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OPERADS OF DECORATED CLIQUES I:
CONSTRUCTION AND QUOTIENTS

SAMUELE GIRAUDO
ABSTRACT. We introduce a functorial construction C which takes unitary magmas M as in-put and produces operads. The obtained operads involve configurations of chords labeled byelements ofM, calledM-decorated cliques and generalizing usual configurations of chords.By considering combinatorial subfamilies of M-decorated cliques defined, for instance, bylimiting the maximal number of crossing diagonals or the maximal degree of the vertices, weobtain suboperads and quotients of CM. This leads to a new hierarchy of operads contain-ing, among others, operads on noncrossing configurations, Motzkin configurations, forests,dissections of polygons, and involutions. Besides, the construction C leads to alternativedefinitions of the operads of simple and double multi-tildes, and of the gravity operad.
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2 SAMUELE GIRAUDO
INTRODUCTIONConfigurations of chords on regular polygons are very classical combinatorial objects.Up to some restrictions or enrichments, sets of these objects can be put in bijection withseveral combinatorial families. For instance, it is well-known that triangulations [DLRS10],forming a particular subset of the set of all configurations of chords, are in one-to-onecorrespondence with binary trees, and a lot of structures and operations on binary treestranslate nicely on triangulations. Indeed, among others, the rotation operation on binarytrees [Knu98] is the covering relation of the Tamari order [HT72] and this operation trans-lates as a diagonal flip in triangulations. Also, noncrossing configurations [FN99] formanother interesting subfamily of such chord configurations. Natural generalizations ofnoncrossing configurations consist in allowing, with more or less restrictions, some cross-ing diagonals. One of these families is formed by the multi-triangulations [CP92] whereinthe number of mutually crossing diagonals is bounded. In particular, the class of combi-natorial objects in bijection with some configurations of chords is large enough in orderto contain, among others, dissections of polygons, noncrossing partitions, permutations,and involutions.

On the other hand, coming historically from algebraic topology [May72, BV73], oper-ads provide an abstraction of the notion of operators (of any arities) and their composi-tions. In more concrete terms, operads are algebraic structures abstracting the notionof planar rooted trees and their grafting operations (see [LV12] for a complete expositionof the theory and [Mén15] for an exposition focused on symmetric set-operads). Themodern treatment of operads in algebraic combinatorics consists in regarding combi-natorial objects like operators endowed with gluing operations mimicking the composi-tion of operators. In the last years, a lot of combinatorial sets and combinatorial spaceshave been endowed fruitfully with the structure of an operad (see for instance [Cha08]for an exposition of known interactions between operads and combinatorics, focused ontrees, [LMN13, GLMN16] where operads abstracting operations in language theory areintroduced, [CG14] for the study of an operad involving particular noncrossing configura-tions, [Gir15] for a general construction of operads on many combinatorial sets, [Gir16a]where operads are constructed from posets, and [CHN16] where operads on variousspecies of trees are introduced). In most of the cases, this approach brings results aboutenumeration, helps to discover new statistics, and leads to establish new links (by mor-phisms) between different combinatorial sets or spaces. We can observe that most of thesubfamilies of polygons endowed with configurations of chords discussed above are stablefor several natural composition operations. Even better, some of these can be described asthe closure with respect to these composition operations of small sets of polygons. For thisreason, operads are very promising candidates, among the modern algebraic structures,to study such objects under an algebraic and combinatorial flavor.
The purpose of this work is twofold. First, we are concerned with endowing the linearspan of the configurations of chords with the structure of an operad. This leads to seeingthese objects under a new light, stressing some of their combinatorial and algebraic prop-erties. Second, we would provide a general construction of operads of configurations of
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chords rich enough so that it includes some already known operads. As a consequence,we obtain alternative definitions of existing operads and new interpretations of these. Forthis aim, we work here with M-decorated cliques (or M-cliques for short), that are com-plete graphs whose arcs are labeled by elements of M, where M is a unitary magma.These objects are natural generalizations of configurations of chords since the arcs ofany M-clique labeled by the unit of M are considered as missing. The elements of Mdifferent from the unit allow moreover to handle chords of different colors. For instance,each usual noncrossing configuration c can be encoded by an N2-clique p, where N2 is thecyclic additive unitary magma Z/2Z, wherein each arc labeled by 1 ∈ N2 in p denotes thepresence of the same arc in c, and each arc labeled by 0 ∈ N2 in p denotes its absence in c.Our construction is materialized by a functor C from the category of unitary magmasto the category of operads. It builds, from any unitary magma M, an operad CM on
M-cliques. The partial composition p ◦i q of two M-cliques p and q of CM consists ingluing the ith edge of p (with respect to a precise indexation) and a special arc of q, calledthe base, together to form a new M-clique. The magmatic operation of M explains howto relabel the two overlapping arcs.This operad CM has a lot of properties, which can be apprehended both under a com-binatorial and an algebraic point of view. First, many families of particular configurationsof chords form quotients or suboperads of CM. We can for instance control the degreesof the vertices or the crossings between diagonals to obtain new operads. We can alsoforbid all diagonals, or some labels for the diagonals or the edges, or all nestings of di-agonals, or even all cycles formed by arcs. All these combinatorial particularities andrestrictions on M-cliques behave well algebraically. Moreover, by using the fact that thedirect sum of two ideals of an operad O is still an ideal of O, these constructions can bemixed to get even more operads. For instance, it is well-known that Motzkin configura-tions, that are polygons with disjoint noncrossing diagonals, are enumerated by Motzkinnumbers [Mot48]. Since a Motzkin configuration can be encoded by anM-clique where allvertices are of degree at most 1 and no diagonal crosses another one, we obtain an operadMotM on colored Motzkin configurations which is both a quotient of Deg1M, the quotientof CM consisting in all M-cliques such that all vertices are of degree at most 1, and ofCro0M, the quotient (and suboperad) of CM consisting in all noncrossingM-cliques. Wealso get quotients of CM involving, among others, Schröder trees, forests of paths, forestsof trees, dissections of polygons, Lucas configurations, with colored versions for each ofthese. This leads to a new hierarchy of operads, wherein links between its componentsappear as surjective or injective operad morphisms. One of the most notable of these isbuilt by considering the D0-cliques that have vertices of degree at most 1, where D0 is themultiplicative unitary magma on {0, 1}. This is in fact the quotient Deg1D0 of CD0 andinvolves involutions (or equivalently, standard Young tableaux by the Robinson-Schenstedcorrespondence [Lot02]). To the best of our knowledge, Deg1D0 is the first nontrivialoperad on these objects.As an important remark at this stage, let us highlight that whenM is nontrivial, CM isnot a binary operad. Indeed, all its minimal generating sets are infinite and its generatorshave arbitrarily high arities. Furthermore, the construction C maintains some links with
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the operad RatFct of rational functions introduced by Loday [Lod10]. In fact, provided that
M satisfies some conditions, each M-clique encodes a rational function. This defines anoperad morphism from CM to RatFct. Moreover, the construction C allows to constructalready known operads in original ways. For instance, for well-chosen unitary magmas
M, the operads CM contain MT and DMT, two operads respectively defined in [LMN13]and [GLMN16] that involve multi-tildes and double multi-tildes, operators coming fromformal language theory [CCM11]. The operads CM also contains Grav, the gravity op-erad, a symmetric operad introduced by Getzler [Get94], seen here as a nonsymmetricone [AP15].This text is organized as follows. Section 1 sets our notations, general definitions, andtools about nonsymmetric operads (since we deal only with nonsymmetric operads here,we call these simply operads) and configurations of chords. In Section 2, we introduce
M-cliques, the construction C, and study some of its properties. Then, Section 3 is devotedto define several suboperads and quotients of CM. This leads to plenty of new operads onparticularM-cliques. Finally, in Section 4, we use the construction C to provide alternativedefinitions of some known operads.

This paper is an extended version of [Gir17], containing the proofs of the presentedresults.
Acknowledgements. The author would like to thank warmly Dan Petersen for introducinghim to the gravity operad and highlighting links between this operad and the current work.The author also thanks the anonymous reviewer for his time and his suggestions, whichhave greatly contributed to improving the article.
General notations and conventions. All the algebraic structures of this article have a fieldof characteristic zero K as ground field. For any set S, K 〈S〉 denotes the linear span ofthe elements of S. For any integers a and c, [a, c] denotes the set {b ∈ N : a 6 b 6 c}and [n], the set [1, n]. The cardinality of a finite set S is denoted by #S. If u is a word, itsletters are indexed from left to right from 1 to its length |u|. If a is a letter, |u|a denotesthe number of occurrences of a in u.

1. ELEMENTARY DEFINITIONS AND TOOLSWe set here our notations and recall some definitions about operads and related struc-tures. We also introduce some notations and definitions about configurations of chords inpolygons.
1.1. Nonsymmetric operads. We adopt most of notations and conventions of [LV12] aboutoperads. For the sake of completeness, we recall here the elementary notions aboutoperads employed thereafter.
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A nonsymmetric operad in the category of vector spaces, or a nonsymmetric operadfor short, is a graded vector space

O :=⊕
n>1O(n) (1.1.1)

together with linear maps
◦i : O(n)⊗ O(m)→ O(n +m − 1), n,m > 1, i ∈ [n], (1.1.2)called partial compositions, and a distinguished element 1 ∈ O(1), the unit of O. This datahas to satisfy the three relations(x ◦i y) ◦i+j−1 z = x ◦i (y ◦j z), x ∈ O(n), y ∈ O(m), z ∈ O(k), i ∈ [n], j ∈ [m], (1.1.3a)

(x ◦i y) ◦j+m−1 z = (x ◦j z) ◦i y, x ∈ O(n), y ∈ O(m), z ∈ O(k), i < j ∈ [n], (1.1.3b)
1 ◦1 x = x = x ◦i 1, x ∈ O(n), i ∈ [n]. (1.1.3c)Since we consider in this paper only nonsymmetric operads, we shall call these simply

operads. Moreover, in this work, we shall only consider operads O for which O(1) hasdimension 1.When O is such that all O(n) have finite dimensions for all n > 1, the Hilbert seriesof O is the series HO(t) defined by
HO(t) := ∑

n>1 dimO(n) tn. (1.1.4)
If x is an element of O such that x ∈ O(n) for an n > 1, we say that n is the arity of x andwe denote it by |x|. If O1 and O2 are two operads, a linear map φ : O1 → O2 is an operad
morphism if it respects arities, sends the unit of O1 to the unit of O2, and commutes withpartial composition maps. We say that O2 is a suboperad of O1 if O2 is a graded subspaceof O1, O1 and O2 have the same unit, and the partial compositions of O2 are the ones of
O1 restricted on O2. For any subset G of O, the operad generated by G is the smallestsuboperad OG of O containing G. When OG = O and G is minimal with respect to theinclusion among the subsets of G satisfying this property, G is a minimal generating setof O and its elements are generators of O. An operad ideal of O is a graded subspace Iof O such that, for any x ∈ O and y ∈ I , x ◦i y and y ◦j x are in I for all valid integers iand j . Given an operad ideal I of O, one can define the quotient operad O/I of O by I inthe usual way.Let us recall and set some more definitions about operads. The Hadamard productbetween the two operads O1 and O2 is the operad O1∗O2 satisfying (O1∗O2)(n) = O1(n)⊗O2(n),and its partial composition is defined component-wise from the partial compositions of O1and O2. An element x of O(2) is associative if x ◦1 x = x ◦2 x. An antiautomorphism of Ois a graded vector space automorphism φ of O sending the unit of O to the unit of O andsuch that for any x ∈ O(n), y ∈ O, and i ∈ [n], φ(x ◦i y) = φ(x) ◦n−i+1 φ(y). A symmetryof O is either an automorphism or an antiautomorphism of O. The set of all symmetriesof O forms a group for the map composition, called the group of symmetries of O. Abasis B := tn>1B(n) of O is a set-operad basis if all partial compositions of elements of
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B belong to B. In this case, we say that O is a set-operad with respect to the basis B.Moreover, when all the maps

◦yi : B(n)→ B(n +m − 1), n,m > 1, i ∈ [n], y ∈ B(m), (1.1.5)defined by
◦yi (x) = x ◦i y, x ∈ B(n), (1.1.6)are injective, we say that B is a basic set-operad basis of O. This notion is a slightlymodified version of the original notion of basic set-operads introduced by Vallette [Val07].Finally, O is cyclic (see [GK95]) if there is a map
ρ : O(n)→ O(n), n > 1, (1.1.7)satisfying, for all x ∈ O(n), y ∈ O(m), and i ∈ [n],

ρ(1) = 1, (1.1.8a)
ρn+1(x) = x, (1.1.8b)

ρ(x ◦i y) = {ρ(y) ◦m ρ(x) if i = 1,
ρ(x) ◦i−1 y otherwise. (1.1.8c)

We call such a map ρ a rotation map.
1.2. Configurations of chords. Configurations of chords are very classical combinatorialobjects defined as collections of diagonals and edges in regular polygons. The literatureabounds of studies of various kinds of configurations. One can cite for instance [DLRS10]about triangulations, [FN99] about noncrossing configurations, and [CP92] about multi-triangulations. Combinatorial properties related with crossings and nestings in config-urations of chords appear in [Jon05, CDD+07, RS10, SS12]. We provide here definitionsabout these objects and consider a generalization of configurations wherein the edges anddiagonals are labeled by a set.
1.2.1. Polygons. A polygon of size n > 1 is a directed graph p on the set of vertices [n+1].An arc of p is a pair of integers (x, y) with 1 6 x < y 6 n + 1, a diagonal is an arc(x, y) different from (x, x + 1) and (1, n + 1), and an edge is an arc of the form (x, x + 1)and different from (1, n + 1). We denote by Ap (resp. Dp, Ep) the set of all arcs (resp.diagonals, edges) of p. For any i ∈ [n], the ith edge of p is the edge (i, i + 1), and the arc(1, n + 1) is the base of p.In our graphical representations, each polygon is drawn so that its base is the bottom-most segment, vertices are implicitly numbered from 1 to n + 1 in clockwise direction,and the diagonals are not drawn. For example,

p :=
1

2
3 4

5
6

(1.2.1)
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is a polygon of size 5. Its set of all diagonals is

Dp = {(1, 3), (1, 4), (1, 5), (2, 4), (2, 5), (2, 6), (3, 5), (3, 6), (4, 6)}, (1.2.2)its set of all edges is
Ep = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)}, (1.2.3)and its set of all arcs is

Ap = Dp t Ep t {(1, 6)}. (1.2.4)
1.2.2. Configurations. For any set S, an S-configuration (or a configuration when S isknown without ambiguity) is a polygon p endowed with a partial function

φp :Ap → S. (1.2.5)When φp((x, y)) is defined, we say that the arc (x, y) is labeled and we write simply p(x, y)instead of φp((x, y)). When the base of p is labeled, we write simply p0 for p(1, n+1), where
n is the size of p. Finally, when the ith edge of p is labeled, we write simply pi for p(i, i+1).In our graphical representations, we shall represent any S-configuration p by drawinga polygon of the same size as the one of p following the conventions explained before,and by labeling its arcs accordingly. For instance

p := a
bab (1.2.6)

is an {a,b}-configuration. The arcs (1, 2) and (1, 4) of p are labeled by a, the arcs (2, 5) and(4, 5) are labeled by b, and the other arcs are unlabeled.
1.2.3. Additional definitions. Let us now provide some definitions and statistics on con-figurations. Let p be a configuration of size n. The skeleton of p is the undirected graphskel(p) on the set of vertices [n + 1] such that for any x < y ∈ [n + 1], there is an arc
{x, y} in skel(p) if (x, y) is labeled in p. The degree of a vertex x of p is the number ofvertices adjacent to x in skel(p). The degree degr(p) of p is the maximal degree amongits vertices. Two (non-necessarily labeled) diagonals (x, y) and (x′, y ′) of p are crossing if
x < x′ < y < y ′ or x′ < x < y ′ < y. The crossing number of a labeled diagonal (x, y) of
p is the number of labeled diagonals (x′, y ′) such that (x, y) and (x′, y ′) are crossing. The
crossing number cros(p) of p is the maximal crossing among its labeled diagonals. Whencros(p) = 0, there are no crossing diagonals in p and in this case, p is noncrossing. A(non-necessarily labeled) arc (x′, y ′) is nested in a (non-necessarily labeled) arc (x, y) of pif x 6 x′ < y ′ 6 y. We say that p is nesting-free if for any labeled arcs (x, y) and (x′, y ′) of psuch that (x′, y ′) is nested in (x, y), (x, y) = (x′, y ′). Besides, p is acyclic if skel(p) is acyclic,that is there is no subset {x1, . . . , xk} of [n+1] of cardinality k > 3 such that {xi, xi+1} and
{xk, x1} are arcs in skel(p) for all i ∈ [k − 1]. When p has no labeled edges nor labeledbase, p is white. If p has no labeled diagonals, p is a bubble. A triangle is a configurationof size 2. Obviously, all triangles are bubbles, and all bubbles are noncrossing.
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2. FROM UNITARY MAGMAS TO OPERADSWe describe in this section our construction from unitary magmas to operads and studyits main algebraic and combinatorial properties.

2.1. Operads of decorated cliques. We present here our main combinatorial objects,the decorated cliques. The construction C, which takes a unitary magma as input andproduces an operad, is defined.
2.1.1. Unitary magmas. Recall first that a unitary magma is a set endowed with a binaryoperation ? admitting a left and right unit 1M . For convenience, we denote by M̄ the set
M \ {1M}. To explore some examples in this article, we shall mostly consider four sortsof unitary magmas: the additive unitary magma on all integers denoted by Z, the cyclicadditive unitary magma on Z/`Z denoted by N` , the unitary magma

D` := {1, 0,d1, . . . ,d`} (2.1.1)where 1 is the unit of D` , 0 is absorbing, and di ? dj = 0 for all i, j ∈ [`], and the unitarymagma
E` := {1, e1, . . . , e`} (2.1.2)where 1 is the unit of E` and ei ? ej = 1 for all i, j ∈ [`]. Observe that sincee1 ? (e1 ? e2) = e1 ? 1 = e1 6= e2 = 1 ? e2 = (e1 ? e1) ? e2, (2.1.3)all unitary magmas E` , ` > 2, are not monoids.

2.1.2. Decorated cliques. An M-decorated clique (or an M-clique for short) is an M-configuration p such that all arcs of p have labels. When the arc (x, y) of p is labeled by anelement different from 1M , we say that the arc (x, y) is solid. By convention, we requirethat the M-clique of size 1 having its base labeled by 1M is the only such object ofsize 1. The set of all M-cliques is denoted by CM .In our graphical representations, we shall represent any M-clique p by following thedrawing conventions of configurations explained in Section 1.2.2 with the difference thatnon-solid diagonals are not drawn. For instance,
p :=

−1 2 1
−1 3

21 (2.1.4)
is a Z-clique such that, among others p(1, 2) = −1, p(1, 5) = 2, p(3, 7) = −1, p(5, 7) = 1,
p(2, 3) = 0 (because 0 is the unit of Z), and p(2, 6) = 0 (for the same reason).Let us now provide some definitions and statistics on M-cliques. The underlying con-
figuration of p is the M̄-configuration p̄ of the same size as the one of p and such that
p̄(x, y) := p(x, y) for all solid arcs (x, y) of p, and all other arcs of p̄ are unlabeled. The
skeleton, (resp. degree, crossing number) of p is the skeleton (resp. the degree, thecrossing number) of p̄. Moreover, p is nesting-free, (resp. acyclic, white, an M-bubble,
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an M-triangle), if p̄ is nesting-free (resp. acyclic, white, a bubble, a triangle). The set ofall M-bubbles (resp. M-triangles) is denoted by BM (resp. TM).
2.1.3. Partial composition of M-cliques. From now, the arity of an M-clique p is its sizeand is denoted by |p|. For any unitary magma M, we define the vector space

CM :=⊕
n>1 CM(n) = K 〈CM〉 , (2.1.5)

where CM(n) is the linear span of allM-cliques of arity n, n > 1. The set CM forms hencea basis of CM called fundamental basis. Observe that the space CM(1) has dimension1 since it is the linear span of the M-clique . We endow CM with partial compositionmaps
◦i : CM(n)⊗CM(m)→ CM(n +m − 1), n,m > 1, i ∈ [n], (2.1.6)defined linearly, in the fundamental basis, in the following way. Let p and q be two M-cliques of respective arities n and m, and i ∈ [n] be an integer. We set p◦iq as theM-cliqueof arity n +m − 1 such that, for any arc (x, y) where 1 6 x < y 6 n +m,

(p ◦i q)(x, y) :=


p(x, y) if y 6 i,
p(x, y −m + 1) if x 6 i < i +m 6 y and (x, y) 6= (i, i +m),
p(x −m + 1, y −m + 1) if i +m 6 x,
q(x − i + 1, y − i + 1) if i 6 x < y 6 i +m and (x, y) 6= (i, i +m),
pi ? q0 if (x, y) = (i, i +m),
1M otherwise. (2.1.7)We recall that ? denotes the operation ofM and 1M its unit. Graphically, p ◦i q is obtainedby gluing the base of q onto the ith edge of p and by labeling this arc by pi ? q0, and byadding all required non solid diagonals on the graph thus obtained to become a clique(see Figure 1). For example, in CZ, one has the two partial compositions

pii i+1
p ◦i

q0
q = pii i+1

p

q0
q = i i+mpi ? q0

FIGURE 1. The partial composition of CM, described in graphical terms. Here, p and qare two M-cliques. The arity of q is m and i is an integer between 1 and |p|.

1 −2
−2 1 ◦2 1

3
1 2 =

1 −2
1 11

2
1 , (2.1.8a)
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1 −2
−2 1 ◦2 1

2
1 2 =

1 −2
1 1

2
1 . (2.1.8b)

2.1.4. Functorial construction from unitary magmas to operads. IfM1 andM2 are twounitary magmas and θ :M1 →M2 is a unitary magma morphism, we defineCθ : CM1 → CM2 (2.1.9)as the linear map sending anyM1-clique p of arity n to theM2-clique (Cθ)(p) of the samearity such that, for any arc (x, y) where 1 6 x < y 6 n + 1,((Cθ)(p))(x, y) := θ(p(x, y)). (2.1.10)Graphically, (Cθ)(p) is the M2-clique obtained by relabeling each arc of p by the image ofits label by θ.
Theorem 2.1.1. The construction C is a functor from the category of unitary magmas
to the category of operads. Moreover, C respects injections and surjections.

Proof. Let M be a unitary magma. The fact that CM endowed with the partial compo-sition (2.1.7) is an operad can be established by showing that the two associativity rela-tions (1.1.3a) and (1.1.3b) of operads are satisfied. This is a technical but a simple verifica-tion. Since CM(1) contains and this element is the unit for this partial composition,(1.1.3c) holds. Moreover, let M1 and M2 be two unitary magmas and θ : M1 → M2 bea unitary magma morphism. The fact that the map Cθ defined in (2.1.10) is an operadmorphism is straightforward to check. All this implies that C is a functor. Finally, the factthat C respects injections and surjections is also straightforward to verify. �We name the construction C as the clique construction and CM as the M-clique
operad. Observe that the fundamental basis of CM is a set-operad basis of CM. Besides,whenM is the trivial unitary magma {1M}, CM is the linear span of all decorated cliqueshaving only non-solid arcs. Thus, each space CM(n), n > 1, is of dimension 1 and it followsfrom the definition of the partial composition of CM that this operad is isomorphic to theassociative operad As. The next result shows that the clique construction is compatiblewith the Cartesian product of unitary magmas.
Proposition 2.1.2. Let M1 and M2 be two unitary magmas. Then, C(M1 × M2) is
isomorphic to the Hadamard product of operads (CM1) ∗ (CM2).
Proof. Let φ : (CM1) ∗ (CM2) → C(M1 ×M2) be the linear map defined as follows. Forany M1-clique p of CM1 and any M2-clique q of CM2 both of arity n, φ(p ⊗ q) is the
M1 ×M2-clique defined, for any 1 6 x < y 6 n + 1, by(φ(p⊗ q)) (x, y) := (p(x, y), q(x, y)). (2.1.11)Let the linear map ψ : C(M1×M2)→ (CM1)∗ (CM2) defined, for anyM1×M2-clique r ofC(M1 ×M2) of arity n, as follows. The M1-clique p and the M2-clique q of arity n of the
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tensor p⊗ q := ψ(r) are defined, for any 1 6 x < y 6 n + 1, by p(x, y) := a and q(x, y) := bwhere (a, b) = r(x, y). Since we observe immediately that ψ is the inverse of φ, φ is abijection. Moreover, it follows from the definition of the partial composition of cliqueoperads that φ is an operad morphism. The statement of the proposition follows. �

2.2. General properties. We investigate here some properties of clique operads, as theirdimensions, their minimal generating sets, the fact that they admit a cyclic operad struc-ture, and describe their partial compositions over two alternative bases.
2.2.1. Binary relations. Let us start by remarking that, depending on the cardinality mof M, the set of all M-cliques can be interpreted as particular binary relations. When
m > 4, let us set M = {1M, a,b, c, . . . } so that a, b, and c are distinguished pairwisedistinct elements of M different from 1M . Given an M-clique p of arity n > 2, we build abinary relation R on [n + 1] satisfying, for all x < y ∈ [n + 1],

xRy if p(x, y) = a,
yRx if p(x, y) = b,

xRy and yRx if p(x, y) = c. (2.2.1)
In particular, when m = 2 (resp. m = 3, m = 4), M = {1, c} (resp. M = {1, a,b},
M = {1, a,b, c}) and the set of all M-cliques of arities n > 2 is in one-to-one correspon-dence with the set of all irreflexive and symmetric (resp. irreflexive and antisymmetric,irreflexive) binary relations on [n+ 1]. Therefore, the operads CM can be interpreted asoperads involving binary relations with more or less properties.
2.2.2. Dimensions and minimal generating set.

Proposition 2.2.1. Let M be a finite unitary magma. For all n > 2,dim CM(n) = m(n+12 ), (2.2.2)
where m := #M.

Proof. By definition of the clique construction and ofM-cliques, the dimension of CM(n)is the number of maps from the set {(x, y) ∈ [n + 1]2 : x < y
} to M. Therefore, when

n > 2, this implies (2.2.2). �

From Proposition 2.2.1, the first dimensions of CM depending on m := #M are1, 1, 1, 1, 1, 1, 1, 1, m = 1, (2.2.3a)1, 8, 64, 1024, 32768, 2097152, 268435456, 68719476736, m = 2, (2.2.3b)
1, 27, 729, 59049, 14348907, 10460353203, 22876792454961,150094635296999121, m = 3, (2.2.3c)
1, 64, 4096, 1048576, 1073741824, 4398046511104, 72057594037927936,4722366482869645213696, m = 4. (2.2.3d)
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Except for the first terms, the second one forms Sequence A006125, the third one formsSequence A047656, and the last one forms Sequence A053763 of [Slo].
Lemma 2.2.2. Let M be a unitary magma, p be an M-clique of arity n > 2, and (x, y)
be a diagonal of p. Then, the following two assertions are equivalent:
(i) the diagonal (x, y) is solid and its crossing number is 0, or (x, y) is not solid;
(ii) theM-clique p can be written as p = q◦x r, where q is anM-clique of arity n+x−y+1
and r is an M-clique of arity y − x.

Proof. Assume first that (i) holds. Set q as theM-clique of arity n+ x − y + 1 defined, forany arc (z, t) where 1 6 z < t 6 n + x − y + 2, by
q(z, t) :=


p(z, t) if t 6 x,
p(z, t + y − x − 1) if x + 1 6 t,
p(z + y − x − 1, t + y − x − 1) otherwise, (2.2.4)

and r as theM-clique of arity y−x defined, for any arc (z, t) where 1 6 z < t 6 y−x+ 1,by
r(z, t) := {p(z + x − 1, t + x − 1) if (z, t) 6= (1, y − x + 1),

1M otherwise. (2.2.5)
By following the definition of the partial composition of CM, one obtains p = q ◦x r,hence (ii) holds.Assume conversely that (ii) holds. By definition of the partial composition of CM, thefact that p = q ◦x r implies that p(x′, y ′) = 1M for any arc (x′, y ′) such that (x, y) and (x′, y ′)are crossing. Therefore, (i) holds. �Let PM be the set of all M-cliques p of arity n > 2 that do not satisfy the property ofthe statement of Lemma 2.2.2. In other words, PM is the set of allM-cliques such that, forany (non-necessarily solid) diagonal (x, y) of p, there is at least one solid diagonal (x′, y ′)of p such that (x, y) and (x′, y ′) are crossing. We call PM the set of all prime M-cliques.Observe that, according to this description, all M-triangles are prime.
Proposition 2.2.3. Let M be a unitary magma. The set PM is a minimal generating
set of CM.

Proof. We show by induction on the arity that PM is a generating set of CM. Let p be an
M-clique. If p is of arity 1, p = and hence p trivially belongs to (CM)PM (recall thatthis notation stands for the suboperad of CM generated by PM). Let us assume that pis of arity n > 2. First, if p ∈ PM , then p ∈ (CM)PM . Otherwise, p is an M-clique whichsatisfies the description of the statement of Lemma 2.2.2. Therefore, by this lemma, thereare twoM-cliques q and r and an integer x ∈ [|p|] such that |q| < |p|, |r| < |p|, and p = q◦x r.By induction hypothesis, q and r belong to (CM)PM and hence, p also belongs to (CM)PM .Finally, by Lemma 2.2.2, if p is a primeM-clique, p cannot be expressed as a partial com-position of primeM-cliques. Moreover, since the space CM(1) is trivial, these argumentsimply that PM is a minimal generating set of CM. �

http://oeis.org/A006125
http://oeis.org/A047656
http://oeis.org/A053763
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Computer experiments tell us that, when m := #M = 2, the first numbers of prime

M-cliques are, size by size,
0, 8, 16, 352, 16448, 1380224. (2.2.6)

Moreover, remark that the nth term of this sequence is divisible by mn+1 since the labelsof the base and the edges of an M-clique p have no influence on the fact that p is prime.This gives the sequence
0, 1, 1, 11, 257, 10783 (2.2.7)

enumerating the first of them size by size. Besides, a prime M-clique p is minimal ifany M-clique obtained from p by replacing a solid arc by a non-solid one is not prime.Of course, all minimal prime M-cliques are white. Computer experiments show us thatwhen m := #M = 2, the numbers of minimal prime M-cliques begin by
0, 1, 1, 5, 22, 119. (2.2.8)

None of these sequences appear in [Slo] at this time.

2.2.3. Associative elements.

Proposition 2.2.4. Let M be a unitary magma and f be an element of CM(2) of the
form

f := ∑
p∈TM

λpp, (2.2.9)
where the λp, p ∈ TM , are coefficients of K. Then, f is associative if and only if

∑
p1,q0∈M
δ=p1?q0

λ
p2p1

p0
λ

q2q1
q0

= 0, p0, p2, q1, q2 ∈ M, δ ∈ M̄, (2.2.10a)

∑
p1,q0∈M
p1?q0=1M

λ
p2p1

p0
λ

q2q1
q0
− λ

p1q1
p0

λ
p2q2

q0
= 0, p0, p2, q1, q2 ∈ M, (2.2.10b)

∑
p2,q0∈M
δ=p2?q0

λ
p2p1

p0
λ

q2q1
q0

= 0, p0, p1, q1, q2 ∈ M, δ ∈ M̄. (2.2.10c)
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Proof. The element f defined in (2.2.9) is associative if and only if f ◦1 f − f ◦2 f = 0.Therefore, this property is equivalent to the fact that

f ◦1 f − f ◦2 f =
 ∑

p,q∈TM
δ:=p1?q0 6=1M

λpλq
q2

q1 p2
p0
δ

+
 ∑

p,q∈TM
p1?q0=1M

λpλq
q2

q1 p2
p0


−

 ∑
p,q∈TM

δ:=p2?q0 6=1M
λpλq

q1
p1 q2

p0
δ

−
 ∑

p,q∈TM
p2?q0=1M

λpλq
q1

p1 q2
p0


=
 ∑

p0,p2,q1,q2∈M
δ∈M̄

 ∑
p1,q0∈M
δ=p1?q0

λ
p2p1

p0
λ

q2q1
q0

 q2
q1 p2

p0
δ


+
 ∑

p0,p2,q1,q2∈M

 ∑
p1,q0∈M
p1?q0=1M

λ
p2p1

p0
λ

q2q1
q0
− λ

p1q1
p0

λ
p2q2

q0

 q2
q1 p2

p0


−

 ∑
p0,p1,q1,q2∈M

δ∈M̄

 ∑
p2,q0∈M
δ=p2?q0

λ
p2p1

p0
λ

q2q1
q0

 q1
p1 q2

p0
δ


= 0, (2.2.11)and hence, is equivalent to the fact that (2.2.10a), (2.2.10b), and (2.2.10c) hold. �

For instance, by Proposition 2.2.4, the binary elements
11 1 , (2.2.12a)

+ 1 − 1 + 1 − 1 1 + 11 − 11 − 11 1 (2.2.12b)
of CN2 are associative, and the binary elements

00 − 00 0 , (2.2.13a)
0 − 0 0 − 00 + 00 0 (2.2.13b)

of CD0 are associative.
2.2.4. Symmetries. Let ref : CM → CM be the linear map sending any M-clique p ofarity n to theM-clique ref(p) of the same arity such that, for any arc (x, y) where 1 6 x <
y 6 n + 1, (ref(p)) (x, y) := p(n − y + 2, n − x + 2). (2.2.14)
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Graphically, ref(p) is theM-clique obtained by applying on p a reflection trough the verticalline passing by its base. For instance, one has in CZ,

ref
 1 −2
−2 1

 = 1
−2

−2
1 . (2.2.15)

Proposition 2.2.5. Let M be a unitary magma. Then, the group of symmetries of CM
contains the map ref and all the maps Cθ where θ is a unitary magma automorphisms
of M.

Proof. When θ is a unitary magma automorphism of M, since by Theorem 2.1.1 C is afunctor respecting bijections, Cθ is an operad automorphism of CM. Hence, Cθ belongsto the group of symmetries of CM. Moreover, the fact that ref belongs to the group ofsymmetries of CM can be established by showing that this map is an antiautomorphismof CM, directly from the definition of the partial composition of CM and that of ref. �2.2.5. Basic set-operad basis. A unitary magmaM is right cancelable if for any x, y, z ∈
M, y ? x = z ? x implies y = z.
Proposition 2.2.6. Let M be a unitary magma. The fundamental basis of CM is a
basic set-operad basis if and only if M is right cancelable.

Proof. Assume first that M is right cancelable. Let n > 1, i ∈ [n], and p, p′, and q be three
M-cliques such that p and p′ are of arity n. If ◦qi (p) = ◦qi (p′), we have p ◦i q = p′ ◦i q. Bydefinition of the partial composition map of CM, we have p(x, y) = p′(x, y) for all arcs(x, y) where 1 6 x < y 6 n + 1 and (x, y) 6= (i, i + 1). Moreover, we have pi ? q0 = p′i ? q0.Since M is right cancelable, this implies that pi = p′i , and hence, p = p′. This shows thatthe maps ◦qi are injective and thus, that the fundamental basis of CM is a basic set-operadbasis.Conversely, assume that the fundamental basis of CM is a basic set-operad basis. Then,in particular, for all n > 1 and all M-cliques p, p′, and q such that p and p′ are of arity n,
◦q1 (p) = ◦q1 (p′) implies p = p′. This is equivalent to the statement that p1 ? q0 = p′1 ? q0 implies
p1 = p′1. This amount exactly to the statement that M is right cancelable. �2.2.6. Cyclic operad structure. Let ρ : CM → CM be the linear map sending any M-clique p of arity n to theM-clique ρ(p) of the same arity such that, for any arc (x, y) where1 6 x < y 6 n + 1,

(ρ(p))(x, y) := {p(x + 1, y + 1) if y 6 n,
p(1, x + 1) otherwise (y = n + 1). (2.2.16)

Graphically, ρ(p) is the M-clique obtained by applying a rotation of one step of p in coun-terclockwise direction. For instance, one has in CZ,
ρ

 1 −2
−2 1

 =
−2 1

1 −2 . (2.2.17)
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Proposition 2.2.7. Let M be a unitary magma. The map ρ is a rotation map of CM,
endowing this operad with a cyclic operad structure.

Proof. The fact that ρ is a rotation map for CM follows from a technical but straightfor-ward verification of the fact that Relations (1.1.8a), (1.1.8b), and (1.1.8c) hold. �

2.2.7. Alternative bases. If p and q are two M-cliques of the same arity, the Hamming
distance h(p, q) between p and q is the number of arcs (x, y) such that p(x, y) 6= q(x, y).Let �be be the partial order relation on the set of allM-cliques, where, for anyM-cliques
p and q, one has p �be q if q can be obtained from p by replacing some labels 1M of itsedges or its base by other labels of M. In the same way, let �d be the partial order onthe same set where p �d q if q can be obtained from p by replacing some labels 1M of itsdiagonals by other labels of M.

For all M-cliques p, let us introduce the elements of CM defined by
Hp := ∑

p′∈CM
p′�bep

p′, (2.2.18a)
and Kp := ∑

p′∈CM
p′�dp

(−1)h(p′,p)p′. (2.2.18b)
For instance, in CZ,

H 1 1
22 = 1 2 + 1 22 + 1 12 + 1 1

22 , (2.2.19a)

K 1 1
22 = 1 1

22 −
1

22 − 1 1
2 + 1

2 . (2.2.19b)
Since by Möbius inversion, one has for any M-clique p,∑

p′∈CM
p′�bep

(−1)h(p′,p)Hp′ = p = ∑
p′∈CM
p′�dp

Kp′ , (2.2.20)
by triangularity, the family of all the Hp (resp. Kp) forms a basis of CM called the H-basis(resp. the K-basis).

If p is an M-clique, d0(p) (resp. di(p)) is the M-clique obtained by replacing the label ofthe base (resp. ith edge) of p by 1M .
Proposition 2.2.8. LetM be a unitary magma. The partial composition of CM can be
expressed in terms of the H-basis, for any M-cliques p and q different from and
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any valid integer i, by

Hp ◦i Hq =


Hp◦iq + Hdi (p)◦iq + Hp◦id0(q) + Hdi (p)◦id0(q) if pi 6= 1M and q0 6= 1M,Hp◦iq + Hdi (p)◦iq if pi 6= 1M and q0 = 1M,Hp◦iq + Hp◦id0(q) if pi = 1M and q0 6= 1M,Hp◦iq otherwise.

(2.2.21)
Proof. From the definition of the H-basis, we haveHp ◦i Hq = ∑

p′,q′∈CM
p′�bep
q′�beq

p′ ◦i q′

= ∑
p′,q′∈CM
p′�bep
q′�beq
p′i 6=1M
q′0 6=1M

p′ ◦i q′ + ∑
p′,q′∈CM
p′�bep
q′�beq
p′i 6=1M
q′0=1M

p′ ◦i q′ + ∑
p′,q′∈CM
p′�bep
q′�beq
p′i=1M
q′0 6=1M

p′ ◦i q′ + ∑
p′,q′∈CM
p′�bep
q′�beq
p′i=1M
q′0=1M

p′ ◦i q′. (2.2.22)

Let s1 (resp. s2, s3, s4) be the first (resp. second, third, fourth) summand of the right-handside of (2.2.22). There are four cases to explore depending on whether the ith edge of pand the base of q are solid or not. From the definition of the H-basis and of the partialorder relation �be, we have that(a) when pi 6= 1M and q0 6= 1M , s1 = Hp◦iq, s2 = Hp◦id0(q), s3 = Hdi(p)◦iq, and s4 = Hdi(p)◦id0(q);(b) when pi 6= 1M and q0 = 1M , s1 = 0, s2 = Hp◦iq, s3 = 0, and s4 = Hdi(p)◦iq;(c) when pi = 1M and q0 6= 1M , s1 = 0, s2 = 0, s3 = Hp◦iq, and s4 = Hp◦id0(q);(d) and when pi = 1M and q0 = 1M , s1 = 0, s2 = 0, s3 = 0, and s4 = Hp◦iq.By assembling these cases together, we obtain the stated result. �

Proposition 2.2.9. LetM be a unitary magma. The partial composition of CM can be
expressed in terms of the K-basis, for any M-cliques p and q different from and
any valid integer i, by

Kp ◦i Kq =
Kp◦iq if pi ? q0 = 1M,Kp◦iq + Kdi (p)◦id0(q) otherwise.

(2.2.23)
Proof. Let m be the arity of q. From the definition of the K-basis and of the partial orderrelation �d, we have Kp ◦i Kq = ∑

p′,q′∈CM
p′�dp
q′�dq

(−1)h(p′,p)+h(q′,q)p′ ◦i q′

= ∑
p′,q′∈CM

p′◦iq′�dp◦iq
p′i=pi
q′0=q0

(−1)h(p′,p)+h(q′,q)p′ ◦i q′

= ∑
r∈CM
r�dp◦iq

r(i,i+m−1)=pi?q0

(−1)h(r,p◦iq)r.

(2.2.24)



18 SAMUELE GIRAUDO
When pi ? q0 = 1M , (2.2.24) is equal to Kp◦iq. Otherwise, when pi ? q0 6= 1M , we have∑

r∈CM
r�dp◦iq

r(i,i+m−1)=pi?q0

(−1)h(r,p◦iq)r = ∑
r∈CM
r�dp◦iq

(−1)h(r,p◦iq)r − ∑
r∈CM
r�dp◦iq

r(i,i+m−1)6=pi?q0

(−1)h(r,p◦iq)r

= Kp◦iq −
∑
r∈CM

r�ddi(p)◦id0(q)
(−1)h(r,p◦iq)r

= Kp◦iq −
∑
r∈CM

r�ddi(p)◦id0(q)
(−1)1+h(r,di(p)◦id0(q))r

= Kp◦iq + Kdi(p)◦id0(q).

(2.2.25)

This proves the claimed formula for the partial composition of CM over the K-basis. �
For instance, in CZ,H 1 ◦2 H

1
= H + 2 H 1 + H 2 , (2.2.26a)

K 1 ◦2 K
1

= K + K 2 , (2.2.26b)
H 2 1 ◦3 H 1 2 2 = H

2 1
2

+ H
2 11 2

+ H
2 12 2

+ H
2 13 2

, (2.2.26c)
K 2 1 ◦3 K 1 2 2 = K

2 1
2

+ K
2 13 2

, (2.2.26d)
H −12 1

◦2 H
−11
1 = H

−1
−12
1

1
+ 2 H

−12
1

1
+ H

−112
1

1
, (2.2.26e)

K −12 1
◦2 K

−11
1 = K

−12
1

1
, (2.2.26f)

and in D1, H 0d1 0
◦2 H

00
0 = 3 H 0 0d1

0
0

+ H
0d1
0

0
, (2.2.27a)

K 0d1 0
◦2 K

00
0 = K 0 0d1

0
0

+ K
0d1
0

0
. (2.2.27b)
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2.2.8. Rational functions. The graded vector space of all commutative rational functions
K(U), where U is the infinite commutative alphabet {u1, u2, . . . }, has the structure of anoperad RatFct introduced by Loday [Lod10] and is defined as follows. Let RatFct(n) be thesubspace K(u1, . . . , un) of K(U) and

RatFct :=⊕
n>1 RatFct(n). (2.2.28)

Observe that since RatFct is a graded space, each rational function has an arity. Hence,by setting f1(u1) := 1 and f2(u1, u2) := 1, f1 is of arity 1 while f2 is of arity 2, so that f1 and
f2 are considered as different rational functions. The partial composition of two rationalfunctions f ∈ RatFct(n) and g ∈ RatFct(m) is defined by
f ◦i g := f (u1, . . . , ui−1, ui + · · ·+ ui+m−1, ui+m, . . . , un+m−1) g (ui, . . . , ui+m−1) . (2.2.29)

The rational function f of RatFct(1) defined by f (u1) := 1 is the unit of RatFct. As shownby Loday, this operad is (nontrivially) isomorphic to the operad Mould introduced byChapoton [Cha07].
Let us assume thatM is a Z-graded unitary magma, that is a unitary magma such thatthere exists a unitary magma morphism θ :M → Z. We say that θ is a rank function of

M. In this context, let
Fθ : CM→ RatFct (2.2.30)

be the linear map defined, for any M-clique p, by
Fθ(p) := ∏

(x,y)∈Ap

(
ux + · · ·+ uy−1)θ(p(x,y)) . (2.2.31)

For instance, by considering the unitary magma Z together with its identity map Id asrank function, one has
FId

−1 2 1
−2 3

−1
 = (u1 + u2 + u3 + u4)2 (u1 + u2 + u3 + u4 + u5 + u6)u34

u1 (u3 + u4 + u5 + u6)2 (u5 + u6) . (2.2.32)
Theorem 2.2.10. LetM be a Z-graded unitary magma and θ be a rank function ofM.
The map Fθ is an operad morphism from CM to RatFct.
Proof. For the sake of brevity of notation, for all positive integers x < y, we denote by
Ux,y the sums ux + · · ·+uy−1. Let p and q be twoM-cliques of respective arities n and m,and i ∈ [n] be an integer. From the definition of the partial composition of CM, the one
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(see (2.2.29)) of RatFct, and the fact that θ is a unitary magma morphism, we have

Fθ(p) ◦i Fθ(q) = (Fθ(p)) (u1, . . . , ui−1,Ui,i+m, ui+m, . . . , un+m−1) (Fθ(q)) (ui, . . . , ui+m−1)
=  ∏

16x<y6i−1U
θ(p(x,y))
x,y

 ∏
i+16x<y6n+1U

θ(p(x,y))
x+m−1,y+m−1

Uθ(pi)
i,i+m ∏

16x<y6m+1U
θ(q(x,y))
x+i−1,y+i−1


=  ∏

16x<y6i−1U
θ(p(x,y))
x,y

 ∏
i+16x<y6n+1U

θ(p(x,y))
x+m−1,y+m−1

Uθ(pi)+θ(q0)
i,i+m ∏

16x<y6m+1(x,y) 6=(1,m+1)
Uθ(q(x,y))
x+i−1,y+i−1


=  ∏

16x<y6i−1U
θ(p(x,y))
x,y

 ∏
i+16x<y6n+1U

θ(p(x,y))
x+m−1,y+m−1

Uθ(pi?q0)
i,i+m ∏

16x<y6m+1(x,y) 6=(1,m+1)
Uθ(q(x,y))
x+i−1,y+i−1


= ∏

(x,y)∈Ap◦iq

Uθ((p◦iq)(x,y))
x,y

= Fθ(p ◦i q). (2.2.33)
Moreover, since θ(1M) = 0, one has Fθ ( ) = 1, so that Fθ sends the unit of CM to theunit of RatFct. Therefore, Fθ is an operad morphism. �

The operad morphism Fθ is not injective. Indeed, by considering the magma Z togetherwith its identity map Id as rank function, one has for instance
FId
(

1 − 1 − 1
) = (u1 + u2)− u1 − u2 = 0, (2.2.34a)

FId
(

−1
−1 − −1 −1 − −1

−1
) = 1

u2u3 −
1(u2 + u3)u3 −

1
u2(u2 + u3) = 0. (2.2.34b)

Proposition 2.2.11. The subspace of RatFct of all Laurent polynomials on U is the image
by FId : CZ→ RatFct of the subspace of CZ consisting in the linear span of all Z-bubbles.

Proof. First, by Theorem 2.2.10, FId is a well-defined operad morphism from CZ to RatFct.Let uα11 . . . uαnn be a Laurent monomial, where α1, . . . , αn ∈ Z and n > 1. Consider also the
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Z-clique pα of arity n + 1 satisfying

pα(x, y) := {αx if y = x + 1,0 otherwise. (2.2.35)
Observe that pα is a Z-bubble. By definition of FId, we have FId(pα) = uα11 . . . uαnn . Now,since a Laurent polynomial is a linear combination of some Laurent monomials, by thelinearity of FId, the statement of the proposition follows. �

For any n > 1, let
? : CM(n)⊗CM(n)→ CM(n) (2.2.36)be the product defined for all M-cliques p and q by
(p ? q)(x, y) := p(x, y) ? q(x, y), (2.2.37)

where (x, y) is any arc such that 1 6 x < y 6 n + 1, and then extended linearly. Forinstance, in CZ,
2
−1

1
−2 ?

3 1
−1
1

2 = 3 3
−1
2
−1 . (2.2.38)

Proposition 2.2.12. Let M be a Z-graded unitary magma and θ be a rank function
of M. For any homogeneous elements f and g of CM of the same arity,

Fθ(f )Fθ(g) = Fθ(f ? g). (2.2.39)
Proof. Let p and q be twoM-cliques of CM of arity n. By definition of the operation ? onCM(n) and the fact that θ is a unitary magma morphism,

Fθ(p)Fθ(q) =  ∏
(x,y)∈Ap

(
ux + · · ·+ uy−1)θ(p(x,y))

 ∏
(x,y)∈Aq

(
ux + · · ·+ uy−1)θ(q(x,y))


= ∏

16x<y6n+1
(
ux + · · ·+ uy−1)θ(p(x,y))+θ(q(x,y))

= ∏
16x<y6n+1

(
ux + · · ·+ uy−1)θ(p(x,y)∗q(x,y))

= Fθ(p ? q). (2.2.40)
By the linearity of Fθ and of ?, (2.2.39) follows. �

Proposition 2.2.13. Let p be an M-clique of CZ. Then,1FId(p) = FId((Cη)(p)), (2.2.41)
where η : Z→ Z is the unitary magma morphism defined by η(x) := −x for all x ∈ Z.
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Proof. Observe that (Cη)(p) is the M-clique obtained by relabeling each arc (x, y) of pby −p(x, y). Hence, since η is a unitary magma morphism, we have

FId((Cη)(p)) = ∏
(x,y)∈Ap

(
ux + · · ·+ uy−1)θ(−p(x,y))

= ∏
(x,y)∈Ap

(
ux + · · ·+ uy−1)−θ(p(x,y))

= 1FId(p)
(2.2.42)

as expected. �

3. QUOTIENTS AND SUBOPERADSWe define here quotients and suboperads of CM, leading to the construction of somenew operads involving various combinatorial objects which are, basically, M-cliques withsome restrictions.
3.1. Main substructures. Most of the natural subfamilies of M-cliques that can be de-scribed by simple combinatorial properties as M-cliques with restrained labels for thebases, edges, and diagonals, white M-cliques, M-cliques with a fixed maximal crossingnumber,M-bubbles,M-cliques with a fixed maximal value for their degrees, nesting-free
M-cliques, and acyclic M-cliques inherit from the algebraic structure of operad of CMand form quotients and suboperads of CM (see Table 1). We construct and briefly study

Operad Objects Status with respect to CM
LabB,E,DM M-cliques with restricted labels SuboperadWhiM White M-cliques SuboperadCrokM M-cliques of crossings at most k Suboperad and quotientBubM M-bubbles QuotientDegkM M-cliques of degree at most k QuotientNesM Nesting-free M-cliques QuotientAcyM Acyclic M-cliques Quotient

TABLE 1. Operads constructed as suboperads or quotients of CM. All these operads de-pend on a unitary magma M which has, in some cases, to satisfy some precise conditions.Some of these operads depend also on a nonnegative integer k or subsets B, E, and D ofM.
here these main substructures of CM.
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3.1.1. Restricting the labels. In what follows, if X and Y are two subsets of M, X ? Ydenotes the set {x ? y : x ∈ X and y ∈ Y}.Let B, E, and D be three subsets ofM and LabB,E,DM be the subspace of CM generatedby all M-cliques p such that the bases of p are labeled by B, all edges of p are labeled by
E, and all diagonals of p are labeled by D.
Proposition 3.1.1. LetM be a unitary magma and B, E, and D be three subsets ofM.
If 1M ∈ B, 1M ∈ D, and E ? B ⊆ D, LabB,E,DM is a suboperad of CM.

Proof. First, since 1M ∈ B, the unit of CM belongs to LabB,E,DM. Consider now two
M-cliques p and q of LabB,E,DM and a partial composition r := p ◦i q for a valid integer i.By the definition of the partial composition of CM, the base of r has the same label as thebase of p, and all edges of r have labels coming from the ones of p and q. Moreover, alldiagonals of r are either non-solid, or come from diagonals of p and q, or are the diagonal
r(i, i + |q|) which is labeled by pi ? q0. Since 1M ∈ D, pi ∈ E, q0 ∈ B, and E ? B ⊆ D, all thelabels of these diagonals are in D. For these reasons, r is in LabB,E,DM. This implies thestatement of the proposition. �

Proposition 3.1.2. Let M be a unitary magma and B, E, and D be three finite subsets
of M. For all n > 2, dim LabB,E,DM(n) = bend(n+1)(n−2)/2, (3.1.1)
where b := #B, e := #E, and d := #D.

Proof. By Proposition 2.2.1, there are m(n+12 )M-cliques of arity n, where m := #M. Hence,there are m(n+12 )/mn+1 M-cliques of arity n with all edges and the base labeled by 1M . Thisalso says that there are d(n+12 )/dn+1 M-cliques of arity n with all diagonals labeled by D andall edges and the base labeled by 1M . Since an M-clique of LabB,E,DM(n) has its n edgeslabeled by E and its base labeled by B, (3.1.1) follows. �

3.1.2. White cliques. Let WhiM be the subspace of CM generated by all whiteM-cliques.Since, by definition of white M-cliques,WhiM = Lab{1M},{1M},MM, (3.1.2)by Proposition 3.1.1, WhiM is a suboperad of CM. It follows from Proposition 3.1.2 thatwhen M is finite, the dimensions of WhiM satisfy, for any n > 2,dim WhiM(n) = m(n+1)(n−2)/2, (3.1.3)where m := #M.
3.1.3. Restricting the crossings. Let k > 0 be an integer and RCrokM be the subspace ofCM generated by allM-cliques p such that cros(p) > k+1. As a quotient of graded vectorspaces, CrokM := CM/RCrokM (3.1.4)is the linear span of all M-cliques p such that cros(p) 6 k.
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Proposition 3.1.3. Let M be a unitary magma and k > 0 be an integer. Then, the
space CrokM is a quotient operad of CM and is isomorphic to the suboperad of CM
restricted to the subspace generated by allM-cliques with crossing numbers no greater
than k.

Proof. We first prove that CrokM is a quotient of CM. For this, observe that if p and qare two M-cliques, cros(p ◦i q) = max{cros(p), cros(q)} (3.1.5)for any valid integer i. For this reason, if p is anM-clique of RCrokM , each clique obtainedby a partial composition involving p and other M-cliques is still in RCrokM . This provesthat RCrokM is an operad ideal of CM and hence, that CrokM is a quotient of CM.To prove the second part of the statement, consider two M-cliques p and q of CrokM.By (3.1.5), all M-cliques p ◦i q are still in CrokM, for all valid integers i. Moreover, theunit of CM belongs to CrokM. This implies the desired property. �For instance, in the operad Cro2Z, we have
2

1
213 ◦3 2 1 = 1

2
2 13

21 . (3.1.6)
When 0 6 k′ 6 k are integers, by Proposition 3.1.3, CrokM and Crok′M are bothquotients and suboperads of CM. First, since anyM-clique of Crok′M is also anM-cliqueof CrokM, Crok′M is a suboperad of CrokM. Second, since RCrokM is a subspace of

RCrok′M , Crok′M is a quotient of CrokM.Observe that Cro0M is the linear span of all noncrossingM-cliques. We can see theseobjects as noncrossing configurations [FN99] where the edges and bases are colored byelements of M and the diagonals by elements of M̄. The operad Cro0M has a lot ofcombinatorial and algebraic properties and will be studied in detail in [Gir18].
3.1.4. Bubbles. Let RBubM be the subspace of CM generated by allM-cliques that are notbubbles. As a quotient of graded vector spaces,BubM := CM/RBubM (3.1.7)is the linear span of all M-bubbles.
Proposition 3.1.4. Let M be a unitary magma. Then, the space BubM is a quotient
operad of CM.

Proof. If p and q are two M-cliques, all solid diagonals of p and q appear in p ◦i q, for anyvalid integer i. For this reason, if p is an M-clique of RBubM , each M-clique obtained bya partial composition involving p and other M-cliques is still in RBubM . This proves that
RBubM is an operad ideal of CM and implies the statement of the proposition. �For instance, in the operad BubZ, we have
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1
2 ◦2 1 = 1 1

2 , (3.1.8a)
−1

2 ◦3 11 = 1
2 , (3.1.8b)

1
2 ◦3 1 = 0, (3.1.8c)

1
2 ◦2 12 = 0. (3.1.8d)

When M is finite, the dimensions of BubM satisfy, for any n > 2,dim BubM(n) = mn+1, (3.1.9)where m := #M.
3.1.5. Restricting the degrees. Let k > 0 be an integer and RDegkM be the subspace ofCM generated by allM-cliques p such that degr(p) > k+1. As a quotient of graded vectorspaces, DegkM := CM/RDegkM (3.1.10)is the linear span of all M-cliques p such that degr(p) 6 k.
Proposition 3.1.5. Let M be a unitary magma without nontrivial unit divisors and
k > 0 be an integer. Then, the space DegkM is a quotient operad of CM.

Proof. Since M has no nontrivial unit divisors, for any M-cliques p and q of CM, eachsolid arc of p (resp. q) gives rise to a solid arc in p ◦i q, for any valid integer i. Hence,degr(p ◦i q) > max{degr(p),degr(q)}, (3.1.11)and then, if p is an M-clique of RDegkM , each M-clique obtained by a partial compositioninvolving p and other M-cliques is still in RDegkM . This proves that RDegkM is an operadideal of CM and implies the statement of the proposition. �

For instance, in the operad Deg3D2 (observe that D2 is a unitary magma without non-trivial unit divisors), we have
d1

00d1 ◦2 0 0d1 = d1
0

0d1
0 , (3.1.12a) d1

00d1 ◦3 0 0d1 = 0. (3.1.12b)
When 0 6 k′ 6 k are integers, by Proposition 3.1.5, DegkM and Degk′M are bothquotient operads of CM. Moreover, since RDegkM is a subspace of RDegk′M , Degk′M is aquotient operad of DegkM.Observe that Deg0M is the linear span of all M-cliques without solid arcs. If p and qare suchM-cliques, all partial compositions p◦i q are equal to the uniqueM-clique withoutsolid arcs of arity |p|+ |q| − 1. For this reason, Deg0M is the associative operad As.
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Any skeleton of an M-clique of arity n of Deg1M can be seen as a partition of the set[n + 1] into singletons or pairs. Therefore, Deg1M can be seen as an operad on suchcolored partitions, where each pair of the partitions has one color from the set M̄. In theoperad Deg1D0 (observe that D0 is the only unitary magma without nontrivial unit divisorson two elements), one has for instance

0 ◦2 0 0 = 00 0
, (3.1.13a) 0 ◦3 0 0 = 0. (3.1.13b)

By seeing each solid arc (x, y) of anM-clique p of Deg1D0 of arity n as the transpositionexchanging the letter x and the letter y, we can interpret p as an involution of Sn+1made of the product of these transpositions. Hence, Deg1D0 can be seen as an operadon involutions. Under this point of view, the partial compositions (3.1.13a) and (3.1.13b)translate on permutations as
42315 ◦2 3412 = 6452317, (3.1.14a) 42315 ◦3 3412 = 0. (3.1.14b)

Equivalently, by the Robinson-Schensted correspondence (see for instance [Lot02]), Deg1D0is an operad on standard Young tableaux. The dimensions of the operad Deg1D0 begin by1, 4, 10, 26, 76, 232, 764, 2620, (3.1.15)and form, except for the first terms, Sequence A000085 of [Slo]. Moreover, when #M = 3,the dimensions of Deg1M begin by1, 7, 25, 81, 331, 1303, 5937, 26785, (3.1.16)and form, except for the first terms, Sequence A047974 of [Slo].Besides, any skeleton of anM-clique of Deg2M can be seen as a thunderstorm graph,
i.e., a graph where connected components are cycles or paths. Therefore, Deg2M can beseen as an operad on such colored graphs, where the arcs of the graphs have one colorfrom the set M̄. When #M = 2, the dimensions of this operad begin by1, 8, 41, 253, 1858, 15796, 152219, 1638323, (3.1.17)and form, except for the first terms, Sequence A136281 of [Slo].
3.1.6. Nesting-free cliques. Let RNesM be the subspace of CM generated by allM-cliquesthat are not nesting-free. As a quotient of graded vector spaces,NesM := CM/RNesM (3.1.18)is the linear span of all nesting-free M-cliques.
Proposition 3.1.6. Let M be a unitary magma without nontrivial unit divisors. Then,
the space NesM is a quotient operad of CM.

http://oeis.org/A000085
http://oeis.org/A047974
http://oeis.org/A136281
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Proof. Since M has no nontrivial unit divisors, for any M-cliques p and q of CM, eachsolid arc of p (resp. q) gives rise to a solid arc in p ◦i q, for any valid integer i. For thisreason, if p is an M-clique of RNesM , p is not nesting-free and each M-clique obtained bya partial composition involving p and other M-cliques is still not nesting-free and thus,belongs to RNesM . This proves that RNesM is an operad ideal of CM and implies thestatement of the proposition. �

For instance, in the operad NesD2,
0 d1 ◦4 d1

0 = d1 0
0
d1

, (3.1.19a) 0 d1 ◦3 d2
0 = 0. (3.1.19b)

Observe that in the same way as considering M-cliques of crossing numbers k or lessleads to quotients CrokM of CM (see Section 3.1.3), it is possible to define analogousquotients NeskM spanned by M-cliques having solid arcs that nest at most k other ones.Recall that a Dyck path of size n is a word u on {a,b} of length 2n such that |u|a = |u|band, for each prefix v of u, |v|a > |v|b.
Lemma 3.1.7. Let M be a finite unitary magma without nontrivial unit divisors. For
all n > 2, the set of all M-cliques of NesM(n) is in one-to-one correspondence with the
set of all Dyck paths of size n+ 1 wherein letters a at even positions are colored by M̄.
Moreover, there is a correspondence between these two sets that sends any M-clique
of NesM(n) with k solid edges to a Dyck path with exactly k letters a at even positions,
for any 0 6 k 6 n.

Proof. In this proof, we denote by ac the letter a of a Dyck path colored by c ∈ M̄. Givenan M-clique p of NesM(n), we decorate each vertex x of p by(1) aac if x has one outcoming arc and no incoming arc, where c is the label of theoutcoming arc from x;(2) bb if x has no outcoming arc and one incoming arc;(3) bac if x has both one outcoming arc and one incoming arc, where c is the label of theoutcoming arc from x;(4) ab otherwise.Let φ be the map sending p to the word obtained by concatenating the decorations of thevertices of p thus described, read from 1 to n + 1.We show that φ is a bijection between the two sets of the statement of the lemma.First, observe that since p is nesting-free, for each vertex y of p, there is at most oneincoming arc to y and one outcoming arc from y. For this reason, for any vertex y of p,the total number of incoming arcs to vertices x 6 y of p is smaller than or equal to thetotal number of outcoming arcs to vertices x 6 y of p, and the total number of verticeshaving an incoming arc is equal to the total number of vertices having an outcoming arcin p. Thus, by forgetting the colorings of its letters, the word φ(p) is a Dyck path.
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Besides, given a Dyck path u of size n + 1 wherein letters a at even positions arecolored by M̄, one can build a uniqueM-clique p of NesM(n) such that φ(p) = u. Indeed,by reading the letters of u two by two, one knows the number of outcoming and incomingarcs for each vertex of p. Since p is nesting-free, there is one unique way to connect thesevertices by solid diagonals without creating nestings of arcs. Moreover, by (1), (2), (3),and (4), the colors of the letters a at even positions allow to label the solid arcs of p. Hence

φ is a bijection as claimed.Finally, by definition of φ, we observe that if p has exactly k solid arcs, the Dyck path
φ(p) has exactly k occurrences of the letter a at even positions. This implies the wholestatement of the lemma. �Let nar(n, k) be the Narayana number [Nar55] defined for all 0 6 k 6 n − 2 by

nar(n, k) := 1
k + 1

(
n − 2
k

)(
n − 1
k

)
. (3.1.20)

The number of Dyck paths of size n − 1 and exactly k occurrences of the factor ab isnar(n, k). Equivalently, this is also the number of binary trees with n leaves and exactly kinternal nodes having an internal node as a left child.
Proposition 3.1.8. Let M be a finite unitary magma without nontrivial unit divisors.
For all n > 2, dim NesM(n) = ∑

06k6n(m − 1)k nar(n + 2, k), (3.1.21)
where m := #M.

Proof. It is known from [Sul98] that the number of Dyck paths of size n + 1 with k oc-currences of the letter a at even positions is the Narayana number nar(n + 2, k). Hence,by using this property together with Lemma 3.1.7, we obtain that the number of nesting-free M-cliques of size n with k solid arcs is (m − 1)k nar(n + 2, k). Therefore, since anesting-free M-clique of arity n can have at most n solid arcs, (3.1.21) holds. �The skeletons of the M-cliques of NesM of arities greater than 1 are the graphs suchthat, if {x, y} and {x′, y ′} are two arcs such that x 6 x′ < y ′ 6 y, then x = x′ and y = y ′.Therefore, NesM can be seen as an operad on such colored graphs, where the arcs of thegraphs have one color from the set M̄. Equivalently, as Lemma 3.1.7 shows, NesM canbe seen as an operad of Dyck paths where letters a at even positions are colored by M̄.By Proposition 3.1.8, when #M = 2, the dimensions of NesM begin by1, 5, 14, 42, 132, 429, 1430, 4862, (3.1.22)and form, except for the first terms, Sequence A000108 of [Slo]. When #M = 3, thedimensions of NesM begin by1, 11, 45, 197, 903, 4279, 20793, 103049, (3.1.23)and form, except for the first terms, Sequence A001003 of [Slo]. When #M = 4, thedimensions of NesM begin by1, 19, 100, 562, 3304, 20071, 124996, 793774, (3.1.24)

http://oeis.org/A000108
http://oeis.org/A001003
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and form, except for the first terms, Sequence A007564 of [Slo].
3.1.7. Acyclic decorated cliques. Let RAcyM be the subspace of CM generated by all M-cliques that are not acyclic. As a quotient of graded vector spaces,

AcyM := CM/RAcyM (3.1.25)
is the linear span of all acyclic M-cliques.
Proposition 3.1.9. Let M be a unitary magma without nontrivial unit divisors. Then,
the space AcyM is a quotient operad of CM.

Proof. Since M has no nontrivial unit divisors, for any M-cliques p and q of CM, eachsolid arc of p (resp. q) gives rise to a solid arc in p ◦i q, for any valid integer i. For thisreason, if p is an M-clique of RAcyM , p is not acyclic and each M-clique obtained by apartial composition involving p and other M-cliques is still not acyclic and thus, belongsto RAcyM . This proves that RAcyM is an operad ideal of CM and implies the statement ofthe proposition. �

For instance, in the operad AcyD2,

0 0 d1 0 ◦1 d1d1
= d1 0

0
0 d1 , (3.1.26a) 0 0 d1 0 ◦3 d2d1

= 0. (3.1.26b)
The skeletons of theM-cliques of AcyM of arities greater than 1 are acyclic graphs orequivalently, forests of non-rooted trees. Therefore, AcyM can be seen as an operad oncolored forests of trees, where the edges of the trees of the forests have one color fromthe set M̄. When #M = 2, the dimensions of AcyM begin by

1, 7, 38, 291, 2932, 36961, 561948, 10026505, (3.1.27)
and form, except for the first terms, Sequence A001858 of [Slo].
3.2. Secondary substructures. Some more substructures of CM are constructed andbriefly studied here. They are constructed by mixing some of the constructions of theseven main substructures of CM defined in Section 3.1 in the following sense.

For any operad O and operad ideals R1 and R2 of O, the space R1 + R2 is still anoperad ideal of O, and O/ (R1 + R2) is a quotient of both O/R1 and O/R2. Moreover, if
O′ is a suboperad of O and R is an operad ideal of O, the space R ∩ O′ is an operadideal of O′, and O′/ (R ∩ O′) is a quotient of O′ and a suboperad of O/R. For these reasons(straightforwardly provable), we can combine the constructions of the previous section tobuild plenty new suboperads and quotients of CM (see Table 2).

http://oeis.org/A007564
http://oeis.org/A001858
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Operad Objects Ideal of CM
WNCM White noncrossing cliques RCro0M ∩WhiMPatM Forests of paths RDeg2M + RAcyMForM Forests RCro0M + RAcyMMotM Motzkin configurations RCro0M + RDeg1MDisM Dissections of polygons (

RCro0M + RDeg1M
)
∩WhiMLucM Lucas configurations RBubM + RDeg1M

TABLE 2. Operads obtained as quotients of CM by mixing certain ideals of CM. All theseoperads depend on a unitary magma M which has, in some cases, to satisfy some preciseconditions.
3.2.1. Colored white noncrossing configurations. When M is a unitary magma, let

WNCM := WhiM/RCro0M ∩WhiM. (3.2.1)
The M-cliques of WNCM are white noncrossing M-cliques.

When #M = 2, the dimensions of WNCM begin by
1, 1, 3, 11, 45, 197, 903, 4279, (3.2.2)

and form Sequence A001003 of [Slo]. When #M = 3, the dimensions of WNCM beginby 1, 1, 5, 31, 215, 1597, 12425, 99955, (3.2.3)
and form Sequence A269730 of [Slo]. Observe that these dimensions are shifted versionsthe ones of the γ-polytridendriform operads TDendrγ [Gir16b] with γ := #M− 1.
3.2.2. Colored forests of paths. WhenM is a unitary magma without nontrivial unit divi-sors, let PatM := CM/

(
RDeg2M + RAcyM) . (3.2.4)

The skeletons of the M-cliques of PatM are forests of non-rooted trees that are paths.Therefore, PatM can be seen as an operad on such colored graphs, where the arcs of thegraphs have one color from the set M̄.
When #M = 2, the dimensions of PatM begin by

1, 7, 34, 206, 1486, 12412, 117692, 1248004, (3.2.5)
an form, except for the first terms, Sequence A011800 of [Slo].

http://oeis.org/A001003
http://oeis.org/A269730
http://oeis.org/A011800
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3.2.3. Colored forests. When M is a unitary magma without nontrivial unit divisors, let

ForM := CM/
(
RCro0M + RAcyM) . (3.2.6)

The skeletons of theM-cliques of ForM are forests of rooted trees having no arcs {x, y}and {x′, y ′} satisfying x < x′ < y < y ′. Therefore, ForM can be seen as an operad on suchcolored forests, where the edges of the forests have one color from the set M̄. When#M = 2, the dimensions of ForM begin by
1, 7, 33, 81, 1083, 6854, 45111, 305629, (3.2.7)

and form, except for the first terms, Sequence A054727, of [Slo].
3.2.4. Colored Motzkin configurations. When M is a unitary magma without nontrivialunit divisors, let

MotM := CM/
(
RCro0M + RDeg1M

)
. (3.2.8)

The skeletons of the M-cliques of MotM are configurations of non-intersecting chordson a circle. Equivalently, these objects are graphs of involutions (see Section 3.1.5) havingno arcs {x, y} and {x′, y ′} satisfying x < x′ < y < y ′. These objects are enumerated byMotzkin numbers [Mot48]. Therefore, MotM can be seen as an operad on such coloredgraphs, where the arcs of the graphs have one color from the set M̄. When #M = 2, thedimensions of MotM begin by
1, 4, 9, 21, 51, 127, 323, 835, (3.2.9)

and form, except for the first terms, Sequence A001006, of [Slo].
3.2.5. Colored dissections of polygons. When M is a unitary magma without nontrivialunit divisors, let

DisM := WhiM/
((
RCro0M + RDeg1M

)
∩WhiM) . (3.2.10)

The skeletons of theM-cliques of DisM are strict dissections of polygons, that are graphsof Motzkin configurations with no arcs of the form {x, x + 1} or {1, n + 1}, where n + 1is the number of vertices of the graphs. Therefore, DisM can be seen as an operad onsuch colored graphs, where the arcs of the graphs have one color from the set M̄. When#M = 2, the dimensions of DisM begin by
1, 1, 3, 6, 13, 29, 65, 148, (3.2.11)

and form, except for the first terms, Sequence A093128 of [Slo].

http://oeis.org/A054727
http://oeis.org/A001006
http://oeis.org/A093128
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3.2.6. Colored Lucas configurations. WhenM is a unitary magma without nontrivial unitdivisors, let LucM := CM/

(
RBubM + RDeg1M

)
. (3.2.12)The skeletons of the M-cliques of LucM are graphs such that all vertices are of degreeat most 1 and all arcs are of the form {x, x + 1} or {1, n+ 1}, where n+ 1 is the numberof vertices of the graphs. Therefore, LucM can be seen as an operad on such coloredgraphs, where the arcs of the graphs have one color from the set M̄. When #M = 2, thedimensions of LucM begin by 1, 4, 7, 11, 18, 29, 47, 76, (3.2.13)and form, except for the first terms, Sequence A000032 of [Slo].

3.3. Relations between substructures. The suboperads and quotients of CM constructedin Sections 3.1 and 3.2 are linked by injective or surjective operad morphisms. To establishthese, we begin with the following lemma.
Lemma 3.3.1. Let M be a unitary magma. Then,
(i) the space RAcyM is a subspace of RDeg1M;
(ii) the spaces RNesM and RBubM are subspaces of RDeg0M;
(iii) the spaces RCro0M and RDeg2M are subspaces of RBubM;
(iv) the spaces RDeg2M and RAcyM are subspaces of RNesM .

Proof. All the spaces appearing in the statement of the lemma are subspaces of CMgenerated by some subfamilies of M-cliques. Therefore, to prove the assertions of thelemma, we shall prove inclusions of adequate subfamilies of such objects.If p is an M-clique of RAcyM , by definition, p has a cycle formed by solid arcs. Hence,
p has in particular a solid arc and a vertex of degree 2 or more. For this reason, since
RDeg1M is the linear span of all M-cliques of degree 2 or more, p is in RDeg1M . Thisimplies (i).If p is an M-clique of RNesM or RBubM , by definition, p has in particular a solid arc.Hence, since RDeg0M is the linear span of all M-cliques with at least one vertex with apositive degree, p is in RDeg0M . This implies (ii).If p is an M-clique of RCro0M or RDeg2M , p has in particular a solid diagonal. Indeed,when p is in RCro0M this property is immediate. When p is in RDeg2M , since p has avertex x of degree 3 or more, the skeleton of p has three arcs {x, y1}, {x, y2}, and {x, y3}with yi 6= x − 1, yi 6= x + 1, and yi 6= |p| + 1 for at least one i ∈ [3], so that the arc(min{x, yi},max{x, yi}) is a solid diagonal of p. For this reason, since RBubM is the linearspan of all M-cliques with at least one solid diagonal, p is in RBubM . This implies (iii).If p is anM-clique of RDeg2M or RAcyM , p has in particular a solid arc nested in anotherone. Indeed, when p is in RDeg2M , since p has a vertex x of a degree 3 or more, the skeletonof p has three arcs {x, y1}, {x, y2}, and {x, y3}. One can check that for all relative ordersbetween the vertices x, y1, y2, and y3, one of these arcs is nested in another one, so that
p is not nesting-free. When p is in RAcyM , p contains a cycle formed by solid arcs. Let x1,

http://oeis.org/A000032
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x2, . . . , xk , k > 3, be the vertices of p that form this cycle. We can assume without lossof generality that x1 6 xi for all i ∈ [k] and thus, that (x1, x2) and (x1, xk) are solid arcs of
p being part of the cycle. Then, when x2 < xk , since x1 6 x1 < x2 6 xk , the arc (x1, x2)is nested in (x1, xk). Otherwise, xk < x2, and since x1 6 x1 < xk 6 x2, the arc (x1, xk) isnested in (x1, x2). For these reasons, since RNesM is the linear span of all M-cliques thatare non nesting-free, p is in RNesM . This implies (iv). �

3.3.1. Relations between the main substructures. Here we list and explain the mor-phisms between the main substructures of CM. First, Lemma 3.3.1 implies that thereare surjective operad morphisms from AcyM to Deg1M, from NesM to Deg0M, fromBubM to Deg0M, from Cro0M to BubM, from Deg2M to BubM, from Deg2M to NesM,and from AcyM to NesM. Second, when B, E, and D are subsets ofM such that 1M ∈ B,
1M ∈ E, and E ? B ⊆ D, WhiM is a suboperad of LabB,E,DM. Finally, there is a surjectiveoperad morphism from WhiM to the associative operad As sending any M-clique p ofWhiM to the unique basis element of As of the same arity as the one of p. The relationsbetween the main suboperads and quotients of CM built here are summarized in thediagram of operad morphisms of Figure 2.

CM

AcyM DegkM CrokM LabB,E,DM

Deg2M Cro0M

NesM Deg1M BubM WhiM

Deg0MFIGURE 2. The diagram of the main suboperads and quotients of CM. Arrows� (resp.�)are injective (resp. surjective) operad morphisms. Here, M is a unitary magma withoutnontrivial unit divisors, k is a positive integer, and B, E, and D are subsets of M such that
1M ∈ B, 1M ∈ E, and E ? B ⊆ D.

3.3.2. Relations between the secondary and main substructures. Here we list and ex-plain the morphisms between the secondary and main substructures of CM. First, imme-diately from their definitions, WNCM is a suboperad of Cro0M and a quotient of WhiM,PatM is both a quotient of Deg2M and AcyM, ForM is both a quotient of Cro0M andAcyM, MotM is both a quotient of Cro0M and Deg1M, DisM is a suboperad of MotMand a quotient of WNCM, and LucM is both a quotient of BubM and Deg1M. Moreover,
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since by Lemma 3.3.1, RAcyM is a subspace of RDeg1M , RDeg2M and RAcyM are subspacesof RNesM , and RCro0M is a subspace of RBubM , we respectively have that RDeg2M+RAcyM isa subspace of both RDeg1M and RNesM , RCro0M +RAcyM is a subspace of RCro0M +RDeg1M ,and RCro0M + RDeg1M is a subspace of RBubM + RDeg1M . For these reasons, there aresurjective operad morphisms from PatM to Deg1M, from PatM to NesM, from ForMto MotM, and from MotM to LucM. The relations between the secondary suboperadsand quotients of CM built here are summarized in the diagram of operad morphisms ofFigure 3.

CM

Deg0M

Cro0MWhiM AcyM Deg2M

WNCM ForM PatM BubM

Deg1M NesM
MotM

DisM
LucM

FIGURE 3. The diagram of the secondary suboperads and quotients of CM together withsome of their related main suboperads and quotients of CM. Arrows � (resp. �) areinjective (resp. surjective) operad morphisms. Here,M is a unitary magma without nontrivalunit divisors.

4. CONCRETE CONSTRUCTIONSThe clique construction provides alternative definitions of known operads. We explorehere the cases of the operads MT and DMT of multi-tildes and double multi-tildes, andthe gravity operad Grav.
4.1. Operads from language theory. We provide constructions of two operads comingfrom formal language theory by using the clique construction.
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4.1.1. Multi-tildes. Multi-tildes are operators introduced in [CCM11] in the context of for-mal language theory as a convenient way to express regular languages. Let, for any n > 1,
Pn be the set

Pn := {(x, y) ∈ [n]2 : x 6 y} . (4.1.1)
A multi-tilde is a pair (n, s) where n is a positive integer and s is a subset of Pn. The arityof the multi-tilde (n, s) is n.

As shown in [LMN13], the graded (by the arity) collection of all multi-tildes admits avery natural structure of an operad. This operad, denoted by MT, is defined as follows.The partial composition (n, s) ◦i (m, t), i ∈ [n], of two multi-tildes (n, s) and (m, t) is definedby
(n, s) ◦i (m, t) := (n +m − 1, {shmi (x, y) : (x, y) ∈ s} ∪

{shi0(x, y) : (x, y) ∈ t
})

, (4.1.2)
where

shpj (x, y) :=


(x, y) if y 6 i − 1,(x, y + p − 1) if x 6 i 6 y,(x + p − 1, y + p − 1) otherwise. (4.1.3)
For instance, one has
(5, {(1, 5), (2, 4), (4, 5)}) ◦4 (6, {(2, 2), (4, 6)}) = (10, {(1, 10), (2, 9), (4, 10), (5, 5), (7, 9)}), (4.1.4a)
(5, {(1, 5), (2, 4), (4, 5)})◦5 (6, {(2, 2), (4, 6)}) = (10, {(1, 10), (2, 4), (4, 10), (6, 6), (8, 10)}). (4.1.4b)

Observe that the multi-tilde (1, ∅) is the unit of MT.
Let φMT : MT → CD0 be the linear map defined as follows. For any multi-tilde (n, s)different from (1, {(1, 1)}), φMT((n, s)) is the D0-clique of arity n defined, for any 1 6 x <

y 6 n + 1, by
φMT((n, s))(x, y) := {0 if (x, y − 1) ∈ s,

1 otherwise. (4.1.5)
For instance,

φMT((5, {(1, 5), (2, 4), (4, 5)})) =
0

0 0
. (4.1.6)

Proposition 4.1.1. The operad CD0 is isomorphic to the suboperad of MT consisting in
the linear span of all multi-tildes except the nontrivial multi-tilde (1, {(1, 1)}) of arity 1.
Moreover, φMT is an isomorphism between these two operads.

Proof. A direct consequence of the definition (4.1.5) of φMT is that this map is an isomor-phism of vector spaces. Moreover, it follows from the definitions of the partial composi-tions of MT and CD0 that φMT is an operad morphism. �
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By Proposition 4.1.1, one can interpret the partial compositions (4.1.4a) and (4.1.4b) ofmulti-tildes as partial compositions of D0-cliques. This give respectively

0
0 0

◦4 0 0 =
0

0 0
0

0 , (4.1.7a)

0
0 0

◦5 0 0 =
0

0 0
0
0 . (4.1.7b)

4.1.2. Double multi-tildes. Double multi-tildes are natural generalizations of multi-tildes,introduced in [GLMN16]. A double multi-tilde is a triple (n, s, t) where (n, t) and (n, s) areboth multi-tildes of the same arity n. The arity of the double multi-tilde (n, s, t) is n. Asshown in [GLMN16], the linear span of all double multi-tildes admits a structure of anoperad. This operad, denoted by DMT, is defined as follows. For any n > 1, DMT(n) is thelinear span of all double multi-tildes of arity n and the partial composition (n, s, t)◦i (m, u, v),
i ∈ [n], of two double multi-tildes (n, s, t) and (m, u, v) is defined linearly by(n, s, t) ◦i (m, u, v) := (n, s ◦i u, t ◦i v), (4.1.8)where the two partial compositions ◦i of the right member of (4.1.8) are the ones of MT.We can observe that DMT is isomorphic to the Hadamard product MT∗MT. For instance,one has(3, {(2, 2)}, {(1, 2), (1, 3)}) ◦2 (2, {(1, 1)}, {(1, 2)}) = (4, {(2, 2), (2, 3)}, {(1, 3), (1, 4), (2, 3)}).(4.1.9)The unit of DMT is (1, ∅, ∅).Consider now the operad CD20 and let φDMT : DMT → CD20 be the linear map definedas follows. The image by φDMT of (1, ∅, ∅) is the unit of CD20 and, for any double multi-tilde(n, s, t) of arity n > 2, φDMT((n, s, t)) is the D20-clique of arity n defined, for any 1 6 x < y 6
n + 1, by

φDMT((n, s, t))(x, y) :=


(0,1) if (x, y − 1) ∈ s and (x, y − 1) /∈ t,(1, 0) if (x, y − 1) /∈ s and (x, y − 1) ∈ t,(0, 0) if (x, y − 1) ∈ s and (x, y − 1) ∈ t,(1,1) otherwise.
(4.1.10)

For instance,
φDMT((4, {(2, 2), (2, 3)}, {(1, 3), (1, 4), (2, 3)})) = (1, 0)

(1, 0)

(0,1)(0, 0)
. (4.1.11)
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Proposition 4.1.2. The operad CD20 is isomorphic to the suboperad of DMT consisting in
the linear span of all double multi-tildes except the three nontrivial double multi-tildes
of arity 1. Moreover, φDMT is an isomorphism between these two operads.

Proof. There are two ways to prove the first assertion of the statement of the proposition.On the one hand, this property follows from Proposition 2.1.2 and Proposition 4.1.1. Onthe other hand, the whole statement of the proposition is a direct consequence of thedefinition (4.1.10) of φDMT, showing that φDMT is an isomorphism of vector spaces, and,from the definitions of the partial compositions of DMT and CD20 showing that φDMT is anoperad morphism. �

By Proposition 4.1.2, one can interpret the partial composition (4.1.9) of double multi-tildes as a partial composition of D20-cliques. This gives
(1, 0)(1, 0)
(0,1)

◦2 (0,1)(1, 0) = (1, 0)
(1, 0)

(0,1)(0, 0)
. (4.1.12)

4.2. Gravity operad. The operad of gravity chord diagrams Grav is an operad definedin [AP15]. This operad is the nonsymmetric version (obtained by forgetting the actionsof the symmetric groups) of the gravity operad, a symmetric operad introduced by Get-zler [Get94]. Let us describe this operad.
A gravity chord diagram is a {?}-configuration c, where ? is any symbol, satisfyingthe following conditions. By denoting by n the size of c, all the edges and the base of

c are labeled (by ?), and if (x, y) and (x′, y ′) are two labeled crossing diagonals of c suchthat x < x′, the arc (x′, y) is not labeled. In other words, the quadrilateral formed by thevertices x, x′, y, and y ′ of c is such that its side (x′, y) is unlabeled. For instance,
(4.2.1)

is a gravity chord diagram of arity 7 having four labeled diagonals (observe in particularthat, as required, the arc (3, 5) is not labeled). For any n > 2, Grav(n) is the linear spanof all gravity chord diagrams of size n. Moreover, Grav(1) is the linear span of thesingleton containing the only polygon of size 1 where its only arc is not labeled. The partialcomposition of Grav is defined graphically as follows. For any gravity chord diagrams cand d of respective arities n and m, and i ∈ [n], the gravity chord diagram c◦i d is obtainedby gluing the base of d onto the ith edge of c, so that the arc (i, i +m) of c ◦i d is labeled.For example,
◦3 = . (4.2.2)
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Let φGrav : Grav→ CD0 be the linear map defined in the following way. For any gravitychord diagram c, φGrav(c) is the D0-clique of CD0 obtained by replacing all labeled arcs of

c by arcs labeled by 0 and all unlabeled arcs by arcs labeled by 1. For instance,
φGrav


 =

0 0
0

0 0
0 0 0

0 0
0

0
. (4.2.3)

Let us say that an M-clique p satisfies the gravity condition if p = , or p has onlysolid edges and bases, and for all crossing diagonals (x, y) and (x′, y ′) of p such that x < x′,
p(x, y) 6= 1M 6= p(x′, y ′) implies p(x′, y) = 1M .
Proposition 4.2.1. The linear span of all D0-cliques satisfying the gravity condition
forms a suboperad of CD0 isomorphic to Grav. Moreover, φGrav is an isomorphism
between these two operads.

Proof. Let us denote by OGrav the subspace of CD0 described in the statement of theproposition. First of all, it follows from the definition of the partial composition of CD0that OGrav is closed under the partial composition operation (this property can be also seenas a consequence of the fact that the partial composition of two gravity chord diagramsis still a gravity chord diagram [AP15]). Hence, and since OGrav contains the unit of CD0,
OGrav is an operad. Second, observe that the image of φGrav is the underlying space of
OGrav and, from the definition of the partial composition of Grav, one can check that φGravis an operad morphism. Finally, since φGrav is a bijection from Grav to OGrav, the statementof the proposition follows. �

Proposition 4.2.1 shows hence that the operad Grav can be built through the cliqueconstruction. Moreover, as explained in [AP15], Grav contains the nonsymmetric versionof the Lie operad, the symmetric operad describing the category of Lie algebras. Thisnonsymmetric version of the Lie operad as been introduced in [ST09]. Since Lie is con-tained in Grav as the subspace of all gravity chord diagrams having the maximal numberof labeled diagonals for each arity, Lie can be built through the clique construction as thesuboperad of CD0 containing all the D0-cliques that are images by φGrav of such maximalgravity chord diagrams.
Besides, this alternative construction of Grav leads to the following generalization forany unitary magmaM of the gravity operad. Let GravM be the linear span of allM-cliquessatisfying the gravity condition. It follows from the definition of the partial compositionof CM that GravM is an operad. Moreover, observe that when M has nontrivial unitdivisors, GravM is not a free operad.

CONCLUSION AND PERSPECTIVESThis work presents and studies the clique construction C, producing operads from uni-tary magmas. We have seen that C has many both algebraic and combinatorial properties.
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Among its most notable ones, CM admits several quotients involving combinatorial fami-lies of decorated cliques, and contains some already studied operads. Let us address heresome open questions.First, we have for the time being no formula to enumerate prime (resp. white prime,minimal prime) M-cliques (see (2.2.6) (resp. (2.2.7), (2.2.8)) for #M = 2). Obtaining theseforms a first combinatorial question.WhenM is a Z-graded unitary magma, a link between CM and the operad of rationalfunctions RatFct has been developed in Section 2.2.8 by means of a morphism Fθ betweenthese two operads. We have observed that Fθ is not injective (see (2.2.34a) and (2.2.34b)).A description of the kernel of Fθ , even when M is the unitary magma Z, seems not easyto obtain. Trying to obtain this description is a second perspective of this work.Here is a third perspective. In Section 3, we have defined and briefly studied somequotients and suboperads of CM. In particular, we have considered the quotient Deg1M ofCM, involvingM-cliques of degree at most 1. As mentioned, Deg1D0 is an operad definedon the linear span of involutions (except the nontrivial involution of S2). A complete studyof this operad seems worth considering, including a description of a minimal generatingset, a presentation by generators and relations, a description of its partial composition onthe H-basis and on the K-basis, and a realization of this operad in terms of standard Youngtableaux.
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