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ABSTRACT. A new hierarchy of operads over the linear spans of δ-cliffs, which are some words
of integers, is introduced. These operads are intended to be analogues of the operad of per-
mutations, also known as the associative symmetric operad. We obtain operads whose partial
compositions can be described in terms of intervals of the lattice of δ-cliffs. These operads are
very peculiar in the world of the combinatorial operads since, despite to the relative simplicity
for their construction, they are infinitely generated and they have nonquadratic and nonhomo-
geneous nontrivial relations. We provide a general construction for some of their quotients.
We use it to endow the spaces of permutations, m-increasing trees, c-rectangular paths, and
m-Dyck paths with operad structures. The operads on c-rectangular paths admit, as Koszul
duals, operads generalizing the duplicial and triplicial operads.
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INTRODUCTION

Endowing sets of combinatorial objects with operations has a long-term tradition. The
literature abounds of examples of monoids, lattices, pre-Lie algebras, associative algebras,
Hopf bialgebras, and operads defined on the linear span of combinatorial sets (see among
others the recent works [MR95, LR02, BF03, AL07, Gir12, Gir15, LNPRR20]). Adding such an
algebraic dimension offers a new point of view of the objects: we can see these as assemblies,
through the offered operations, of generators of the considered structure. This gives among
others tools to enumerate combinatorial sets or to establish transformations (and in particular
bijections) between two sets of combinatorial objects. All this also maintains connections with
partial order theory because the operations in most of these structures can be described as
intervals of some partial orders on the underlying objects (as few examples, see [LNPRR20]
for some operads on m-Dyck paths, and [LR02] for Hopf bialgebras on permutations and
binary trees). In this vein, there is a very rich operad structure on the linear span As of all
permutations for which the operadic partial composition can be described as intervals of the
right weak order [AL07].

The primary impetus for this work was the will to introduce a similar operad structure
on the linear span of the set of all 1-cliffs, a set of words of integers which is in one-to-
one correspondence with the set of permutations. These objects admit some generalizations
named δ-cliffs, depending on a parameter δ which is a map from N\{0} to N (or equivalently,
an infinite word of integers). In our context, we search for an analogue of As involving δ-
cliffs instead, and for which the operadic partial composition can be described as intervals
of a lattice on δ-cliffs introduced in [CG20,CG22]. As shown in this previous work of the two
present authors, the linear span Clδ of all δ-cliffs when δ is unimodal admits the structure of
an associative algebra. In the present work, we show that this space admits (up to a shift in its
graduation) also the structure of an operad. Surprisingly, the construction works again only
when δ is unimodal. In a remarkable way, in the same way as for As, the partial composition
of Clδ can be described in terms of intervals of the poset of δ-cliffs. More precisely, there
is a basis of Clδ for which the partial composition of two basis elements admits as support
the empty set or an interval of the poset of δ-cliffs.

The main results presented here include the construction of three different bases of
Clδ , a necessary and sufficient condition on δ for the fact that Clδ is finitely generated, and a
sufficient condition on δ for the fact that the space of nontrivial relations of Clδ is not finitely
generated. We also explore a way to construct quotient operads ClS of Clδ whose bases are
indexed by particular subsets S of δ-cliffs. We show here that when S is a sublattice of the
lattice of δ-cliffs, the partial composition of ClS can be described in terms of intervals of S. We
finally explore some concrete examples of operads Clδ . These operads appear, unexpectedly,
to have a very rich and complex structure. For instance, the space of nontrivial relations of
Cl1 is infinitely generated and has elements which are nonquadratic and nonhomogeneous
in terms of degrees. This is quite rare in the panorama of combinatorial operads and seems
to brought to the light a very singular new object. The bases of the operads Clm, where
m is the arithmetic sequence with a common difference of m, are index by some labeled
planar rooted trees and have also an intricate structure. We also explore the case of the
quotients ClS where S is the set of weakly increasing δ-cliffs, called δ-hills in [CG20,CG22].
We obtain here operads whose dimensions are provided by shifted Fuss-Catalan numbers
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(which are hence different from the operads of [LNPRR20] whose dimensions are given by
Fuss-Catalan numbers) and where the Stanley lattice [Sta75] is the underlying partial order
for the description of the partial composition. We also construct a last family of operads
whose dimensions are provided by some binomial coefficients and whose bases are indexed
by some paths formed by east and north steps in rectangles. They have the interesting
property to have, as Koszul duals, operads having dimensions enumerated by (not shifted)
Fuss-Catalan numbers which can be thought as generalizations of the duplicial operad [BF03]
and the triplicial operad [Ler11].

This paper is organized as follows. Section 1 exposes some definitions about δ-cliffs
and some background and notations about operads. In Section 2, we provide the construc-
tion of the operads Clδ and their first properties. Section 3 is devoted to the study of the
quotient operads ClS of Clδ . Section 4 presents some particular examples arising from our
constructions.

General notations and conventions. For any integers i and j , [i, j] denotes the set {i, i +
1, . . . , j}. For any integer i, [i] denotes the set [1, i] and Ji] denotes the set [0, i]. For any set A,
A∗ is the set of all words on A. If a is a letter and n is a nonnegative integer, an is the word
consisting in n occurrences of a. In particular, a0 is the empty word ε. For any w ∈ A∗, ℓ(w)
is the length of w, and for any i ∈ [ℓ(w)], w(i) is the i-th letter of w. For any i ⩽ j ∈ [ℓ(w)],
w(i, j) is the word w(i)w(i + 1) . . . w(j). All algebraic structures considered in this work have
a field K of characteristic zero as ground field.

1. PRELIMINARIES

This first part contains elementary definitions about cliffs and related combinatorial ob-
jects. We also provide brief recalls about nonsymmetric operads and finish by describing
interstice operads. These operads contain, as suboperads or quotients, the forthcoming op-
erads on cliffs.

1.1. Cliffs and related objects. Cliffs are essentially words of nonnegative integers satisfying
some properties [CG20,CG22]. We give here basic definitions about these objects and explain
how particular families of cliffs can encode other known combinatorial families (like integer
compositions, permutations, m-increasing trees, c-rectangular paths, and m-Dyck paths).

1.1.1. Graded sets. A graded set is a set expressed as a disjoint union

S :=
⊔

n∈N
S(n) (1.1.1)

such that all S(n), n ∈ N, are sets. The size |x| of an x ∈ S is the unique integer n such that
x ∈ S(n). If S and S′ are two graded sets, a map θ : S → S′ is a graded set morphism if for
any x ∈ S, |θ(x)| = |x|. Besides S′ is a graded subset of S if for any n ∈ N, S′(n) ⊆ S(n).

1.1.2. Cliffs. A range map is a map δ : N \ {0} → N. For any m ⩾ 0, we denote by m the
range map satisfying m(i) = (i − 1)m for any i ⩾ 1. Moreover, for any c ⩾ 0, we denote by c
the range map satisfying c(i) = c for any i ⩾ 1. We shall specify range maps as infinite words
δ = δ(1)δ(2) . . . . For this purpose, for any a ∈ N, we shall denote by aω the infinite word
having all its letters equal to a. For instance, the notation δ := 2113ω stands the range map
δ satisfying δ(1) = 2, δ(2) = δ(3) = 1, and δ(i) = 3 for all i ⩾ 4. A range map δ is unimodal if
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§ m-increasing trees Cliff operads C. Combe and S. Giraudo

for any 1 ⩽ i1 < i2 < i3, δ(i1) > δ(i2) < δ(i3) never occurs. Besides, δ is 1-dominated if there
is a k ⩾ 1 such that for all k′ ⩾ k, δ(1) ⩾ δ(k′).

A word w on N is a δ-cliff if for any i ∈ [ℓ(w)], w(i) ∈ Jδ(i)]. The size |w| of a δ-
cliff w is ℓ(w) + 1. The graded set of all δ-cliffs is denoted by Clδ . For instance Cl1(4) =
{000, 001, 002, 010, 011, 012}. Let also Hiδ be the graded subset of Clδ containing all weakly
increasing δ-cliffs. For instance Hi1(4) = {000, 001, 002, 011, 012}. Any element of Hiδ is a
δ-hill. The δ-reduction of a word w on N is the δ-cliff rδ(w) satisfying

(rδ(w))(i) = min{w(i), δ(i)} (1.1.2)

for any i ∈ [ℓ(w)]. For instance, r1(212066) = 012045 and r2(212066) = 012066.
Let ≼ be the partial order relation on Clδ satisfying u ≼ v for any u, v ∈ Clδ such that

|u| = |v| and for all i ∈ [ℓ(u)], ui ⩽ vi. For any n ⩾ 1, the poset (Clδ(n),≼) is the δ-cliff
poset of order n. This poset is a Cartesian product of total orders. For this reason, it is a
distributive lattice. For any u, v ∈ Cl(n) such that u ≼ v, we denote by [u, v]≼ the interval
between u and v in this poset.

We now present graded sets that are in one-to-one correspondence with some particular
sets of cliffs.

1.1.3. Integer compositions. For any n ⩾ 1, Cl1(n) is the set of all binary words of length
n − 1. For this reason, this set is in one-to-one correspondence with the set of all integer
compositions of n, that are sequences (λ1, . . . , λk) of positive integers such that λ1+· · ·+λk =
n. A possible bijection sends w ∈ Cl1(n) to the integer composition comp(w) := (λ1, . . . , λk)
where w has k − 1 occurrences of 1 and provided that w = 0λ1−110λ2−11 . . . 10λk−1. For
instance, in Cl1(8),

comp(1100010) = (1, 1, 4, 2). (1.1.3)
Observe that the poset

(
Cl1(n),≼

)
is the Boolean lattice of order n − 1.

1.1.4. Permutations. For any n ⩾ 1, Cl1(n) is the set of all words w of length n − 1 such that
w(i) ∈ Ji − 1] for all i ∈ [n − 1]. For this reason, this set is in one-to-one correspondence
with the set of all permutations of size n − 1. A possible bijection sends w ∈ Cl1(n) to
the permutation perm(w) := σ of size n − 1 where σ is the permutation such that for any
i ∈ [n − 1], there are in σ exactly w(i) letters on the right of i that are smaller than i. The
word w is sometimes called the Lehmer code of σ [Leh60], up to a slight variation. For
instance, in Cl1(7),

perm(002323) = 436512. (1.1.4)
The poset (Cl1(n),≼) is studied in [Den13].

1.1.5. m-increasing trees. For any m ⩾ 0 and any n ⩾ 1, Clm(n) is the set of all words w of
length n − 1 such that w(i) ∈ J(i − 1)m] for all i ∈ [n − 1]. For any m ⩾ 0 and n ⩾ 1,

#Clm(n) =
∏

i∈[n−1]
(1 + (i − 1)m). (1.1.5)

This set is in one-to-one correspondence with the set of all m-increasing trees with n − 1
internal nodes, that are planar rooted trees where internal nodes are bijectively labeled from
1 to n−1, have m+1 children, and the sequence of the labels of the nodes of any path starting
from the root to the leaves is increasing. A possible bijection [CG22] sends w ∈ Clm(n) to
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the m-increasing tree treem(w) := t defined recursively as follows. If w = ε , then t is the
leaf. Otherwise, w decomposes as w = w ′a where w ′ ∈ Clm(n − 1) and a ∈ N. In this case,
t is obtained by grafting on the a + 1-st leaf of treem(w ′) an internal node labeled by n. For
instance, in Cl2(8),

tree2(0230228) = 4

1

7

2

3

6

5
. (1.1.6)

The posets (Clm(n),≼) are studied in [CG20,CG22].

1.1.6. c-rectangular paths. For any c ⩾ 0 and any n ⩾ 1, Hic(n) is the set of all words w of
length n − 1 such that w = 0α01α12α2 . . . cαc for a sequence (α0, α1, α2, . . . , αc) of nonnegative
integers such that α0 + α1 + α2 + · · · + αc = n − 1. It is straightforward to show that

#Hic(n) =
(

n + c − 1
c

)
. (1.1.7)

This set is in one-to-one correspondence with the set of all c-rectangular paths of size n
that are paths from (0, 0) to (n − 1, c) made of east steps (1, 0) and north steps (0, 1). A
possible bijection sends w ∈ Hic(n) to the c-rectangular path pathc(w) having αi east steps at
ordinate i. For instance, in Hi4(8),

path4(1111244) = . (1.1.8)

In the posets
(
Hic(n),≼

)
, one has u ≼ v if and only if the c-rectangular path pathc(v) is

weakly above pathc(u).

1.1.7. m-Dyck paths. For any m ⩾ 0 and any n ⩾ 1, Him(n) is the set of all weakly increasing
words w of length n − 1 such that w(i) ∈ J(i − 1)m] for all i ∈ [n − 1]. It is shown in [CG20,
CG22] that #Him(n) = catm(n − 1) where

catm(n) := 1
mn + 1

(
mn + n

n

)
(1.1.9)

is the n-th m-Fuss-Catalan number [DM47]. This set is in one-to-one correspondence with
the set of all m-Dyck paths of size n−1, that are paths from (0, 0) to ((m+1)n, 0) staying above
the x-axis and consisting in steps (1, m) and (1, −1). A possible bijection sends w ∈ Him(n)
to the m-Dyck path dyckm(w) such that for any i ∈ [n − 1], the i-th step (1, m) of dyckm(w)
has w(i) steps (1, −1) on its left. For instance, in Hi2(6),

dyck2(02366) = . (1.1.10)

The posets (Hi1(n),≼) are the Stanley lattices [Sta75,Knu04]. For m ⩾ 2, the posets (Him(n),≼)
are generalizations of the previous lattices [CG20,CG22].

1.2. Operads and interstice operads. Let us provide some elementary definitions about
nonsymmetric operads and interstice operads.
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1.2.1. Graded spaces. A graded space is a set expressed as a direct sum

V :=
⊕

n∈N
V(n) (1.2.1)

such that all V(n), n ∈ N, are spaces. Given f ∈ V, if there is an n ∈ N such that f ∈ V(n),
f is homogeneous. In this case, this n is unique and is the rank |f | of f . If all V(n), n ∈ N,
have finite dimensions, the Hilbert series of V is the generating series

∑
n∈N dim V(n)tn. If

V and V′ are two graded spaces, a linear map φ : V → V′ is a graded space morphism if
for any n ∈ N and any f ∈ V(n), φ(f ) ∈ V′(n). Besides, V′ is a graded subspace of V if for
any n ∈ N, V′(n) ⊆ V(n). Given a graded set S, the linear span Span(S) of S is the graded
space defined as the direct sum of the linear spans of each S(n), n ∈ N. By definition, the
bases of Span(S) are indexed by S. The elementary basis (or E-basis for short) of Span(S)
is the set {Ex : x ∈ S} where each Ex , x ∈ S is a formal symbol. We shall consider several
bases of a same graded space Span(S) defined from the E-basis.

1.2.2. Nonsymmetric operads. A nonsymmetric operad in the category of spaces, or a
nonsymmetric operad for short, is a graded space O together with maps

◦i : O(n) ⊗ O(m) → O(n + m − 1), 1 ⩽ i ⩽ n, 1 ⩽ m, (1.2.2)

called partial compositions, and a distinguished element 1 ∈ O(1), the unit of O. This data
has to satisfy, for any homogeneous elements f1, f2,and f3 of O, the three relations

(f1 ◦i f2) ◦i+j−1 f3 = f1 ◦i
(
f2 ◦j f3

)
, i ∈ [|f1|], j ∈ [|f2|], (1.2.3a)

(f1 ◦i f2) ◦j+|f2|−1 f3 =
(
f1 ◦j f3

)
◦i f2, i, j ∈ [|f1|], i < j, (1.2.3b)

1 ◦1 f = f = f ◦i 1, i ∈ [|f |]. (1.2.3c)

We use in this work the definitions and conventions about nonsymmetric operads pre-
sented in [Gir18, Chapter 5]. Since this work deals only with nonsymmetric operads, we call
them simply operads. Other usual references about operads are [Mé15] for a combinatorial
point of view and [LV12] for an algebraic one. We shall use notions like set-operads, free
operads, ideals and quotients, presentations by generators and relations, and Koszul duality.

1.2.3. Interstice operads. Given a set A, we see the set A∗ of the words on A as a graded
set such that the size of w ∈ A∗ is ℓ(w) + 1. Let us define on the graded set I(A) := Span(A∗)
the partial composition maps ◦i defined linearly on the E-basis of I(A), for any u, v ∈ A∗ and
i ∈ [|u|], by Eu ◦i Ev := Eu i v , where

u i v := u(1, i − 1) v u(i, ℓ(u)). (1.2.4)

For instance, in I({a, b, c}) we have

Eaabacb ◦4 Ecbaa = Eaab cbaa acb. (1.2.5)

It is straightforward to check that this structure is an operad admitting moreover Eε as unit.
We call I(A) the A-interstice operad.

This operad is generated by the set G := {Ea : a ∈ A} of binary elements. These gener-
ators are subjected exactly to the nontrivial relations

Eb ◦1 Ea − Ea ◦2 Eb (1.2.6)
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for all a, b ∈ A. In other terms, all elements of A are binary generators, and these elements
are all associative with respect to all others. In particular, the algebras over the operad
I({a, b}) are known under the name of duplexes of vertices of cubes [Pir03, Section 6.3]
(see also [AL07, Section 3]).

2. OPERADS OF CLIFFS

By construction, I(N) is an operad on the linear span of the set all words of nonnegative
integers. Our aim is to build a substructure of I(N) on the linear span of Clδ for the largest
possible class of range maps δ. We propose a construction in the case where δ is unimodal.
By defining alternative bases of the obtained operads, we shall prove that these operads are
set-operads and provide some properties about their generators and their nontrivial relations.

2.1. A quotient of an interstice operad. We detail here the construction of the operads Clδ
when δ are unimodal range maps.

2.1.1. For weakly increasing range maps. First of all, if δ is a weakly increasing range map,
it is immediate that the linear span of the set {Ew : w ∈ Clδ} forms a suboperad of I(N). Let
us denote by Clδ this operad.

2.1.2. Failure of direct quotients. Observe that, given a (even unimodal) range map δ, the
graded subspace V′

δ of I(N) defined as the linear span of the set {Ew : w ∈ N∗ \ Clδ} is not
always an operad ideal of I(N). Indeed, for δ := 0110ω , one has E11 ∈ V′

δ and E0 ∈ I(N), but
the element E11 ◦1 E0 = E011 is not in V′

δ . As a matter of fact, it is possible to prove that V′
δ

is an operad ideal of I(N) if and only if δ is weakly increasing.

2.1.3. For unimodal range maps. The key of the construction is not to consider quotients
of I(N) but quotients of some suboperads of I(N) instead.

For this, given any range map δ, we denote by δ̄ the range map defined by δ̄(i) :=
max{δ(1), . . . , δ(i)} for any i ⩾ 1. For instance, if δ = 10032242ω , then δ̄ = 11133344ω . By
construction, the range map δ̄ is weakly increasing. For this reason, Clδ̄ is a well-defined
operad. Observe moreover that Clδ is a subset of Clδ̄ . Let Vδ be the graded subspace of
Clδ̄ defined as the linear span of the set {Ew : w ∈ Clδ̄ \ Clδ}.

Proposition 2.1.1. For any range map δ, the space Vδ is an operad ideal of the operad
Clδ̄ if and only if δ is unimodal.

Proof. Assume first that δ is not unimodal. Thus, there are indices 1 ⩽ α1 < α2 < α3 such
that δ(α1) > δ(α2) < δ(α3). Let u := 0α2−1(δ(α2) + 1). By construction, u /∈ Clδ and, since
δ(α1) ⩾ δ(α2) + 1, u ∈ Clδ̄ . Therefore, Eu ∈ Vδ . Let also v := 0α3−α2 so that Ev ∈ Clδ̄ . Now,
one has Eu ◦1 Ev = Ew with w := 0α3−1(δ(α2) + 1). Since δ(α3) ⩾ δ(α2) + 1, we have w ∈ Clδ ,
so that Ew /∈ Vδ . This shows that Vδ is not an operad ideal of Clδ̄ .

Conversely, assume that δ is unimodal. Let u, v ∈ Clδ̄ and i ∈ [|u|] with u /∈ Clδ or
v /∈ Clδ . Let us set Ew := Eu ◦i Ev . From these assumptions, we obtain that there is an index
j ⩾ 1 and a letter a at position j of u or of v such that a > δ(j). Since u ∈ Clδ̄ and v ∈ Clδ̄ ,
there is an index j ′ < j such that δ(j ′) > δ(j) and a ⩽ δ(j ′). Moreover, since δ is unimodal, for
all j ′′ ⩾ j , δ(j) ⩾ δ(j ′′). Now, due to the definition of the partial composition of Clδ̄ , the letter
a appears in w at a certain position j + k for a k ⩾ 0. Since w(j + k) = a > δ(j) ⩾ δ(j + k), we
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§ Fundamental basis Cliff operads C. Combe and S. Giraudo

have that w /∈ Clδ and thus Ew ∈ Vδ . Therefore, and since Eε /∈ Vδ , Vδ is an operad ideal
of Clδ̄ . □

As a consequence of Proposition 2.1.1, one has the following result.

Theorem 2.1.2. For any unimodal range map δ, the space Clδ̄/Vδ is an operad.

For any unimodal range map δ, we set Clδ := Clδ̄/Vδ . Since when δ is weakly increasing,
Vδ is the null space, this definition is consistent with the previous definition of Clδ given in
Section 2.1.1. By construction, the partial composition of Clδ satisfies, for any u, v ∈ Clδ and
i ∈ [|u|],

Eu ◦i Ev = χδ(u i v)Eu i v , (2.1.1)

where χδ : N∗ → K is the map defined for any w ∈ N∗ by χδ(w) := 1 if w ∈ Clδ and by
χδ(w) := 0 otherwise. For instance, in Cl1232ω we have

E002 ◦3 E10 = E00102, (2.1.2a)

E002 ◦3 E1311 = 0. (2.1.2b)

2.2. Fundamental and homogeneous bases. The aim of this section is to introduce two
alternative bases of Clδ in order to prove that this operad is a set-operad. The first of
these is the fundamental basis, which is defined from the elementary basis by using the
poset structure of δ-cliffs. The second is the homogeneous basis which is defined from the
fundamental basis, again by using the same poset structure but in a different way. The partial
composition of Clδ is expressed here over these two alternative bases.

2.2.1. Fundamental basis. Let δ be a unimodal range map. For any u ∈ Clδ , let

Fw :=
∑

w ′∈Clδ
w≼w ′

µ≼
(
w, w ′)Ew ′ , (2.2.1)

where µ≼ is the Möbius function of the δ-cliff posets. Since this poset a Cartesian product of
total orders, for any w, w ′ ∈ Clδ such that w ≼ w ′, µ≼(w, w ′) =

∏
i∈[ℓ(w)] µ(w(i), w ′(i)) where,

for any a ⩽ a′ ∈ N,

µ
(
a, a′) :=






1 if a′ = a,
−1 if a′ = a + 1,
0 otherwise.

(2.2.2)

For instance, in Cl224ω we have

F1221 = E1221 − E1222 − E1231 − E2221 + E1232 + E2222 + E2231 − E2232. (2.2.3)

By Möbius inversion and triangularity, for any u ∈ Clδ ,

Ew =
∑

w ′∈Clδ
w≼w ′

Fw ′ , (2.2.4)

so that the set {Fw : w ∈ Clδ} is a basis of Clδ , called fundamental basis (or F-basis for
short).
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Given w ∈ Clδ and a map f : [ℓ(w)] → N \ {0}, let mf
δ(w) be the word on N satisfying, for

any j ∈ [ℓ(w)],
(
mf

δ(w)
)
(j) =

{
δ(f (j)) if w(j) = δ(j),
w(j) otherwise.

(2.2.5)

For any u, v ∈ Clδ and i ∈ [|u|], let

u i v := mf
δ(u) i mg

δ (v) (2.2.6)

where f (j) := j if j ⩽ i − 1 and f (j) := j + ℓ(v) otherwise, and g(j) := j + i − 1. For instance for
δ := 11321ω , one has

1022 3 101 = 10 301 21, (2.2.7a)

1022 4 003 = 102 001 1. (2.2.7b)

Observe from (2.2.7a) that even if 1022 and 101 are two δ-cliffs, 1030121 is not a δ-cliff.

Lemma 2.2.1. Let δ be a range map, u, v ∈ Clδ , and i ∈ [|u|]. If u i v is a δ-cliff, then
u i v also is.

Proof. Let w := u i v and assume that w ∈ Clδ . Thus, for all j ∈ [ℓ(w)], w(j) ⩽ δ(j). By
setting w ′ := u i v, by definition of the operation i and the previous hypothesis, w ′(j) ⩽

max{w(j), δ(j)}. Therefore, w ′ ∈ Clδ . □

Lemma 2.2.2. Let δ be a range map, u, v ∈ Clδ , and i ∈ [|u|] such that u i v is a δ-cliff.
We have w ∈ [u i v, u i v]≼ if and only if the following three assertions hold.

(i) For any j ∈ [i − 1], w(j) = u(j).
(ii) For any j ∈ [i, ℓ(v) + i − 1], if v(j − i + 1) = δ(j − i + 1) then w(j) ∈ [v(j − i + 1), δ(j)],

and w(j) = v(j − i + 1) otherwise.
(iii) For any j ∈ [ℓ(v) + i, ℓ(w)], if u(j − ℓ(v)) = δ(j − ℓ(v)) then w(j) ∈ [u(j − ℓ(v)), δ(j)], and

w(j) = u(j − ℓ(v)) otherwise.

Proof. This is a direct consequence of the definitions of the operations i and i. □

Proposition 2.2.3. For any unimodal range map δ, the partial composition map ◦i on Clδ
satisfies, for any u, v ∈ Clδ and i ∈ [|u|],

Fu ◦i Fv = χδ(u i v)
∑

w∈[u i v,u i v]≼

Fw . (2.2.8)

Proof. Let us denote by ◦′
i the operation on Clδ defined in (2.2.8) and let us show that this

operation is the same as ◦i. First of all, by Lemma 2.2.1, for any u, v ∈ Clδ , if χδ(u i v) = 1,
then [u i v, u i v]≼ is an interval of a δ-cliff poset. For this reason, (2.2.8) is well-defined.
By Möbius inversion,

Eu ◦′
i Ev =

∑

u′,v ′∈Clδ
u≼u′

v≼v ′

Fu′ ◦′
i Fv ′ =

∑

u′,v ′∈Clδ
u≼u′

v≼v ′

χδ
(
u′

i v ′) ∑

w∈[u′ i v ′,u′ i v ′]≼

Fw . (2.2.9)

Let z := u i v.
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Assume first that z /∈ Clδ . Thus, there is j ∈ [ℓ(z)] such that z(j) > δ(j). For all u′, v ′ ∈ Clδ
such that u ≼ u′ and v ≼ v ′, by setting z′ := u′

i v ′, one has z ≼ z′. Therefore, we have
δ(j) < z(j) ⩽ z′(j), showing that z′ /∈ Clδ . By (2.2.9), Eu ◦′

i Ev = 0 in this case.
Assume now that z ∈ Clδ . First of all, we immediately have that if a Fw appears in (2.2.9)

with w ∈ Clδ , then u i v ≼ w. Conversely, let w ∈ Clδ such that u i v ≼ w. By Lemma 2.2.2,
there exists a unique pair (u′, v ′) ∈ Cl2δ such that u ≼ u′, v ≼ v ′, and w ∈ [u′

i v ′, u′
i v ′]≼.

From all this, we deduce by (2.1.1) that

Eu ◦′
i Ev = χδ(u i v)

∑

w∈Clδ
u i v≼w

Fw = χδ(u i v)Eu i v = Eu ◦i Ev . (2.2.10)

Therefore, the operations ◦′
i and ◦i are the same, establishing (2.2.8). □

For instance, in Cl123454ω we have

F10 ◦2 F021 = F10210 + F10310, (2.2.11a)

F013 ◦2 F103 = F010313 + F010314 + F010413 + F010414 + F020313 + F020314 + F020413 + F020414. (2.2.11b)

2.2.2. Homogeneous basis. For any w ∈ Clδ , let

Hw :=
∑

w ′∈Clδ
w ′≼w

Fw ′ . (2.2.12)

For instance, in Cl3221ω we have

H2101 = F0000 + F0001 + F0101 + F1001 + F1100 + F1101 + F2000 + F2001 + F2100 + F2101. (2.2.13)

By triangularity, the set {Hw : w ∈ Clδ} is a basis of Clδ , called homogeneous basis (or H-
basis for short).

Proposition 2.2.4. For any unimodal range map δ, the partial composition map ◦i on Clδ
satisfies, for any u, v ∈ Clδ and i ∈ [|u|],

Hu ◦i Hv = Hrδ (u i v). (2.2.14)

Proof. By Proposition 2.2.3,

Hu ◦i Hv =
∑

u′,v ′∈Clδ
u′≼u
v ′≼v

Fu′ ◦i Fv ′ =
∑

u′,v ′∈Clδ
u′≼u
v ′≼v

χδ
(
u′

i v ′) ∑

w∈[u′ i v ′,u′ i v ′]≼

Fw . (2.2.15)

First of all, we immediately have that if a Fw appears in (2.2.15) with w ∈ Clδ , then w ≼

rδ(u i v). Conversely, let w ∈ Clδ such that w ≼ rδ(u i v). By Lemma 2.2.2, there exists a
unique pair (u′, v ′) ∈ Clδ such that u′ ≼ u, v ′ ≼ v, and w ∈ [u′

i v ′, u′
i v ′]≼. For this reason,

from (2.2.15), we obtain
Hu ◦i Hv =

∑

w∈Clδ
w≼rδ (u i v)

Fw = Hrδ (u i v), (2.2.16)

showing the statement of the proposition. □
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For instance, in Cl22342ω we have

H01 ◦3 H221 = H01341, (2.2.17a)

H2033 ◦3 H12 = H201422. (2.2.17b)

Recall that a basis of an operad is a set-operad basis if any partial composition of two
basis elements is a basis element. An operad having a set-operad basis is a set-operad. As a
consequence of Proposition 2.2.4, one has the following result.

Theorem 2.2.5. For any unimodal range map δ, the operad Clδ is a set-operad and its
H-basis is a set-operad basis.

2.3. Generators and relations. We provide here some results about minimal generating
families of Clδ , the existence of finite such families for these operads, and the nonexistence
of finite families of nontrivial relations for these operads. To explore the structure of the
operads Clδ , we work through the E-basis since the partial composition expressed over this
basis (see Equation (2.1.1)) is very elementary.

2.3.1. Prime cliffs. A nonempty δ-cliff w is δ-prime if the relation w = u i v with u, v ∈ Clδ
and i ∈ [|u|] implies (u, v) ∈ {(w, ε), (ε, w)}. For instance, for δ := 1223321ω , the δ-cliffs 10033
and 121332 are δ-prime, while 11222 = 122 2 12 is not. We denote by Pδ the graded subset
of Clδ of all δ-prime δ-cliffs.

If δ is a nonconstant range map, let us denote by c(δ) the smallest index k ⩾ 1 such that
δ(k) ̸= δ(k + 1). For instance, c(2) = 1 and c(2224445ω) = 3. If δ is 1-dominated, we denote
by d(δ) the smallest index k ⩾ 1 such that for all k′ ⩾ k, δ(1) ⩾ δ(k′). For instance, d(3) = 1
and d(22334110ω) = 6.

Proposition 2.3.1. Let δ be a unimodal range map.
(i) If δ is weakly decreasing, then Pδ = Jδ(1)].

(ii) Otherwise, if δ is 1-dominated, then for any w ∈ Pδ , ℓ(w) ⩽ d(δ) − 1.
(iii) Otherwise, δ is not 1-dominated and for any k ⩾ c(δ) + 1, δ(1, k) ∈ Pδ .

Proof. Assume that δ is weakly decreasing. It is immediate that any δ-cliff having 1 as length
is δ-prime. Moreover, let w ∈ Clδ with ℓ(w) ⩾ 2. We have w = aw ′ with a ∈ Jδ(1)] and w ′ is
a word of length ℓ(w)−1. Therefore, we have w = a 2 w ′, and since δ is weakly decreasing,
w ′ ∈ Clδ . This shows that w /∈ Pδ and implies (i).

Assume that δ is not weakly decreasing and is 1-dominated. Therefore d(δ) ⩾ 2. Let
w ∈ Clδ such that ℓ(w) ⩾ d(δ). One has

w = w(1, d(δ) − 1) d(δ) w(d(δ)). (2.3.1)

By construction, w(d(δ)) ⩽ δ(d(δ)) ⩽ δ(1). For this reason, w(d(δ)) is a δ-cliff. Moreover,
since w(1, d(δ) − 1) is a prefix of a δ-cliff, this last word is also a δ-cliff. This shows that w is
not δ-prime and implies (ii).

Finally, assume that δ is not 1-dominated and let k ⩾ c(δ) + 1. Assume that there are
u, v ∈ Clδ and i ∈ [|u|] such that δ(1, k) = u i v. The fact that there is an index j ⩾ c(δ) + 1
such that δ(j) > δ(1) implies that u = ε of v = ε. Indeed, if u ̸= ε and v ̸= ε , there would
be an index j ′ < j such that u(j ′) = δ(j) or v(j ′) = δ(j), contradicting the fact that u and v are
δ-cliffs. This implies (iii). □
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2.3.2. Minimal generating sets. Let us denote by Gδ the family {Ew : w ∈ Pδ} of elements
of Clδ . For instance,

G21ω = {E0, E1, E2}, (2.3.2a)

G1221ω = {E0, E1, E02, E12, E022, E122}, (2.3.2b)

G11320ω = {E0, E1, E002, E003, E012, E013, E102, E103, E112, E113, E0022, E0032,
E0122, E0132, E1022, E1032, E1122, E1132} , (2.3.2c)

G112ω = {E0, E1, E002, E012, E102, E112, E0022, E0122, E1022, E1122, E00222, E01222, E10222, E11222, . . .},
(2.3.2d)

By Proposition 2.3.1, the families (2.3.2a), (2.3.2b), and (2.3.2c) are finite, and the family (2.3.2d)
is infinite.

Proposition 2.3.2. For any unimodal range map δ, Gδ is a minimal generating set of the
operad Clδ .

Proof. Let us first prove that Gδ is a generating set of Clδ . By induction of the arity, it appears
that any w ∈ Clδ writes as an expression involving only δ-prime cliffs and operations i.
Therefore, due to the partial composition of Clδ over the E-basis (see (2.1.1)), any Ew writes
as an expression involving only elements of Gδ and operations ◦i. This shows the first
assertion.

Finally, the minimality of Gδ follows from the fact each Ew ∈ Gδ cannot be obtained as
partial compositions of elements of Gδ \ {Ew}. □

Theorem 2.3.3. For any unimodal range map δ, the generating set Gδ of the operad Clδ
is finite if and only if δ is 1-dominated.

Proof. This is a consequence of Proposition 2.3.2 and Points (ii) and (iii) of Proposition 2.3.1.
□

2.3.3. Nontrivial relations. Let us denote by Rδ the space of the nontrivial relations of Clδ .
We have here only a sufficient condition for the fact that Rδ is not finitely generated.

Proposition 2.3.4. For any unimodal range map δ, if δ is not 1-dominated, then the space
Rδ is not finitely generated.

Proof. When δ is not 1-dominated, by Point (iii) of Proposition 2.3.1, for any k ⩾ c(δ) + 1,
δ(1, k) ∈ Pδ so that Eδ(1,k) ∈ Gδ . Moreover, one has δ(1, k) 1 0 = 0δ(1, k) = 0 2 δ(1, k) so that

Eδ(1,k) ◦1 E0 = χδ(0δ(1, k))E0δ(1,k) = E0 ◦2 Eδ(1,k). (2.3.3)

Since both Eδ(1,k) and E0 belong to Gδ , the element Eδ(1,k) ◦1 E0 − E0 ◦2 Eδ(1,k) is an element of
Rδ . Since one has such a generating relation for each k ⩾ c(δ)+1, this implies the statement
of the proposition. □
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3. QUOTIENT OPERADS

As exposed in Section 1.1, some subsets S of δ-cliffs satisfying some conditions are in
one-to-one correspondence with other graded sets (in particular, c-rectangular paths and
m-Dyck paths). We describe here a generic way to construct quotient operads of Clδ whose
bases are indexed by S.

3.1. General construction. We construct now a quotient of Clδ by identifying some of its
elements over the F-basis with zero. In order to obtain a quotient operad, S needs to satisfy
a condition which is stated now.

3.1.1. Closure by subword reduction. Let δ be a unimodal range map and S be a nonempty
graded subset of Clδ . The graded set S is closed by subword reduction if for any w ∈ S,
for all subwords w ′ of w (that are sequences of not necessarily contiguous letters of w),
rδ(w ′) ∈ S. Remark that the fact that S is nonempty implies in this case that ε ∈ S.

3.1.2. Quotient operad. Let the quotient space ClS := Clδ/VS where VS is the linear span of
the set {Fw : w ∈ Clδ \ S}. This set is the fundamental basis (or F-basis for short) of ClS.

Proposition 3.1.1. Let δ be a unimodal range map δ and S be a nonempty graded subset
of Clδ . If S is closed by subword reduction, then VS is an operad ideal of Clδ . Therefore,
in this case, ClS is a quotient operad of Clδ .

Proof. Let us prove that VS is an operad ideal of Clδ . For this, let Fu, Fv ∈ Clδ and i ∈ [|u|],
and set f := Fu ◦i Fv . We rely on the expression provided by Proposition 2.2.3 to compute
the partial composition of two elements of the F-basis in Clδ .

(1) Assume by contradiction that u /∈ S and that there is a w ∈ S such that Fw appears in
f . By Lemma 2.2.2, rδ(w(1, i − 1) w(i + ℓ(v), ℓ(w))) = u. Since S is closed by subword
reduction, this would imply that u ∈ S, which contradicts our hypothesis.

(2) Similarly, assume now by contradiction that v /∈ S and that there is a w ∈ S such that
Fw appears in f . By Lemma 2.2.2, rδ(w(i, ℓ(v) − 1)) = v. Since S is closed by subword
reduction, this would imply that v ∈ S, which contradicts our hypothesis.

Therefore, f belongs in both cases to VS. Since moreover ε ∈ S, Fε /∈ VS, implying that VS
is an operad ideal of Clδ . □

3.2. Partial composition maps. We provide now expressions to compute the partial com-
position maps on different bases for the quotient ClS of Clδ .

We shall us in the sequel the canonical projection map θS : Clδ → ClS satisfying, for any
w ∈ Clδ ,

θS(Fw) =
{

Fw if w ∈ S,
0 otherwise.

(3.2.1)

3.2.1. Over the fundamental basis. We first need a property of S depending upon the fact
that each S(n), n ⩾ 1, forms a sublattice of the δ-cliff poset.

Lemma 3.2.1. Let δ be a range map and S be a graded subset of Clδ such that for any
n ⩾ 1, S(n) is a sublattice of Clδ(n). For any w ∈ Clδ(n),

(i) the set {w ′ ∈ S : w ≼ w ′} admits at most one minimal element;
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(ii) the set {w ′ ∈ S : w ′ ≼ w} admits at most one maximal element.

Proof. Let u, v ∈ X, where X is the set considered in (i). Since S(n) is a sublattice of Clδ(n),
the meet w ′ of u and v is an element of S. Moreover, by definition of X, w is a lower bound
of {u, v}. Therefore, since w ′ is the greatest lower bound of {u, v}, we have w ≼ w ′. For
this reason, w ′ ∈ X. This implies (i). Similar arguments show (ii). □

As a consequence of Lemma 3.2.1, when S satisfies the given prerequisites, for any
u, v ∈ Clδ(n) such that u ≼ v, [u, v]≼ ∩ S is empty or is an interval of S(n). Moreover, let
us denote by ∧S(w) (resp. ∨S(w)) the unique minimal (resp. maximal) element of the set
described in (i) (resp. (ii)) when it is nonempty.

Theorem 3.2.2. Let δ be a unimodal range map and S be a nonempty graded subset of
Clδ such that S is closed by subword reduction. For any u, v ∈ S and i ∈ [|u|],

Fu ◦i Fv = χδ(u i v)
∑

w∈[u i v,u i v]≼∩S
Fw . (3.2.2)

Moreover, when for any n ⩾ 1, S(n) is a sublattice of Clδ(n), if (3.2.2) is different from 0,
the support of this element is the interval [∧S(u i v), ∨S(u i v)]≼ of S.

Proof. Since by Proposition 3.1.1, ClS is a quotient operad of Clδ , Fu ◦i Fv = θS(Fu ◦i Fv),
where the partial composition in the left-hand side (resp. right-hand side) is the one of ClS
(resp. Clδ). Expression (3.2.2) follows now from Proposition 2.2.3 and the linearity of the
canonical projection map θS.

The second part of the statement of theorem is implied by the first part and by Lemma 3.2.1.
□

3.2.2. Over the elementary basis. For any w ∈ S, let

Ew := θS(Ew) =
∑

w ′∈S
w≼w ′

Fw ′ , (3.2.3)

where the second occurrence of Ew is an element of Clδ . By triangularity, the set {Ew : w ∈ S}
is a basis of ClS, called elementary basis (or E-basis for short).

Proposition 3.2.3. Let δ be a unimodal range map and S be a nonempty graded subset
of Clδ such that S is closed by subword reduction, and for any n ⩾ 1, S(n) is a sublattice
of Clδ(n). For any u, v ∈ S and i ∈ [|u|],

Eu ◦i Ev =
{

χδ(u i v)E∧S(u i v) if {w ∈ S : u i v ≼ w} ̸= ∅,
0 otherwise.

(3.2.4)

Proof. Since θS is an operad morphism, by (3.2.3) and (2.1.1),

Eu ◦i Ev = θS(Eu) ◦i θS(Ev) = θS(Eu ◦i Ev)
= θS(χδ(u i v)Eu i v)

= χδ(u i v)
∑

w∈S
u i v≼w

Fw .
(3.2.5)
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By Lemma 3.2.1, when u i v is a δ-cliff and {w ∈ S : u i v ≼ w} ̸= ∅, ∧S(u i v) is a well-
defined element of S. In this case, the last term of (3.2.5) is equal to E∧S(u i v). Otherwise,
when {w ∈ S : u i v ≼ w} = ∅, the last term of (3.2.5) is zero. This establishes (3.2.4). □

In the forthcoming Section 4, we shall consider minimal generating sets and nontrivial
relations of ClS expressed on the E-basis. For this reason, we denote by GS the unique
minimal generating set of ClS which is a subset of the E-basis, and by RS the space of the
nontrivial relations of ClS.

3.2.3. Over the homogeneous basis. For any w ∈ S, let

Hw := θS(Hw) =
∑

w ′∈S
w ′≼w

Fw ′ , (3.2.6)

where the second occurrence of Hw is an element of Clδ . By triangularity, the set {Hw : w ∈ S}
is a basis of ClS, called homogeneous basis (or H-basis for short).

Proposition 3.2.4. Let δ be a unimodal range map and S be a nonempty graded subset
of Clδ such that S is closed by subword reduction, and for any n ⩾ 1, S(n) is a sublattice
of Clδ(n). For any u, v ∈ S and i ∈ [|u|],

Hu ◦i Hv =
{

H∨S(rδ (u i v)) if {w ∈ S : w ≼ u i v} ̸= ∅,
0 otherwise.

(3.2.7)

Proof. Since θS is an operad morphism, by (3.2.6) and Proposition 2.2.4,
Hu ◦i Hv = θS(Hu) ◦i θS(Hv) = θS(Hu ◦i Hv)

= θS
(
Hrδ (u i v)

)

=
∑

w∈S
w≼rδ (u i v)

Fw .
(3.2.8)

By Lemma 3.2.1, when {w ∈ S : w ≼ u i v} ̸= ∅, ∨S(u i v) is a well-defined element of S. In
this case, the last term of (3.2.8) is equal to H∨S(rδ (u i v)). Otherwise, when {w ∈ S : w ≼ u i v} =
∅, the last term of (3.2.8) is zero. This establishes (3.2.7). □

4. SOME PARTICULAR CONSTRUCTIONS

We study in this last part some operads Clδ and quotients ClS for some concrete range
maps and graded sets S of δ-cliffs.

4.1. Operads on cliffs. Let us begin by providing some properties about the operads Clc ,
c ⩾ 0, and Clm, m ⩾ 0.

4.1.1. On constant range maps. For any c ⩾ 0, the operad Clc is by construction the in-
terstice operad I(Jc]). Therefore, Clc has the properties presented in Section 1.2.3. As a
particular case, the map comp (see Section 1.1.3) allows us to interpret any 1-cliff as an in-
teger composition. Therefore, Cl1 can be seen as an operad on integers compositions. For
instance,

E(1,2,1,2,2) ◦5 E(2,3,1,1) = E(1,2,1,2,3,1,2,2), (4.1.1a)
F(1,2,1,2,2) ◦5 F(2,3,1,1) = F(1,2,1,2,3,1,2,2), (4.1.1b)
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H(1,2,1,2,2) ◦5 H(2,3,1,1) = H(1,2,1,2,3,1,2,2). (4.1.1c)

It is possible to prove, by using Propositions 2.2.3 and 2.2.4, that the constant structures of
Cl1 are the same in the E, F, and H-bases.

4.1.2. On arithmetic range maps. Let us study the operads Clm, m ⩾ 0. The map perm (see
Section 1.1.4) allows us to interpret any 1-cliff as a permutation. Therefore, Cl1 can be seen
as an operad on permutations. For instance,

E25143 ◦3 E3142 = E215369487, (4.1.2a)

F25143 ◦3 F3142 = F215369487 + F251369487 + F521369487 + F235169487 + F253169487 + F523169487

+ F325196487 + F352169487 + F532169487, (4.1.2b)

H25143 ◦3 H3142 = H532169487. (4.1.2c)

In the same way, the map tree (see Section 1.1.5) allows us to interpret any m-cliff as an
m-increasing tree. Therefore, Clm can be seen as an operad on m-increasing trees. For
instance, in Cl2,

E
1

2

4

3

◦2 E
1

2

3

= E
3

5

1

2

7

6

4

, (4.1.3a)

F
1

2

4

3

◦2 F
1

2

3

= F
3

5

1

2

7

6

4

+ F
1

5

3 2

7

6

4

+ F
1

5 3

2

7

6

4

+ F
1

5

2

3

7

6

4

+ F
1

5

2

3

7

6

4
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. (4.1.3c)

Proposition 2.3.2 allows us to list the first elements of the minimal generating sets Gm,
m ⩾ 0, of Clm. Here are the lists of these generators for m ∈ J2], up to arity 4:

E0, m = 0, (4.1.4a)

E0, E01, E002, E011, E012, m = 1, (4.1.4b)

E0, E01, E02, E003, E004, E011, E012, E013, E014, E021, E022, E023, E024, m = 2. (4.1.4c)

By Proposition 2.3.1, G0 is finite while G1 and G2 are infinite.
In order to enumerate Gm, we need the following small result leading to a recursive

description of m-prime m-cliffs.

Lemma 4.1.1. For any m ⩾ 0, if w is a nonempty m-cliff which is not m-prime, then there
exists an m-cliff w ′ and i ∈ [|w ′|] such that w = w ′

i 0.
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Proof. Since w is not m-prime, there exist two nonempty m-cliffs u and v, and i ∈ [|u|] such
that w = u i v. If i = 1, then one has the decomposition w = v |v| u so that, since |v| ⩾ 2,
we can assume that i ⩾ 2. Now, since v is an m-cliff, we have v(1) = 0 and

w = u i v
= u(1, i − 1) v u(i, ℓ(u))
= u(1, i − 1) 0 v(2, ℓ(v)) u(i, ℓ(u))
= u(1, i − 1) v(2, ℓ(v)) u(i, ℓ(u)) i 0.

(4.1.5)

The fact that u and v are m-cliffs and i ⩾ 2 implies that u(1, i − 1) v(2, ℓ(v)) u(i, ℓ(u)) also is.
This establishes the stated property. □

Lemma 4.1.2. Let, for an m ⩾ 0, w be an m-cliff decomposing as w = w ′a with w ′ ∈ Clm
and a ∈ N. Then, w is m-prime if and only if one of the following two assertions is satisfied:

(i) w ′ /∈ Pm and a ⩾ (ℓ(w) − 2)m + 1;
(ii) w ′ ∈ Pm and a ̸= 0.

Proof. Assume first that (i) holds and assume that there are u, v ∈ Clm and i ∈ [|u|] such that
w = u i v. If u and v are both nonempty, the letter a of w appears either in u or in v but
at a position smaller than the one it has in w. Since a ⩾ (ℓ(w) − 2)m + 1, either u of v would
not be an m-cliff. Therefore, u = v = ε and w is prime. Assume now that (ii) holds and,
again, assume that there are u, v ∈ Clm and i ∈ [|u|] such that w = u i v. If the letter a of
w is in u, we have u = u′a where u′ ∈ Clm and w ′a = u′a i v. Otherwise, the letter a of w
is in v and we have v = v ′a where v ′ ∈ Clm and w ′a = u i v ′a. Therefore, w ′ decomposes
respectively as w ′ = u′

i v and w ′ = u i v ′. Since w ′ is m-prime, these decompositions are
trivial. This implies that u′ = ε so that u = a, or that v = ε , or that u = ε , or that v ′ = ε so
that v = a. Since a ̸= 0, a is not a m-cliff. Therefore, v = ε or u = ε , implying that w is
m-prime.

Conversely, assume that the negations of (i) and (ii) hold at the same time. Therefore,
at least one of the following assertions holds.

(A1) w ′ ∈ Pm and w ′ /∈ Pm;
(A2) w ′ ∈ Pm and a = 0;
(A3) a < (ℓ(w) − 2)m + 1 and w ′ /∈ Pm;
(A4) a < (ℓ(w) − 2)m + 1 and a = 0.

Assertion (A1) is absurd so that this situation cannot occurs. If (A2) or (A4) holds, then
a = 0 and w decomposes as w = w ′

|w ′| 0, showing that w is not m-prime. If (A3) holds,
by Lemma 4.1.1, there exists w ′′ ∈ Clm and i ∈ [|w ′′|] such that w ′ = w ′′

i 0. Therefore,
w = w ′a = w ′′a i 0. Since a < (ℓ(w) − 2)m + 1, w ′′a is an m-cliff, showing that w is not
m-prime. We have shown that in all possible situations, w is not m-prime, establishing the
equivalence of the statement of the lemma. □

Theorem 4.1.3. For any m ⩾ 0, #Gm(1) = 0, #Gm(2) = 1, and, for any n ⩾ 3,

#Gm(n) = m
m + 1(#Clm(n)). (4.1.6)
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Proof. First, since Gm(1) = ∅ and Gm(2) = {E0}, the first part of the statement holds. By
using the recursive description of m-prime m-cliffs provided by Lemma 4.1.2, for any n ⩾ 3,

#Pm(n) = m(#Clm(n − 1) − #Pm(n − 1)) + m(n − 2)#Pm(n − 1). (4.1.7)

Therefore,
#Pm(n) = m(#Clm(n − 1) + (n − 3)#Pm(n − 1)). (4.1.8)

By induction on n ⩾ 3, we obtain from (4.1.8) that #Pm(n) = m
m+1 (#Clm(n)). Finally, since by

Proposition 2.3.2, for any n ⩾ 1, #Pm(n) = #Gm(n), (4.1.6) follows. □

By Theorem 4.1.3, the sequences of the numbers of elements of Gm, m ∈ J2], counted
w.r.t. their arities start with

0, 1, 0, 0, 0, 0, 0, 0, 0, m = 0, (4.1.9a)

0, 1, 1, 3, 12, 60, 360, 2520, 20160, m = 1, (4.1.9b)

0, 1, 2, 10, 70, 630, 6930, 90090, 1351350, m = 2. (4.1.9c)

Observe that the minimal generating set G1 of Cl1 is in one-to-one correspondence with the
set of even permutations. The second and third sequences are respectively Sequences A001710
and A293962 of [Slo].

Here are the list of the first elements of generating families of the relation spaces Rm,
m ∈ J2], up to arity 4:

E0 ◦1 E0 − E0 ◦2 E0, m = 0, (4.1.10a)

E0 ◦1 E0 −E0 ◦2 E0, E01 ◦1 E0 −E0 ◦2 E01, E0 ◦2 E01 −E01 ◦2 E0, E0 ◦1 E01 −E01 ◦3 E0, m = 1,
(4.1.10b)

E0 ◦1 E0 − E0 ◦2 E0,
E02 ◦1 E0 − E0 ◦2 E02, E02 ◦2 E0 − E0 ◦2 E02, E0 ◦1 E02 − E02 ◦3 E0,

E01 ◦1 E0 − E0 ◦2 E01, E01 ◦2 E0 − E0 ◦2 E01, E0 ◦1 E01 − E01 ◦3 E0, m = 2. (4.1.10c)

The space R0 is finitely generated while, by Proposition 2.3.4, R1 and R2 are not. Despite
what these lists of nontrivial relations suggest, for any m ⩾ 1, Clm is not a quadratic operad.
Indeed, for any m ⩾ 1, Rm contains the nontrivial relation

E002 ◦3 E01 − (E0 ◦2 E0) ◦3 E012 (4.1.11)

of arity 6 which is nonhomogeneous in terms of degrees and nonquadratic. These spaces
Rm, m ⩾ 1, seem hard to describe. With the help of the computer, we obtain that the
sequences of the dimensions of Rm, m ∈ J2], begin by

0, 0, 1, 0, 0, 0, 0, m = 0, (4.1.12a)

0, 0, 1, 3, 13, 65, 372, 2424, m = 1, (4.1.12b)

0, 0, 1, 6, 44, 378, 3788, m = 2. (4.1.12c)

For the time being, the last two sequences do not appear in [Slo].

4.2. Operads on hills. We provide here some properties about quotient operads of Clδ
whose bases are indexed by δ-hills.
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4.2.1. General properties. Let us begin by presenting some general properties of δ-hills and
of the quotient operads ClS where S is a set of δ-hills and δ is a weakly increasing range
map.

Lemma 4.2.1. For any weakly increasing range map δ, Hiδ is closed by subword reduction.

Proof. This is a straightforward consequence of the fact that any subword w ′ of a δ-hill w
is weakly increasing and of the fact that since δ is weakly increasing, rδ(w ′) remains weakly
increasing. □

By Proposition 3.1.1 and Lemma 4.2.1, Hiδ := ClHiδ is an operad. For instance, in Hi1334ω ,

E0234 ◦2 E112 = E0112234, (4.2.1a)

F0234 ◦2 F112 = F0112234 + F0112244, (4.2.1b)

H0234 ◦2 H112 = H0112244, (4.2.1c)

E0234 ◦3 E112 = E0222234, (4.2.2a)

F0234 ◦3 F112 = 0, (4.2.2b)

H0234 ◦3 H112 = H0111244. (4.2.2c)

By Theorem 3.2.2, the support of any partial composition over the F-basis in this operad
is an interval of the δ-hill poset (Hiδ(n),≼), n ⩾ 1, introduced in [CG20, CG22]. As shown
here, this poset is also a sublattice of (Clδ(n),≼). In order to express the partial composition
of Hiδ over the E-basis and the H-basis, let us introduce the following notations. For any
w ∈ Clδ , let w (resp. w) be the δ-hill defined for any j ∈ [ℓ(w)] by w(j) := max{w(1), . . . , w(j)}
(resp. w(j) := min{w(j), . . . , w(ℓ(w))}).

Proposition 4.2.2. Let δ be a weakly increasing range map. For any u, v ∈ Hiδ and
i ∈ [|u|],

Eu ◦i Ev = Eu i v and Hu ◦i Hv = Hu i v . (4.2.3)

Proof. For any w ∈ Clδ , let Xw := {w ′ ∈ Hiδ : w ≼ w ′}. Observe that since Xw contains
δ(1, ℓ(w)), Xw ̸= ∅. Moreover, since δ is weakly increasing, u i v is a δ-cliff. For these
reasons, and due to the fact that Clδ(n), n ⩾ 1, is a sublattice of Hiδ(n), by Proposition 3.2.3,

Eu ◦i Ev = E∧Hiδ

(
Xu i v

). (4.2.4)

The stated formula for the partial composition of two elements expressed over the E-basis
of Hiδ is now the consequence of the fact that for any w ∈ Clδ , ∧Hiδ (Xw) = w, which follows
by induction on the length of w.

The formula for the partial composition of two elements expressed over the H-basis
follows from similar arguments. □

Proposition 4.2.2 implies that Hiδ is a set-operad.
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4.2.2. On constant range maps. Let us study the operads Hic , c ⩾ 0. The map path (see
Section 1.1.6) allows us to interpret any c-hill as a c-rectangular path. Therefore, Hic can be
seen as an operad on c-rectangular paths. For instance, in Hi2,

E ◦2 E = E , (4.2.5a)

F ◦2 F = F , (4.2.5b)

H ◦2 H = H , (4.2.5c)

E ◦3 E = E , (4.2.6a)

F ◦3 F = 0, (4.2.6b)

H ◦3 H = H . (4.2.6c)

The next result provides a finite presentation by generators and relations of Hic.

Theorem 4.2.3. For any c ⩾ 0, the set {E0, . . . , Ec} is a minimal generating set of the
operad Hic. The space of the nontrivial relations of Hic is generated by

Ea ◦1 Eb − Eb ◦2 Ea′ , b ∈ Jc], a, a′ ∈ Jb], (4.2.7a)

Eb ◦1 Ea − Ea ◦2 Eb, b ∈ Jc], a ∈ Jb − 1]. (4.2.7b)

Moreover, Hic is a Koszul operad.

Proof. By Proposition 4.2.2, for any wa ∈ Hic such that w ∈ Hic and a ∈ Jc], one has
Ew ◦|w| Ea = Ewa. Therefore, it follows by induction on the arity that the stated set is a
generating family of Hic. Its minimality follows from the fact that no Ea , a ∈ Jc], can be
written as a partial composition of other elements of this family.

Let us now show that the space of the nontrivial relations of Hic is generated by (4.2.7a)
and (4.2.7b). Since the evaluations in Hic of these two families of expressions is 0, they belong
to the space of the nontrivial relations of Hic. Let O be the quotient of the free operad
generated by the stated minimal generating set by the operad ideal generated by (4.2.7a)
and (4.2.7b). From these relations, it appears that a basis of O is formed by the set T :={
t(α0,...,αc) : αi ∈ N, i ∈ Jc]

}
of expressions defined by

t(α0,...,αc) := Ec ◦1 . . . ◦1 Ec︸ ︷︷ ︸
αc terms

◦1 Ec−1 ◦1 . . . ◦1 Ec−1︸ ︷︷ ︸
αc−1 terms

◦1 . . . ◦1 E0 ◦1 . . . ◦1 E0︸ ︷︷ ︸
α0 terms

. (4.2.8)

For any n ⩾ 1, the bases of Hic and of O restrained to arity n are in one-to-one cor-
respondence: each c-hill w is in correspondence with the sequence (α0, . . . , αc) such that
w = 0α0 . . . cαc . Therefore, the operads O and Hic are isomorphic and the stated property
holds.

Finally, the set T forms a Poincaré-Birkhoff-Witt basis of Hic , which implies that this
operad is Koszul [Hof10]. □
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By Theorem 4.2.3, for any c ⩾ 0 and any b ∈ Jc], Eb ◦1 Eb = Eb ◦2 Eb, so that any algebra
on the operad Hic has c + 1 associative binary products. This property is shared with some
algebras appearing in [Gir16a,Gir16b] (multiassociative algebras), and in [ZGG20] (matching
associative algebras).

Besides, Theorem 4.2.3 shows that Hic is a binary and quadratic operad. Therefore, Hic
admits a Koszul dual operad Hic

!. Let us study this operad now.

Proposition 4.2.4. For any c ⩾ 0, the operad Hic
! is isomorphic to the quotient of the

free operad generated by the set {E⋆
0, . . . , E⋆

c} of symbols of arity 2 by the operad ideal
generated by ∑

a∈Jb]

E⋆
a ◦1 E⋆

b − E⋆
b ◦2 E⋆

a, b ∈ Jc], (4.2.9a)

E⋆
b ◦1 E⋆

a − E⋆
a ◦2 E⋆

b, b ∈ Jc], a ∈ Jb − 1]. (4.2.9b)

Proof. This is a straightforward computation based upon the presentation by generators
and relations of Hic provided by Theorem 4.2.3. The generating family formed by (4.2.9a)
and (4.2.9b) for the space of the nontrivial relations of Hic

! is obtained as the annihilator
of the linear span of (4.2.7a) and (4.2.7b) w.r.t. to an appropriate linear map (see [Gir18] for
instance). □

Proposition 4.2.5. For any c ⩾ 0 and any n ⩾ 1, dim Hic
!(n) = catc(n).

Proof. By Theorem 4.2.3, Hic is a Koszul operad. Hence, by [GK94], its Hilbert series G(t)
and the Hilbert series F (t) of Hic

! satisfy F (−G(−t)) = t = G(−F (−t)). By (1.1.7), one has

G(t) = t
(1 − t)c+1 (4.2.10)

so that
G(−F (−t)) = −F (−t)

(1 − (−F (−t)))c+1 = t. (4.2.11)

Therefore, F (t) satisfies
F (t) = t(1 + F (t))c+1. (4.2.12)

This expression for F (t) shows that F (t) is the generating series of the graded set of all
planar rooted trees such that each internal node has c + 1 children, where the size is given
by the number of internal nodes. Hence, F (t) =

∑
n⩾1 catc(n)tn , establishing the statement

of the proposition. □

Let us consider for all b ∈ Jc] the elements

K⋆
b :=

∑

a∈Jb]

E⋆
a (4.2.13)

of the operad Hic
!. By triangularity, {K⋆

0, . . . , K⋆
c} is a minimal generating set of Hic

!.

Proposition 4.2.6. For any c ⩾ 0, the operad Hic
! is isomorphic to the quotient of the

free operad generated by the set {K⋆
0, . . . , K⋆

c} of symbols of arity 2 by the operad ideal
generated by

K⋆
b ◦1 K⋆

a − K⋆
a ◦2 K⋆

b, b ∈ Jc], a ∈ Jb]. (4.2.14)
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Proof. For any b ∈ Jc] and a ∈ Jb], we have

K⋆
b ◦1 K⋆

a − K⋆
a ◦2 K⋆

b =
∑

b′∈Jb]
a′∈Ja]

E⋆
b′ ◦1 E⋆

a′ − E⋆
a′ ◦2 E⋆

b′ , (4.2.15)

implying that (4.2.14) expresses as a linear combination of (4.2.9a) and (4.2.9b). Moreover, the
space generated by (4.2.9a) and (4.2.9b) has dimension

(c+2
2

)
. We can observe that the space

generated by (4.2.14) has the same dimension. Therefore, these two spaces are equal. Finally,
since by Proposition 4.2.4, (4.2.9a) and (4.2.9b) form a generating family of the nontrivial
relations of Hic

!, this is also the case for (4.2.14). This leads to the stated presentation by
generators and relations of Hic

!. □

By Proposition 4.2.6, Hi1! is the duplicial operad [BF03] and Hi2! is the triplicial op-
erad [Ler11]. For any c ⩾ 0, we call c-supplicial operad each operad Hic

!. These operads
are therefore natural generalizations of the duplicial and triplicial operads.

4.2.3. On arithmetic range maps. Let us study the operads Him, m ⩾ 0. The map dyck (see
Section 1.1.7) allows us to interpret any m-hill as an m-Dyck path. Therefore, Him can be
seen as an operad on m-Dyck paths. For instance, in Hi1 we have

E ◦3 E = E , (4.2.16a)

F ◦3 F = F + F + F ,

(4.2.16b)
H ◦3 H = H , (4.2.16c)

E ◦3 E = E , (4.2.17a)

F ◦3 F = 0, (4.2.17b)

H ◦3 H = H . (4.2.17c)

Here are the lists of the elements of the minimal generating sets GHim of Him for m ∈ J2],
up to arity 5:

E0, m = 0, (4.2.18a)

E0, E01, E002, E012, E0003, E0013, E0023, E0113, E0123, m = 1, (4.2.18b)

E0, E01, E02, E003, E004, E012, E013, E014, E023, E024,
E0005, E0006, E0015, E0016, E0025, E0026, E0034, E0035, E0036, E0045, E0046, E0115, E0116, E0123, E0124,

E0125, E0126, E0134, E0135, E0136, E0145, E0146, E0225, E0226, E0234, E0235, E0236, E0245, E0246, m = 2.
(4.2.18c)

Proposition 4.2.7. One has GHi1 = {Ew : w ∈ Hi1 and w(ℓ(w)) = ℓ(w) − 1}.
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Proof. Let us denote by G the set described in the statement of the proposition. Let Ew ∈ G
and assume that there exist u, v ∈ Hi1 and i ∈ [|u|] such that Ew = Eu ◦i Ev . By Proposi-
tion 4.2.2, w = u i v. Therefore, there is in u or in v a letter of value ℓ(w) − 1, implying that
if it occurs in u, then v = ε , or if it occurs in v that u = ε. For this reason, Ew admits no
nontrivial decompositions, so that Ew ∈ GHi1 .

Let us now prove that for any w ∈ Hi1, Ew belongs to the suboperad of Hi1 generated by
G. We proceed by recurrence on |w|. If |w| = 1, then w = 0, and since E0 ∈ G, the property
holds. Otherwise, we have w = w ′a where w ′ ∈ Hi1 and a ∈ N. If a = ℓ(w) − 1, Ew ∈ G
so that the property holds. Otherwise, let v be the subword of w ′ of length a obtained by
scanning w ′ from right to left and by keeping a letter only if it small enough so that v is a
1-hill. For instance, for w := 001222356, we have w ′ = 00122235, a = 6, and v = 012235. By
construction, one has Eva ∈ G. Moreover, since w is a 1-hill, the letters that are in w which
have not been selected to form va have values that are necessarily in va. For this reason,
and due to the Proposition 4.2.2, Ew can be expressed by partial compositions involving Eva
and multiple occurrences of E0. Since E0 ∈ G, this shows that Ew belongs to the suboperad
of Hi1 generated by G. □

The sequences of the numbers of elements of GHim , m ∈ J2], counted w.r.t. their arities
start with

0, 1, 0, 0, 0, 0, 0, 0, 0, m = 0, (4.2.19a)

0, 1, 1, 2, 5, 14, 42, 132, 429, m = 1 (4.2.19b)

0, 1, 2, 7, 29, 133, 654, 3383, 18179, m = 2. (4.2.19c)

We deduce from Proposition 4.2.7 that #GHi1 (1) = 0 and for any n ⩾ 2, #GHi1 (n) = cat1(n−2).
The sequence of the cardinalities of GHi2 does not appear for the time being in [Slo].

Here are the list of the first elements of the generating families of the relation spaces
RHim , m ∈ J2], up to arity 4:

E0 ◦1 E0 − E0 ◦2 E0, m = 0, (4.2.20a)

E0 ◦1 E0 −E0 ◦2 E0, E01 ◦1 E0 −E01 ◦2 E0, E0 ◦2 E01 −E01 ◦2 E0, E0 ◦1 E01 −E01 ◦3 E0, m = 1,
(4.2.20b)

E0 ◦1 E0 − E0 ◦2 E0, E01 ◦1 E0 − E01 ◦2 E0, E0 ◦2 E01 − E01 ◦2 E0, E0 ◦1 E01 − E01 ◦3 E0,
E02 ◦1 E0 − E02 ◦2 E0, E0 ◦2 E02 − E02 ◦2 E0, E0 ◦1 E02 − E02 ◦3 E0, m = 2. (4.2.20c)

The space RHi0 is finitely generated. When m ⩾ 1, due to the description of the partial compo-
sition map of Him provided by Proposition 4.2.2, it appears that by setting w := 0 . . . 0 m(ℓ(w)),
Ew ∈ GHim . Moreover, since E0 ◦1 Ew = Ew ◦|w| E0,

E0 ◦1 Ew − Ew ◦|w| E0 (4.2.21)

is an element of a minimal generating family of RHim . This shows that RHim is not finitely
generated. Besides, despite what these lists of nontrivial relations suggest, for any m ⩾ 1,
RHim is not a quadratic operad. Indeed, for any m ⩾ 1, RHim contains the nontrivial relation

(E0 ◦1 E0) ◦1 E01 − E01 ◦3 E01 (4.2.22)
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of arity 5 which is nonhomogeneous in terms of degrees and nonquadratic. These spaces
RHim , m ⩾ 1, seem hard to describe. With the help of the computer, we obtain that the
sequences of the dimensions of RHim , m ∈ J2], begin by

0, 0, 1, 0, 0, 0, 0, m = 0, (4.2.23a)

0, 0, 1, 3, 10, 35, 126, 462, m = 1, (4.2.23b)

0, 0, 1, 6, 35, 206, 1231, m = 2. (4.2.23c)

The second seems Sequence A001700 of [Slo] and for the time being, the third sequence
does not appear in [Slo].

CONCLUSION AND OPEN QUESTIONS

This work endows various set of combinatorial families (integer compositions, permu-
tations, m-increasing trees, c-rectangular paths, m-Dyck paths, and more generally δ-cliffs
and δ-hills) with operad structures, all being suboperads or quotients of the interstice operad
on nonnegative integers. The main considered operads of this work fit into the diagram

I(N)

Clδ̄ Clδ Hiδ

Clm

Clc

Him

Hic

(4.2.24)

of injective ( ) and surjective ( ) operad morphisms, where δ is any unimodal range
map. As shown, even if interstice operads have a very simple algebraic structure, the operads
constructed here have more intricate ones since some of them do not admit finite minimal
generating sets, have an infinite family of nontrivial relations, or have some nontrivial rela-
tions which are nonhomogeneous and nonquadratic.

Here is a list of open questions raised by this research:
(1) (Place of Clδ in the world of combinatorial operads) — This consists in exploring
other suboperads and quotients of Clδ and see if Clδ contains as substructures some already
known operads. Moreover, this axis also consists in searching operad morphisms between
Clδ and other operads. More specifically, one can ask for instance about such relations
between Clm and the operad As.
(2) (Nontrivial relations of Clδ) — Proposition 2.3.4 provides a sufficient condition for the
fact that Rδ is not finitely generated. We can ask about a necessary condition for this property.
Moreover, the description and the enumeration arity by arity of a minimal generating set
for Rm, m ⩾ 1, is open.
(3) (Presentation of Him) — We know that the minimal generating set GHi1 of Hi1 is enu-
merated by a shifted version of Catalan numbers (see Section 4.2.3). The question of the
description and the enumeration of the minimal generating set GHim of Him for m ⩾ 2 is
open. The analogous question for a minimal generating set RHim is also open for m ⩾ 1. We
conjecture in particular that RHi1 is enumerated by Sequence A001700 of [Slo].
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