case study combining tense and modal operators[END_REF][START_REF] Marx | The mosaic method for temporal logics[END_REF][START_REF] Marx | Local variations on a loose theme: modal logic and decidability[END_REF][START_REF] Reynolds | A decidable temporal logic of parallelism[END_REF]. For their use, specialized systems such as temporal logics must be combined with each other. This has led to the development of techniques for the combination of linear flows of time such as the classical operation of Cartesian product [START_REF] Gabbay | Many-Dimensional Modal Logics: Theory and Applications[END_REF][START_REF] Gabbay | Products of modal logics, part 1[END_REF][START_REF] Kurucz | Combining modal logics[END_REF][START_REF] Reynolds | On the products of linear modal logics[END_REF]. Within the context of modal logic, the operation of lexicographic product of Kripke frames has been introduced as a variant of the operation of Cartesian product. It has also been used for defining the semantical basis of different languages designed for time representation and temporal reasoning from the perspective of non-standard analysis. See [START_REF] Balbiani | Time representation and temporal reasoning from the perspective of non-standard analysis[END_REF][START_REF] Balbiani | Axiomatization and completeness of lexicographic products of modal logics[END_REF][START_REF] Balbiani | Axiomatizing the temporal logic defined over the class of all lexicographic products of dense linear orders without endpoints[END_REF].

In [START_REF] Balbiani | Axiomatizing the temporal logic defined over the class of all lexicographic products of dense linear orders without endpoints[END_REF], the temporal logic of the lexicographic products of unbounded dense linear orders has been considered and its complete axiomatization has been given. The purpose of this paper is to apply the mosaic method for providing a complete decision procedure in nondeterministic polynomial time for the satisfiability problem this temporal logic gives rise to. Its section-by-section breakdown is as follows. Section 2 formally introduces the lexicographic products of unbounded dense linear orders and presents the syntax and the semantics of the temporal logic we will be working with. Sections 3 defines mosaics and collections of mosaics satisfying saturation properties. In Section 4 and 5, we prove the completeness and soundness, respectively, of the mosaic method. Applying these result we prove in Section 6 that the satisfiability problem for our temporal logic is decidable in nondeterministic polynomial time.

Products of Unbounded Dense Linear Orders

Let F 1 = (T 1 , < 1 ) and F 2 = (T 2 , < 2 ) be linear orders. Their lexicographic product is the structure F = (T, ≺ 1 , ≺ 2 ) where

-T = T 1 × T 2 ,
-≺ 1 and ≺ 2 are binary relations on T defined by (s 1 , s 2 )

≺ 1 (t 1 , t 2 ) iff s 1 < 1 t 1 and (s 1 , s 2 ) ≺ 2 (t 1 , t 2 ) iff s 1 = t 1 and s 2 < 2 t 2 .
We define the binary relation

≺ on T by (s 1 , s 2 ) ≺ (t 1 , t 2 ) iff (s 1 , s 2 ) ≺ 1 (t 1 , t 2 ) or (s 1 , s 2 ) ≺ (t 1 , t 2 )
. The effect of the operation of lexicographic product may be described informally as follows: given two linear orders, their lexicographic product is the structure obtained by replacing each point of the first one by a copy of the second one. The global intuitions underlying such an operation is based upon the fact that, depending on the accuracy required or the available knowledge, one can describe a temporal situation at different levels of abstraction. See [4, section I.2.2], or [START_REF] Euzenat | Time granularity[END_REF] for details. In Fig. 1 below, we have

s 1 < 1 t 1 and s 2 < 2 t 2 .
As a result, we have (s

1 , s 2 ) ≺ 2 (s 1 , t 2 ), (s 1 , s 2 ) ≺ 1 (t 1 , s 2 ), (s 1 , s 2 ) ≺ 1 (t 1 , t 2 ), (s 1 , t 2 ) ≺ 1 (t 1 , s 2 ), (s 1 , t 2 ) ≺ 1 (t 1 , t 2 ) and (t 1 , s 2 ) ≺ 2 (t 1 , t 2 ).
It is now time to meet the temporal language we will be working with. Let At be a countable set of atomic formulas (with typical members denoted p, q, etc). We define the set L t of formulas of our temporal language (with typical members denoted ϕ, ψ, etc.) as follows:

-ϕ := p | ⊥ | ¬ϕ | (ϕ ∨ ψ) | G 1 ϕ | G 2 ϕ | H 1 ϕ | H 2 ϕ, ✲ F1 ✻ F2 q s1 q t1 q s2 q t2 q (s1, s2) q (t1, s2)
q (s1, t2) q (t1, t2) the formulas G 1 ϕ, G 2 ϕ, H 1 ϕ and H 2 ϕ being read "ϕ will be true at each point within the future of but not infinitely close to the present point", "ϕ will be true at each instant within the future of and infinitely close to the present instant", "ϕ has been true at each point within the past of but not infinitely close to the present point" and "ϕ has been true at each point within the past of and infinitely close to the present point". We adopt the standard definitions for the remaining Boolean connectives. As usual, we define for all i ∈ {1, 2},

-F i ϕ := ¬G i ¬ϕ, -P i ϕ := ¬H i ¬ϕ, -✸ i ϕ := ϕ ∨ F i ϕ ∨ P i ϕ.
The notion of a subformula is standard. 

-M, (s 1 , s 2 ) |= G i ϕ iff M, (t 1 , t 2 ) |= ϕ for every (t 1 , t 2 ) ∈ T 1 × T 2 such that (s 1 , s 2 ) ≺ i (t 1 , t 2 ), -M, (s 1 , s 2 ) |= H i ϕ iff M, (t 1 , t 2 ) |= ϕ for every (t 1 , t 2 ) ∈ T 1 × T 2 such that (t 1 , t 2 ) ≺ i (s 1 , s 2 ).
As a result, for all i ∈ {1, 2},

-M, (s 1 , s 2 ) |= F i ϕ iff M, (t 1 , t 2 ) |= ϕ for some (t 1 , t 2 ) ∈ T 1 × T 2 such that (s 1 , s 2 ) ≺ i (t 1 , t 2 ), -M, (s 1 , s 2 ) |= P i ϕ iff M, (t 1 , t 2 ) |= ϕ for some (t 1 , t 2 ) ∈ T 1 × T 2 such that (t 1 , t 2 ) ≺ i (s 1 , s 2 ), -M, (s 1 , s 2 ) |= ✸ 2 ϕ iff M, (s 1 , t) |= ϕ for some t ∈ T 2 .
M is said to be a model for ϕ iff there exists (s 1 , s 2 ) ∈ T 1 × T 2 such that M, (s 1 , s 2 ) |= ϕ. In this case, we shall also say that ϕ is satisfied in M. Let C 1 and C 2 be classes of linear orders. We shall say that a formula ϕ is satisfiable with respect to (C 1 , C 2 ) iff there exists a linear order F 1 = (T 1 , < 1 ) in C 1 , there exists a linear order F 2 = (T 2 , < 2 ) in C 2 and there exists a valuation

V : At → ℘(T 1 ×T 2 ) such that (F 1 , F 2 , V ) is a model for ϕ. The temporal logic of (C 1 , C 2 )
is the set of all formulas ϕ such that ¬ϕ is not satisfiable with respect to (C 1 , C 2 ). The class of all unbounded dense linear orders will be denoted C ud . [START_REF] Balbiani | Axiomatizing the temporal logic defined over the class of all lexicographic products of dense linear orders without endpoints[END_REF] considers the temporal logic of (C ud , C ud ) and gives its complete axiomatization. The satisfiability problem of this temporal logic is to determine whether a given formula ϕ is satisfiable with respect to (C ud , C ud ).

In order to provide a complete decision procedure in nondeterministic polynomial time for it, we use mosaics.

Until the end of this paper, ξ will denote a fixed formula and Γ will denote the least set of formulas such that ✸ 2 ξ ∈ Γ (recall that ✸ 2 ϕ is defined as ϕ ∨ F 2 ϕ ∨ P 2 ϕ) and ⊤ ∈ Γ , Γ is closed under subformulas and single negations (we identify ¬¬γ with γ) and

-if G 1 ϕ ∈ Γ or H 1 ϕ ∈ Γ , then G 2 ϕ, H 2 ϕ ∈ Γ , -if F 1 ϕ ∈ Γ or P 1 ϕ ∈ Γ , then ✸ 2 ϕ ∈ Γ .
Recall that ξ has at most |ξ| subformulas. Closing this set under single negations gives us at most 2 × |ξ| formulas. Then ✸ 2 ξ yields 2 × |ξ| + 10 formulas (subformulas and their negations). The first requirement above introduces at most 2 new formulas plus their negations, and the last requirement introduces at most 10 new formulas (with negations), for every ϕ. Thus we get that |Γ | ≤ 14 × (2 × |ξ| + 10) + 2 (the 2 is for ⊤ and ⊥).

Let λ be a function such that dom(λ) ⊆ Γ is closed under single negations and ran(λ) ⊆ {0, 1}. We say that λ is adequate if

-⊤ ∈ dom(λ) and λ(⊤) = 1, -for every γ ∈ dom(λ), we have λ(¬γ) = 1 -λ(γ), -for every γ ∨ρ ∈ dom(λ), we have λ(γ ∨ρ) ≥ λ(γ) provided that γ ∈ dom(λ), λ(γ ∨ ρ) ≥ λ(ρ) provided that ρ ∈ dom(λ), and λ(γ ∨ ρ) = max{λ(γ), λ(ρ)} if both γ, ρ ∈ dom(λ).
The reason for the complicated form of the last condition is that generally we do not require that dom(λ) is closed under subformulas. However, when we state a requirement that λ(γ) ∈ {0, 1}, then we implicitly require that γ ∈ dom(λ).

Definition 1. Let i ∈ {1, 2} and (σ, τ ) be a pair of adequate functions. We define the following coherence properties.

G i -coherence σ(G i ϕ) = 1 implies τ (G i ϕ) = τ (ϕ) = 1. H i -coherence τ (H i ϕ) = 1 implies σ(H i ϕ) = σ(ϕ) = 1.
1. A 1-mosaic is a pair (σ, τ ) such that σ and τ are adequate functions, (σ, τ ) satisfies G 1 -and H 1 -coherence and the following transfer conditions.

G-transfer σ(G 1 ϕ) = 1 implies τ (G 2 ϕ) = τ (H 2 ϕ) = 1. H-transfer τ (H 1 ϕ) = 1 implies σ(G 2 ϕ) = σ(H 2 ϕ) = 1. 2. A 2-mosaic is a pair (σ, τ ) such that σ and τ are adequate functions with full domain dom(σ) = dom(τ ) = Γ , (σ, τ ) satisfies G 2 -and H 2 -coherence and the following uniformity conditions. G 1 -uniformity σ(G 1 ϕ) = τ (G 1 ϕ). H 1 -uniformity σ(H 1 ϕ) = τ (H 1 ϕ).
As an example of mosaics take a model M = (F 1 , F 2 , V ) with unbounded, dense linear orders

F 1 = (T 1 , < 1 ) and F 2 = (T 2 , < 2 ) and a valuation V : At → ℘(T 1 × T 2 ). Denote T := T 1 × T 2 . Define for every (s, t) ∈ T , λ (s,t) : Γ → {0, 1} by 
λ (s,t) (γ) := 1 if M, (s, t) |= γ 0 otherwise (1) 
for every γ ∈ Γ . It is straightforward to check that for every (s, t), (u, v) ∈ T with s < 1 u, the pair (λ (s,t) , λ (u,v) ) is a 1-mosaic (with full domain) -for every (s, t), (s, u) ∈ T with t < 2 u, the pair (λ (s,t) , λ (s,u) ) is a 2-mosaic.

For every s ∈ T 1 , define κ s as follows:

κ s (γ) :=      1 if λ (s,u) (γ) = 1 for every u ∈ T 2 0 if λ (s,u) (γ) = 0 for every u ∈ T 2 undefined otherwise (2)
for every γ ∈ Γ . Then κ s is an adequate function and (κ s , κ t ) is a 1-mosaic whenever s < 1 t. An i-SSM will correspond to a flow of time in dimension i. Definition 2. Let i ∈ {1, 2}. An i-saturated set of mosaics, an i-SSM, is a collection M of i-mosaics such that M satisfies the Density, No-endpoints and the corresponding i-saturation conditions below.

Density If (σ, τ ) ∈ M , then there is µ such that (σ, µ), (µ, τ ) ∈ M . No-endpoints If (σ, τ ) ∈ M , then there are µ, ν such that (µ, σ) ∈ M and (τ, ν) ∈ M . F 1 -saturation-insertion If (σ, τ ) ∈ M , σ(F 1 ϕ) = 1 and τ (F 1 ϕ) = τ (✸ 2 ϕ) = 0, then there is µ such that µ(✸ 2 ϕ) = 1 and (σ, µ), (µ, τ ) ∈ M . F 2 -saturation-insertion If (σ, τ ) ∈ M , σ(F 2 ϕ) = 1 and τ (F 2 ϕ) = τ (ϕ) = 0,
then there is µ such that µ(ϕ) = 1 and (σ, µ), (µ, τ ) ∈ M .

P 1 -saturation-insertion If (σ, τ ) ∈ M , τ (P 1 ϕ) = 1 and σ(P 1 ϕ) = σ(✸ 2 ϕ) = 0, then there is µ such that µ(✸ 2 ϕ) = 1 and (σ, µ), (µ, τ ) ∈ M . P 2 -saturation-insertion If (σ, τ ) ∈ M , τ (P 2 ϕ) = 1 and σ(P 2 ϕ) = σ(ϕ) = 0, then there is µ such that µ(ϕ) = 1 and (σ, µ), (µ, τ ) ∈ M . F 1 -saturation-expansion If (σ, τ ) ∈ M and τ (F 1 ϕ) = 1, then there is µ such that µ(✸ 2 ϕ) = 1 and (τ, µ) ∈ M . F 2 -saturation-expansion If (σ, τ ) ∈ M and τ (F 2 ϕ) = 1, then there is µ such that µ(ϕ) = 1 and (τ, µ) ∈ M . P 1 -saturation-expansion If (σ, τ ) ∈ M and σ(P 1 ϕ) = 1, then there is µ such that µ(✸ 2 ϕ) = 1 and (µ, σ) ∈ M . P 2 -saturation-expansion If (σ, τ ) ∈ M and σ(P 2 ϕ) = 1, then there is µ such that µ(ϕ) = 1 and (µ, σ) ∈ M .
That is, besides the Density and No-endpoint conditions, a 1-SSM should satisfy the F 1 -saturation and P 1 -saturation conditions and a 2-SSM should satisfy the F 2 -saturation and P 2 -saturation conditions. We say that M is an i-SSM for ϕ if there is (µ, ν) ∈ M such that µ(ϕ) = 1 or ν(ϕ) = 1. Let us continue with our example. The collections

{(λ (s,t) , λ (u,v) ) : (s, t) ≺ 1 (u, v)} and {(κ s , κ u ) : s < 1 u}
of 1-mosaics are 1-SSMs. Fix s ∈ T 1 and consider the set M s of 2-mosaics defined by

M s := {(λ (s,t) , λ (s,u) ) : t, u ∈ T 2 , t < 2 u}.
It is easy to check that M s is a 2-SSM for every s ∈ T 1 . A 1-supermosaic will be a 1-mosaic of two 2-SSMs.

Definition 3. Let M be a 2-SSM. We define λ M by λ M (γ) :=      1 if µ(γ) = ν(γ) = 1 for every (µ, ν) ∈ M 0 if µ(γ) = ν(γ) = 0 for every (µ, ν) ∈ M undefined otherwise (3)
for every γ ∈ Γ . Observe that λ M is an adequate function.

A 1-supermosaic is a pair (M, N ) of 2-SSMs such that (λ M , λ N ) is a 1-mosaic.

In our example, for every s, t ∈ T 1 such that s < 1 t, the pair (M s , M t ) is a 1-supermosaic. A saturated set of 1-supermosaics will correspond to a flow (in dimension 1) of flows (in dimension 2).

Definition 4. A saturated set of 1-supermosaics, a 1-SSS, is a collection Σ of 1-supermosaics such that {(λ M , λ N ) : (M, N ) ∈ Σ} is a 1-SSM.
We say that Σ is a 1-SSS for ϕ if there is (M, N ) ∈ Σ such that λ M (✸ 2 ϕ) = 1 or λ N (✸ 2 ϕ) = 1. Observe that then there is a 2-mosaic (σ, τ ) in one of the 2-SSMs in one of the 1-supermosaics of Σ such that σ(ϕ) = 1 or τ (ϕ) = 1. In our example the set

Σ M := {(M s , M t ) : s, t ∈ T 1 , s < 1 t}
is a 1-SSS and in fact a 1-SSS for ξ if there is (s, t) ∈ T 1 ×T 2 such that M, (s, t) |= ξ. Our running example should convince the reader that satisfiability of ξ implies the existence of a 1-SSS for ξ. But we want to be more economical in creating the 1-SSS; we will describe the procedure for creating a smaller 1-SSS in Section 5.

First we show how to create a model from a 1-SSS, though.

Completeness

In this section we show the completeness of the mosaic approach. We will need the following.

Definition 5. Let i ∈ {1, 2} and W = (W, <, λ) be a structure such that (W, <) is a linear order and λ q is an adequate function for every q ∈ W . We say that W is i-consistent if it satisfies for every q ∈ W , the corresponding i-completness and i-soundness conditions below.

G i -soundness If λ q (G i γ) = 1, then λ p (G i γ) = λ p (γ) = 1 for every p ∈ W such that q < p. H i -soundness If λ q (H i ρ) = 1, then λ p (H i ρ) = λ p (ρ) = 1 for every p ∈ W such that p < q. F 1 -completeness If λ q (F 1 γ) = 1, then there is p ∈ W such that q < p and λ p (✸ 2 γ) = 1. F 2 -completeness If λ q (F 2 γ) = 1,
then there is p ∈ W such that q < p and λ p (γ) = 1. P 1 -completeness If λ q (P 1 ρ) = 1, then there is p ∈ W such that p < q and λ p (✸ 2 γ) = 1. P 2 -completeness If λ q (P 2 ρ) = 1, then there is p ∈ W such that p < q and λ p (γ) = 1.

That is, a 1-consistent structure must satisfy the G 1 -soundness, H 1 -soundness, F 1 -completeness and P 1 -completeness conditions, and a 2-consistent structure satisfies the G 2 -soundness, H 2 -soundness, F 2 -completeness and P 2 -completeness conditions. Let W = (W, <, λ) be a structure such that (W, <) is a linear order and λ q is an adequate function for every q ∈ W . A future defect of W is a pair (q, γ) such that λ q (F i γ) = 1 but there is no p > q such that λ p satisfies the requirements in the F i -completeness condition above. Past defects are defined similarly. Below we will construct a i-complete (i.e., without defects) and i-sound structure from an i-SSM, see Case 1 and 2 in the proof of Lemma 1 below, where we construct the required future and past witnesses for the defects. In addition, we need that the constructed structure is dense and without endpoints. That is why we will need Case 3 and 4, where we construct new successors and predecessors for each point in the linear order, which in the limit of the construction yields a dense linear order without endpoints. Lemma 1. Let i ∈ {1, 2}. Assume that M is an i-SSM for ϕ. Then there is an i-consistent structure Q M = (Q M , <, λ) such that (Q M , <) is isomorphic to the rationals Q and λ q (ϕ) = 1 for some q ∈ Q M .

Proof. We will define the order (Q M , <) and the adequate functions λ q by induction. To this end let us have a countable enumeration D of potential defects {(q, γ, k) : q ∈ Q, γ ∈ Γ, k ∈ {1, 2, 3, 4}} such that every item appears infinitely often. The value of k will indicate the type of the potential defect: future, past, successor, predecessor.

By assumption there is an i-mosaic (µ, ν) ∈ M such that µ(ϕ) = 1 or ν(ϕ) = 1. In the base step of the construction we define the finite order Q 1 = {0, 1} with 0 < 1 and functions λ 0 = µ and λ 1 = ν. Obviously the soundness conditions restricted to Q 1 hold.

For the inductive step assume that we constructed a sound structure Q n consisting of a finite order (Q n , <) = (q 0 < q 1 < . . . < q n ) and adequate functions λ q for q ∈ Q n such that (λ qj , λ qj+1 ) ∈ M for every j < n. Let D(n) = (q, γ, k). If q / ∈ Q n , then we define Q n+1 := Q n . Otherwise we consider the following four cases. If none of the four cases below holds, then we let

Q n+1 := Q n .
Case 1 k = 1, λ q (F i γ) = 1 and for every r ∈ Q n with q < r, we have λ r (✸ 2 γ) = 0 in case i = 1, or λ r (γ) = 0 in case i = 2. We will construct the required witness in the future of q. First assume that for every r with q < r, we have λ r (F i γ) = 1 (note that this includes the case q = q n ). The i-mosaic (λ qn-1 , λ qn ) ∈ M . By F i -saturation-expansion there is an i-mosaic

(λ qn , µ) ∈ M such that -µ(✸ 2 γ) = 1 if i = 1 -µ(γ) = 1 if i = 2.
In this case we define (Q n+1 , <) := (q 0 < q 1 < . . . < q n < p) for some p ∈ Q such that q n < p and let λ p := µ. Next assume that there is r with q < r such that λ r (F i γ) = 0. Let m be such that q m is minimal in Q n with respect to this property. Consider the i-mosaic (λ qm-1 , λ qm ) ∈ M . By F i -saturationinsertion there is an adequate function µ such that (λ qn-1 , µ), (µ,

λ qn ) ∈ M and -µ(✸ 2 γ) = 1 if i = 1 -µ(γ) = 1 if i = 2.
Then we let (Q n+1 , <) := (q 0 < . . . < q m-1 < p < q m < . . . < q n ) for some p ∈ Q such that q m-1 < p < q m and define λ p := µ. Case 2 k = 2, λ q (P i γ) = 1 and for every r ∈ Q n with r < q we have λ r (✸

2 γ) = 0 if i = 1, or λ r (γ) = 0 if i = 2.
A completely analogous construction to Case 1 provides the required witness in the past of q. Case 3 k = 3.

We will construct a new successor for q. In the case q = q n , consider (λ qn-1 , λ qn ) ∈ M . By the No-endpoints condition, we have an i-mosaic (λ qn , µ) ∈ M . We define (Q n+1 , <) := (q 0 < q 1 < . . . < q n < p) for some p ∈ Q such that q n < p and let λ p := µ. Now assume that q = q m < q n . Consider the i-mosaic (λ qm , λ qm+1 ) ∈ M . Then there is an adequate function µ such that (λ qm , µ), (µ, λ qm+1 ) ∈ M , by the Density condition. Then we let (Q n+1 , <) := (q 0 < . . . < q m < p < q m+1 < . . . < q n ) for some p ∈ Q such that q m-1 < p < q m and define λ p := µ. Case 4 k = 4.

A completely analogous construction to Case 3 provides a new predecessor of q.

It is easy to check that Q n+1 is sound in every case, since it consists of elements of M . Let Q M = (Q M , <) := n∈ω Q n (recall that we defined λ q in the step we created q for every q ∈ Q M ). It is easy to see that (Q M , <) is a countable linear order which is dense and does not have endpoints (by Case 3 and 4), hence isomorphic to Q. Since we considered every potential defects infinitely often, it follows that Q M does not contain any future or past defect in dimension i.

That is, if i = 1 and λ q (F 1 γ) = 1, then there is p ∈ Q M such that q < p and λ p (✸ 2 γ) = 1, and if i = 2 and λ q (F 2 γ) = 1, then there is p ∈ Q M such that q < p and λ p (γ) = 1 (and similarly for past formulas). Hence Q M is i-consistent. ⊓ ⊔ Next we apply Lemma 1 in both dimensions to construct a model from a 1-SSS.

Lemma 2. If there is a 1-SSS for ξ, then there is a model M for ξ. Furthermore, M can be chosen to be the lexicographic product of the rationals with some valuation

V : M = (Q, Q, V ). Proof. Let Σ be a 1-SSS for ξ. Thus Σ is a collection of 1-supermosaics (M, N ) such that {(λ M , λ N ) : (M, N ) ∈ Σ} is a 1-SSM. Furthermore, there is (M, N ) ∈ Σ such that λ M (✸ 2 ξ) = 1 or λ N (✸ 2 ξ) = 1.
We apply Lemma 1 to get the 1-consistent structure

Q Σ = (Q Σ , < 1 , λ) such that (Q Σ , < 1 ) is isomorphic to Q and λ q (✸ 2 ξ) = 1 for some q ∈ Q Σ . By the construction of Q Σ , for every q ∈ Q Σ , there is a 2-SSM M such that λ q = λ M .
Thus we can assume that there is a function f : q → M with domain Q Σ . For every q ∈ Q Σ , we apply Lemma 1 to f (q) = M . Hence, we get a 2-consistent structure Q f (q) = (Q f (q) , < 2 , λ) such that (Q f (q) , < 2 ) is isomorphic to Q, and for every r q ∈ Q f (q) , the adequate function λ rq has full domain Γ (since f (q) = M is a 2-SSM).

Let us replace every q ∈ Q Σ with the copy (Q f (q) , < 2 ) of Q (say, mapping q to 0). Thus we get a grid Q × Q such that the elements (q, r) have the property that r = r q ∈ Q f (q) . Hence to every (q, r) ∈ Q × Q we can associate a full adequate function λ (q,r) := λ rq .

Let M = (Q, Q, V ) be the model defined by the valuation V :

V (p) := {(q, r) ∈ Q × Q : λ (q,r) (p) = 1}
for every atomic proposition p. An easy formula-induction, using 1-consistency of (Q Σ , < 1 , λ) and 2-consistency of (Q f (q) , < 2 ), establishes that M, (q, r) |= ϕ iff λ (q,r) (ϕ) = 1 for every ϕ ∈ Γ . Since we have λ q (✸ 2 ξ) = 1 for some q ∈ Q Σ , we also get that λ(q, r)(ξ) = 1 for some r ∈ Q f (q) by F 2 /P 2 -completeness. Hence M, (q, r) |= ξ, that is, M is a model satisfying ξ. ⊓ ⊔

Soundness

For the reverse direction we also compute an upper bound on the size of the required 1-SSS. Definition 6. Let W i = (W i , < i , λ) be an i-consistent structure. For i = 1 we define the following transfer conditions: for every p, q ∈ W 1 such that p < 1 q, G-transfer λ p (G

1 ϕ) = 1 implies λ q (G 2 ϕ) = λ q (H 2 ϕ) = 1, H-transfer λ q (H 1 ϕ) = 1 implies λ p (G 2 ϕ) = λ p (H 2 ϕ) = 1.
For i = 2 we define the following uniformity conditions: for every p, q ∈ W 2 ,

G 1 -uniformity λ p (G 1 ϕ) = λ q (G 1 ϕ), H 1 -uniformity λ p (H 1 ϕ) = λ q (H 1 ϕ).
We will need the following technical lemma.

Lemma 3. Fix i ∈ {1, 2}. Let W i = (W i , < i , λ) be an i-consistent structure such that (W i , < i ) is a dense, linear order without endpoints. Assume that W i satisfies the Gand H-transfer conditions if i = 1, and the G 1 -and H 1 -uniformity conditions if i = 2. Let u ∈ W i and γ ∈ Γ such that λ u (γ) = 1. Then there is an i-SSM M i for γ of size at most (4 × |Γ |) 2 . In fact, M i can be chosen such that for some

U i ⊆ W i with |U i | ≤ 4 × |Γ | M i = {(λ u , λ v ) : u, v ∈ U i , (∃u ′ ∈ W i )(∃v ′ ∈ W i )u ≡ u ′ & v ≡ v ′ & u ′ < i v ′ } where w ≡ w ′ iff λ w = λ w ′ .
Proof. For every w, w ′ ∈ W i , we let w ≡ w ′ iff λ w = λ w ′ . Note that there are finitely many equivalence classes, since Γ is finite. For every formula ϕ ∈ Γ , let W i (ϕ) := {w ∈ W i : λ w (ϕ) = 1}. Let w ϕ be a maximal element of W i (ϕ) (provided that W i (ϕ) is not empty) in the following sense:

(∀w ′ ∈ W i (ϕ))(∃w ′′ ∈ W i (ϕ))w ′ ≤ i w ′′ & w ′′ ≡ w ϕ .
The existence of a maximal element can be easily shown. For every ϕ ∈ Γ choose a maximal element w ϕ from W ϕ . Similarly, for every ϕ ∈ Γ , choose a minimal element w ϕ from W i (ϕ). Let

W - i = {w ϕ , w ϕ : ϕ ∈ Γ }. Note that |W - i | ≤ 2 × |Γ |.

The problem with W -

i is that it may not contain "enough" points to cure density defects. Indeed, consider the unique points in W - i , i.e., those w ∈ W - i such that for every w ′ = w, λ w = λ w ′ . Note that the set X of unique points can be linearly ordered: x 1 < i x 2 < i . . . < i x m . Now consider two unique points x j , x j+1 ∈ W - i such that there is no z ∈ W i with x j < i z < i x j+1 in W i and z ≡ z ′ ∈ W - i for some z ′ . Then we would not be able to insert a point into the mosaic (λ xj , λ xj+1 ).

So let us expand W - i with the required witnesses for density defects. Take the enumeration x 0 < i x 1 < i . . . < i x m of unique points. Since < i is a dense order, there are infinitely many points in each open interval ]x j , x j+1 [= {x : x j < i x < i x j+1 }. Thus, we can choose a point s ∈ ]x j , x j+1 [ such that there are infinitely many points t in ]x j , x j+1 [ with λ s = λ t . Let us denote such a chosen s by s j for every 0 ≤ j < m. Define U

i := W - i ∪ {s j : 0 ≤ j < m}. Note that |U i | ≤ 4 × |Γ |. We claim that M i := {(λ u , λ v ) : u, v ∈ U i , (∃u ′ ∈ W i )(∃v ′ ∈ W i )u ≡ u ′ & v ≡ v ′ & u ′ < i v ′ } is the required i-SSM. Clearly, |M i | ≤ (4 × |Γ |) 2 .
The elements of M i are G iand H i -coherent because W i is sound. The transfer (for i = 1) and uniformity (for i = 2) conditions also hold, since W i has the corresponding properties. Thus every element of M i is an i-mosaic. It remains to show the saturation conditions.

For the F i -saturation-expansion requirement assume that (λ u , λ v ) ∈ M and λ v (F i ϕ) = 1. Let v ′ ∈ W such that v ≡ v ′ . Since λ v ′ (F i ϕ) = 1 and W i is F i -complete, there is z ∈ W i such that v ′ < i z and Temporal logics in which one can assign a proper meaning to the association of statements about different grained temporal domains have been considered. See [START_REF] Euzenat | Time granularity[END_REF][START_REF] Gagné | A nonstandard temporal deductive database system[END_REF][START_REF] Nakamura | Reasoning about hybrid systems based on a nonstandard model[END_REF] for details. Nevertheless, it seems that the results concerning the issues of axiomatization/completeness and decidability/complexity presented in [START_REF] Balbiani | Axiomatizing the temporal logic defined over the class of all lexicographic products of dense linear orders without endpoints[END_REF] and in this paper constitute the first steps towards a temporal logic based on different levels of abstraction. Much remains to be done.

For example, one may consider the lexicographic products of special linear flows of time like Z, Q and R. Concerning the issues of axiomatization and completeness, could transfer results for completeness similar to the ones obtained by Kracht and Wolter [START_REF] Kracht | Properties of independently axiomatizable bimodal logics[END_REF] within the context of independently axiomatizable bimodal logics be obtained in our lexicographic setting? Concerning the issues of decidability and complexity, all normal extensions of S4.3, as proved in [START_REF] Bull | That all normal extensions of S4.3 have the finite model property[END_REF][START_REF] Fine | The logics containing S4.3[END_REF], possess the finite model property and all finitely axiomatizable normal extensions of K4.3, as proved in [START_REF] Zakharyaschev | All finitely axiomatizable normal extensions of K4.3 are decidable[END_REF], are decidable. Moreover, it follows from [START_REF] Litak | All finitely axiomatizable tense logics of linear time flows are CoN P -complete[END_REF] that actually all finitely axiomatizable temporal logics of linear time flows are CoN P -complete. Is it possible to obtain similar results in our lexicographic setting? Or could undecidability results similar to the ones obtained by Reynolds and Zakharyaschev [START_REF] Reynolds | On the products of linear modal logics[END_REF] within the context of the products of the modal logics determined by arbitrarily long linear orders be obtained in our lexicographic setting?

There is also the question of associating with < 1 and < 2 the until-like connectives U 1 and U 2 and the since-like connectives S 1 and S 2 , the formulas ϕU 1 ψ, ϕU 2 ψ, ϕS 1 ψ and ϕS 2 ψ being read as one reads the formulas ϕU ψ and ϕSψ in classical temporal logic, this time with < 1 and < 2 . As yet, nothing has been done concerning the issues of axiomatization/completeness and decidability/complexity these new temporal connectives give rise to.
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  It is usual to omit parentheses if this does not lead to any ambiguity. The size of a formula ϕ, in symbols |ϕ|, is the number of symbols of ϕ. A model is a structure M = (F 1 , F 2 , V ) where F 1 = (T 1 , < 1 ) and F 2 = (T 2 , < 2 ) are linear orders and V :At → ℘(T 1 × T 2 ) is a valuation. Satisfaction is a ternary relation |= between a model M = (F 1 , F 2 , V ), a pair (s 1 , s 2 ) ∈ T 1 × T 2and a formula ϕ. It is defined by induction on ϕ as usual. In particular, for all i ∈ {1, 2},

Let w be the maximal element in W 1 (✸ 2 ϕ) or W 2 (ϕ) (depending on the value of i) that we put in U i . By the maximality of w, there is z ′ ∈ W i such that z ≤ i z ′ and z ′ ≡ w. By this observation, we get that (λ v , λ w ) ∈ M i as required.

For the F i -saturation-insertion requirement we work out only the case i = 2, since the case i = 1 is completely analogous. So assume that (λ

as well. Thus we can insert the appropriate mosaics into (λ u , λ v ).

Checking the saturation conditions for past formulas is completely analogous. The No-endpoints requirement follows from the fact that (W i , < i ) is an unbounded linear order. Indeed, let (λ u , λ v ) ∈ M i and v ′ ∈ W i such that v ≡ v ′ . Then there is w ∈ W i such that v ′ < i w and λ w (⊤) = 1. Let w be the be the maximal element of W i (⊤). Then (λ v , λ w ) ∈ M i as required.

It remains to show the Density condition. Let (λ u , λ v ) ∈ M i be an arbitrary mosaic and u

So assume that both u ′ and v ′ are unique, say u ′ = x j and v ′ = x j+k . But we defined s j ∈ ]x j , x j+1 [ in this case, and we have (λ u , λ sj ) and (λ sj , λ v ) in M i . Hence we can insert the required mosaics into (λ u , λ v ) in this case as well.

Finally note that we chose a representative from the equivalence class W i (γ), hence M i is indeed an i-SSM for γ.

⊓ ⊔

We are ready to state the reverse of Lemma 2. In the proof, we will apply Lemma 3 in both the "vertical" and "horizontal" dimensions.

Lemma 4. If ξ is satisfiable, then there is a 1-SSS Σ 1 for ξ of size polynomial in terms of the size of ξ. In fact, the number of elements in Σ 1 is bounded by

Proof. Assume that ξ is satisfied in a model, say, M = ((T 1 , < 1 ), (T 2 , < 2 ), V ) and M,(s, t) |= ξ. We recall the definition of λ (p,q) from (1): for every (p, q) ∈ T 1 ×T 2 ,

2 is a 2-consistent structure that satisfies G 1 -and H 1 -uniformity. By applying Lemma 3 we get a 2-SSM M p 2 for ξ (and in fact for ✸ 2 ξ) such that 

We define λ p := λ N with N = M p 2 for every p ∈ T 1 . It is straightforward to verify that (T 1 , < 1 , λ) is a 1-consistent structure that satisfies G-and H-transfer. Hence we can apply Lemma 3. Thus there is a 1-SSM Σ 1 for ✸ 2 ξ such that ⊓ ⊔

Complexity

We are ready to provide a complete decision procedure in nondeterministic polynomial time for the satisfiability problem of the temporal logic of the lexicographic products of unbounded dense linear orders.

Theorem 1. The satisfiability problem with respect to (C ud , C ud ) is decidable in nondeterministic polynomial time.

Proof. Given a formula ξ, let us proceed as follows. By Lemma 2 and 4 the above decision procedure is complete.

⊓ ⊔

Recall that in Lemma 2 we constructed a model (Q, Q, V ) for ξ based on the rationals from a 1-SSS for ξ, the existence of which is equivalent to satisfiability of ξ by Lemma 4. Thus we have the following.

Theorem 2. The logic of (C ud , C ud ) coincides with the logic of the lexicographic product (Q, Q) of the rationals with the standard ordering.