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A complete study of an operad NCM of noncrossing configurations of chords introduced in previous work of the author is performed. This operad is defined on the linear span of all noncrossing M-cliques. These are noncrossing configurations of chords with arcs labeled by a unitary magma M. The magmatic product of M intervenes for the computation of the operadic composition of M-cliques. We show that this operad is binary, quadratic, and Koszul by considering techniques coming from rewrite systems on trees. We also compute a presentation for its Koszul dual. Finally, we explain how NCM allows one to obtain alternative constructions of already known operads like operads of formal fractions and the operad of bicolored noncrossing configurations.

INTRODUCTION

Noncrossing configurations of chords on regular polygons are combinatorial objects appearing in various contexts (see for instance [FN99; CP92; DRS10; PR14]). A simple generalization of these consists in allowing several colors for the arcs of the configurations. This has been considered in previous work [START_REF] Giraudo | Operads of decorated cliques I: Construction and quotients[END_REF] of the author, where the arcs are labeled by elements of a unitary magma M. More precisely, given a unitary magma M, C M is the set of regular polygons p where all possible arcs of p are labeled by elements of M. When an arc is labeled by the unit 1 M of M, it is considered as missing, so that the notion of noncrossing configurations makes sense. More precisely, noncrossing configurations have no diagonals labeled by elements different from 1 M crossing another such diagonal. These objects have been named noncrossing M-cliques and are the main combinatorial objects studied in the present article.

The linear span CM of all M-cliques (by relaxing the noncrossing condition) over any field of characteristic zero forms an operad with rich algebraic and combinatorial properties, introduced and studied in [START_REF] Giraudo | Operads of decorated cliques I: Construction and quotients[END_REF]. The operad structure added on these objects allows one to compose two M-cliques p and q by gluing a special arc of q (called the base) onto a selected edge of p. The magmatic product of M encodes how to relabel some edges of the resulting M-clique. We showed in this previous work that the subspace NCM of CM generated by all noncrossing M-cliques forms a suboperad of CM. The purpose of the present paper is to perform a complete study of this operad. A first particularity of NCM motivating this objective is that it has a special status among all the suboperads of CM. Indeed, if M is nontrivial, then CM is not a binary operad, and NCM is precisely the biggest binary suboperad of CM.

Let us now give an overview of the main properties of NCM and the main results contained in this article. First, by considering the dual trees of noncrossing M-cliques, we can view each noncrossing M-clique of NCM as a Schröder tree (an ordered tree where all internal nodes have two or more children) with edges labeled by M satisfying some conditions. Under this point of view, NCM is an operad of such Schröder trees endowed with a composition operation which is essentially a grafting operation with a relabeling of edges or a contraction of edges. As a consequence of this alternative combinatorial realization of NCM, we obtain a formula for its dimensions involving Narayana numbers [START_REF] Narayana | Sur les treillis formés par les partitions d'un entier et leurs applications à la théorie des probabilités[END_REF]. To complete the study of NCM, a natural and important question is to exhibit one of its presentations by generators and relations. In order to compute the space of relations of NCM, we use techniques of rewrite systems of trees [START_REF] Baader | Term rewriting and all that[END_REF]. Thus, we define a convergent rewrite rule → and show that the space induced by → is the space of relations of NCM, leading to a presentation by generators and relations of NCM. As an important consequence, this proves that NCM is always quadratic, regardless of M. The existence of such a convergent orientation of the space of relations of NCM implies also by [START_REF] Hoffbeck | A Poincaré-Birkhoff-Witt criterion for Koszul operads[END_REF] that this operad is Koszul.

We also study some structures related with NCM. This includes the suboperads of NCM generated by some finite families of bubbles (the latter being noncrossing M-cliques with no diagonals). Under some conditions on the considered sets of bubbles, we can describe the Hilbert series of these suboperads of NCM by a system of algebraic equations. We give two examples of suboperads of NCM generated by some subsets of triangles, including one which is a suboperad of NCD 0 (D 0 is the multiplicative monoid on {0, 1}) isomorphic to the operad Motz of Motzkin paths defined in [START_REF] Giraudo | Combinatorial operads from monoids[END_REF]. Moreover, since NCM is a binary and quadratic operad, its Koszul dual NCM ! is well-defined [START_REF] Ginzburg | Koszul duality for operads[END_REF]. We compute its presentation, present an algebraic equation for GENERAL NOTATIONS AND CONVENTIONS. All the algebraic structures of this article have a field of characteristic zero K as ground field. For a set S, K⟨S⟩ denotes the linear span of the elements of S. For integers a and c, [a, c] denotes the set {b ∈ N : a ⩽ b ⩽ c} and [n] is short for the set [1, n]. The cardinality of a finite set S is denoted by #S. For a set A, A * denotes the set of finite sequences, called words, of elements of A. For an integer n ⩾ 0, A n (resp. A ⩾n ) is the set of words on A of length n (resp. at least n). The word of length 0 is the empty word denoted by ε. If u is a word, its letters are indexed from left to right from 1 to its length |u|. For i ∈ [|u|], u i is the letter of u at position i. If a is a letter and n is a nonnegative integer, a n denotes the word consisting in n occurrences of a. For a letter a, |u| a denotes the number of occurrences of a in u.

ELEMENTARY DEFINITIONS AND TOOLS

The main purposes of this section are to provide tools to compute presentations and to prove Koszulity of operads. For this, it is important to have precise definitions about free operads, trees, and rewrite rules on trees at hand.

TREES AND REWRITE RULES

Unless otherwise specified, we use in the sequel the standard terminology (i.e., node, edge, root, child, etc.) about ordered trees [START_REF] Knuth | The Art of Computer Programming[END_REF]. For the sake of completeness, we recall the most important definitions and set our notations.

2.1.1 TREES. Let t be an ordered tree. The arity of a node of t is its number of children. An internal node (resp. a leaf) of t is a node with a nonzero (resp. null) arity. Internal nodes can be labeled, that is, each internal node of a tree is associated with an element of a certain set. Given an internal node x of t, the children of x are by definition totally ordered from left to right and are thus indexed from 1 to the arity ℓ of x. For i ∈ [ℓ], the ith subtree of t is the tree rooted at the ith child of t. Similarly, the leaves of t are totally ordered from left to right and thus are indexed from 1 to the number of its leaves. In our graphical representations, each ordered tree 3/38 2024-02-02 10:22 § Rewrite rules
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S. Giraudo is depicted so that its root is the uppermost node. Since we consider in the sequel only ordered rooted trees, we shall call these simply trees.

2.1.2 SYNTAX TREES. Let G := n⩾1 G(n) be a graded set. The arity of an element x of G is n provided that x ∈ G(n). A syntax tree on G is a tree such that its internal nodes of arity n are labeled by elements of arity n of G. The degree (resp. arity) of a syntax tree is its number of internal nodes (resp. leaves). For instance, if

G := G(2) ⊔ G(3) with G(2) := {a, c} and G(3) := {b}, c a b b a (2.1.1)
is a syntax tree on G of degree 5 and arity 8. Its root is labeled by b and has arity 3. A syntax tree s is a subtree of a syntax tree t if it is possible to fit s at a certain place of t, by possibly superimposing leaves of s and internal nodes of t. In this case, we say that t admits an occurrence of (the pattern) s. Conversely, we say that t avoids s if there is no occurrence of s in t. (2.1.3)

We shall use the standard terminology (terminating, normal form, confluent, convergent, etc.) about rewrite rules [START_REF] Baader | Term rewriting and all that[END_REF]. Let us recall now the most important definitions. Let → be a rewrite rule on a set S of trees. We say that → is terminating if there is no infinite chain t t 

FREE OPERADS AND KOSZUL DUALITY

All notations and conventions about operads come from Section 1.1 of [START_REF] Giraudo | Operads of decorated cliques I: Construction and quotients[END_REF].

2.2.1 FREE OPERADS. Let G := n⩾1 G(n) be a graded vector space. In particular, G is a graded set so that we can consider syntax trees on G. The free operad over G is the operad Free(G) wherein, for n ⩾ 1, Free(G)(n) is the linear span of the syntax trees on G of arity n. The labeling of the internal nodes of the trees of Free(G) is linear in the sense that if t is a syntax tree on G having an internal node labeled by x + λy ∈ G, λ ∈ K, then, in Free(G), we have t = t x + λt y , where t x (resp. t y ) is the tree obtained by labeling by x (resp. y) the considered node labeled by x + λy in t. The partial composition s • i t of Free(G) of two syntax trees s and t on G consists in grafting the root of t on the ith leaf of s. The unit ⊥ of Free(G) is the tree consisting in one leaf. For instance, by setting G := K⟨G⟩ where G is the graded set defined in the previous example, in Free(G) we have (2.2.1)

We denote by c : G → Free(G) the inclusion map, sending any x of G to the corolla labeled by x, that is, the syntax tree consisting in a single internal node labeled by x attached to a required number of leaves. In the sequel, if required by the context, we shall implicitly view an element x of G as the corolla c(x) of Free(G). For instance, given two elements x and y of G, we shall denote the syntax tree c(x) • i c(y) simply by x • i y for all valid integers i.

Free operads satisfy a universality property. Indeed, Free(G) is the unique operad (up to isomorphism) such that for an operad O and a linear map f : G → O respecting the arities, there exists a unique operad morphism φ : Free(G) → O such that f = φ • c.

EVALUATIONS AND TREELIKE EXPRESSIONS.

Let us first fix a notation. If O is an operad, the complete composition map of O is the linear map where x is the label of the root of t and t 1 , . . . , t k are, from left to right, the subtrees of t. This map is the unique surjective operad morphism from Free(O) to O satisfying ev(c(x)) = x for all x ∈ O. If S is a subspace of O, a treelike expression on S of x ∈ O is a tree t of Free(O) such that ev(t) = x and all internal nodes of t are labeled by S.

• : O(n) ⊗ O(m 1 ) ⊗ • • • ⊗ O(m n ) → O(m 1 + • • • + m n ), ( 2 

2.2.3

PRESENTATIONS BY GENERATORS AND RELATIONS. Let G := n⩾1 G(n) be a graded set. Setting G := K⟨G⟩, we denote the operad ideal of Free(G) generated by the subspace R of Free(G) by ⟨R⟩. Given an operad O, the pair (G, R) is a presentation of O if O is isomorphic to Free(G)/ ⟨R⟩ . In this case, we call G the space of generators and R the space of relations of O. We say that O is quadratic if there is a presentation (G, R) of O such that R is a homogeneous subspace of Free(G) consisting in syntax trees of degree 2. Furthermore, we say that O is binary if there is a presentation (G, R) of O such that G is concentrated in arity 2. Furthermore, if O admits a presentation (G, R) and → is a rewrite rule on Free(G) such that the space induced by → is R, we say that → is an orientation of R.

2.2.4

KOSZUL DUALITY AND KOSZULITY. In [START_REF] Ginzburg | Koszul duality for operads[END_REF], Ginzburg and Kapranov extended the notion of Koszul duality of quadratic associative algebras to quadratic operads. Starting with an operad O admitting a binary and quadratic presentation (G, R) where G is finite, the Koszul dual of O is the operad O ! , isomorphic to the operad admitting the presentation G, R ⊥ where R ⊥ is the annihilator of R in Free(G), G being the space K⟨G⟩, with respect to the bilinear map

⟨-, -⟩ : Free(G)(3) ⊗ Free(G)(3) → K (2.2.6)
defined, for all x, x ′ , y, y ′ ∈ G(2), by Here, to prove the Koszulity of an operad O, we shall make use of a tool introduced by Dotsenko and Khoroshkin [START_REF] Dotsenko | Gröbner bases for operads[END_REF] in the context of Gröbner bases for operads, which in our context can be reformulated in the following way by using rewrite rules.

⟨x • i y, x ′ • i ′ y ′ ⟩ :=        1, if x = x ′ , y = y ′ , and i = i ′ = 1, -1, if x = x ′ ,
▶ Lemma 2.2.1 -Let O be an operad admitting a quadratic presentation (G, R). If there exists an orientation → of R such that → is a convergent rewrite rule, then O is Koszul.

If → satisfies the conditions contained in the statement of Lemma 2.2.1, then the set of normal forms of → forms a basis of O, called Poincaré-Birkhoff-Witt basis. These bases arise from the work of Hoffbeck [START_REF] Hoffbeck | A Poincaré-Birkhoff-Witt criterion for Koszul operads[END_REF] (see also [START_REF] Loday | Algebraic Operads[END_REF]). 

(x • i y) • (a 1 ⊗ • • • ⊗ a n+m-1 ) = x • (a 1 ⊗ • • • ⊗ a i-1 ⊗ y • (a i ⊗ • • • ⊗ a i+m-1 ) ⊗ a i+m ⊗ • • • ⊗ a n+m-

OPERADS OF NONCROSSING DECORATED CLIQUES

We use all the notations and definitions of Sections 1.2 and 2 of [START_REF] Giraudo | Operads of decorated cliques I: Construction and quotients[END_REF] about decorated M-cliques and the M-clique operad CM. We perform here a complete study of the suboperad Cro 0 M of noncrossing M-cliques defined in Section 3.1.3 of the aforementioned paper. For simplicity, this operad is denoted in the sequel as NCM and called the noncrossing M-clique operad. The process which produces from a unitary magma M the operad NCM is called the noncrossing clique construction.

GENERAL PROPERTIES

As shown in [START_REF] Giraudo | Operads of decorated cliques I: Construction and quotients[END_REF], NCM is an operad defined on the linear span of all noncrossing M-cliques and can be seen as a suboperad of CM restrained on M-cliques with 0 as crossing number. By definition of NCM, the partial composition p • i q of two noncrossing M-cliques p and q in NCM is equal to the partial composition p • i q in CM. Recall that the partial composition p • i q is the noncrossing M-clique obtained by gluing the base of q onto the ith edge of p and by relabeling the common arcs between p and q, respectively the arcs (i, i + 1) and (1, m + 1), by p i ⋆ q 0 , where ⋆ is the magmatic product of M. For instance, in CZ, we have

1 -2 -2 1 • 2 1 3 2 = 1 -2 1 1 2 1 . (3.1.1)
We call fundamental basis of NCM the fundamental basis of CM restricted to noncrossing M-cliques. Observe that the fundamental basis of NCM is a set-operad basis.

To study NCM, we begin by establishing the fact that NCM inherits some properties of CM. Then we shall describe a realization of NCM in terms of decorated Schröder trees, compute a minimal generating set of NCM, and compute its dimensions. 

x = z 1 < • • • < z k = y and for any i ∈ [k -1], z i+1
is the greatest vertex of p such that (z i , z i+1 ) is a solid diagonal or a (not necessarily solid) edge of p. The area of p adjacent to (x, y) is the M-bubble q of arity k whose base is labeled by p(x, y) and q i = p(z i , z i+1 ) for all i ∈ [k]. From a geometric point of view, q is the unique maximal component of p adjacent to the arc (x, y), without solid diagonals, and bounded by solid diagonals or edges of p. For instance, for the noncrossing Z-clique

p := 1 1 4 1 2 3 1 2 1 , (3.1.2)
the path associated with the diagonal (4, 9) of p is (4, 5, 6, 8, 9). For this reason, the area of p adjacent to (4, 9) is the Z-bubble

1 3 2 . (3.1.3)
▶ Proposition 3.1.2 -Let M be a unitary magma and p be a noncrossing M-clique of arity greater than 1. Then there is a unique M-bubble q with a maximal arity k ⩾ 2 such that

p = q • [r 1 , . . . , r k ], where each r i , i ∈ [k]
, is a noncrossing M-clique with a base labeled by 1 M .

◀ Proof -Let q ′ be the area of p adjacent to its base and k ′ be the arity of q ′ . By definition of the partial composition of NCM, for all M-cliques u, u ′ , u 1 , and

u 2 , if u = u ′ • i u 1 = u ′ • i u 2 and u 1
and u 2 have bases labeled by 1 M , then u 1 = u 2 . This implies in particular that there are unique noncrossing M-cliques

r ′ i , i ∈ [k ′ ], with bases labeled by 1 M such that p = q ′ • [r ′ 1 , . . . , r ′ k ′ ]. Finally, 8/38
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S. Giraudo the fact that q ′ is the area of p adjacent to its base implies the maximality for the arity of q ′ . The statement of the proposition follows. where p = q • [r 1 , . . . , r k ] is the unique decomposition of p stated in Proposition 3.1.2. We call bt(p) the bubble tree of p. For instance, in NCZ,

1 2 1 4 1 2 3 3 1 2 1 bt - 1 1 1 3 4 2 2 1 1 3 2 . (3.1.6) ▶ Lemma 3.1.3 -Let M be a unitary magma. For a noncrossing M-clique p, bt(p) is a treelike expression on B M of p.
◀ Proof -We proceed by induction on the arity n of p. If n = 1, since p = and bt( ) =⊥, the statement of the lemma immediately follows. Otherwise, we have bt(p) = c(q)•[bt(r 1 ), . . . , bt(r k )] where p uniquely decomposes as p = q•[r 1 , . . . , r k ] under the conditions stated by Proposition 3.1.2. By definition of area and of the map bt, q is an M-bubble. Moreover, by induction hypothesis, any bt(r i ), i ∈ [k], is a treelike expression on B M of r i . Hence, bt(p) is a treelike expression on B M of p. ■ ▶ Proposition 3.1.4 -Let M be a unitary magma. Then the map bt is injective and the image of bt is the linear span of all syntax trees t on B M such that (i) the root of t is labeled by an M-bubble;

(ii) the internal nodes of t different from the root are labeled by M-bubbles whose bases are labeled by 1 M ;

(iii) if x and y are two internal nodes of t such that y is the ith child of x, the ith edge of the bubble labeling x is solid.

◀ Proof -First of all, since by definition bt sends a basis element of NCM to a basis element of Free (K⟨B M ⟩), it is sufficient to show that bt is injective as a map from C M to the set of syntax trees on B M to establish that it is an injective linear map. For this, we proceed by induction on the arity n. If n = 1, since bt( ) =⊥ and NCM(1) is of dimension 1, bt is injective. Assume now that p and p ′ are two noncrossing M-cliques of arity n such that bt(p) = bt(p ′ ). Hence, p (resp. p ′ ) uniquely decomposes as Now, because by definition of area, all bases of the r i and r ′ i , i ∈ [k], are labeled by 1 M , this implies that q = q ′ . Therefore, we have bt(r i ) = bt(r ′ i ) for all i ∈ [k], so that, by induction hypothesis,

p = q • [r 1 , . . . , r k ] (resp. p ′ = q ′ • [r ′ 1 , . . . , r ′ k ]) as stated by Proposition 3.1.2 and bt(p) = c(q) • [bt(r 1 ), . . . , bt(r k )] = c(q ′ ) • bt(r ′ 1 ), . . . , bt(r ′ k ) = bt(p ′ ). ( 3 
r i = r ′ i for all i ∈ [k]. Hence, bt is injective.
The definition of bt together with Proposition 3.1.2 leads to the fact that, for a noncrossing M-clique p, the syntax tree bt(p) satisfies (i), (ii), and (iii). Conversely, let t be a syntax tree satisfying (i), (ii), and (iii). We show by structural induction on t that there is a noncrossing M-clique p such that bt(p) = t. If t =⊥, the property holds because bt( ) =⊥. Otherwise, we have t = s • [u 1 , . . . , u k ] where s is a syntax tree of degree 1 and the u i , i ∈ [k], are syntax trees. Since t satisfies (i), (ii), and (iii), the trees s and u i , i ∈ [k], satisfy the same three properties. Therefore, by induction hypothesis, there are noncrossing M-cliques q and r i , i ∈ [k], such that bt(q) = s and bt(r i ) = u i . Now define p as the noncrossing

M-clique q • [r 1 , . . . , r k ]
. By definition of the map bt and the unique decomposition stated in Proposition 3.1.2 for p, one obtains that bt(p) = t. ■ Observe that bt is not an operad morphism. Indeed, bt

• 1 = ̸ = = bt • 1 bt . (3.1.8)
Observe that (3.1.8) holds for all unitary magmas M since 1 M is always idempotent.

REALIZATION IN TERMS OF DECORATED SCHRÖDER TREES.

Recall that a Schröder tree is a tree such that all internal nodes have at least two children. An M-Schröder tree t is a Schröder tree such that each edge connecting two internal nodes is labeled by M, each edge connecting an internal node and a leaf is labeled by M, and the outgoing edge from the root of t is labeled by M (see (3.1.9) for an example of a Z-Schröder tree).

From the description of the image of the map bt provided by Proposition 3.1.4, any bubble tree t of a noncrossing M-clique p of arity n can be encoded by an M-Schröder tree s with n leaves. Indeed, this M-Schröder tree is obtained by considering each internal node x of t and by labeling the edge connecting x and its ith child by the label of the ith edge of the M-bubble labeling x. The outgoing edge from the root of s is labeled by the label of the base of the M-bubble labeling the root of t. For instance, the bubble tree of (3.1.6) is encoded by the Z-Schröder tree

1 2 2 1 1 4 1 2 3 3 1 , (3.1.9)
where the labels of the edges are placed in their centers and where unlabeled edges are implicitly labeled by 1 M . We shall use these drawing conventions in the sequel. As a side remark, observe that the M-Schröder tree encoding a noncrossing M-clique p and the dual tree of p (in the usual meaning) have the same underlying unlabeled tree.

This encoding of noncrossing M-cliques by bubble trees is reversible, and hence one can interpret NCM as an operad on the linear span of all M-Schröder trees. Hence, through this 10/38 2024-02-02 10:22 § Minimal generating set
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S. Giraudo interpretation, if s and t are two M-Schröder trees and i is a valid integer, the tree s • i t is computed by grafting the root of t to the ith leaf of s. Then, by writing b for the label of the edge adjacent to the root of t and a for the label of the edge adjacent to the ith leaf of s, we have two cases to consider, depending on the value of c := a ⋆ b. If c ̸ = 1 M , we label the edge connecting s and t by c. Otherwise, if c = 1 M , we contract the edge connecting s and t by merging the root of t and the direct ancestor of the ith leaf of s (see Figure 1). For instance, in NCN 3 , we have the

s ′ a i • i t 1 t k b . . . (A)
The expression s• i t to compute. The displayed leaf is the ith one of s. two partial compositions

s ′ t 1 t k . . . a ⋆ b (B) The resulting tree if a ⋆ b ̸ = 1 M . s ′ t 1 t k . . .
1 1 2 1 2 • 2 1 2 1 = 1 2 1 2 2 1 2 , (3.1.10a) 1 1 2 1 2 • 3 1 2 1 = 1 1 1 1 2 2 . (3.1.10b)
In the sequel, we shall indifferently view NCM as an operad on noncrossing M-cliques or on M-Schröder trees. ◀ Proof -We start by showing by induction on the arity that the suboperad (NCM) T M of NCM generated by T M is NCM. This is immediately true in arity 1. Let p be a noncrossing M-clique of arity n ⩾ 2. Proposition 3.1.2 says in particular that we can express p as p = q • [r 1 , . . . , r k ] where q is an M-bubble of arity k ⩾ 2 and the r i , i ∈ [k], are noncrossing M-cliques. Since q is an M-bubble, it can be expressed as . Moreover, since (3.1.11) shows an expression of q by partial compositions of M-triangles, q also belongs to (NCM) T M . This implies that this is also the case for p. Hence, NCM is generated by T M .

q = q k q 0 • 1 q k-1 • 1 • • • • 1 q 3 • 1 q 2 q 1 . ( 3 
Finally, due to the fact that the partial composition of two M-triangles is an M-clique of arity 3, if p is an M-triangle, p cannot be expressed as a partial composition of M-triangles. Moreover, since the space NCM(1) is trivial, these arguments imply that T M is a minimal generating set of NCM. ■ Proposition 3.1.5 also says that NCM is the smallest suboperad of CM that contains all M-triangles and that NCM is the biggest binary suboperad of CM.

3.1.5

DIMENSIONS. We now use the notion of bubble trees introduced in Section 3.1.2 to compute the dimensions of NCM.

▶ Proposition 3.1.6 -Let M be a finite unitary magma. The Hilbert series H

NCM (t) of NCM satisfies t + m 3 -2m 2 + 2m -1 t 2 + 2m 2 t -3mt + 2t -1 H NCM (t) + (m -1) H NCM (t) 2 = 0, (3.1.12) where m := #M.
◀ Proof -By Proposition 3.1.4, the set of noncrossing M-cliques is in one-to-one correspondence with the set of syntax trees on B M that satisfy (i), (ii), and (iii). We call T(t) the generating series of these trees and S(t) the generating series of these trees with the extra condition that the roots are labeled by M-bubbles whose bases are labeled by 1 M . Immediately from its description, S(t) satisfies

S(t) = t + n⩾2 ((m -1)S(t) + t) n , (3.1.13)
and T(t) satisfies

T(t) = t + m(S(t) -t). (3.1.14)
As the set of noncrossing M-cliques forms the fundamental basis of NCM, we have H NCM (t) = T(t). We eventually obtain (3.1.12) from (3.1.13) and (3.1.14) by a direct computation. ■ From Proposition 3.1.6, we deduce that the Hilbert series of NCM satisfies

H NCM (t) = 1 -(2m 2 -3m + 2)t -1 -2(2m 2 -m)t + m 2 t 2 2(m -1) , (3.1.15)
where m := #M ̸ = 1.
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:= c q 1 • 1 c q 2 • 1 • • • • 1 c q ℓ-1 , (3.1.17)
where the q i , i ∈ [ℓ -1], are the unique M-triangles such that, for every i ∈ [2, ℓ -1], the base of q i is labeled by 1 M , for every j ∈ [ℓ -2], the first edge of q j is labeled by 1 M , and ev(s ′ ) = ev(s). Observe that, in (3.1.17), brackets are not necessary since • 1 is associative. Therefore, p can be encoded in a unique way as a binary syntax tree t on T M satisfying the following restrictions:

(i) the M-triangles labeling the internal nodes of t which are not the root have bases labeled by 1 M ;

(ii) if x and y are two internal nodes of t such that y is the right child of x, the second edge of the bubble labeling x is solid.

To establish (3.1.16), since the set of noncrossing M-cliques forms the fundamental basis of NCM, we now have to count these binary trees. Consider a binary tree t of arity n ⩾ 2 with exactly k ∈ [0, n -2] internal nodes having an internal node as a left child. There are m ways to label the base of the M-triangle labeling the root of t, m k ways to label the first edges of the M-triangles labeling the internal nodes of t that have an internal node as left child, m n ways to label the first (resp. second) edges of the M-triangles labeling the internal nodes of t having a leaf as left (resp. right) child, and, since there are exactly n -k -2 internal nodes of t having an internal node as a right child, there are (m -1) n-k-2 ways to label the second edges of the M-triangles labeling these internal nodes. Now, since nar(n, k) counts the binary trees with n leaves and exactly k internal nodes having an internal node as a left child, and a binary tree with n leaves can have at most n -2 internal nodes having an internal node as left child, (3.1.16) follows.

■

We can use Proposition 3.1.7 to compute the first dimensions of NCM. For instance, depending on m := #M, we have the following sequences of dimensions: The second one forms, except for the first terms, Sequence A054726 of [Slo]. The last two sequences are not listed in [Slo] at this time.

1, 1, 1, 1, 1, 1, 1, 1, m = 1, ( 3 
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PRESENTATION AND KOSZULITY

The aim of this section is to establish a presentation by generators and relations of NCM. For this, we will define an adequate rewrite rule on the set of syntax trees on T M and prove that it admits the required properties.

3.2.1

SPACE OF RELATIONS. Let R NCM be the subspace of Free (K⟨T M ⟩) (3) generated by the elements c

p 2 p 1 p 0 • 1 c q 2 q 1 q 0 -c p 2 r 1 p 0 • 1 c q 2 q 1 r 0 , if p 1 ⋆ q 0 = r 1 ⋆ r 0 ̸ = 1 M , (3.2.1a) c p 2 p 1 p 0 • 1 c q 2 q 1 q 0 -c r 2 q 1 p 0 • 2 c p 2 q 2 r 0 , if p 1 ⋆ q 0 = r 2 ⋆ r 0 = 1 M , (3.2.1b) c p 2 p 1 p 0 • 2 c q 2 q 1 q 0 -c r 2 p 1 p 0 • 2 c q 2 q 1 r 0 , if p 2 ⋆ q 0 = r 2 ⋆ r 0 ̸ = 1 M , (3.2.1c)
where p, q, and r are M-triangles.

▶ Lemma 3.2.1 -Let M be a unitary magma, and s and t be two syntax trees of arity 3 on T M . Then st belongs to R NCM if and only if ev(s) = ev(t).

◀ Proof -Assume first that st belongs to R NCM . Then st is a linear combination of elements of the form (3.2.1a), (3.2.1b), and (3.2.1c). Now, observe that, if p, q, and r are three M-triangles,

(a) if δ := p 1 ⋆ q 0 = r 1 ⋆ r 0 ̸ = 1 M , we have ev c p 2 p 1 p 0 • 1 c q 2 q 1 q 0 = q 2 q 1 p 2 p 0 δ = ev c p 2 r 1 p 0 • 1 c q 2 q 1 r 0 , (3.2.2) (b) if p 1 ⋆ q 0 = r 2 ⋆ r 0 = 1 M , we have ev c p 2 p 1 p 0 • 1 c q 2 q 1 q 0 = q 2 q 1 p 2 p 0 = ev c r 2 q 1 p 0 • 2 c p 2 q 2 r 0 , (3.2.3) (c) if δ := p 2 ⋆ q 0 = r 2 ⋆ r 0 ̸ = 1 M , we have ev c p 2 p 1 p 0 • 2 c q 2 q 1 q 0 = q 1 p 1 q 2 p 0 δ = ev c r 2 p 1 p 0 • 2 c q 2 q 1 r 0 . (3.2.4)
This shows that all evaluations in NCM of (3.2.1a), (3.2.1b), and (3.2.1c) are equal to zero. Therefore, ev(st) = 0, and hence we have ev(s)ev(t) = 0 and, as expected, ev(s) = ev(t).

We now assume that ev(s) = ev(t) and let r := ev(s). As s is of arity 3, r also is of arity 3 and thus, r ∈ ◀ Proof -For x ∈ M, let f(x) be the number of ordered pairs (y, z) ∈ M 2 such that x = y ⋆ z. Since M is finite, f : M → N is a well-defined map.

q 2 q 1 p 2 p 0 δ , q 2 q 1 p 2 p 0 , q 1 p 1 q 2 p 0 δ : p, q ∈ T M , δ ∈ M . ( 3 
Let ≡ be the equivalence relation on the set of syntax trees on T M of arity 3 satisfying s ≡ t if s and t are two such syntax trees satisfying ev(s) = ev(t). Let also C be the set of noncrossing M-cliques of arity 3. For r ∈ C, we denote the set of syntax trees s satisfying ev(s) = r by [r] ≡ . Proposition 3.1.5 says in particular that any r ∈ C can be obtained by a partial composition of two M-triangles, and hence all [r] ≡ are nonempty sets and thus, are ≡-equivalence classes. Observe that, since r is of arity 3, it can be of three different forms according to the presence of a solid diagonal.

(a) If

r = q 2 q 1 p 2 p 0 δ (3.2.8)
for some p 0 , p 2 , q 1 , q 2 ∈ M and δ ∈ M, to have s ∈ [r] ≡ , we necessarily have

s = c p 2 p 1 p 0 • 1 c q 2 q 1 q 0 (3.2.9)
where p 1 , q 0 ∈ M and p

1 ⋆ q 0 = δ. Hence, #[r] ≡ = f(δ). (b) If r = q 2 q 1 p 2 p 0 (3.2.10) for some p 0 , p 2 , q 1 , q 2 ∈ M, to have s ∈ [r] ≡ , we necessarily have s ∈ c p 2 p 1 p 0 • 1 c q 2 q 1 q 0 , c r 2 q 1 p 0 • 2 c p 2 q 2 r 0 (3.2.11) where p 1 , q 0 , r 0 , r 2 ∈ M, p 1 ⋆ q 0 = 1 M , and r 2 ⋆ r 0 = 1 M . Hence, #[r] ≡ = 2f(1 M ). (c) Otherwise, r = q 1 p 1 q 2 p 0 δ (3.2.12)
for some p 0 , p 1 , q 1 , q 2 ∈ M and δ ∈ M, and to have s ∈ [r] ≡ , we necessarily have

s = c p 2 p 1 p 0 • 2 c q 2 q 1 q 0 (3.2.13)
where p 2 , q 0 ∈ M and p 2 ⋆ q 0 = δ. Hence, #[r] ≡ = f(δ). Therefore, by using the fact that 

δ∈M f(δ) = m 2 , ( 3 
= p 0 ,p 2 ,q 1 ,q 2 ∈M δ∈ M (f(δ) -1) + p 0 ,p 2 ,q 1 ,q 2 ∈M (2f(1 M ) -1) + p 0 ,p 1 ,q 1 ,q 2 ∈M δ∈ M (f(δ) -1) = m 4   2 δ∈ M(f (δ) -1) + 2f(1 M ) -1   = 2m 6 -2m 5 + m 4 , (3.2.15)
establishing the statement of the proposition. ■

Observe that, by Proposition 3.2.2, the dimension of R NCM only depends on the cardinality of M and not on its operation ⋆.

REWRITE RULE.

Let → be the rewrite rule on the set of syntax trees on T M satisfying c

p 2 p 1 p 0 • 1 c q 2 q 1 q 0 → c p 2 δ p 0 • 1 c q 2 q 1 , if q 0 ̸ = 1 M , where δ := p 1 ⋆ q 0 , (3.2.16a) c p 2 p 1 p 0 • 1 c q 2 q 1 q 0 → c q 1 p 0 • 2 c p 2 q 2 , if p 1 ⋆ q 0 = 1 M , (3.2.16b) c p 2 p 1 p 0 • 2 c q 2 q 1 q 0 → c δ p 1 p 0 • 2 c q 2 q 1 , if q 0 ̸ = 1 M , where δ := p 2 ⋆ q 0 , (3.2.16c)
where p and q are M-triangles.

▶ Lemma 3.2.3 -Let M be a unitary magma. Then the vector space induced by the rewrite rule → is R NCM .

◀ Proof -Let s and t be two syntax trees on T M such that s → t. We have three cases to consider depending on the form of s and t.

(a) if s (resp. t) is of the form described by the left (resp. right) side of (3.2.16a), we have ev(s) = (3.2.18) (c) Otherwise, s (resp. t) is of the form described by the left (resp. right) side of (3.2.16c). We have ev(s) = 

q 1 p 1 q 2 p 0 δ = ev(t), ( 3 
p 0 • 2 c q 2 q 1 and t * →c δ ′ p 1 p 0 • 2 c q 2 q 1 , (3.2.22)
where δ := p 2 ⋆ q 0 and δ ′ := r 2 ⋆ r 0 . Since by (3.2.1c), δ = δ ′ , we obtain that s * ↔ t.

Hence, for each case, we have s * ↔ t. This shows that R NCM is a subspace of the space induced by →. The statement of the lemma follows. ■ ▶ Lemma 3.2.4 -For a unitary magma M, the rewrite rule → is terminating.

◀ Proof -Writing T n for the set of syntax trees on T M of arity n, let φ : T n → N 2 be the map defined in the following way. For a syntax tree t of T n , φ(t) := (α, β), where α is the sum of the number of internal nodes in the left subtree of x taken over all internal nodes x of t, and β is the number of internal nodes of t labeled by an M-triangle whose base is not labeled by 1 M . Let s and t be two syntax trees of T 3 such that s → t. Due to the definition of →, we have three configurations to explore. In what follows, η : M → N is the map satisfying η(a) := 0 if a = 1 M and η(a) := 1 otherwise.

(a) If s (resp. t) is of the form described by the left (resp. right) side of (3.2.16a), writing ⩽ for the lexicographic order on N 2 , we have

φ c p 2 p 1 p 0 • 1 c q 2 q 1 q 0 = (1, η(p 0 ) + 1) > (1, η(p 0 )) = φ c p 2 δ p 0 • 1 c q 2 q 1 , (3.2.23)
where δ := p 1 ⋆ q 0 . (b) If s (resp. t) is of the form described by the left (resp. right) side of (3.2.16b), we have

φ c p 2 p 1 p 0 • 1 c q 2 q 1 q 0 = (1, η(p 0 ) + η(q 0 )) > (0, η(p 0 )) = φ c q 1 p 0 • 2 c p 2 q 2 .
(3.2.24) (c) Otherwise, s (resp. t) is of the form described by the left (resp. right) side of (3.2.16c). We have φ c where δ := p 2 ⋆ q 0 . Therefore, for all syntax trees s and t such that s → t, φ(s) > φ(t). This implies that, for all syntax trees s and t such that s ̸ = t and s * →t, we have φ(s) > φ(t). Since (0, 0) is the smallest element of

p 2 p 1 p 0 • 2 c q 2 q 1 q 0 = (0, η(p 0 ) + 1) > (0, η(p 0 )) = φ c δ p 1 p 0 • 2 c q 2 q 1 , ( 3 
N 2
with respect to the lexicographic order ⩽, the statement of the lemma follows. ■ ▶ Lemma 3.2.5 -Let M be a unitary magma. The set of normal forms of the rewrite rule → is the set of syntax trees t on T M such that, for any internal nodes x and y of t where y is a child of x, (i) the base of the M-triangle labeling y is labeled by 1 M ;

(ii) if y is a left child of x, the first edge of the M-triangle labeling x is not labeled by 1 M .

◀ Proof -By Lemma 3.2.4, → is terminating. Therefore, → admits normal forms, which are by definition the syntax trees on T M that cannot be rewritten by →.

Let t be a normal form of →. The fact that t satisfies (i) is an immediate consequence of the fact that t avoids the patterns appearing as left sides of (3.2.16a) and (3.2.16c). Moreover, since t avoids the patterns appearing as left sides of (3.2.16b), one cannot have p 1 ⋆ q 0 = 1 M , where p (resp. q) is the label of x (resp. y). Since by (i), we have q 0 = 1 M , we necessarily get p 1 ̸ = 1 M . Hence, t satisfies (ii).

Conversely, if t is a syntax tree on T M satisfying (i) and (ii), a direct inspection shows that one cannot rewrite t by →. Therefore, t is a normal form of →. ■ ▶ Lemma 3.2.6 -Let M be a finite unitary magma. The generating series of the normal forms of the rewrite rule → is the Hilbert series H NCM(t) of NCM.

◀ Proof -First, since by Lemma 3.2.4, → is terminating, and since for n ⩾ 1, due to the finiteness of M, there are finitely many syntax trees on T M of arity n, the generating series T(t) of the normal forms of → is well-defined.

Let S(t) be the generating series of the normal forms of → such that the bases of the M-triangles labeling the roots are labeled by 1 M . From the description of the normal forms of → provided by Lemma 3.2.5, we obtain that S(t) satisfies

S(t) = t + mtS(t) + (m -1)mS(t) 2 .
(3.2.26)

Again by Lemma 3.2.5, we have

T(t) = t + m(S(t) -t). ( 3 

.2.27)

A direct computation shows that T(t) satisfies the algebraic equation 

t + m 3 -2m 2 + 2m -1 t 2 + 2m 2 t -3mt + 2t -1 T(t) + (m -1) T(t) 2 = 0. ( 3 
T N 2 = , 1 , 1 , 1 1 , 1 , 1 1 , 1 1 , 1 1 1 , (3.2.30)
and these generators satisfies only the nontrivial relations

b 3 a • 1 b 2 b 1 1 = b 3 1 a • 1 b 2 b 1 , a, b 1 , b 2 , b 3 ∈ N 2 , (3.2.31a) b 3 1 a • 1 b 2 b 1 1 = b 3 a • 1 b 2 b 1 = b 1 a • 2 b 3 b 2 = 1 b 1 a • 2 b 3 b 2 1 , a, b 1 , b 2 , b 3 ∈ N 2 , (3.2.31b) b 1 a • 2 b 3 b 2 1 = 1 b 1 a • 2 b 3 b 2 , a, b 1 , b 2 , b 3 ∈ N 2 . (3.2.31c)
On the other hand, the operad NCD 0 is generated by

T D 0 = , 0 , 0 , 0 0 , 0 , 0 0 , 0 0 , 0 0 0 , (3.2.32)
and these generators satisfies only the nontrivial relations 

b 3 a • 1 b 2 b 1 0 = b 3 0 a • 1 b 2 b 1 0 = b 3 0 a • 1 b 2 b 1 , a, b 1 , b 2 , b 3 ∈ D 0 , (3.2.33a) b 3 a • 1 b 2 b 1 = b 1 a • 2 b 3 b 2 , a, b 1 , b 2 , b 3 ∈ D 0 , (3.2.33b) b 1 a • 2 b 3 b 2 0 = 0 b 1 a • 2 b 3 b 2 0 = 0 b 1 a • 2 b 3 b 2 , a, b 1 , b 2 , b 3 ∈ D 0 . ( 3 
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SUBOPERADS GENERATED BY BUBBLES

In this section, we consider suboperads of NCM generated by finite sets of M-bubbles. We assume here that M is endowed with an arbitrary total order so that M = {x 0 , x 1 , . . . } with 

x 0 = 1 M . If p is an M-clique,
∈ B, x ⋆ y = x ′ ⋆ y ′ ̸ = 1 M implies x = x ′
and y = y ′ .

▶ Lemma 3.3.1 -Let M be a unitary magma, and B and E be two subsets of M. If M is (E, B)-quasi-injective, then any M-clique admits at most one treelike expression on B

B,E M of minimal degree.

◀ Proof -Assume that p is an M-clique admitting a treelike expression on B B,E M . This implies that the base of p is labeled by B, all solid diagonals of p are labeled by B ⋆ E, and all edges of p are labeled by E. By Proposition 3.1.2 and Lemma 3.1.3, the tree t := bt(p) is a treelike expression of p on B M of minimal degree. Now, observe that t is not necessarily a syntax tree on B B,E M as required since some of its internal nodes may be labeled by bubbles that do not belong to B B,E M . Since M is (E, B)-quasi-injective, there is a unique way to relabel the internal nodes of t by bubbles of B B,E M to obtain a syntax tree on B B,E M such that ev(t ′ ) = ev(t). By construction, t ′ satisfies the properties of the statement of the lemma. ■ 3.3.2 DIMENSIONS. Let G be a set of M-bubbles and Ξ := {ξ x 0 , ξ x 1 , . . . } be a set of noncommutative variables. Given x i ∈ M, let B x i be the series of N⟨⟨Ξ⟩⟩ defined by

B x i (ξ x 0 , ξ x 1 , . . . ) := p∈B G M p̸ = i∈[|p|] ξ p i , (3.3.1)
where B G M is the set of M-bubbles that can be obtained by partial compositions of elements of G. Observe from (3.3.1) that a noncommutative monomial u ∈ Ξ ⩾2 appears in B x i with 1 as coefficient if and only if there is an M-bubble with a base labeled by x i and with u as border in the suboperad of NCM generated by G.

Moreover, for x i ∈ M, let the series F x i of N⟨⟨t⟩⟩ defined by

F x i (t) := B x i t + Fx 0 (t), t + Fx 1 (t), . . . , (3.3.2)
where, for

x i ∈ M, Fx i (t) := x j ∈M x i ⋆x j ̸ =1 M F x j (t).
(3.3.3) ▶ Proposition 3.3.2 -Let M be a unitary magma and G be a finite set of M-bubbles such that, writing B (resp. E) for the set of labels of the bases (resp. edges) of the elements of G, M is 

(E, B)-quasi-injective.
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◀ Proof -By Lemma 3.3.1, an M-clique of (NCM) G admits exactly one treelike expression on M-bubbles of (NCM) G of minimal degree. For this reason, and as a consequence of the definition (3.3.3) of the series Fx i (t), x i ∈ M, the series F x i (t) is the generating series of all M-cliques of (NCM) G different from and with a base labeled by x i ∈ M. Therefore, the expression (3.3.4) for the Hilbert series of (NCM) G follows. ■

As a side remark, Proposition 3.3.2 can be proved by using the notion of bubble decompositions of operads developed in [START_REF] Chapoton | Enveloping operads and bicoloured noncrossing configurations[END_REF]. This result provides a practical method to compute the dimensions of some suboperads (NCM) G of NCM by describing the series (3.3.1) of the bubbles of B G M . If G satisfies the requirement of Proposition 3.3.2, this result also implies that the Hilbert series of (NCM) G is algebraic.

• 2 e 2 e 2 .

(3.3.6d)

Hence, (NCE 2 ) G is not a quadratic operad. Moreover, it is possible to prove that this operad does not admit any other nontrivial relations between its generators. This can be performed by defining a rewrite rule on the syntax trees on G, consisting in rewriting the left patterns of (3.3.6a), (3.3.6b), (3.3.6c), and (3.3.6d) into their respective right patterns, and by checking that this rewrite rule admits the required properties (like the ones establishing the presentation of NCM by Theorem 3.2.8). The existence of this nonquadratic operad shows that NCM contains nonquadratic suboperads even if it is quadratic.

One can prove by induction on the arity that the set of bubbles of (NCE 2 ) G is the set B 1 ⊔ B Computer experiments show that the generators of (NCD 0 ) G satisfy the only four nontrivial quadratic relations

• 1 = • 2 , (3.3.14a) 0 • 1 = • 2 0 , ( 3.3.14b) 
• 1 0 = 0 • 2 , (3.3.14c) 0 • 1 0 = 0 • 3 0 . (3.3.14d)
It is possible to prove that this operad does not admit any other nontrivial relations between its generators. This can be performed by defining a rewrite rule on the syntax trees on G, consisting in rewriting the left patterns of (3.3.14a), (3.3.14b), (3.3.14c), and (3.3.14d) into their respective right patterns, and by checking that this rewrite rule admits the required properties (like the ones establishing the presentation of NCM by Theorem 3.2.8).

One can prove by induction on the arity that the set of bubbles of (NCD 0 ) G is the set of bubbles whose bases are labeled by 1 and borders are words of {1, 0} ⩾2 such that each occurrence of 0 has a 1 immediately to its left and a 1 immediately to its right. Hence, we obtain

B 1 (ξ 1 , ξ 0 ) = 1 1 -ξ 1 -ξ 1 ξ 0 ξ 1 -ξ 1 , (3.3.15a) B 0 (ξ 1 , ξ 0 ) = 0. (3.3.15b)
Moreover, one can check that G satisfies the conditions required by Proposition 3.3.2. We hence have

F1 (t) = F 0 (t), (3.3.16a) F0 (t) = F 1 (t) + F 0 (t), (3.3.16b) 
and

F 1 (t) = B 1 (t, t + F 1 (t)) , (3.3.17a) F 0 (t) = 0. (3.3.17b)
By Proposition 3.3.2, the Hilbert series of (NCD 0 ) G satisfies H and form Sequence A001006 of [Slo]. The operad (NCD 0 ) G has the same presentation by generators and relations (and thus, the same Hilbert series) as the operad Motz defined in [START_REF] Giraudo | Combinatorial operads from monoids[END_REF], involving Motzkin paths. Hence, (NCD 0 ) G and Motz are two isomorphic operads. Note in passing that these two operads are not isomorphic to the operad MotD 0 constructed in Section 3.2.4 of [START_REF] Giraudo | Operads of decorated cliques I: Construction and quotients[END_REF] and involving Motzkin configurations. Indeed, the sequence of the dimensions of this last operad is a shifted version of the one of (NCD 0 ) G and Motz.

(NCD 0 ) G (t) = t + F 1 (t), (3.3 

ALGEBRAS OVER THE NONCROSSING CLIQUE OPERADS

We begin by briefly describing NCM-algebras in terms of relations between their operations and the free NCM-algebras over one generator. We continue this section by providing two ways to construct (not necessarily free) NCM-algebras. The first one takes as input an associative algebra endowed with endofunctions satisfying some conditions, and the second one takes as input a monoid.

3.4.1

RELATIONS. From the presentation of NCM established by Theorem 3.2.8, any NCMalgebra is a vector space A endowed with binary linear operations satisfying, for all a 1 , a 2 , a 3 ∈ A, the relations a

1 q 2 q 1 q 0 a 2 p 2 p 1 p 0 a 3 = a 1 q 2 q 1 r 0 a 2 p 2 r 1 p 0 a 3 , if p 1 ⋆ q 0 = r 1 ⋆ r 0 ̸ = 1 M , (3.4.2a) a 1 q 2 q 1 q 0 a 2 p 2 p 1 p 0 a 3 = a 1 r 2 q 1 p 0 a 2 p 2 q 2 r 0 a 3 , if p 1 ⋆ q 0 = r 2 ⋆ r 0 = 1 M , (3.4.2b) a 1 p 2 p 1 p 0 a 2 q 2 q 1 q 0 a 3 = a 1 r 2 p 1 p 0 a 2 q 2 q 1 r 0 a 3 , if p 2 ⋆ q 0 = r 2 ⋆ r 0 ̸ = 1 M , (3.4.2c)
where p, q, and r are M-triangles. Observe that M has to be finite because Theorem 3.2.8 requires this property as premise.

3.4.2 FREE ALGEBRAS OVER ONE GENERATOR. From the realization of NCM coming from its definition as a suboperad of CM, the free NCM-algebra over one generator is the linear span NCM of all noncrossing M-cliques endowed with the linear operations Since, for all u ∈ A * , ω ∅ (u) = u and (ω S • ω S ′ )(u) = ω S∪S ′ (u), and ∅ is the unit of S ℓ , we obtain from Theorem 3.4.1 that the operations (3.4.9) endow K⟨A⟩ with an NCS ℓ -algebra structure. For instance, with ℓ := 3 we have

(a 1 + a 1 a 3 + a 2 a 2 ) {2} {1} {2, 3} (1 + a 3 + a 2 a 1 ) = a 1 a 3 a 2 a 1 , (3.4.20a) (a 1 + a 1 a 3 + a 2 a 2 ) ∅ {1} {1, 3} (1 + a 3 + a 2 a 1 ) = 2 a 1 a 3 + a 1 a 3 a 3 + a 1 a 3 a 2 a 1 . (3.4.20b)
Moreover, to compute the action

{1} {1} {1} {2} {1, 2} {2} {3} {1, 2} • (f ⊗ f ⊗ f ⊗ f ⊗ f ⊗ f ⊗ f ⊗ f), (3.4.21)
where f := a 1 + a 2 + a 3 , we use the above algorithm and (3.4.15) and (3.4.17). By presenting the computation on the bubble tree of the noncrossing S 3 -clique of (3.4.21), we obtain In other terms, ω 0 (f) is the constant term, denoted by f(0), of the polynomial f ∈ K⟨A⟩. Since ω 1 is the identity map on K⟨A⟩ and, for all u ∈ A * ,

{1} {2} {1} {1, 2} {3} {2} {1}{1, 2} f f f (a 1 + a 2 + a 3 ) 2 f a 1 a 2 f (a 1 + a 2 + a 3 )a 1 a 2 a 2 a 1 a 3 f a 2 (a 1 + a 2 + a 3 f f (a 1 + a 2 + a 3 )a 1 a 2 a 2 a 1 a 3 (a 1 a 2 + a 2 a 1 ) , ( 3 
(ω 0 • ω 0 )(f) = (f(0))(0) = f(0) = ω 0 (f), (3.4.25)
we obtain from Theorem 3.4.1 that the operations (3.4.9) endow K⟨A⟩ with an NCD 0 -algebra structure. For instance, for all polynomials f 1 and f 2 of K⟨A⟩, we have

f 1 1 1 1 f 2 = f 1 f 2 , (3.4.26a) f 1 1 1 0 f 2 = (f 1 f 2 )(0) = f 1 (0) f 2 (0), (3.4.26b) f 1 1 0 1 f 2 = f 1 (0) f 2 , (3.4.26c) f 1 0 1 1 f 2 = f 1 (f 2 (0)). (3.4.26d) If f 1 (0) = 1 = f 2 (0)
, we obtain from (3.4.26c) and (3.4.26d) that f

1 1 0 1 + 0 1 1 f 2 = f 1 (0) f 2 + f 1 (f 2 (0)) = f 1 + f 2 .
(3.4.27) 3.4.4 NCM-ALGEBRAS FROM MONOIDS. If M is a monoid, with binary associative operation ⋆ and unit 1 M , we write K⟨M * ⟩ for the space of all noncommutative polynomials on M, viewed as an alphabet, with coefficients in K. This space can be endowed with an NCM-algebra structure as follows. The clique construction provides alternative definitions of known operads. We explore here the cases of the operad NCT of based noncrossing trees, the operad FF 4 of formal fractions, and the operad BNC of bicolored noncrossing configurations.

RATIONAL FUNCTIONS AND RELATED OPERADS

We use here the noncrossing clique construction to interpret a few operads related to the operad RatFct of rational functions of Loday [START_REF] Loday | On the operad of associative algebras with derivation[END_REF] (see also Section 2.2.8 of [Gir20]).

5.1.1

DENDRIFORM AND BASED NONCROSSING TREE OPERADS. The operad of based noncrossing trees NCT is an operad introduced in [START_REF] Chapoton | The anticyclic operad of moulds[END_REF]. This operad is generated by two binary elements ≺ and ≻ satisfying one nontrivial quadratic relation. The algebras over NCT are L-algebras and have been studied in [START_REF] Leroux | L-algebras, triplicial-algebras, within an equivalence of categories motivated by graphs[END_REF]. We do not describe NCT in detail here because this is not essential for the sequel. We just explain how to construct NCT through the clique construction and interpret a known link between NCT and the dendriform operad through the rational functions associated with Z-cliques (see Section 2.2.8 of [START_REF] Giraudo | Operads of decorated cliques I: Construction and quotients[END_REF]).

Let O

NCT be the suboperad of CZ generated by 

-1 -1 , -1 1 -1 , 1 1 -1 , -1 -1 1 .
(5.1.9) and form Sequence A156017 of [Slo]. Moreover, by computer exploration, we obtain the list 

-1 1 -1 • 1 1 -1 -1 = 1 -1 -1 • 2 -1 1 -1 , (5.1.12a) 1 1 -1 • 1 1 1 -1 = 1 1 -1 • 2 1 1 -1 , (5.1.12b) 1 1 -1 • 1 1 -1 -1 = 1 -1 -1 • 2 1 1 -1 , (5.1.12c) 1 1 -1 • 1 -1 1 -1 = 1 1 -1 • 2 1 -1 -1 , (5.1.12d) -1 1 -1 • 1 1 1 -1 = 1 1 -1 • 2 -1 1 -1 , (5.1.12e) -1 -1 1 • 1 -1 -1 1 = -1 -1 1 • 2 -1 -1 1 , (5.1.12f) -1 1 -1 • 1 -1 1 -1 = -1 1 -1 • 2 -1 -1 1 , (5.1.12g) 1 -1 -1 • 1 -1 -1 1 = 1 -1 -1 • 2 1 -1 -1 , ( 5 
φ FF 4 1 -1 -1 = 1 {1}{1, 2} , (5.1.13a) φ FF 4 -1 1 -1 = 1 {2}{1, 2} , (5.1.13b) φ FF 4 1 1 -1 = 1 {1, 2} , (5.1.13c) φ FF 4 -1 -1 1 = 1 {1}{2} .
(5.1.13d)

In [START_REF] Chapoton | A set-operad of formal fractions and dendriformlike sub-operads[END_REF], a presentation of FF 4 is described wherein its generators satisfy eight nontrivial relations of degree 2. These relations can be obtained by replacing each Z-clique appearing in (5.1.12a)-(5.1.12h) by its image by φ FF 4 . For this reason, φ FF 4 uniquely extends to an operad morphism. Moreover, because the image of φ FF 4 contains all the generators of FF 4 , this morphism is surjective. Finally, again by [START_REF] Chapoton | A set-operad of formal fractions and dendriformlike sub-operads[END_REF], the Hilbert series of FF 4 satisfies (5.1.10), so that O FF 4 and FF 4 have the same dimensions. Therefore, φ FF 4 is an operad isomorphism. ■ Hence, Proposition 5.1.2 shows that the operad FF 4 can be built through the construction C. Observe also that, as a consequence of Proposition 5.1.2, all suboperads of FF 4 defined in [START_REF] Chapoton | A set-operad of formal fractions and dendriformlike sub-operads[END_REF] that are generated by a subset of (5.1.8) can be constructed by the clique construction.

OPERAD OF BICOLORED NONCROSSING CONFIGURATIONS

The operad of bicolored noncrossing configurations BNC is an operad defined in [START_REF] Chapoton | Enveloping operads and bicoloured noncrossing configurations[END_REF]. Let us describe this operad.

A bicolored noncrossing configuration is a noncrossing configuration c where each labeled arc is either thick (drawn as a thick line) of dotted (drawn as a dotted line) and such that all dotted arcs are diagonals. For instance, (5.2.2c)

We now consider the unitary magma M BNC := {1, a, b} wherein operation ⋆ is defined by the Cayley table (5.2.5) (5.2.6) is a minimal generating set of the suboperad O BNC of NCM BNC isomorphic to BNC. As a consequence, all the suboperads of BNC defined in [START_REF] Chapoton | Enveloping operads and bicoloured noncrossing configurations[END_REF] which are generated by a subset of the set of generators of BNC can be constructed by the noncrossing clique construction. This includes, among others, the magmatic operad, the free operad on two binary generators, the operad of noncrossing plants [START_REF] Chapoton | The anticyclic operad of moulds[END_REF], the dipterous operad [LR03; Zin12], and the 2-associative operad [START_REF] Loday | On the structure of cofree Hopf algebras[END_REF][START_REF] Zinbiel | Encyclopedia of types of algebras 2010[END_REF].

CONCLUSION AND PERSPECTIVES

In this article we have completed the study of the clique construction introduced in [Gir20] by focusing on the suboperad NCM of CM of noncrossing M-cliques. As noticed in the previous sections, NCM has a particular status among the suboperads of CM because NCM is the smallest suboperad of CM that contains all elements of arity 2 (the M-triangles) and is the biggest binary suboperad of CM. This operad is also a Koszul operad when M is a finite unitary magma.

An open question concerns the Koszul dual NCM ! of NCM. Section 4 contains results about this operad, such as a description of its presentation and a formula for its dimensions. We have also established the fact that, as graded vector space, NCM ! is isomorphic to the linear span of all noncrossing dual M-cliques. To obtain a realization of NCM ! , it is now enough to endow this last space with an adequate partial composition. Finding such a composition is worth to obtain.

  is the reflexive and transitive closure of . We write * → for the reflexive and transitive closure of →, and we write * ↔ (resp. * ⇔) for the reflexive, transitive, and symmetric closure of → (resp. ). The vector space induced by → is the subspace of the linear span K⟨S⟩ of all trees of S generated by the family of all tt ′ such that t * ↔ t ′ .For instance, let S be the set of trees where internal nodes are labeled by {a, b, c} and consider the rewrite rule → on S satisfying b the following steps of rewritings by →:

■

  Consider the linear map bt : NCM → Free (K⟨B M ⟩) (3.1.4) defined recursively by bt( ) :=⊥ and, for a noncrossing M-clique p of arity greater than 1, by bt(p) := c(q) • [bt(r 1 ), . . . , bt(r k )] , (3.1.5)

(

  FIGURE 1. The partial composition of NCM realized on M-Schröder trees. Here, the two cases (b) and (c) for the computation of s • i t are shown, where s and t are two M-Schröder trees. In these drawings, the triangles denote subtrees.

▶

  Proposition 3.1.5 -Let M be a unitary magma. The set T M of all M-triangles is a minimal generating set of NCM.

  If s (resp. t) is of the form described by the left (resp. right) side of (3.2.16b), we have ev

  n) ⊗ NCM(m) → NCM(n + m), p ∈ T M , n, m ⩾ 1, (3.4.3)defined, for noncrossing M-cliques q and r, 4.4)In terms of M-Schröder trees (see Section 3.1.3), (3.4.4) is the M-Schröder tree obtained by grafting the M-Schröder trees of q and r respectively as left and right children of a binary corolla having its edge adjacent to the root labeled by p 0 , its first edge labeled by p 1 ⋆ q 0 , and second edge setting t as the bubble tree bt(p) of p (see Section 3.1.2), b and r 1 , . . . , r k are the unique M-bubble and noncrossing M-cliques such that t = c(b) • [bt(r 1 ), . . . , bt(r k )]. Here are a few examples of the construction provided by Theorem 3.4.1. Noncommutative polynomials and selected concatenation: Let us consider the unitary magma S ℓ of the subsets of [ℓ] with the union as product. Let A := {a j : j ∈ [ℓ]} be an alphabet of noncommutative letters. On the associative algebra K⟨A⟩ of polynomials on A, we define the linear maps ω S : K⟨A⟩ → K⟨A⟩, S ∈ S ℓ , (3.4.18) as follows. For u ∈ A * and S ∈ S ℓ , we set ω S (u) := u, if |u| a j ⩾ 1 for all j ∈ S,

Foroperations p 2 p 1 p 0 :

 0 x ∈ M and a word w = w 1 . . . w |w| ∈ M * , let x * w := (x ⋆ w 1 ) . . . (x ⋆ w |w| ). (3.4.28) This operation * is linearly extended on the right to K⟨M * ⟩. ▶ Proposition 3.4.2 -Let M be a finite monoid. The vector space K⟨M * ⟩ endowed with the binary linear K⟨M * ⟩ ⊗ K⟨M * ⟩ → K⟨M * ⟩, p ∈ T M , (3.4.29) defined for each M-triangle p and f 1 , f 2 ∈ K⟨M * ⟩ by f is an NCM-algebra. ◀ Proof -This follows from Theorem 3.4.1 as a particular case of the general construction it provides. Indeed, K⟨M * ⟩ is an associative algebra for the concatenation product of words. Moreover, by defining linear maps ω x : K⟨M * ⟩ → K⟨M * ⟩, x ∈ M, by ω x (u) := x * u for a word u ∈ M * , we obtain, since M is a monoid, that this family of maps satisfies (3.4.7) and (3.4.8). Now, since the definition (3.4.30) is the specialization of the definition (3.4.10) in this particular case, the statement of the proposition follows. ■ Here are a few examples of the construction provided by Proposition 3.4.2. 27/38 2024-02-02 10:22 CONCRETE CONSTRUCTIONS

  noncrossing configuration of size 9. For n ⩾ 2, BNC(n) is the linear span of all bicolored noncrossing configurations of size n. Moreover, BNC(1) is the linear span of the singleton containing the only polygon of size 1 where its only arc is unlabeled. The partial composition of BNC is defined graphically as follows. For bicolored noncrossing configurations c and d of respective arities n and m, and i ∈ [n], the bicolored noncrossing configuration c • i d is obtained by gluing the base of d onto the ith edge of c, and then, (a) if the base of d and the ith edge of c are both unlabeled, the arc (i, i + m) of c • i d becomes dotted; (b) if the base of d and the ith edge of c are both thick, the arc (i, i + m) of c • i d becomes thick;(c) otherwise, the arc (i, i + m) of c • i d is unlabeled.

  , M BNC is the unitary magma wherein a and b are idempotent, and a⋆ b = 1 = b ⋆ a. Observe that M BNC is a commutative unitary magma, but, since (b ⋆ a) ⋆ a = 1 ⋆ a = a ̸ = b = b ⋆ 1 = b ⋆ (a ⋆ a), (5.2.4)the operation ⋆ is not associative.Let φ BNC : BNC → NCM BNC be the linear map defined in the following way. For a bicolored noncrossing configuration c, φ BNC (c) is the noncrossing M BNC -clique of NCM BNC obtained by replacing all thick arcs of c by arcs labeled by a, all dotted diagonals of c by diagonals labeled by b, all unlabeled edges and bases of c by edges labeled by b, and all unlabeled diagonals of c by diagonals labeled by 1. For instance,
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	2.2.5	ALGEBRAS OVER OPERADS. An operad O encodes a category of algebras whose objects are
	called O-algebras. An O-algebra A O is a vector space endowed with a linear left action
		• : O(n) ⊗ A ⊗n O → A O ,	n ⩾ 1,	(2.2.9)
	satisfying the relations imposed by the structure of O, which are
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	3.1.1	FIRST PROPERTIES.
	▶ Proposition 3.1.1 -Let M be a unitary magma. Then,
	(i) the associative elements of NCM are the ones of CM;
	(ii) the group of symmetries of NCM contains the map ref (defined by (2.2.14) in [Gir20])
		and all the maps Cθ where θ are unitary magma automorphisms of M;
	(iii) the fundamental basis of NCM is a basic set-operad basis if and only if M is right
		cancelable;
	(iv) the map ρ (defined by (2.2.16) in [Gir20]) is a rotation map of NCM endowing it with a
		cyclic operad structure.
	◀ Proof -First, since NCM is a suboperad of CM, each associative element of NCM is an
	associative element of CM. Moreover, since all M-bubbles are in NCM and, as shown in [Gir20],
	all associative elements of CM are linear combinations of M-bubbles, each associative element
	of CM belongs to NCM. This shows (i). Moreover, since for any noncrossing M-clique p, ref(p)
	(resp. ρ(p)) is still noncrossing and ref belongs to the group of symmetries of CM (resp. ρ is
	a rotation map of CM), (ii) (resp. (iv)) holds. Finally, again since NCM is a suboperad of CM,
	since the fundamental basis of CM is a basic set-operad basis, and since NCM(2) = CM(2), (iii)
	holds.		■
	3.1.2	TREELIKE EXPRESSIONS ON BUBBLES. Let p be a noncrossing M-clique of arity n ⩾ 2,
	and (x, y) be a diagonal or the base of p. Let {z	1 , . . . , z k } be the set of vertices of p such that
	7/38		2024-02-02 10:22

  .1.11) Observe that, in (3.1.11), brackets are not necessary since • 1 is associative. Since k ⩾ 2, the arities of each r i , i ∈ [k], are smaller than the one of p. For this reason, by induction hypothesis, each r i belongs to (NCM) T M

  As shown by Proposition 3.1.4, each noncrossing M-clique p of NCM(n) can be encoded by a unique syntax tree bt(p) on B M satisfying some conditions. Moreover, Proposition 3.1.5 shows that a noncrossing M-clique can be expressed (not necessarily in a unique way) as partial compositions of several M-triangles. By combining these two results, we obtain that a noncrossing M-clique p can be encoded by a syntax tree on T M obtained from bt(p) by replacing each of its nodes s of arity ℓ ⩾ 3 by left comb binary syntax trees s ′ on T M satisfying s ′
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	By using Narayana numbers, whose definition is recalled in Section 3.1.6 of [Gir20], we can
	state the following result.				
	▶ Proposition 3.1.7 -Let M be a finite unitary magma. For all n ⩾ 2,	
	dim NCM(n) =	m n+k+1	(m -1) n-k-2	nar(n, k),	(3.1.16)
	0⩽k⩽n-2				
	where m := #M.				
	◀ Proof -				
					2024-02-02 10:22

  Moreover, by Lemma 3.2.1, for syntax trees s and t, we have s ≡ t if and only if st is in R NCM . For this reason, the dimension of R NCM is linked with the cardinalities of all ≡-equivalence

	classes by		
	dim R NCM =	(#[r] ≡ -1).	(3.2.7)
	r∈C		

We now compute (3.2.7) by enumerating each ≡-equivalence class [r] ≡ .

  If s (resp. t) is of the form described by the left (resp. right) side of (3.2.1a), we have by (3.2.16a),

									Operads of decorated cliques II	S. Giraudo
	(a) s →c *		p 2 0 p δ	• 1 c	q 1	q	2	and t	* →c	p 2 0 p δ ′	•	1 c	q	1	q 2	,	(3.2.20)
	where δ := p 1 ⋆ q	0 and δ ′	:= r	1 ⋆ r	0 . Since by (3.2.1a), we have δ = δ ′	, we obtain that s	* ↔ t.
	(b) If s (resp. t) is of the form described by the left (resp. right) side of (3.2.1b), we have by (3.2.16b)
	and by (3.2.16c),															
			s → c q 1 p 0	•	2 c	q 2	p 2	and t	* →c q 1 p 0	• 2 c	q	2	p 2	.	(3.2.21)
	We obtain that s		* ↔ t.													
	(c) Otherwise, s (resp. t) is of the form described by the left (resp. right) side of (3.2.1c). We have
	by (3.2.16c),															
			s →c *	p 1	δ										
																	.2.19)
	where δ := p 2 ⋆ q	0 .													
	Therefore, by Lemma 3.2.1 we have s -t ∈ R				
	16/38																2024-02-02 10:22

NCM for each case. This leads to the fact that s * ↔ t implies st ∈ R NCM , and shows that the space induced by → is a subspace of R NCM . We now assume that s and t are two syntax trees on T M such that st is a generator of R NCM among (3.2.1a), (3.2.1b), and (3.2.1c).

  Arguing by contradiction, assume that → is not confluent. Since by Lemma 3.2.4, → is terminating, there is an integer n ⩾ 1 and two normal forms t and t ′ of → of arity n such that t ̸ = t ′ and t By Proposition 3.1.5, the map ev : Free (K⟨T M ⟩) → NCM is surjective, leading to the fact that the number of normal forms of → of arity n is greater than the number of noncrossing M-cliques of arity n. However, by Lemma 3.2.6, there are as many normal forms of → of arity n as

		§ Suboperads generated by bubbles	Operads of decorated cliques II	S. Giraudo
	noncrossing M-cliques of arity n. This leads to a contradiction and proves the statement of the
	lemma.	■
	3.2.3	PRESENTATION AND KOSZULITY. The results of Sections 3.2.1 and 3.2.2 are finally used here
	to provide a presentation of NCM and prove that NCM is a Koszul operad.
	▶ Theorem 3.2.8 -Let M be a finite unitary magma. Then NCM admits the presenta-
	tion (T M , R NCM ).
	◀ Proof -First, since by Lemmas 3.2.4 and 3.2.7, → is a convergent rewrite rule, and since
	by Lemma 3.2.3, the space induced by → is R NCM , we can regard the underlying space of the
	quotient operad
				O := Free (K⟨T M ⟩) / ⟨R NCM ⟩	(3.2.29)
	as the linear span of all normal forms of →. Moreover, as a consequence of Lemma 3.2.1, the
		We use Theorem 3.2.8 to express the presentations of the operads NCN	2 and NCD	0 , where
	N	2 is the cyclic monoid Z/2Z and D 0 is the multiplicative monoid on {0, 1}. The operad NCN 2 is
	generated by
				.2.28)
	Hence, by Proposition 3.1.6, we observe that T(t) = H	NCM(t) .	■
	▶ Lemma 3.2.7 -For a finite unitary magma M, the rewrite rule → is confluent.
	◀ Proof -18/38	2024-02-02 10:22

* ⇔ t ′

. Now, Lemma 3.2.1 together with Lemma 3.2.3 implies that ev(t) = ev(t ′ ). linear map φ : O → NCM defined for any normal form t of → by φ(t) := ev(t) is an operad morphism. Now, by Proposition 3.1.5, φ is surjective. Moreover, by Lemma 3.2.6, the dimensions of the spaces O(n), n ⩾ 1 are the ones of NCM(n). Hence, φ is an operad isomorphism and the statement of the theorem follows.

■

  Therefore, by Lemma 2.2.1, NCM is Koszul. Finally, the set of normal forms of → described by Lemma 3.2.5 is, by definition, a Poincaré-Birkhoff-Witt basis of NCM. ■

	.2.33c)
	▶ Theorem 3.2.9 -For a finite unitary magma M, NCM is Koszul and the set of normal
	forms of → forms a Poincaré-Birkhoff-Witt basis of NCM.
	19/38

◀ Proof -By Lemma 3.2.3 and Theorem 3.2.8, the rewrite rule → is an orientation of the space of relations R NCM of NCM. Moreover, by Lemmas 3.2.4 and 3.2.7, this rewrite rule is convergent.

2024-02-02 10:22 § Dimensions

  the border of p is the word bor(p) of length n such that, for i ∈ [n], we have bor(p) i = p i .for the set of M-bubbles p such that the bases of p are labeled by B and all edges of p are labeled by E. Moreover, we say that M is (E, B)-quasi-injective if for all x, x ′ ∈ E and y, y ′

	3.3.1	TREELIKE EXPRESSIONS ON BUBBLES. Let B and E be two subsets of M. We write B	B,E M

  , . . . } be an infinite alphabet of noncommutative letters. On the associative algebra K⟨A⟩ of polynomials on A, we define the linear maps ω

	§ Monoids		Operads of decorated cliques II		S. Giraudo
	Noncommutative polynomials and constant term product: Let us now consider the unitary
	magma D 0 . Let A := {a	1 , a 2 1 , ω 0 : K⟨A⟩ → K⟨A⟩,		(3.4.23)
	as follows. For u ∈ A *	, we set ω 1 (u) := u, and					
			ω 0 (u) :=	1, if u = ε,		(3.4.24)
				0, otherwise.	
									.4.22)
	so that (3.4.21) is equal to the polynomial (a 1 + a	2 + a	3 )a	1 a 2 a 2 a	1 a	3 (a 1 a 2 + a	2 a	1 ).
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  This operad is generated by two binary elements ≺ and ≻ satisfying three nontrivial quadratic relations. An isomorphism between Dendr and the suboperad of RatFct generated by f

		§ Operad of formal fractions		Operads of decorated cliques II	S. Giraudo
	and form Sequence A006013 of [Slo]. Moreover, one can see that
												-1 • 1 -1	= -1 •	2	-1 ,	(5.1.4)
	is the only nontrivial relation of degree 2 between the generators of O NCT .
	▶ Proposition 5.1.1 -The operad O NCT is isomorphic to the operad NCT.
	◀ Proof -Let φ NCT : O	NCT (2) → NCT(2) be the linear map satisfying
						φ NCT		-1	= ≺,	(5.1.5a)	φ	NCT	-1	= ≻,	(5.1.5b)
	where ≺ and ≻ are the two binary generators of NCT. In [Cha07], a presentation of NCT
	is described wherein its generators satisfy one nontrivial relation of degree 2. This relation
	can be obtained by replacing each Z-clique appearing in (5.1.4) by its image by φ	NCT . For this
	reason, φ	NCT uniquely extends to an operad morphism. Moreover, because the image of φ NCT
	contains all the generators of NCT, this morphism is surjective. Finally, the Hilbert series of
	NCT satisfies (5.1.2), so that O	NCT and NCT have the same dimensions. Therefore, φ NCT is an
	operad isomorphism.						■
	f	Loday as shown in [Lod10] that the suboperad of RatFct generated by the rational functions 1 , u 1 (u 2 ) := u -1 1 and f 2 (u 1 , u 2 ) := u -1 2 is isomorphic to the dendriform operad Dendr [Lod01].
													1 and f 2
	sends ≺ to f 2 and ≻ to f	1 . The map F	Id introduced in [Gir20] is an operad morphism from CZ to
	RatFct. Hence, the restriction of F Id on O NCT is also an operad morphism from O NCT to RatFct.
	Moreover, since						
			F Id	-1	=	1 u 1	= f 1 ,	(5.1.6a)	F Id	-1	=	1 2 u	= f 2 ,	(5.1.6b)
	the map F	Id is a surjective operad morphism from O NCT to Dendr.
		5.1.2	OPERAD OF FORMAL FRACTIONS. The operad of formal fractions FF is an operad intro-
	duced in [CHN16]. Its elements of arity n ⩾ 1 are fractions whose numerators and denominators
	are formal products of subsets of [n]. For instance,
													{1, 3, 4}{2}{4, 6}
													{2, 3, 5}{4}	(5.1.7)
	is an element of arity 6 of FF. We do not describe the partial composition of this operad since
	its knowledge is not essential for the sequel. The operad FF admits a suboperad FF 4 , defined
	as the binary suboperad of FF generated by
	-1 By using Proposition 3.3.2, we find that the Hilbert series H O , -1 . 1 {1}{1, 2} , 1 {2}{1, 2} , 1 {1, 2} , 1 {1}{2} NCT (t) of O . t -H O NCT (t) + 2H O NCT (t) 2 -H O We explain here how to construct FF 4 through the clique construction. NCT satisfies NCT (t) 3 = 0. The first dimensions of O are Let O FF 4 be the suboperad of CZ generated by	(5.1.1) (5.1.8) (5.1.2)
													1
												1, 2, 7, 30, 143, 728, 3876, 21318,	(5.1.3)
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  The linear span of together with all noncrossing MBNC -cliques without edges nor bases labeled by 1 forms a suboperad of NCM BNC isomorphic to BNC.Moreover, φBNC is an isomorphism between these two operads. We denote the subspace of NCM BNC described in the statement of the proposition by O BNC . First of all, it follows from the definition of the partial composition of NCM BNC that O BNC is closed under the partial composition operation. Hence, and since O BNC contains the unit of NCM BNC , O BNC is an operad. Second, observe that the image of φ BNC is the underlying space of O BNC and, from the definition of the partial composition of BNC, one can check that φ BNC is an operad morphism. Finally, since φ BNC is a bijection from BNC to O BNC , the statement of the proposition follows. ■ Hence, Proposition 5.2.1 shows that the operad BNC can be built through the noncrossing clique construction. Moreover, observe that in [CG14], an automorphism of BNC called complement is considered. The complement of a bicolored noncrossing configuration is an involution acting by modifying the labels of some of its arcs. Under our setting, this automorphism translates simply into the map Cθ : O BNC → O BNC where O BNC is the operad isomorphic to BNC described in the statement of Proposition 5.2.1 and θ : M BNC → M BNC is the unitary magma automorphism of M BNC satisfying θ(1) = 1, θ(a) = b, and θ(b) = a. Moreover, it is shown in [CG14] that the set of bicolored noncrossing configurations of arity 2 is a minimal generating set of BNC. Thus, by Proposition 5.2.1, the set

	§	Operads of decorated cliques II	S. Giraudo
	▶ Proposition 5.2.1 -		
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◀ Proof -
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S. Giraudo labeled by p 2 ⋆ r 0 , and by contracting each of these two edges when labeled by 1 M . For instance, in the free NCN 3 -algebra, we have (3.4.5d) 3.4.3 NCM-ALGEBRAS FROM ASSOCIATIVE ALGEBRAS. Let A be an associative algebra with associative product denoted by ⊙, and ω x : A → A, x ∈ M, (3.4.6) be a family of linear maps, not necessarily associative algebra morphisms, indexed by the elements of M. We say that A together with this family (3.4.6) of maps is M-compatible if

where Id A is the identity map on A, and ω x • ω y = ω x⋆y , (3.4.8) for all x, y ∈ M. We now use M-compatible associative algebras to construct NCM-algebras.

▶ Theorem 3.4.1 -Let M be a finite unitary magma and A be an M-compatible associative algebra. The vector space A endowed with the binary linear operations ◀ Proof -We prove that the operations (3.4.9) satisfy Relations (3.4.2a), (3.4.2b), and (3.4.2c) of NCM-algebras. Since M is finite, this amounts to showing that these operations endow A with an NCM-algebra structure. For this, let a 1 , a 2 , and a 3 be three elements of A, and p, q, and r be three M-triangles.
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(3.4.11)

(3.4.12)

(3.4.13) Hence (3.4.2c) holds.

Consequently, A is an NCM-algebra. ■ By Theorem 3.4.1, A has the structure of an NCM-algebra. Hence, there is a left action • of the operad NCM on the tensor algebra of A of the form

whose definition comes from the ones of the operations (3.4.9) and Relation (2.2.10). We describe here an algorithm to compute the action of an element of NCM of arity n on tensors a

where the product of (3.4.15) denotes the iterated version of the associative product ⊙ of A. If p is a noncrossing M-clique of arity n, then p acts recursively on a Words and erasing concatenation: Consider here the monoid D ℓ for an ℓ ⩾ 0 defined in [START_REF] Giraudo | Operads of decorated cliques I: Construction and quotients[END_REF].

By Proposition 3.4.2, the operations (3.4.29) endow K⟨D * ℓ ⟩ with the structure of an NCD ℓ -algebra.

For instance, for all words u and v of D * ℓ , we have

where, for a word w of D * ℓ and an element d j of D ℓ , j ∈ [ℓ], w d j is the word obtained from w by replacing each occurrence of 1 by d j and each occurrence of d i , i ∈ [ℓ], by 0.

KOSZUL DUAL

Since, by Theorem 3.2.8, the operad NCM is binary and quadratic, this operad admits a Koszul dual NCM ! . We end the study of NCM by collecting the main properties of NCM ! .

PRESENTATION

Let R ! NCM be the subspace of Free (K⟨T M ⟩) (3) generated by the elements

where p and q are M-triangles.

▶ Proposition 4.1.1 -Let M be a finite unitary magma. Then the Koszul dual NCM ! of

be a generic element of R ! NCM , where T 3 is the set of all syntax trees on T M of arity 3 and the λ t are coefficients of K. By definition of Koszul duality of operads, ⟨r, f⟩ = 0 for all r ∈ R NCM , where ⟨-, -⟩ is the scalar product defined in (2.2.7). Then, since R NCM is the subspace of Free (K⟨T M ⟩) (3) generated by (3.2.1a), (3.2.1b), and (3.2.1c), we have 

where p, q, and r are M-triangles. This implies that f is of the form

where, for M-triangles p and q and δ ∈ M, the λ

2 , and λ

(3) p 1 ,p 0 ,q 1 ,q 2 ,δ are coefficients of K. Therefore, f belongs to the space generated by (4.1.1a), (4.1.1b), and (4.1.1c). Finally, since the coefficients of each of these relations satisfy (4.1.3a), (4.1.3b), and (4.1.3c), the statement of the proposition follows. ■

We use Proposition 4.1.1 to express the presentations of the operads NCN ! 2 and NCD ! 0 . The operad NCN ! 2 is generated by 

On the other hand, the operad NCD ! 0 is generated by

and these generators satisfies only the nontrivial relations 
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◀ Proof -To compute the dimension of the space of relations R ! NCM of NCM ! , we consider the presentation of NCM ! provided by Proposition 4.1.1. Consider the space R 1 generated by the family consisting in the elements (4.1.1a). Since this family is linearly independent and each of its element is totally specified by a tuple (p 0 , p 2 , q 1 , q 2 , δ) ∈ M 4 × M, we obtain dim R 1 = m 4 (m -1). (4.1.10)

For the same reason, the dimension of the space R 3 generated by the elements (4.1.1c) satisfies dim R 3 = dim R 1 . Now, let R 2 be the space generated by the elements (4.1.1b). Since this family is linearly independent and each of its elements is totally specified by a tuple (p 0 , p

we obtain the stated formula (4.1.9) by summing the dimensions of R 1 , R 2 , and R

. ■

Observe that, by Propositions 3.2.2 and 4.1.2, we have

as expected by Koszul duality, where m := #M.

HILBERT SERIES AND DIMENSIONS

An algebraic equation for the Hilbert series of NCM ! is described and a formula involving Narayana numbers to compute its coefficients is provided.

▶ Proposition 4.2.1 -Let M be a finite unitary magma. The Hilbert series H

◀ Proof -Let G(t) be the generating series such that G(-t) satisfies (4.2.1). Therefore, G(t)

and, by solving (4.2.2) as a quadratic equation where t is the unknown, we obtain 

showing that F(t) and G(t) are the inverses of each other for series composition. Now, since by Theorem 3.2.9, NCM is a Koszul operad, the Hilbert series of NCM and NCM ! satisfy (2.2.8). Therefore, (4.2.4) implies that the Hilbert series of NCM ! is the series (4.2.7d) The second one is Sequence A234596 of [Slo]. The last two sequences are not listed in [Slo] at this time. It is worthwhile to observe that the dimensions of NCM ! for #M = 2 are the ones of the operad BNC of bicolored noncrossing configurations (see Section 5.2).

COMBINATORIAL BASIS

To describe a basis of NCM ! , we introduce the following sort of M-decorated cliques. A dual M-clique is an M 2 -clique such that its base and its edges are labeled by pairs (a, a) ∈ M 2 , and all solid diagonals are labeled by pairs (a, b) ∈ M 2 with a ̸ = b. Observe that a non-solid diagonal of a dual M-clique is labeled by (1 M , 1 M ). All definitions about M-cliques given in [START_REF] Giraudo | Operads of decorated cliques I: Construction and quotients[END_REF] remain valid for dual M-cliques. For example, and we obtain that T(t) admits (4.2.5) as solution. Then, by Proposition 4.2.1, for m ̸ = 1, this implies the statement of the proposition. If m = 1, it follows from Proposition 4.1.1 that NCM ! is isomorphic to the associative operad As (see for instance [START_REF] Loday | Algebraic Operads[END_REF] for the definition of this operad). Hence, in this case, dim NCM ! (n) = 1 for all n ⩾ 1. Since there is exactly one dual M-clique of arity n for n ⩾ 1, the statement of the proposition is satisfied. ■ Proposition 4.3.1 gives a combinatorial description of the elements of NCM ! . Nevertheless, for the time being we do not know a partial composition on the linear span of these elements providing a realization of NCM ! .