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DUALITY OF GRADED GRAPHS THROUGH OPERADS

SAMUELE GIRAUDO

ABSTRACT. Pairs of graded graphs, together with the Fomin property of graded graph duality,
are rich combinatorial structures providing among other a framework for enumeration. The
prototypical example is the one of the Young graded graph of integer partitions, allowing us
to connect number of standard Young tableaux and numbers of permutations. Here, we use
operads, that algebraic devices abstracting the notion of composition of combinatorial objects,
to build pairs of graded graphs. For this, we first construct a pair of graded graphs where
vertices are syntax trees, the elements of free nonsymmetric operads. This pair of graphs
is dual for a new notion of duality called φ-diagonal duality, similar to the ones introduced
by Fomin. We also provide a general way to build pairs of graded graphs from operads,
wherein underlying posets are analogous to the Young lattice. Some examples of operads
leading to new pairs of graded graphs involving integer compositions, Motzkin paths, and
m-trees are considered.
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INTRODUCTION

The well-known formula ∑

λ`n
fλ2 = n!, (0.0.1)

relating the numbers fλ of standard Young tableaux of shape λ and number of permuta-
tions is one of the most fascinating identities appearing in algebraic combinatorics. This
formula, admitting a lot of different proofs [Sag01], arises in the context of representations
of symmetric groups and the Robinson–Schensted correspondence. One of its proofs is
surprisingly beautiful and uses the Young lattice Y on integer partitions and its structure
of a differential poset [Sta88]. Such a poset satisfies the relation

U?U−UU? = I (0.0.2)

where I is the identity map, and U (resp. U?) is the linear map sending each element
of the poset to the formal sum of its coverings (resp. of the elements it covers). One
can interpret (0.0.1) as an identity between Hasse walks of length n in Y starting from
the empty integer partition to an integer partition of rank n and returning to the empty
integer partition.

A natural question concerns the generalization of this concept of differential posets, in
order to obtain new combinatorial proofs similar to the previous formula or to discover
new ones. In this context, the notion of graded graph duality [Fom94] makes sense. Here,
we work not only with posets but with multigraphs wherein analogs of (0.0.2) hold between
two different graphs, called pairs of dual graphs. All this maintains close connections with
algebra since, from the origins, the Hasse diagram of Y is in fact the Bratteli diagram
(or multiplication graph) of the algebra of the symmetric functions on the basis of Schur
functions sλ , where edges encode the multiplication by s1. A striking and nice fact is
that one can construct similar graphs for other algebraic structures [Nze06,LS07] like the
algebra of the noncommutative symmetric functions or the Hopf algebra of planar binary
trees [HNT05].

The starting motivation of this work was to link this theory of duality of graded graphs
with the theory of operads, with the aim to construct new pairs of dual graded graphs and
explore the combinatorial properties they offer. Operads [Mé15,LV12,Gir18] are algebraic
structures wherein elements are themselves operations, and can be composed. From a
combinatorial point of view, operads allow to insert combinatorial objects inside other
ones to form bigger ones [Gir15]. Since operads enclose a rich combinatorics, we can
expect that these structures are good combinatorial sources to build interesting graphs.

We begin by constructing a pair (S•(G),U,V) of graphs where vertices are the elements
of free nonsymmetric operads, that are planar rooted trees decorated on an alphabet G.
The graphs (S•(G),U) and (S•(G),V) are dual with respect to a new notion of duality called
φ-diagonal duality, generalizing in a certain way some of the previous ones. Also, the
poset for which (S•(G),U) is the Hasse diagram has some combinatorial properties like to
be a meet-semilattice and to have all intervals that are distributive lattices. Then, given an
operad O satisfying some not so restrictive properties, we extend the previous construction
to build a pair of graded graphs (O•,U,V), potentially φ-diagonal dual. We consider four
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examples: the pair corresponding with the associative operad (which is called the chain
in [Fom94]), with the diassociative operad [Lod01] (which is not φ-diagonal dual but is φ-
diagonal self-dual), with the operad of integer compositions [Gir15] (which leads to the
composition poset introduced in [BP05]), and with the operad of Motzkin paths [Gir15]
(which is φ-diagonal dual).

This paper is organized as follows. Section 1 contains the preliminary definitions used in
the rest of the document including graded graphs, formal power series on combinatorial
objects, syntax trees, and nonsymmetric operads. We also set here our definition of φ-
diagonal duality. We then introduce in Section 2 two graded graphs of syntax trees: the
prefix graded graph (S•(G),U) and the twisted prefix graded graph (S•(G),V). We prove
here in particular that the pair of graded graphs (S•(G),U,V) is φ-diagonal dual for a
certain linear map φ. Some combinatorial properties of these graphs are established: the
numbers of Hasse walks in the prefix graded graphs are related with the hook-length
formula of trees [Knu98] and the numbers of Hasse walks in the twisted ones are related
with a variation of this formula. In Section 3, we study the posets associated with the prefix
graded graphs. In particular, we describe the structure of the intervals of these posets.
Finally, Section 4 is devoted to generalize the previous constructions of graded graphs in
order to obtain pairs of graded graphs from nonsymmetric operads subjected to some
conditions. We apply these constructions to some operads introduced in [Gir15], involving
integer compositions, Motzkin paths, and m-trees.

General notations and conventions. All the considered vector spaces are defined over
a ground field K of characteristic zero. For any integers i and j , [i, j] denotes the set
{i, i+1, . . . , j}. For any integer i, [i] denotes the set [1, i]. The empty word is denoted by ε.

1. GRADED GRAPHS, TREES, AND OPERADS

We start by setting up our context by providing definitions about graded sets, series,
graded graphs, and nonsymmetric operads. We introduce also the notion of φ-diagonal
duality.

1.1. Graded graphs and diagonal duality. The aim of this section is to make some recalls
about graded graphs and their associated formal power series, about graded graph duality,
and to introduce φ-diagonal duality.

1.1.1. Graded sets. A graded set is a set expressed as a disjoint union

G :=
⊔

d∈N
G(d) (1.1.1)

such that all G(d), d ∈ N, are sets. The rank rk(x) of an x ∈ G is the unique integer d
such that x ∈ G(d). A graded set is combinatorial if all G(d), d ∈ N, are finite. In this case,
the generating series RG(t) of G is defined by

RG(t) :=
∑

x∈G
trk(x) (1.1.2)
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and counts the elements of G with respect to their ranks. If G1 and G2 are two graded
sets, a map ψ : G1 → G2 is a graded set morphism if for any x ∈ G1, rk(ψ(x)) = rk(x).
Besides G2 is a graded subset of G1 if for any d ∈ N, G2(d) ⊆ G1(d).

1.1.2. Polynomials and series. We shall consider in the sequel linear spans of graded sets
G, denoted by K〈G〉. The dual space K〈〈G〉〉 of K〈G〉 is by definition the space of the maps
f : G → K, called G-series. Let f1 and f2 be two G-series. The scalar product of f1 and f2

is the element
〈f1, f2〉 :=

∑

x∈G
f1(x)f2(x) (1.1.3)

of K. Note that the scalar product may be not defined for some G-series. For any subset
X of G, the characteristic series of X is the G-series ch(X) satisfying, for any x ∈ G,
ch(X)(x) = [x ∈ X], where [−] is the Iverson bracket. By a slight abuse of notation, we
denote simply by x the G-series ch({x}). Let f ∈ K〈〈G〉〉. Observe that for any x ∈ G,
〈x, f〉 = f(x). The support of f is the set Supp(f) := {x ∈ G : 〈x, f〉 6= 0}. An element x of
G appears in f if x ∈ Supp(f). By a slight abuse of notation, this property is denoted by
x ∈ f. By exploiting the vector space structure of K〈〈G〉〉, any G-series f expresses as

f =
∑

x∈G
〈x, f〉x. (1.1.4)

This notation using potentially infinite sums of elements ofG accompanied with coefficients
of K is common in the context of formal power series. In the sequel, we shall define and
handle some G-series using the notation (1.1.4). A G-series having a finite support is a
G-polynomial. The space K〈G〉 can be seen as the subspace of K〈〈G〉〉 consisting in all
G-polynomials. The Hadamard product of two G-series f1 and f2 is the series f1� f2

defined, for any x ∈ G, by 〈x, f1� f2〉 := 〈x, f1〉〈x, f2〉.

The space of all generating series on one formal parameter t is denoted by K〈〈t〉〉. The
trace of a G-series f is the generating series tr(f) of K〈〈t〉〉 defined by

tr(f) :=
∑

x∈G
〈x, f〉trk(x). (1.1.5)

This series might be ill-defined when G is not combinatorial. Observe that if f is the
characteristic series of G, then tr(f) is the generating series of G.

1.1.3. Graded graphs. A graded graph [Fom94] is a pair (G,U) where G is a combinatorial
graded set of vertices and U : K〈G〉 → K〈G〉 is a linear map such that U(x) ∈ K〈G(d + 1)〉
for any x ∈ G(d). In the sequel, I is the identity map on K〈G〉.

Given a pair (x, y) ∈ G2, let us set ωU(x, y) := 〈y,U(x)〉. We say that (x, y) is an edge of
(G,U) if ωU(x, y) 6= 0. In this case the weight of this edge is ωU(x, y). A path from x1 ∈ G
to x` ∈ G is a sequence (x1, . . . , x` ), ` > 1, of vertices of G such that for any i ∈ [` − 1],
(xi, xi+1) is an edge of (G,U). The length of (x1, . . . , x` ) is ` − 1 and its weight is

ωU(x1, . . . , x` ) :=
∏

i∈[`−1]
ωU(xi, xi+1). (1.1.6)
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As a particular case, the weight of any path of length 0 is 1. The set of all paths of (G,U)
from x to y is denoted by PU(x, y). When for all (x, y) ∈ G2, the coefficients ωU(x, y) are
nonnegative integers, (G,U) is natural. In this case, one can interpret any edge (x, y) ∈ G2

as a bunch of ωU(x, y) multi-edges from x to y. Hence, for any x, y ∈ G, the sum of the
weights of all paths from x to y can be interpreted as the number of multipaths from x
to y. When moreover all coefficients ωU(x, y) belong to {0, 1}, (G,U) is simple. Besides,
when there is an element 0 of G such that for any x ∈ G, there is a path from 0 to x,
(G,U) is rooted and 0 is the root of the graded graph. Observe that if (G,U) is rooted,
its root is unique. In this case, for any x ∈ G, an initial path to x is a path from 0 to x
in (G,U).

The poset of (G,U) is the poset (G,4) wherein x4y if there is a path in (G,U) from
the vertex x to the vertex y of G. The covering relation of this poset is denoted by lU

and it satisfies, for any x, y ∈ G, x lU y if and only if y appears in U(x).

We shall draw graded graphs where edges are implicitly oriented from top to bottom.
The weight of an edge is written onto it, with the convention that undecorated edges have
weight 1. For instance, Figure 1 shows the Young graded graph Y. The poset of Y is the

0

FIGURE 1. The Young graded graph up to integer partitions of size 4.

Young lattice [Sta88]. Recall that in Y, vertices are integer partitions (represented as Young
diagrams) and U(λ) is the sum of all partitions that can be obtained by adding one box to
the integer partition λ.

Let U? : K〈G〉? → K〈G〉? be the adjoint map of U. Due to the fact that G is combinatorial
and K〈G〉 is a graded space decomposing as

K〈G〉 =
⊕

d∈N
K〈G(d)〉 (1.1.7)

with finite dimensional homogeneous components K〈G(d)〉, d > 0, the space K〈G〉 can be
identified with its graded dual K〈G〉?. Therefore, for any y ∈ G,

U?(y) =
∑

x∈G
〈x,U(y)〉x =

∑

x∈G
ωU(x, y)x. (1.1.8)
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In the case where (G,U) is rooted, the hook series of (G,U) is the G-series hU defined
by the functional equation

〈x,hU〉 = [x = 0] + 〈U?(x),hU〉. (1.1.9)

For any x ∈ G, 〈x,hU〉 is the hook coefficient of x in (G,U).

Proposition 1.1.1. Let (G,U) be a rooted graded graph. For any x ∈ G,

〈x,hU〉 =
∑

p∈PU(0,x)

ωU(p). (1.1.10)

Moreover, hU = (I −U)−1(0).

Proof. We proceed by induction on the rank d of x. When d = 0, since (G,U) is rooted,
we necessarily have x = 0. Therefore, since [0 = 0] = 1 and U?(0) = 0, the property is
satisfied in this case. Otherwise, x 6= 0 and we have by definition of hook series,

〈x,hU〉 = 〈U?(x),hU〉

=
〈
∑

y∈G
〈x,U(y)〉y,hU

〉

=
∑

y∈G
〈x,U(y)〉〈y,hU〉.

(1.1.11)

Now, for any y ∈ G, if x appears in U(y), then the rank of y is d − 1, and by induction
hypothesis, 〈y,hU〉 satisfies (1.1.10). Since all paths from 0 to x in (G,U) decompose as
paths from 0 to elements y of rank d− 1 followed by edges from y to x, the statement of
the proposition follows.

Let us establish the second part of the statement. For this, we prove that for any x ∈ G,
〈
x,Urk(x)(0)

〉
= 〈x,hU〉 (1.1.12)

by induction on the rank d of x. If d = 0, since (G,U) is rooted, x = 0, and since〈
0,U0(0)

〉
= 1 and 〈0,hU〉 = 1, the property is satisfied. Assume that d > 1. By (1.1.11) and

by induction hypothesis,

〈x,hU〉 =
∑

y∈G
〈x,U(y)〉〈y,hU〉

=
∑

y∈G
〈x,U(y)〉

〈
y,Urk(y)(0)

〉

=
〈
x,Urk(x)(0)

〉
.

(1.1.13)

Since finally (I −U)−1 =
∑

d∈N Ud , the stated expression for hU follows. �

When (G,U) is moreover natural, Proposition 1.1.1 says that the hook coefficient of
any x ∈ G can be interpreted as the number of initial multipaths to x in (G,U). These
coefficients define a statistics on the elements of G which can be of independent com-
binatorial interest. For instance, the hook coefficient of a partition λ in Y is given by
the hook-length formula [FRT54], is also the number of initial paths to λ, and is also the
number of standard Young tableaux of shape λ. Therefore, a standard Young tableau of
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shape λ is to the integer partition λ what an initial path to x ∈ G is to x in the case where
(G,U) is a natural rooted graded graph. Moreover, the initial paths series of (G,U) is the
generating series ipU := tr(hU). By definition, for any ` ∈ N, the coefficient

〈
t` , ipU

〉
can

be interpreted as the number of initial multipaths of (G,U) of length `. In the case of Y,
we obtain the generating series counting the standard Young tableaux as initial path series
(see Sequence A000085 of [Slo] for its coefficients).

1.1.4. Pairs of graded graphs. A pair of graded graphs is a triple (G,U,V) such that both
(G,U) and (G,V) are graded graphs. When (G,U) and (G,V) are both natural, (G,U,V)
is natural. When (G,U) and (G,V) are both rooted and share the same root 0, (G,U,V)
is rooted and 0 is the root of (G,U,V). A returning path from x ∈ G to y ∈ G is a pair
(p, p′) such that p is a path from x to y in (G,U) and p′ is a path from x to y in (G,V).
The length of (p, p′) is the length of p (or equivalently, of p′) and its weight is

ωU,V
(
p, p′

)
:= ωU(p)ωV

(
p′
)
. (1.1.14)

When (G,U,V) is rooted, a returning initial path to x is a returning path from 0 to x
in (G,U,V) and the returning hook series of (G,U,V) is the G-series rhU,V defined by

rhU,V := hU�hV. (1.1.15)

For any x ∈ G, 〈x, rhU,V〉 is the returning hook coefficient of x in (G,U,V).

Proposition 1.1.2. Let (G,U,V) be a rooted pair of graded graphs. For any x ∈ G,

〈x, rhU,V〉 =
∑

p∈PU(0,x)
p′∈PV(0,x)

ωU,V
(
p, p′

)
. (1.1.16)

Proof. By definition of returning hook series,

〈x, rhU,V〉 = 〈x,hU�hV〉 = 〈x,hU〉〈x,hV〉. (1.1.17)

By Proposition 1.1.1, the statement of the proposition follows. �

When (G,U,V) is moreover natural, Proposition 1.1.2 says that the returning hook
coefficient of any x ∈ G can be interpreted as the number of returning initial paths to x
in (G,U,V). These coefficients define a statistics on the elements of G which can be of
independent combinatorial interest. For instance, by seeing Y as a pair of graded graphs
with V = U, the returning hook coefficient of a partition λ in Y is given by the square
of the hook-length formula. Therefore, a pair of standard Young tableaux of the same
shape λ is to the integer partition λ what a returning initial path to x ∈ G is to x in the
case where (G,U,V) is a natural rooted pair of graded graphs. Moreover, the returning
initial paths series of (G,U,V) is the generating series ripU,V := tr(rhU,V). By definition,
for any ` ∈ N, the coefficient of

〈
t` , ripU,V

〉
can be interpreted as the number of returning

initial multipaths of (G,U,V) of length `. In the case of Y, we obtain the generating series
counting the permutations as returning initial paths series (see (0.0.1) and [Sag01]).

http://oeis.org/A000085
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1.1.5. Dual graded graphs. Let (G,U,V) be a pair of graded graphs. One says that (G,U,V)
is φ-diagonal dual if φ : K〈G〉 → K〈G〉 is a diagonal linear map that is, for any x ∈ G,
φ(x) = λxx where λx ∈ K, and

V?U−UV? = φ. (1.1.18)
This notion is a generalization of rd-duality, and hence, of r-duality and duality of graded
graphs (see [Fom94]). Indeed, in the case where φ(x) = rrk(x) x for any x ∈ G, one
recovers rd-duality. Duality of graded graphs is very closely connected with the theory
of r-differential posets [Sta88]. In the case where (G,U,U) is φ-diagonal dual, we say that
(G,U) is φ-diagonal self-dual.

Proposition 1.1.3. Let (G,U,V) be a pair of φ-diagonal dual graded graphs. For any
n > 0,

V?Un = UnV? +
∑

k1,k2>0
k1+k2=n−1

Uk1φUk2 . (1.1.19)

Proof. We proceed by induction on n. When n = 0, the property holds since the left-
hand side of (1.1.19) is V?U0 = V?I = V? while its right-hand side is U0V? = IV? = V?.
Assume that the property holds for a n > 0. Hence, by induction hypothesis and by using
Relation (1.1.18) implied by of φ-diagonal duality of (G,U,V), we have

V?Un+1 = V?UnU

= UnV?U +
∑

k1,k2>0
k1+k2=n−1

Uk1φUk2+1

= Un(φ + UV?) +
∑

k1,k2>0
k1+k2=n−1

Uk1φUk2+1

= Un+1V? + Unφ +
∑

k1,k2>0
k1+k2=n−1

Uk1φUk2+1

= Un+1V? +
∑

k1,k2>0
k1+k2=n

Uk1φUk2 ,

(1.1.20)

establishing (1.1.19). �

Observe that when (G,U,V) is a pair of φ-diagonal dual graded graphs such that φ
commutes with U, there exists an r ∈ K such that the map φ satisfies φ(x) = rx for any x ∈
G. This implies that in this case, (G,U,V) is a pair of r-dual graphs and Proposition 1.1.3
brings us the well-known identity [Sta88]

V?Un = UnV? + nrUn−1 (1.1.21)

holding for any n > 0.

1.2. Syntax trees. We set here elementary definitions and notations about syntax trees
and composition operations on syntax trees. Most of these notions can be found in [Gir18,
Chapter 3.].
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1.2.1. Elementary definitions. An alphabet is a graded set G such that G(0) = ∅. The
elements of G are letters. The arity |a| of a letter a ∈ G is its rank. A G-tree (also
called G-syntax tree) is a planar rooted tree such that its internal nodes of arity k are
decorated by letters of arity k of G. More precisely, a G-tree is either the leaf or a pair(
a,
(
t1, . . . , t|a|

))
where a ∈ G and t1, . . . , t|a|] are G-trees. Unless otherwise specified, we

use in the sequel the standard terminology (such as node, internal node, leaf, edge, root,
child, ancestor, etc.) about planar rooted trees [Knu97] (see also [Gir18]). Let us set here
the most important definitions employed in this work.

Let t =
(
a,
(
t1, . . . , t|a|

))
be a G-tree. For any word u of positive integers, let u 7Ï t(u) be

the partial map defined recursively as follows.
(i) If u = ε , then t(u) := t;
(ii) If u = u1u2 . . . uk with k > 1 and u1 ∈ [|a|], then t(u) := tu1 (u2 . . . uk);
(iii) Otherwise, t(u) is not defined.
A node of t is any word u of positive integers such that t(u) is well-defined. In this case,
t(u) is the u-suffix subtree of t. Moreover, for any i ∈ [k] where k is the arity of the node
u in t, t(ui) is the i-th subtree of u in t. A node u of t is internal if u is a proper prefix
of an other node of t. A leaf of t is a node of t which is not internal. We denote by N(t)
(resp. N•(t), N (t)) the set of all nodes (resp. internal nodes, leaves) of t.

The degree deg(t) (resp. arity |t|) of t is its number of internal nodes (resp. leaves).
The only G-tree of degree 0 and arity 1 is the leaf and is denoted by . For any a ∈ G(k),
the corolla decorated by a is the tree c(a) consisting in one internal node decorated by a
having as children k leaves. The leaves of t are totally ordered by their position in N (t)
with respect to the lexicographic order. They are thus implicitly indexed from 1 to |t|.

For instance, if G := G(2) tG(3) with G(2) := {a,b} and G(3) := {c},

t := b

a

c

c

a (1.2.1)

is a G-tree of degree 5 and arity 8. Its root is decorated by c and has arity 3. Moreover,
we have

t(1) = b = c(b), t(2) = , t(3) =
c

a

a
, t(32) = a = c(a), (1.2.2)

and N(t) = {ε, 1, 11, 12, 2, 3, 31, 311, 312, 313, 32, 321, 322}, N•(t) = {ε, 1, 3, 31, 32}, and
N (t) = {11, 12, 2, 311, 312, 313, 321, 322}.

1.2.2. Graded sets of syntax trees and partial compositions. Given an alphabet G, we
denote by S (G) (resp. S•(G)) the graded set of all the G-trees where the rank of a tree is



10 SAMUELE GIRAUDO

its arity (resp. its degree). When G is finite, the graded set S•(G) is combinatorial and its
generating series RS•(G)(t), counting its elements with respect to their degrees, satisfies

RS•(G)(t) = 1 + tRG

(
RS•(G)(t)

)
. (1.2.3)

Given t, s ∈ S•(G) and i ∈ [|t|], the partial composition t ◦i s is the G-tree obtained by
grafting the root of s onto the i-th leaf of t. For instance, by considering the previous
graded set G of Section 1.2.1, one has

b

a

a

c ◦5
c

b
=

b

b

a

a

c

c
. (1.2.4)

Moreover, for any u ∈ N (t), we shall denote by t ◦u s the G-tree obtained by grafting the
root of s into the leaf u of t. For instance, the partial composition shown in (1.2.4) is the
same as the one obtained by composing the two considered trees through ◦22 since the
5-th leaf of the first tree is 22.

By a slight but convenient abuse of notation, given a,b ∈ G and i ∈ [|a|], we shall in
some cases simply write a ◦i b instead of c(a) ◦i c(b). Moreover, when the context is clear,
we shall even write a for c(a). In addition, given some G-trees s1, . . . , s|a|, we shall write
a(s1, . . . , s|a| ) instead of

(
a,
(
s1, . . . , s|a|

))
.

1.3. Nonsymmetric operads. We set here elementary definitions and notations about
nonsymmetric operads, free nonsymmetric operads, and presentations by generators and
relations. Most of these notions can be found in [Gir18, Chapter 5.] or in [Mé15].

1.3.1. Elementary definitions. A nonsymmetric operad in the category of sets, or a non-
symmetric operad for short, is a graded set O together with maps

◦i : O(n)× O(m)→ O(n +m − 1), 1 6 i 6 n, 1 6m, (1.3.1)

called partial compositions, and a distinguished element 1 ∈ O(1), the unit of O. This data
has to satisfy, for any x, y, z ∈ O, the three relations

(x ◦i y) ◦i+j−1 z = x ◦i
(
y ◦j z

)
, i ∈ [|x|], j ∈ [|y|], (1.3.2a)

(x ◦i y) ◦j+|y|−1 z =
(
x ◦j z

)
◦i y, i, j ∈ [|x|], i < j, (1.3.2b)

1 ◦1 x = x = x ◦i 1, i ∈ [|x|]. (1.3.2c)

Since we consider in this work only nonsymmetric operads, we shall call these simply
operads. The arity |x| of any x ∈ O is its rank. An operad O is combinatorial if O is
combinatorial as a graded set.
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Given an operad O, one defines the full composition maps of O as the maps

◦ : O(n)×O(m1)×· · ·×O(mn)→ O(m1 + · · ·+mn), 1 6 n, 1 6m1, . . . , 1 6mn, (1.3.3)

defined, for any x ∈ O(n) and y1, . . . , yn ∈ O, by

x ◦ [y1, . . . , yn] := (. . . ((x ◦n yn) ◦n−1 yn−1) . . .) ◦1 y1. (1.3.4)

When O is combinatorial, the Hilbert seriesHO(t) of O is the generating series GO(t). If
O1 and O2 are two operads, a graded set morphism ψ : O1 → O2 is an operad morphism if
it sends the unit of O1 to the unit of O2 and commutes with partial composition maps. We
say that O2 is a suboperad of O1 if O2 is a graded subset of O1, O1 and O2 have the same
unit, and the partial compositions of O2 are the ones of O1 restricted on O2. For any subset
G of O, the operad generated by G is the smallest suboperad OG of O containing G. When
OG = O and G is minimal with respect to the inclusion among the subsets of G satisfying
this property, G is a minimal generating set of O and its elements are generators of O.
An operad congruence of O is an equivalence relation ≡ respecting the arities and such
that, for any x, y, x′, y ′ ∈ O, x ≡ x′ and y ≡ y ′ implies x ◦i y ≡ x′ ◦i y ′ for any i ∈ [|x|]. The
≡-equivalence class of any x ∈ O is denoted by [x]≡. Given an operad congruence ≡, the
quotient operad O/≡ is the operad on the set of all ≡-equivalence classes and defined in
the usual way.

1.3.2. Free operads. Let G be an alphabet. The free operad on G is the operad defined
on the graded set S (G) wherein the partial compositions ◦i are the partial compositions of
G-trees. By considering the previous graded set G of Section 1.2.1, one has, as an example
of a full composition in S (G),

b
a
◦



 a
a

b
, , c



 =
a c

a

b

b

a . (1.3.5)

When G is combinatorial and satisfies G(1) = ∅, the Hilbert series HS (G)(t) satisfies

HS (G)(t) = t +RG

(
HS (G)(t)

)
. (1.3.6)

Free operads satisfy the following universality property. The free operad S (G) is the
unique operad (up to isomorphism) such that for any operad O and any graded set mor-
phism f : G → O, there exists a unique operad morphism ψ : S (G) → O such that the
factorization f = ψ ◦ c holds. In other terms, the diagram

G O

S (G)

f

c ψ (1.3.7)

commutes.
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1.3.3. Presentations and treelike expressions. A presentation of an operad O is a pair
(G,≡) such that G is an alphabet, ≡ is an operad congruence of S (G), and O is isomorphic
to S (G)/≡. In most of the practical cases, G is a subset of O such that G is a minimal
generating set of O.

When O satisfies O(0) = ∅, O is in particular an alphabet. For this reason, S (O) is a
well-defined free operad. The evaluation map of O is the map ev : S (O) → O defined as
the unique surjective operad morphism satisfying, for any x ∈ O, ev(c(x)) = x. Given S a
subset of O, a treelike expression on S of an element x of O is a O-tree t belonging to the
fiber ev−1(x) and such that all internal nodes of t are decorated by elements of S. The set
of all treelike expressions on S of x is denoted by TS(x).

1.3.4. Linear operads. The partial and the full composition operations of an operad O
extend by linearity on the space K〈O〉. This fact will be used implicitly in the sequel.
Moreover, it is convenient in what follows, when x ∈ O(n) and y ∈ O, to set x ◦i y := 0
whenever i /∈ [n]. This convention will be used also implicitly in the sequel. Besides, when
O is in particular the free operad on G, by a slight abuse of notation, for any a ∈ G and
S (G)-polynomials f1, . . . , f|a|, we shall write a( f1, . . . , f|a| ) for c(a) ◦

[
f1, . . . , f|a|

]
.

2. GRADED GRAPHS OF SYNTAX TREES

The objective of this section is to introduce two graded graphs of syntax trees which
are φ-diagonal dual for a certain map φ. These graphs will be used as raw material in the
next sections in order to associate pairs of graded graphs with operads.

2.1. Prefix graded graphs. We begin by introducing prefix graded graphs and present
some of their combinatorial properties.

2.1.1. First definitions and properties. For any finite alphabet G, let (S•(G),U) be the
graded graph wherein, for any t ∈ S•(G),

U(t) :=
∑

a∈G
i∈[|t|]

t ◦i a. (2.1.1)

We call (S•(G),U) the G-prefix graph. Since G is finite, U(t) is a S•(G)-polynomial. More-
over, since all trees appearing in U(t) are of rank deg(t) + 1, the G-prefix graph is a
well-defined graded graph. Observe that this graded graph is simple and that it admits
as root. Figure 2 shows examples of such graphs.

An internal node u of a G-tree t is maximal if u has only leaves as children. The set
of all maximal nodes of t is denoted by Nm

• (t). For any u ∈ Nm
• (t), the deletion of u in t

is the G-tree delu(t) obtained by replacing the node u of t by a leaf. By relying on these
definitions, the adjoint map of U satisfies, for any t ∈ S•(G),

U?(t) =
∑

u∈Nm
• (t)

delu(t). (2.1.2)
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a

a
a a

a

a
a

a
a

a

a

a
a

a

a

a
a

a
a

a

(A) For G = {a} with |a| = 2 up to degree 3.

e c

e
e

e
c e

c c
e

c
e c

c c
c

c
c

e
c
e e

c
e

c
e e

(B) For G = {e, c} with |e| = 1 and |c| = 3 up to degree 2 and with some
trees of degree 3.

FIGURE 2. Two graded graphs (S•(G),U).

2.1.2. Diagonal self-duality. We give here a necessary and sufficient condition on the
alphabet G for the fact that (S•(G),U) is φ-diagonal self-dual.

Proposition 2.1.1. The graded graph (S•(G),U) is φ-diagonal self-dual if and only if G

is the empty alphabet or a singleton alphabet. When G is a singleton, φ : K〈S•(G)〉 →
K〈S•(G)〉 satisfies

φ(t) = (|t| −#Nm
• (t)) t (2.1.3)

for any G-tree t.

Proof. First of all, when G is empty, (S•(G),U) is immediately φ-diagonal self-dual for the
zero map φ. Assume that G is the singleton {a}. When t = , since (U?U−UU?)() = ,
the property is satisfied. Assume now that t has at least one internal node. All terms of
(U?U)(t) are obtained by changing a leaf of t into an internal node decorated by a, and then
by suppressing a maximal internal node of the obtained tree. Then, in particular when
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the suppressed internal node is the one which has been just added, t occurs in (U?U)(t).
For this reason, the coefficient of the term t is |t|. Moreover, all terms of (UU?)(t) are
obtained by suppressing a maximal internal node of t, and then by changing a leaf into an
internal node decorated by a of the obtained tree. For this reason, the coefficient of the
term t is Nm

• (t). Finally, since all trees different from t appearing (U?U)(t) or in (UU?)(t)
are the same and have all 1 as coefficient, the statement of the proposition follows.

Conversely, assume that G is not empty neither a singleton. Hence, there exist a,b ∈ G

with a 6= b, and we have in particular

(U?U−UU?)(a) = U?




∑

c∈G
i∈[|a|]

a ◦i c



−U() = (#G)|a| a −
∑

c∈G
c. (2.1.4)

Since b appears in (2.1.4), this shows that (S•(G),U) is not φ-diagonal self-dual. �

2.1.3. Path enumeration. Recall that if (P,4) is a finite poset, a linear extension of P is
a bijective map σ : P → [#P] such that for any x, y ∈ P, x4y implies σ (x) 6 σ (y), where
6 is the natural total order on the set of natural numbers [#P]. The linear extension σ
can be encoded by the permutation

(x1, . . . , x#P) (2.1.5)

of elements of P, wherein for any x ∈ P, σ (x) is the position of x in the word (2.1.5).
Observe that if P is the disjoint union of some posets P1, . . . , Pk , k > 0, each permutation
encoding a linear extension σ of P is obtained by shuffling the permutations encoding
respectively linear extensions σ1, . . . , σk of P1, . . . , Pk. Therefore, if each Pi , i ∈ [k], has
ai linear extensions, then P has the multinomial

* a1, . . . , ak+! := (a1 + · · ·+ ak)!
a1! . . . ak!

(2.1.6)

as number of linear extensions.

The poset induced by a G-tree t is the poset P(t) := (N•(t),4) wherein for any u, v ∈
N•(t), u4 v if u is an ancestor of v. The number h(t) of all linear extensions of P(t) is
given by the hook-length formula for rooted planar trees [Knu98] and satisfies

h(t) = deg(t)!∏
u∈N•(t)

deg(t(u))
. (2.1.7)

By elementary computations involving multinomial coefficients, and by structural induction
on G-trees, one can show that these numbers satisfy the recurrence relation

h() = 1, (2.1.8a)

h
(
a(s1, . . . , s|a| )

)
= *deg(s1), . . . ,deg

(
s|a|
)
+!
∏

i∈[|a|]
h(si) (2.1.8b)

for any a ∈ G and any G-trees s1, . . . , s|a|.
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Proposition 2.1.2. For any finite alphabet G, the hook series of (S•(G),U) satisfies
〈t,hU〉 = h(t) for any G-tree t.

Proof. Let us proceed by induction on the degree of the G-trees. By definition of hU,
〈,hU〉 = 1, and since h() = 1, the property holds. Now, let t be a G-tree of degree d > 1.
We have, by definition of hU, by (2.1.2), and by induction hypothesis,

〈t,hU〉 = 〈U?(t),hU〉

=
〈
∑

u∈Nm
• (t)

delu(t),hU

〉

=
∑

u∈Nm
• (t)

〈delu(t),hU〉

=
∑

u∈Nm
• (t)

h(delu(t)).

(2.1.9)

From the definition of P(t), it follows that any permutation encoding a linear extension of
P(t) writes as (

ε, v(1), . . . , v(d−2), u
)

(2.1.10)

where the permutation
(
ε, v(1), . . . , v(d−2)) encodes a linear extension of P(delu(t)) and u is

a maximal node of t. This leads, by (2.1.9), to 〈t,hU〉 = h(t). �

For any alphabet G, let mG be the arity of a letter having a maximal arity in G.

Proposition 2.1.3. For any finite alphabet G, the initial path series of (S•(G),U) satisfies
〈
td, ipU

〉
=

∑

n∈[1+(mG−1)d]

θ(d, n) (2.1.11)

for any d > 0, where θ(d, n) satisfies the recurrence θ(d, n) = 0 for any n 6 0 and d ∈ Z,
θ(0, 1) = 1, and

θ(d, n) =
∑

a∈G
|a|6n

(n + 1− |a|) θ(d − 1, n + 1− |a|) (2.1.12)

for any d > 1 and n > 1.

Proof. Let us prove that θ(d, n) is the number of initial paths in (S•(G),U) to elements of
degree d and arity n by induction on d > 0. First, since there are no syntax trees of arity
0 or less, θ(d, n) = 0 for any n 6 0 and d ∈ Z. Moreover, since θ(0, 1) = 1, the property
is satisfied because is the unique tree of degree 0 and arity 1, and there is exactly one
initial path to . Assume now that d > 1. Any initial path to a tree t of degree d and arity n
decomposes as an initial path to a tree t′ of degree d−1 such that t appears in U(t′). Hence,
there is an i ∈ [|t′|] and an a ∈ G such that t = t′ ◦i a. This implies that |t′| = n+ 1− |a| and
|a| 6 n. By induction hypothesis, there are θ(d − 1, |t′|) initial paths to trees of degree d−1
and arity |t′|. Therefore, due to the fact that initial paths to trees of degree d decompose as
explained before, θ(d, n) satisfies the claimed property. Finally, (2.1.11) is a consequence
of the fact that a G-tree of degree d has 1 as minimal arity and 1 + (mG − 1)d as maximal
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arity. Indeed, this maximal arity is reached for trees consisting only in internal nodes of
a maximal arity mG. �

Here are the sequences of the first coefficients of some initial paths series of (S•(G),U):

1, 1, 2, 6, 24, 120, 720, 5040, for G = {a} with |a| = 2, (2.1.13a)

1, 1, 3, 15, 105, 945, 10395, 135135, for G = {c} with |c| = 3, (2.1.13b)

1, 2, 8, 48, 384, 3840, 46080, 645120, for G = {a,b} with |a| = |b| = 2, (2.1.13c)

1, 2, 10, 82, 938, 13778, 247210, 5240338, for G = {a, c} with |a| = 2, |c| = 3. (2.1.13d)

These are respectively Sequences A000142, A001147, A000165, and A112487 of [Slo].

2.2. Twisted prefix graded graphs. We now introduce a second sort of graded graphs
and present some of their combinatorial properties. The aim is to study this graded graph
in order to show in the next section that, together with the first kind of graded graphs,
this forms a pair of φ-diagonal dual graded graphs.

2.2.1. First definitions and properties. For any finite alphabet G, let V? : K〈S•(G)〉 →
K〈S•(G)〉 be the linear map satisfying the recurrence

V?() := 0, (2.2.1a)

V?(a(s, , . . . , )) := s, (2.2.1b)

V?(a(s1, . . . , s|a| )
)

:=
∑

j∈[2,|a|]
a(s1, . . . , sj−1,V?(sj

)
, sj+1, . . . , s|a| ), (2.2.1c)

for any a ∈ G and any G-trees s, s1, . . . , s|a| such that there is at least a j ∈ [2, |a|] such that
sj 6= . For instance, for G = {e, a, c} where |e| = 1, |a| = 2, and |c| = 3, one has

V?




a c

a c

c

e

c



 = a
c

c
e c

a
+ a c

a

c

e
c + a c

c

c

e
c . (2.2.2)

This recursive definition for V? is convenient to set up proofs by induction of properties
involving this map. Nevertheless, we shall consider also a non-recursive description rely-
ing on the following definitions. Let t be a G-tree decomposing as t = s ◦u (a ◦i s′) where
s and s′ are G-trees, u ∈ N (s), i ∈ [|a|], and a ∈ G. The contraction of the internal node u
of t is the G-tree conu(t) := s ◦u s′. For instance, by considering the same alphabet G as in
the previous example, the contraction of the node 2 of the G-tree

t :=
a

a

a

c

c

a

=
a

c ◦2



 c ◦3 a

a

a



, (2.2.3)

http://oeis.org/A000142
http://oeis.org/A001147
http://oeis.org/A000165
http://oeis.org/A112487
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is

con2(t) =
a

c ◦2
a

a

a
= a

c

a

a

a
. (2.2.4)

Observe that when u is a maximal internal node of t, one has conu(t) = delu(t).

Besides, an internal node u of t is quasi-maximal if u admits no occurrence of the
letter 1 and all uj are leaves for all j ∈ [2, k] where k is the arity of u in t. In other words,
the path connecting the root of t with u does never go through a first edge of an internal
node and u has only leaves as children except possibly at first position. We denote by
Nqm
• (t) the set of all quasi-maximal nodes of t. For instance, by considering the same

alphabet G as in the previous examples, here is a G-tree wherein its quasi-maximal nodes
are framed:

a c

a c

c

e

c . (2.2.5)

Observe that for any u ∈ Nqm
• (t), one has t = s ◦u (a ◦1 s′) where s and s′ are G-trees,

possibly leaves. Therefore, conu(t) is well-defined.

By relying on these definitions, the map V? rephrases, in a non-recursive way, as follows.

Proposition 2.2.1. For any finite alphabet G and any G-tree t, the map V? satisfies

V?(t) =
∑

u∈Nqm
• (t)

conu(t). (2.2.6)

Proof. We proceed by induction on the degree d of t. If d = 0, then t = and we have
V?() = 0. Moreover, since has no internal node, the right-hand side of (2.2.6) is equal
to 0. Hence, the property holds here. Assume now that d > 1. If t decomposes as
t = a(s, , . . . , ) where a ∈ G and s is a G-tree, we have V?(t) = s and, since the root ε of
t is the only quasi-maximal node of t, the right-hand side of (2.2.6) is equal to conε(t) = s.
Hence, the property holds here also. It remains to explore the case where t decomposes
as t = a(s1, . . . , s|a| ) where a ∈ G and s1, . . . , s|a| are G-trees such that there is a j ∈ [2, |a|]
such that sj 6= . We have, by definition of V? and by induction hypothesis,

V?(t) =
∑

j∈[2,|a|]
a(s1, . . . , sj−1,V?(sj

)
, sj+1, . . . , s|a| )

=
∑

j∈[2,|a|]
a(s1, . . . , sj−1,

∑

u∈Nqm
• (sj)

conu
(
sj
)
, sj+1, . . . , s|a| ).

(2.2.7)

Now, the last member of (2.2.7) is equal to the right-hand side of (2.2.6) since

Nqm
• (t) =

⋃

j∈[2,|a|]

{
ju : u ∈ Nqm

•
(
sj
)}
. (2.2.8)

This says that the quasi-maximal nodes of t come from the quasi-maximal nodes of the sj ,
j ∈ [2, |a|]. Whence (2.2.6) is established. �



18 SAMUELE GIRAUDO

It follows from Proposition 2.2.1 that for any G-tree t, all the trees appearing in V?(t)
have deg(t) − 1 as degree. For this reason, the graph (S•(G),V) is graded and the rank
of a G-tree is its degree. We call (S•(G),V) the G-twisted prefix graph. Besides, again
by Proposition 2.2.1, for any G-tree t, the trees appearing in V?(t) have trivial coefficients.
For this reason, the graph (S•(G),V) is simple. Moreover, one can prove by structural
induction on G-trees that any G-tree t different from the leaf admits at least one internal
node which is quasi-maximal. For this reason, if t is a G-tree different from the leaf,
V?(t) 6= 0, implying that (S•(G),V) admits as root. Observe also that when G contains only
unary letters, (S•(G),V) is the line.

Since V is the adjoint map of V?, we can provide a recursive description of V from the
recursive definition of V? of (2.2.1a), (2.2.1b), and (2.2.1c). Indeed, it is possible to show by
induction on the degrees of the G-trees that V satisfies

V() =
∑

a∈G
a, (2.2.9a)

V
(
b(s1, . . . , s|b| )

)
=
(
∑

a∈G
a ◦1 b(s1, . . . , s|b| )

)

+




∑

j∈[2,|b|]
b(s1, . . . , sj−1,V

(
sj
)
, sj+1, . . . , s|b| )



,
(2.2.9b)

for any b ∈ G and any G-trees s1, . . . , s|b|. For instance, by considering the same alphabet
G as in the previous example, one has for instance

V



 a
a



 =
a

a
a

+
a

a
c

+
a

a
e

+
a

a
a +

a

a
c +

a
e
a

+ a
a

a
+ a

a

c
+

e
a

a
,

(2.2.10a)

V



 a
c

e



 =
a

c
e

a

+ a
c

e
a + a

c

e
c + a

c
e
e

+
a

c
a e

+ a

c

c e

+ a

c

e e +
a

c
e

c

+
e

a

a

e
.

(2.2.10b)
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Observe that when G contains at least one letter a such that |a| > 2, (S•(G),V) is not
φ-diagonal self-dual. Indeed,

(V?V− VV?)(a ◦1 a) = V?





(
∑

b∈G
b ◦1 (a ◦1 a)

)
+




∑

j∈[2,|a|]
b∈G

(
a ◦j b

)
◦1 a







− V(a)

= (#G) a ◦1 a + (#G)(|a| − 1) a ◦1 a −
(
∑

b∈G
b ◦1 a

)
−




∑

j∈[2,|a|]
b∈G

a ◦j b





= (#G)|a| a ◦1 a −
(
∑

b∈G
b ◦1 a

)
−




∑

j∈[2,|a|]
b∈G

a ◦j b



.

(2.2.11)

Besides, in the particular case where G = G(2) = {a}, the map V? satisfies the recur-
rence

V?() = 0, (2.2.12a)

V?(a(s, )) = s, (2.2.12b)

V?(a(s1, s2 )) = a(s1,V?(s2) ), (2.2.12c)

for any G-trees s, s1, and s2 such that s2 6= . It follows by induction on the degrees of the
G-trees that for any G-tree t, there is at most one term appearing in V?(t). For this reason,
the graph (S(G),V) is a tree.

2.2.2. Path enumeration. The twisted poset induced by a G-tree t is the poset P′(t) :=
(N•(t),4′) wherein for any u, v ∈ N•(t), one has u4′ v if u = v, or v = uiv ′ where i > 2
and v ′ is any word of integers, or u = v1u′ where u′ is any word of integers. In other
words, this says that one has u4′ v if u = v, or u is an ancestor of v but v is not in the
first subtree of u, or u is in the first subtree of v. For instance, by considering the same
alphabet G as in the previous examples, in the twisted poset induced by the G-tree

t := c

e

a

a

a

e

c

c
(2.2.13)

we have 114′ 14′ ε , 124′ ε , 14′ 12, ε4′ 2, ε4′ 3, ε4′ 31, ε4′ 311, and 3114′ 314′ 3.

For any G tree t, let the statistics t 7Ï h′(t) satisfying the recurrence relation

h′() = 1, (2.2.14a)

h′
(
a(s1, . . . , s|a| )

)
= *deg(s2), . . . ,deg

(
s|a|
)
+!
∏

i∈[|a|]
h′(si), (2.2.14b)
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for any a ∈ G and any G-trees s1, . . . , s|a|. For instance, by considering the G-tree t defined
in (2.2.13), one has h′(t) = 4.

Lemma 2.2.2. For any alphabet G and any G-tree t, the number of linear extensions of
the poset P′(t) is h′(t).

Proof. We proceed by induction on the degree d of t. If d = 0, then t = , and since P′() has
exactly one linear extension which is the empty one, and h′(t) = 1, the property is satisfied.
If d > 1, then t = a(s1, . . . , s|a| ) for an a ∈ G and G-trees s1, . . . , s|a|. From the definition of
P′(t), it follows that any permutation encoding a linear extension of P′(t) writes as

(
1u(1), . . . , 1u(k), ε, i1v(1), . . . , i`v(`)

)
(2.2.15)

where the permutation
(
u(1), . . . , u(k)) encodes a linear extension of P′(s1) and the per-

mutation
(
ε, i1v(1), . . . , i`v(`)) encodes a linear extension of P′

(
a( , s2, . . . , s|a| )

)
. Indeed, by

definition of the order relation 4′ of P′(t), all the nodes u(1), . . . , u(k) of s1 are smaller
than the root ε of t, and the root of t is itself smaller than all the nodes v(1), . . . , v(`) of,
respectively, P′(s2), . . . , P′

(
s|a|
)
. Moreover, again by definition of 4′, for any j, j ′ ∈ [2, |a|],

v ∈ N•
(
sj
)
, and v ′ ∈ N•

(
sj ′
)
, if j 6= j ′ then the nodes jv and j ′v ′ of t are incomparable

in P′(t). Thus, by (2.1.6), P′
(
a( , s2, . . . , s|a| )

)
has *deg(s2), . . . ,deg

(
s|a|
)
+! linear extensions.

Finally, since each P′(si), i ∈ [|a|], has by induction hypothesis h′(si) linear extensions, it
follows from (2.2.14b) that P′(t) admits h′(t) linear extensions. �

By Lemma 2.2.2, and in pursuit of the previous example, the G-tree defined in (2.2.13)
has four linear extensions. The four permutations encoding these are

(11, 1, 12, ε, 2, 311, 31, 3), (2.2.16a)

(11, 1, 12, ε, 311, 2, 31, 3), (2.2.16b)

(11, 1, 12, ε, 311, 31, 2, 3), (2.2.16c)

(11, 1, 12, ε, 311, 31, 3, 2). (2.2.16d)

Proposition 2.2.3. For any finite alphabet G, the hook series of (S•(G),V) satisfies
〈t,hV〉 = h′(t) for any G-tree t.

Proof. Let us proceed by induction on the degree of the G-trees. By definition of hV,
〈,hV〉 = 1, and since h′() = 1, the property holds. Now, let t be a G-tree of degree d > 1.
We have, by definition of hV, by Proposition 2.2.1, and by induction hypothesis,

〈t,hV〉 = 〈V?(t),hV〉

=
〈

∑

u∈Nqm
• (t)

conu(t),hV

〉

=
∑

u∈Nqm
• (t)

〈conu(t),hV〉

=
∑

u∈Nqm
• (t)

h′(conu(t)).

(2.2.17)
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From the definition of P′(t), it follows that any permutation encoding a linear extension of
P′(t) writes as (

v(1), . . . , v(d−1), u
)

(2.2.18)

where the permutation
(
v(1), . . . , v(d−1)) encodes a linear extension of P′(conu(t)) and u is

a quasi-maximal node of t. This leads, by using Lemma 2.2.2, to 〈t,hV〉 = h′(t). �

Here are the sequences of the first coefficients of some initial paths series of (S•(G),V):

1, 1, 2, 5, 14, 42, 132, 429, for G = {a} with |a| = 2, (2.2.19a)

1, 1, 3, 13, 71, 465, 3563, 31429, for G = {c} with |c| = 3, (2.2.19b)

1, 2, 8, 40, 224, 1344, 8448, 54912, for G = {a,b} with |a| = |b| = 2, (2.2.19c)

1, 2, 10, 70, 606, 6210, 73842, 1006318, for G = {a, c} with |a| = 2, |c| = 3. (2.2.19d)

The first and third ones are respectively Sequences A000108 and A151374 of [Slo]. The
two other ones do not appear for the time being in [Slo].

2.3. Diagonal duality. We prove here that the pair of graded graphs consisting in the
G-prefix graph and the G-twisted prefix graph is φ-diagonal dual. The description of the
map φ requires the use of a particular statistics on G-trees introduced here.

2.3.1. Non-first leaves statistics. Let G be an alphabet and t be a G-tree. A leaf u of t is
non-first if u admits no occurrence of the letter 1. In other words, the path connecting
the root of t with u does never go through a first edge of an internal node. We denote by
Nnf(t) the set of all non-first leaves of t. For instance, by considering the same alphabet
G as in the previous examples, here is a G-tree wherein its non-first leaves are framed:

a c

a c

c

e

c . (2.3.1)

Moreover, let us define the non-first leaves statistics t 7Ï nfl(t) by setting nfl(t) = #Nnf(t).
Immediately from the definition of non-first leaves, this statistics on S(G) satisfies the
recurrence

nfl() = 1, (2.3.2a)

nfl(a(s, , . . . , )) = |a| − 1, (2.3.2b)

nfl
(
a(s1, . . . , s|a| )

)
=
∑

j∈[2,|a|]
nfl
(
sj
)
, (2.3.2c)

for any a ∈ G and any G-trees s, s1, . . . , s|a| such that there is at least a j ∈ [2, |a|] satisfy-
ing sj 6= .

http://oeis.org/A000108
http://oeis.org/A151374
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2.3.2. Diagonal duality.

Theorem 2.3.1. For any finite alphabet G, the pair of graded graphs (S•(G),U,V) is
φ-diagonal dual for the linear map φ : K〈S•(G)〉 → K〈S•(G)〉 satisfying

φ(t) = (#G)nfl(t) t (2.3.3)

for any G-tree t.

Proof. Let us consider the G-tree polynomial

f (t) := (V?U−UV?)(t) =
∑

b∈G
i>0

V?(t ◦i b)− V?(t) ◦i b. (2.3.4)

Notice that we use here the convention exposed in Section 1.3.4 about extension by linearity
of the composition maps of operads in order to write the sum (2.1.1) without bounding i.
Nevertheless, this sum is finite. We proceed by structural induction on G-trees to show
that f (t) = φ(t).

We have to consider three cases following t. First, when t = , we immediately have
f (t) = (#G) . Since nfl() = 1, the property is satisfied. Second, when t is of the form
t = a(s1, , . . . , ) for an a ∈ G and a G-tree s1, we obtain

f (t) =
∑

b∈G
i>0

V?(a(s1, , . . . , ) ◦i b)− s1 ◦i b

=




∑

b∈G
i>0

V?(a(s1 ◦i b, , . . . , ))− s1 ◦i b



+




∑

b∈G

∑

j∈[2,|a|]
V?



a(s1, , . . . ,︸ ︷︷ ︸
j−2

,b, , . . . , )









=




∑

b∈G
i>0

s1 ◦i b− s1 ◦i b



+




∑

b∈G

∑

j∈[2,|a|]
a(s1, , . . . ,︸ ︷︷ ︸

j−2

,V?(b), , . . . , )





=
∑

b∈G

∑

j∈[2,|a|]
a(s1, , . . . , )

= (#G)(|a| − 1)t.
(2.3.5)

Since t has the considered form, nfl(t) = |a| − 1. Hence, f (t) = (#G)nfl(t) t, so that the
property is satisfied. Finally, it remains to consider the case where t is of the form t =
a(s1, . . . , s|a| ) for an a ∈ G and for G-trees s1, . . . , s|a| where there is at least a j ∈ [2, |a|]
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such that sj 6= . In this case, we obtain

f (t) =
∑

b∈G
i>0

∑

j∈[2,|a|]
a(s1 ◦i b, . . . , sj−1,V?(sj

)
, sj+1, . . . , s|a| ) + · · ·

+ a(s1, . . . , sj−1,V?(sj ◦i b
)
, sj+1, . . . , s|a| ) + · · ·+ a(s1, . . . , sj−1,V?(sj

)
, sj+1, . . . , s|a| ◦i b )

− a(s1 ◦i b, . . . , sj−1,V?(sj
)
, sj+1, . . . , s|a| )− · · ·

− a(s1, . . . , sj−1,V?(sj
)
◦i b, sj+1, . . . , s|a| )− · · · − a(s1, . . . , sj−1,V?(sj

)
, sj+1, . . . , s|a| ◦i b )

=
∑

b∈G
i>0

∑

j∈[2,|a|]
a(s1, . . . , sj−1,V?(sj ◦i b

)
, sj+1, . . . , s|a| )

− a(s1, . . . , sj−1,V?(sj
)
◦i b, sj+1, . . . , s|a| )

=
∑

b∈G
i>0

∑

j∈[2,|a|]
a(s1, . . . , sj−1,V?(sj ◦i b

)
− V?(sj

)
◦i b, sj+1, . . . , s|a| ).

(2.3.6)
By induction hypothesis, we get

∑

b∈G
i>0

V?(sj ◦i b
)
− V?(sj

)
◦i b = (V?U−UV?)

(
sj
)

= f
(
sj
)

= φ
(
sj
)
. (2.3.7)

We now obtain from (2.3.6), (2.3.7), and (2.3.2c) that

f (t) =
∑

j∈[2,|a|]
a(s1, . . . , sj−1, φ

(
sj
)
, sj+1, . . . , s|a| )

=
∑

j∈[2,|a|]
(#G)nfl

(
sj
)

a(s1, . . . , sj−1, sj , sj+1, . . . , s|a| )

= (#G)nfl(t) t.

(2.3.8)

Therefore, f (t) = (#G)nfl(t) t, establishing the statement of theorem. �

Figure 3 shows an example of a pair of φ-diagonal dual graded graphs.

2.3.3. Bracket tree. As already noticed before, when G = G(2) = {a}, the graph (S•(G),V)
is a tree. Moreover, (S•(G),U,V) is a pair of dual graded graphs isomorphic to the pair
consisting in the finite order ideals of the infinite binary tree and the Bracket tree, known
from [Fom94] (see also [HNT05]). One can see Theorem 2.3.1 as a generalization of this
prototypical instance for the present case of G-trees and φ-diagonal duality.

3. POSETS OF SYNTAX TREES

We present here a combinatorial study of the posets of the G-prefix graphs. In particular
we look at their lattice properties, the structure of their intervals, enumerate the trees in
a given interval, and enumerate all intervals with respect to the degrees of theirs bounds.

3.1. Posets and their intervals. We begin by describing the order relation and covering
relation of the posets of G-prefix graphs. We prove that any interval of these posets are
distributive lattices
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(A) The graph (S•(G),U) up to degree 2 and with some trees of degree 3.

a c

a
a a

a c
a a

c a
c c
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c
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c c

c
c

c

c
a a c

c
c

(B) The graph (S•(G),V) up to degree 2 and with some trees of degree 3.

FIGURE 3. The pair (S•(G),U,V) of φ-diagonal dual graded graphs where G := {a, c} with
|a| = 2 and |c| = 3.

3.1.1. Prefix posets. Let G be a finite alphabet. The G-prefix poset is the poset
(
S•(G),4p

)

of (S•(G),U). Besides, for any G-trees s and t, s is a prefix of t if there exist G-trees r1, . . . ,
r|s| such that t = s ◦

[
r1, . . . , r|s|

]
.

Lemma 3.1.1. Let G be an alphabet, and s and t be two G-trees. Then, s is a prefix of t
if and only if s = , or the roots of s and t are both decorated by the same letter a ∈ G,
and for all i ∈ [|a|], s(i) is a prefix of t(i).

Proof. This follows directly from the definition of the notion of prefix just introduced. �

Proposition 3.1.2. For any finite alphabet G, the order relation 4p of the G-prefix poset
satisfies s4p t if and only if the G-tree s is a prefix of the G-tree t. Moreover, the covering
relation lU of the G-prefix poset satisfies s lU t for any G-trees s and t if and only if
there is u ∈ Nm

• (t) such that s = delu(t).
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Proof. Assume that s4p t. By definition of the G-prefix poset, there exist an integer k > 0,
letters a1, . . . , ak of G, and positive integers i1, . . . , ik such that

t = (. . . ((s ◦i1 a1) ◦i2 a2) . . .) ◦ik ak. (3.1.1)

It follows straightforwardly by induction on k that there exist G-trees r1, . . . , r|s| such that
t = s ◦

[
r1, . . . , r|s|

]
. Therefore, s is a prefix of t.

Conversely, assume that s is a prefix of t. Hence, there exist G-trees r1, . . . , r|s| such
that t = s ◦

[
r1, . . . , r|s|

]
. By (1.3.4),

t =
(
. . .
((
s ◦|s| r|s|

)
◦|s|−1 r|s|−1

)
. . .
)
◦1 r1, (3.1.2)

and, by expressing now each tree ri , i ∈ [|s|], by means of partial compositions involving
letters of G, and by arranging this expression so that it becomes bracketed from the left to
the right by using Relation (1.3.2a), one obtains an expression of the same form as (3.1.1)
for t. Therefore, s4p t.

The second part of the statement is a direct consequence of the fact that the adjoint
map U? of the map U of the G-prefix graph satisfies (2.1.2). �

3.1.2. Distributive lattices. Let G be a finite alphabet. Let ∧ be the binary operation on
S•(G), called intersection, defined recursively by

t∧ := =: ∧ t, (3.1.3a)

a( t1, . . . , t|a| )∧b(s1, . . . , s|b| ) := , (3.1.3b)

a( t1, . . . , t|a| )∧ a( t′1, . . . , t′|a| ) := a( t1 ∧ t′1, . . . , t|a| ∧ t′|a| ), (3.1.3c)

for any a,b ∈ G such that a 6= b, and any G-trees t, t1, . . . , t|a|, t′1, . . . , t′|a|, and s1, . . . ,
s|b|. From an intuitive point of view, t∧ t′ is the tree obtained by considering the largest
common part between the G-trees t and t′ starting from their roots. For instance,

a
c

e
a ∧ e

c

a a = c
a
. (3.1.4)

Lemma 3.1.3. For any finite alphabet G and any G-trees t and t′, t∧ t′ is greatest lower
bound of {t, t′} in the G-prefix poset.

Proof. We use here Proposition 3.1.2 and its description of the order relation 4p of the
G-prefix poset in terms of prefixes of G-trees. Let us denote by L(t, t′) the set all lower
bounds of {t, t′}. By structural induction on t and t′, we show that max4p L(t, t′) exists and
that max4p L(t, t′) = t∧ t′. First, immediately from the definition of ∧, we have ∧ t = t∧ =
and L(, t) = L(t, ) = {} so that the statement of the lemma holds in this case. Assume now
that t and t′ are both different from the leaf so that t = a( t1, . . . , t|a| ) and t′ = a′( t′1, . . . , t′|a′| )
where a, a′ ∈ G and t1, . . . t|a|, t′1, . . . , t′|a′| are G-trees. If a 6= a′, we have t∧ t′ = and
L(t, t′) = {} since the leaf is the only G-tree which is a common prefix of both t and t′.



26 SAMUELE GIRAUDO

Hence, the statement of the lemma holds in this case. For the last case to consider, one
has a = a′, and it follows by induction hypothesis that

t∧ t′ = a( t1 ∧ t′1, . . . , t|a| ∧ t′|a| ) = a(s1, . . . , s|a| ), (3.1.5)

where for any i ∈ [|a|], si := max4p L(ti, t′i). Now, since for any i ∈ [|a|], si is a prefix of
both ti and t′i , and since all trees different from the leaf of L(t, t′) have a root decorated by
a, by Lemma 3.1.1, t∧ t′ is a prefix of both t and t′ so that t∧ t′ ∈ L(t, t′). To show finally
that t∧ t′ is the greatest element of L(t, t′), assume that r is a G-tree of L(t, t′). First, the
root of r is decorated by a. Second, since for any i ∈ [|a|], r(i) is a prefix of both ti and
t′i , and since si is the greatest G-tree which is a common prefix of ti and t′i , r(i) is a prefix
of si. Therefore, by Lemma 3.1.1, this implies that r is a prefix of t∧ t′ and establishes the
statement of the lemma. �

In the same way, let ∨ be the partial binary operation on S•(G), called union, defined
recursively by

t∨ := t =: ∨ t, (3.1.6a)
a( t1, . . . , t|a| )∨ a( t′1, . . . , t′|a| ) := a( t1 ∨ t′1, . . . , t|a| ∨ t′|a| ), (3.1.6b)

and where
a( t1, . . . , t|a| )∨b(s1, . . . , s|b| ) (3.1.7)

is not defined, for any a,b ∈ G such that a 6= b, and any G-trees t, t1, . . . , t|a|, t′1, . . . , t′|a|, and
s1, . . . , s|b|. From an intuitive point of view, t∨ t′ is the tree obtained by superimposing t

and t′. For instance,

a
a
∨ c

a

a
= c

a

a
a . (3.1.8)

Lemma 3.1.4. For any finite alphabet G and any G-trees t and t′ such that {t, t′} admits
an upper bound in the G-prefix poset, t∨ t′ is well-defined and is the least upper bound
of {t, t′}.

Proof. We use here Proposition 3.1.2 and its description of the order relation 4p of the
G-prefix poset in terms of prefixes of G-trees. Let us denote by U(t, t′) the set of all upper
bounds of {t, t′}. By structural induction on t and t′, we show that min4p U(t, t′) exists and
that min4p U(t, t′) = t∨ t′. First, immediately from the definition of ∨, we have ∨ t = t∨ = t

and U(, t) = U(t, ) = {t} so that the statement of the lemma holds in this case. Assume now
that t and t′ are both different from the leaf so that t = a( t1, . . . , t|a| ) and t′ = a′( t′1, . . . , t′|a′| )
where a, a′ ∈ G and t1, . . . t|a|, t′1, . . . , t′|a′| are G-trees. Since {t, t′} admits, by hypothesis, an
upper bound, both t and t′ have to be prefixes of a same G-tree. This implies that a = a′.
It follows by induction hypothesis that

t∨ t′ = a( t1 ∨ t′1, . . . , t|a| ∨ t′|a| ) = a(s1, . . . , s|a| ), (3.1.9)

where for any i ∈ [|a|], si := min4p U(ti, t′i). Observe that the G-tree specified by (3.1.9) is
well-defined by induction hypothesis. Indeed, by calling r an upper bound of {t, t′}, for
any i ∈ [|a|], ri is an upper bound of {ti, t′i}. Now, since for any i ∈ [|a|], both ti and t′i are
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prefixes of si , and since all trees of U(t, t′) have a root decorated by a, by Lemma 3.1.1
both t and t′ are prefixes of t∨ t′ so that t∨ t′ ∈ U(t, t′). To show finally that t∨ t′ is the least
element of U(t, t′), assume that r is a G-tree to U(t, t′). Since for any i ∈ [|a|], both ti and t′i
are prefixes of r(i), and since si is the smallest G-tree admitting both ti and t′i as prefixes,
si is a prefix of r(i). Therefore, by Lemma 3.1.1, this implies that t∨ t′ is a prefix of r and
establishes the statement of the lemma. �

By seeing G-trees as terms, the term encoded by t∨ t′ is in fact, if it exists, the unification
of the terms encoded by the G-trees t and t′ (see [BN98,Ter03]).

Proposition 3.1.5. For any finite alphabet G, the G-prefix poset is a meet-semilattice
for the operation ∧. Moreover, each interval [s, t] of this poset is a distributive lattice
for the operations ∧ and ∨.

Proof. Lemma 3.1.3 says that the G-prefix poset is a meet-semilattice for the operation ∧.
Moreover, by Lemma 3.1.4, the operation ∨ is well-defined for any pair of elements of
the interval I := [s, t] since t is an upper bound of any pair of trees of I . Hence, I is a
join-semilattice and thus also a lattice for the operations ∧ and ∨.

Let us now prove that I is a distributive lattice. We proceed by structural induction on the
three G-trees r1, r2, and r3 of I to show that αr1,r2,r3 = βr1,r2,r3 where αr1,r2,r3 := r1 ∧(r2 ∨ r3)
and βr1,r2,r3 := (r1 ∧ r2)∨(r1 ∧ r3). First, we have

α ,r2,r3 = ∧(r2 ∨ r3) = , (3.1.10)

and
β ,r2,r3 = ( ∧ r2)∨( ∧ r3) = ∨ = . (3.1.11)

Second, we have
αr1, ,r3 = r1 ∧( ∨ r3) = r1 ∧ r3, (3.1.12)

and
βr1, ,r3 = (r1 ∧ )∨(r1 ∧ r3) = ∨(r1 ∧ r3) = r1 ∧ r3. (3.1.13)

Similarly, the relation αr1,r2, = r1 ∧ r2 = βr1,r2, holds. We can now assume that r1, r2, and r3
are different from the leaf. Moreover, since r14p t, r24p t, and r34p t, the roots of r1, r2,
and r3 are decorated by the same letter a of G. Therefore,

αr1,r2,r3 = r1 ∧ a( r2(1)∨ r3(1), . . . r2(|a|)∨ r3(|a|) )
= a( r1(1)∧(r2(1)∨ r3(1)), . . . , r1(|a|)∧(r2(|a|)∨ r3(|a|)) )
= a(αr1(1),r2(1),r3(1), . . . , αr1(|a|),r2(|a|),r3(|a|) ),

(3.1.14)

and
βr1,r2,r3 = a( r1(1)∧ r2(1), . . . , r1(|a|)∧ r2(|a|) )∨ a( r1(1)∧ r3(1), . . . , r1(|a|)∧ r3(|a|) )

= a( (r1(1)∧ r2(1))∨(r1(1)∧ r3(1)), . . . , (r1(|a|)∧ r2(|a|))∨(r1(|a|)∧ r3(|a|)) )
= a(βr1(1),r2(1),r3(1), . . . , βr1(|a|),r2(|a|),r3(|a|) ).

(3.1.15)

By induction hypothesis, the relation αr1,r2,r3 = βr1,r2,r3 follows. �
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3.1.3. Structure of the intervals. A G-tree t is stringy if any internal node of t has at most
one child which is an internal node. A G-tree t is co-irreducible in

(
S•(G),4p

)
if t covers

at most one element.

Proposition 3.1.6. For any finite alphabet G, the set of co-irreducible elements of the
G-prefix poset is the set of all stringy G-trees. Moreover, the number of such elements
of degree d > 1 is RG(1)R′G(1)d−1, where R′G is the derivative of RG(t) with respect to t.

Proof. We use here Proposition 3.1.2 and its description of the covering relation lU of
the G-prefix poset in terms of deletion of maximal nodes. First, if t is a stringy G-tree
different from the leaf, by definition of stringy trees, t admits exactly one maximal internal
node u. Therefore, delu(t) is the only tree covered by t. Conversely, if t covers exactly
one G-tree t′, then t has only one maximal internal node. This implies that t is stringy.
This establishes the first part of the statement.

By definition, a stringy G-tree t decomposes as

t = a1 ◦i1 (a2 ◦i−2 (. . . (ad−1 ◦id−1 ad) . . .)) (3.1.16)

where (a1, . . . , ad) is a sequence of elements of G and (i1, . . . , id−1) is a sequence of indices
satisfying ij ∈

[
|aj |
]

for any j ∈ [d − 1]. This tree t is moreover entirely specified by these
two sequences. For this reason, by denoting by θ(d) the number of stringy G-trees of
degree d > 0, we have

θ(d) =
∑

(a1,...,ad)∈Gd

|a1| . . . |ad−1|

=
(
∑

a∈G
|a|
)d−1

(#G)

= R′G(1)d−1RG(1).

(3.1.17)

This shows the second part of the statement. �

Here are the sequences of the first numbers of stringy G-trees:

1, 1, 2, 4, 8, 16, 32, 64, for G = {a} with |a| = 2, (3.1.18a)

1, 1, 3, 9, 27, 81, 243, 729, for G = {c} with |c| = 3, (3.1.18b)

1, 2, 8, 32, 128, 512, 2048, 8192, for G = {a,b} with |a| = |b| = 2, (3.1.18c)

1, 2, 10, 50, 250, 1250, 6250, 31250, for G = {a, c} with |a| = 2, |c| = 3, (3.1.18d)

A G-forest is a nonempty word of G-trees. The length of a G-forest is the number of
trees it contains. If s4p t, the difference between t and s is the G-forest t \ s := (r1, . . . , r|s|)
such that r1, . . . , r|s| are the unique G-trees such that t = s ◦

[
r1, . . . , r|s|

]
. Moreover, from

any G-forest (r1, . . . , rk), we denote by ♦k( r1, . . . , rk ) the G♦k -tree obtained by grafting
the G-trees r1, . . . , rk to a root decorated by the letter ♦k of arity k, where G♦k is the
alphabet G t {♦k}.
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Proposition 3.1.7. Let G be a finite alphabet, and s and t be two G-trees such that s4p t.
As subposets of

(
S•(G),4p

)
, one has the poset isomorphisms

[s, t] ' [ , r1]× · · · ×
[
, r|s|

]
'
[
c
(
♦|s|
)
,♦|s|( r1, . . . , r|s| )

]
, (3.1.19)

where
(
r1, . . . , r|s|

)
is the G-forest t \ s.

Proof. We use here Proposition 3.1.2 and its description of the order relation 4p of the
G-prefix poset in terms of prefixes of G-trees. Let us call P the poset [ , r1]×· · ·×

[
, r|s|

]
and

let us denote by 4 its partial order relation. Let ψ : [s, t]→ P be the map defined for any
G-tree u ∈ [s, t] by ψ(u) :=

(
u1, . . . , u|s|

)
where

(
u1, . . . , u|s|

)
= u \ s. This map is well-defined

because by Lemma 3.1.1, ui is a prefix of ri for any i ∈ [|s|]. Since ψ admits as inverse
the map ψ−1 satisfying ψ−1((u1, . . . , u|s|

))
= s ◦

[
u1, . . . , u|s|

]
, ψ is a bijection. Assume that

x :=
(
u1, . . . , u|s|

)
and y :=

(
v1, . . . , v|s|

)
are elements of P. Now, x4y is equivalent to the

fact that ui4p vi for all i ∈ [|s|]. This, again by Lemma 3.1.1, is in turn equivalent to the fact
that s ◦

[
u1, . . . , u|s|

]
4p s ◦

[
v1, . . . , v|s|

]
, that is ψ−1(x)4p ψ−1(y). Therefore, this establishes

the first isomorphism of the statement of the proposition.
Let us call Q the poset

[
c
(
♦|s|
)
,♦|s|( r1, . . . , r|s| )

]
and let ψ′ : P → Q be the map defined

for any
(
u1, . . . , u|s|

)
∈ P by ψ′

((
u1, . . . , u|s|

))
:= ♦|s|(u1, . . . , u|s| ). Again by Lemma 3.1.1, it

follows that ψ′ is a well-defined map, which is additionally a bijection, and a poset embed-
ding. �

For instance, by considering the same alphabet G as in the previous examples, Propo-
sition 3.1.7 says that one has the isomorphism




a

a

c
, c c

a

e

a

a

e

c




'




♦5 , c

c

a

e

♦5

e




(3.1.20)

between respectively an interval of
(
S•(G),4p

)
and an interval of

(
S•(G♦5 ),4p

)
.

A shadow is defined recursively as being a (possibly empty) finite multiset *s1, . . . , sk+ of
shadows. A shadow encodes hence a nonplanar undecorated rooted tree. For any G-tree
t different from the leaf, we construct the shadow sh(t) recursively by

sh(t) := *sh(t(i)) : i ∈ [k] and t(i) 6= +, (3.1.21)

where k is the arity of the root of t. For instance,

sh




a a

c

e
c

a



 = * * ∅, ∅+, ∅, ∅+ = . (3.1.22)

Given a shadow s, the poset induced by s is the poset P(s) on its set of nodes different
from the root wherein a node u is smaller than a node v if u is an ancestor of v. In other
words, P(s) is the poset having as Hasse diagram the nonplanar rooted tree s without its
root. Besides, we say that a poset (P,4) is a forest poset if x4y and x′4y imply x4x′
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or x′4x for all x, x′, y ∈ P. Observe that any poset induced by a shadow is a forest
poset and conversely, for any forest poset P, there is a shadow s such that P and P(s) are
isomorphic.

For any poset (P,4), let (J(P),∧,∨) be the lattice wherein

J(P) := {X ⊆ P : x ∈ X and y ∈ P and y4x imply y ∈ X}, (3.1.23)

and the operation ∧ (resp. ∨) is the intersection (resp. the union) of the sets. In other
words, J(P) is the set of all order ideals of P ordered by inclusion. The Fundamental
theorem for distributive lattices (see [Sta11]) states that for any finite distributive lattice
L, there exists a unique finite poset P such that L and J(P) are isomorphic as lattices.
An element x of a finite lattice L is join-irreducible if x covers exactly one element. It is
known that the set of all join-irreducible elements of J(P) forms a subposet of J(P) which
is isomorphic as a poset to P.

Lemma 3.1.8. Let s be a shadow. The set of join-irreducible elements of the lattice
J(P(s)) is the set of the nonempty saturated chains of P(s).

Proof. Let us denote by l the covering relation of the poset P(s). First, ∅ is not a join-
irreducible element of J(P(s)) since ∅ covers no elements. Any nonempty saturated chain
x1 l · · ·l x`−1 l x` of P(s) covers exactly the chain x1 l · · ·l x`−1, so that any nonempty
saturated chain is join-irreducible. Finally, if X is an element of J(P(s)) which is not a
chain, there are x, x′ ∈ X such that x and x′ are incomparable in P(s). Since P(s) is a
forest poset, we can assume that x and x′ are maximal elements of X. Hence, X covers
the elements X \ {x} and X \ {x′} of J(P(s)). This shows that X is not join-irreducible and
establishes the statement of the lemma. �

Lemma 3.1.9. For any finite alphabet G and any G-trees r1, . . . , rk , the set of join-
irreducible elements of the lattice [c(♦k),♦k( r1, . . . , rk )] is the set of all G♦k -trees of the
form c(♦k) ◦i r′i where i ∈ [k] and r′i is a stringy tree, different from the leaf, and a prefix
of ri.

Proof. We use here Proposition 3.1.2 and its descriptions of the order relation 4p and of
the covering relation lU of the G-prefix poset respectively in terms of prefixes of G-trees
and of deletion of maximal nodes. Let t := c(♦k) ◦i r′i. Since r′i is stringy, t also is. For
this reason, t covers at most one element in [c(♦k),♦k( r1, . . . , rk )]. Moreover, due to the
fact that r′i is by hypothesis different from the leaf, there is a G-tree r′′, a j ∈ [|r′′|], and a
letter a ∈ G such that r′i = r′′ ◦j a. Now, by using Relation (1.3.2a) satisfied by the partial
composition maps of S•(G♦k ), we have

t = c(♦k) ◦i r′i = c(♦k) ◦i
(
r′′ ◦j a

)
=
(
c(♦k) ◦i r′′

)
◦i+j−1 a. (3.1.24)

This shows that t covers only c(♦k) ◦i r′′. It remains to show that when t is a tree different
from the description of the statement of the lemma, t covers zero or two or more elements.
First, if t = c(♦k), t covers no elements. Second, if t = c(♦k)◦i r′i where r′i is not stringy, there
are at least two maximal internal nodes in r′i. By removing one of these internal nodes,
one obtains at least two different trees r′′1 and r′′2 covered by r′i. Thus, c(♦k)◦i r′′1 and c(♦k)◦i r′′2
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are both covered by t. Finally, it remains to consider the case where t = c(♦k) ◦ [r′1, . . . , r′k]
where r′1, . . . , r′k are G-trees such that for any i ∈ [k], r′i4p ri , and there are at least two
indices j, ` ∈ [k] such that j 6= ` , r′j 6= , and r′` 6= . By Lemma 3.1.1, t ∈ [c(♦k),♦k( r1, . . . , rk )].
These assumptions on t lead to the fact that t is covered by two different trees, respectively
obtained by replacing r′j (resp. r′` ) by any tree covered by r′j (resp. r′` ). All this establishes
the statement of the lemma. �

Proposition 3.1.10. For any finite alphabet G and any G-trees s, t such that s4p t, the
interval [s, t] of

(
S•(G),4p

)
is isomorphic as a lattice to J(P(s)) where s := sh

(
♦|s|( t \ s )

)
.

Proof. By Proposition 3.1.7, the interval [s, t] is isomorphic as a poset to the interval[
c
(
♦|s|
)
,♦|s|( r1, . . . , r|s| )

]
where

(
r1, . . . , r|s|

)
is the G-forest t \ s. Therefore, the statement

of the proposition is equivalent to saying that
[
c
(
♦|s|
)
,♦|s|( r1, . . . , r|s| )

]
' J
(
P
(
sh
(
♦|s|( r1, . . . , r|s| )

)))
. (3.1.25)

By Lemmas 3.1.8 and 3.1.9, the respective sets of join-irreducible elements of the two lat-
tices J

(
P
(
sh
(
♦|s|( r1, . . . , r|s| )

)))
and

[
c
(
♦|s|
)
,♦|s|( r1, . . . , r|s| )

]
are in one-to-one correspon-

dence. They also preserves the ordering so that these two subposets are isomorphic
as posets. Now, since by Proposition 3.1.5,

[
c
(
♦|s|
)
,♦|s|( r1, . . . , r|s| )

]
is a finite distributive

lattice, by the Fundamental theorem for finite distributive lattices, the statement of the
proposition follows. �

Theorem 3.1.11. For any finite alphabet G and any G-trees s, t, s′, and t′ such that s4p t

and s′4p t
′, the intervals [s, t] and [s′, t′] of

(
S•(G),4p

)
are isomorphic as posets if and

only if
sh
(
♦|s|( t \ s )

)
= sh

(
♦|s′|( t′ \ s′ )

)
. (3.1.26)

Proof. Proposition 3.1.10 brings a one-to-one correspondence between shadows and in-
tervals of

(
S•(G),4p

)
up to lattice isomorphism. This is equivalent to the statement of the

theorem. �

For instance, by considering the same alphabet G as in the previous example, Theo-
rem 3.1.11 says that since

sh



♦3(
e

a
a

c
e \ c

e
)



 = = sh



♦2(
a

e
a

c
\ a )



, (3.1.27)

one has the isomorphism



c

e
,

e
a

a

c
e



 '




a ,

a

e
a

c



 (3.1.28)

between these two intervals of
(
S•(G),4p

)
.
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3.2. Enumerative properties. We end the study of the G-prefix posets by describing a
way to count the elements of a given interval and by enumerating all its intervals with
respect to the degrees of their minimal and maximal elements.

3.2.1. Cardinalities of intervals. The load ld(s) of a shadow s := *s1, . . . , sk+ is the integer
ld(s) recursively defined by

ld(*s1, . . . , sk+) :=
∏

i∈[k]
(1 + ld(si)). (3.2.1)

For instance, the load of the shadow s appearing in (3.1.22) is 20. Indeed, by labeling each
node u of s by the load of the subtree of s rooted at u, we have

1 1

1 14

20
. (3.2.2)

Proposition 3.2.1. For any finite alphabet G and any G-trees s and t such that s4p t, in(
S•(G),4p

)
,

#[s, t] = ld
(
sh
(
♦|s|( t \ s )

))
. (3.2.3)

Proof. Let θ(t) := #[ , t]. By Proposition 3.1.2, θ(t) is the number of prefixes of t. By
Lemma 3.1.1, any prefix r of t is either the leaf, or when t is not the leaf, the roots of r

and t have the same label a ∈ G and each r(i) is a prefix of t(i) for all i ∈ [|a|]. Hence,

θ(t) = 1 +
∏

i∈[|a|]
θ(t(i)). (3.2.4)

Moreover, by definition of the maps sh and ld, we have

ld(sh(♦1( t \ ))) = ld(sh(♦1 ◦1 t)) = θ(t). (3.2.5)

Finally, by Proposition 3.1.7, Equation (3.2.3) is a consequence of the fact the cardinality
of [s, t] is the product of the cardinalities of [ , r1], . . . ,

[
, r|s|

]
where

(
r1, . . . , r|s|

)
is the

forest t \ s. �

3.2.2. Generating series of the intervals. Let us consider now the generating series

IS•(G)(q, t) :=
∑

s,t∈S•(G)
s4p t

qdeg(s)tdeg(t) (3.2.6)

enumerating all intervals [s, t] of
(
S•(G),4p

)
with respect to the degree of s (parameter q)

and the degree of t (parameter t).

Proposition 3.2.2. For any finite alphabet G, the series IS•(G)(q, t) satisfies

IS•(G)(q, t) = 1 + t RG

(
IS•(G)(q, t)− qt RG

(
IS•(G)(q, t)

))
+ qt RG

(
IS•(G)(q, t)

)
. (3.2.7)
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Proof. Let [s, t] be an interval of
(
S•(G),4p

)
. By Proposition 3.1.2, s is a prefix of t. More-

over, Proposition 3.1.7 implies that this interval [s, t] can be encoded as the tree obtained
by marking in t the common internal nodes between s and t. Since s is a prefix of t, if
a node different from the root is marked, its father is also marked. Now, let F (q, t) and
G(q, t) be the two series satisfying

F (q, t) = G(q, t) + qt
∑

a∈G
F (q, t)|a|, (3.2.8a)

G(q, t) = 1 + t
∑

a∈G
G(q, t)|a|. (3.2.8b)

The series G(q, t) enumerates the G-trees with respect to their degree by the parameter
t , and due to the previous description of the encoding of intervals, F (q, t) enumerates the
marked trees with respect to their degree by the parameter t and their number of marked
nodes by the parameter q. Now, by bringing in play the series RG(t), these two series
express as

F (q, t) = G(q, t) + qt RG(F (q, t)), (3.2.9a)
G(q, t) = 1 + t RG(G(q, t)). (3.2.9b)

This implies that
F (q, t) = 1 + t RG(G(q, t)) + qt RG(F (q, t)), (3.2.10a)

G(q, t) = F (q, t)− qt RG(F (q, t)), (3.2.10b)
and since by construction IS•(G)(q, t) = F (q, t), the stated relation for IS•(G)(q, t) follows. �

For instance, when G consists in one binary letter, RG(t) = t2 and IS•(G)(q, t) satisfies

1−IS•(G)(q, t)+tIS•(G)(q, t)2+qtIS•(G)(q, t)2−2qt2IS•(G)(q, t)3+q2t3IS•(G)(q, t)4 = 0 (3.2.11)

and
IS•(G)(q, t) = 1 + (1 + q)t + 2

(
1 + q + q2)t2 +

(
5 + 6q + 5q2 + 5q3)t3

+ 2
(
7 + 10q + 9q2 + 7q3 + 7q4)t4

+ 14
(
3 + 5q + 5q2 + 4q3 + 3q4 + 3q5)t5 + · · · .

(3.2.12)

The coefficients of IS•(G)(1, t) are

1, 2, 6, 21, 80, 322, 1348, 5814 (3.2.13)

and form Sequence A121988 of [Slo], enumerating the vertices of the multiplihedra, which
form a sequence of posets [Sta70].

4. GRADED GRAPHS FROM OPERADS

The aim of this section is to extend the previous definitions of G-prefix graded graphs
and G-twisted prefix graded graphs so that vertices of the graphs can be any combinatorial
objects endowed with the structure of an operad subjected to some conditions. This
generalization, applied on free operads —that are operad of G-trees endowed with the
partial composition of trees— gives back the previous graded graphs. As we shall see, the
pairs of graded graphs thus obtained are not always φ-diagonal dual. We end this section
by presenting some examples of such pairs of graded graphs.

http://oeis.org/A121988
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4.1. Prefix and twisted prefix graded graphs. We start by introducing the notion of
homogeneous and finitely generated operad. We then describe the construction of a pair
of graded graphs from any homogeneous and finitely generated operad.

4.1.1. Homogeneous operads and degrees. Let us begin by an elementary result on the
minimal generating sets of operads satisfying some conditions.

Lemma 4.1.1. If O is an operad such that O(0) = ∅ and O(1) = {1}, then O admits a
unique minimal generating set.

Proof. This follows from the following algorithm to compute a minimal set G of generators
of O up to a given arity. First, since O(0) = ∅ and O(1) = {1}, then G(1) = ∅. Now, assume
that there is an m > 1 such that we know the sets G(n) for all n ∈ [m]. A candidate for
G(m + 1) is the set O(m + 1) \ OG′ where G′ is the graded set consisting exactly in the
elements of G up to arity m. In other terms, this candidate for G(m + 1) contains the
elements of arity m + 1 of O which cannot be obtained by composing elements of arity
k 6m of G. The fact that G(1) = ∅ ensures that the arity of any partial composition x ◦i y
where x ∈ O and y ∈ G (resp. x ∈ G and y ∈ O) is greater than the arity of x (resp. y).
For this reason, the set G(m + 1) is unique, so that the given candidate for this set is the
only possible one. Finally, since by construction G is minimal, the statement of lemma
follows. �

By Lemma 4.1.1, we shall denote by GO the unique minimal generating set of any operad
O satisfying O(0) = ∅ and O(1) = {1}. Moreover, given the alphabet GO , there is a unique
operad congruence ≡O such that S (GO)/≡O ' O. Indeed, ≡O satisfies necessarily t ≡O t′

for all t, t′ ∈ S (GO) such that ev(t) = ev(t′). For this reason, O admits (GO,≡O) as unique
presentation. These properties arising from the fact that O(0) = ∅ and O(1) = {1} are
consequences of the previous lemma, used implicitly in the sequel.

Let O be an operad such that O(0) = ∅ and O(1) = {1}. If the presentation (GO,≡O) of O
is such that for any t, t′ ∈ S (GO), t ≡O t′ implies deg(t) = deg(t′), then O is homogeneous.
Besides, if GO is finite, then O is finitely generated. In the sequel, we shall mainly consider
homogeneous and finitely generated operads.

Given an homogeneous operad O, the degree deg(x) of x ∈ O is the degree of a treelike
expression of x on GO . Observe that since O is homogeneous, if x admits two treelike
expressions t and t′, we necessarily have deg(t) = deg(t′) so that deg(x) is well-defined.
Moreover, we denote by O• the graded set wherein for any d > 0, O•(d) is the set of all
elements of O having d as degree. Remark that if O is finitely generated, since O is by
definition a quotient of S (GO), and since S•(GO) is combinatorial, O• is also combinatorial.

4.1.2. Prefix graded graphs. For any homogeneous and finitely generated operad O, let
(O•,U) be the graded graph wherein, for any x ∈ O•,

U(x) :=
∑

a∈GO
i∈[|x|]

x ◦i a. (4.1.1)
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In words, this says that y ∈ O• appears in U(x) with a coefficient λ where λ is the number
of pairs (a, i) ∈ GO×N such that y = x ◦i a. We call (O•,U) the prefix graph of O. As a side
remark, this graph is the derivation graph of the so-called monochrome bud generating
system of O introduced in [Gir19].

Proposition 4.1.2. Let O be an homogeneous and finitely generated operad. The prefix
graph of O is a natural rooted graded graph.

Proof. Since O is finitely generated, for any x ∈ O•, U(x) is an O•-polynomial, so that U is a
well-defined map from K〈O•〉 to K〈O•〉. Moreover, since O is homogeneous, each element
of O has a well-defined degree. For any x ∈ O•, the degree of x ◦i a where i ∈ [|x|] and
a ∈ GO is deg(x) + 1. Therefore, U sends any element of O• of degree d > 0 to a sum of
elements of degrees d + 1. This shows that (O•,U) is a graded graph. Moreover, since
by (1.3.2a), any x ∈ O writes as

x = (. . . ((1 ◦i1 a1) ◦i2 a2) . . .) ◦id ad (4.1.2)

where d > 0, a1, . . . , ad ∈ GO , and i1, i2, . . . , id ∈ N, there is at least a path from 1 to x in
(O•,U). Hence, this graded graph admits as root. Finally, since all coefficients of U(x) are
obviously nonnegative, the statement of the proposition is established. �

Observe that when O is free, then O ' S (GO), and (O•,U) and (S•(GO),U) coincide as
graded graphs.

4.1.3. Twisted prefix graded graphs. For any homogeneous and finitely generated operad
O, let (O•,V) be the graded graph wherein, for any x ∈ O•,

V(x) := ch
(
Supp

(
V′(x)

))
, (4.1.3)

where V′ : K〈O•〉 → K〈O•〉 is the linear map defined recursively by

V′(x) :=
(
∑

a∈GO

a ◦1 x
)

+





∑

b∈GO
y1,...,y|b|∈O

x=b◦[y1,...,y|b|]

∑

j∈[2,|b|]
b ◦
[
y1, . . . , yj−1,V′

(
yj
)
, yj+1, . . . , y|b|

]




. (4.1.4)

In words, this says that y ∈ O• appears in V(x) if there is a treelike expression ty on
GO of y and a treelike expression tx on GO of x such that ty appears in V(tx), where
this last occurrence of V is the linear map of the GO-twisted prefix graph (S•(GO),V) (see
Section 2.2.1). We call (O•,V) the twisted prefix graph of O.

Proposition 4.1.3. Let O be an homogeneous and finitely generated operad. The twisted
prefix graph of O is a simple rooted graded graph.

Proof. Since O is finitely generated, GO is finite and thus, the sum appearing in (4.1.4) is
finite. Therefore, (S•(GO),V) is a well-defined graded graph. Let x, y ∈ O• such that y
appears in V(x). Then, there are s ∈ TGO (x), t ∈ TGO (y) such that t appears in V(s). Since
GO-twisted prefix graphs are ranked by the degrees of the GO-trees, we have deg(t) =
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deg(s) + 1. Therefore, and since O is homogeneous so that each element of O• as a well-
defined degree, deg(y) = deg(x)+1. Hence, V sends any element of O• of degree d > 0 to a
sum of elements of degrees d+1. This implies that (O•,V) is a graded graph. Moreover, as
noticed in Section 2.2.1, for each GO-tree t different from the leaf, V?(t) 6= 0. This implies
that for any GO-tree s different from the leaf, there is a GO-tree t such that s appears
in V(t). For this reason, for any y ∈ O• such that y 6= 1, there is an x ∈ O• such that
V(x) = y. Therefore, and because 1 is the only element of O of degree 0, (O•,V) admits 1
as root. Finally, directly by definition, all coefficients of V(x) are 0 or 1. This establishes
the statement of the proposition. �

Observe that when O is free, (O•,V) and (S•(GO),V) coincide as graded graphs. Besides,
when O is an homogeneous and finitely generated operad, by Propositions 4.1.2 and 4.1.3,
the two graded graphs (O•,U) and (O•,V) are both ranked by the degrees of their elements.
Hence, (O•,U,V) is a pair of graded graphs.

4.2. Posets from operads. Let us study the posets of the prefix graphs of prefix graphs
built from operads.

4.2.1. Prefix posets. Let O be a homogeneous and finitely generated operad. The prefix
poset of O is the poset

(
O•,4p

)
of (O•,U). Observe that GO is the set of the atoms of the

prefix poset of O.

Proposition 4.2.1. Let O be an homogeneous and finitely generated operad. For any
x, y ∈ O•, we have x4p y if and only if there exist s ∈ TGO (x) and t ∈ TGO (y) such that
s4p t in the G-prefix poset

(
S•(G),4p

)
.

Proof. By definition of the prefix poset of O, x4p y is equivalent to the fact that there exist
an integer k > 0, generators a1, . . . , ak of GO , and positive integers i1, . . . , ik such that

y = (. . . ((x ◦i1 a1) ◦i2 a2) . . .) ◦ik ak. (4.2.1)

Let s be any treelike expression on GO of x. From (4.2.1), the tree

t := (. . . ((s ◦i1 a1) ◦i2 a2) . . .) ◦ik ak, (4.2.2)

is a treelike expression on GO of y. Moreover, by definition of the GO-prefix graded graph,
this is equivalent to the fact that there is a path from s to t in (S•(GO),U). Therefore, s4p t.

�

For any x, y ∈ O•, x is a prefix of y if there exist some elements z1, . . . , z|x| of O• such
that y = x ◦

[
z1, . . . , z|x|

]
.

Proposition 4.2.2. Let O be an homogeneous and finitely generated operad. The order
relation 4p of the prefix poset of O satisfies x4p y if and only if x is a prefix of y for any
x, y ∈ O•. Moreover, the covering relation lU of the prefix poset of O satisfies xlU y for
any x, y ∈ O• if and only if there is an a ∈ GO and an i ∈ [|x|] such that y = x ◦i a.
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Proof. By Proposition 4.2.1, we have x4p y if and only if s4p t where s (resp. t) is a
treelike expression on GO of x (resp. y). By Proposition 3.1.2, this is equivalent to the
fact that s is a prefix of t. Hence, we have t = s ◦

[
r1, . . . , r|s|

]
for some OG-trees r1, . . . ,

r|s|. This says that ev(t) = ev
(
s ◦
[
r1, . . . , r|s|

])
and, since ev is an operad morphism, that

y = x ◦
[
ev(r1), . . . , ev

(
r|s|
)]
. This is, by definition of the order relation 4p on O•, equivalent

to the fact that x4p y.
The second part of the statement is a direct consequence of the definition of the map U.

�

4.2.2. Functorial construction.

Theorem 4.2.3. The construction sending any homogeneous and finitely generated op-
erad O to its prefix poset

(
O•,4p

)
and sending any morphism ψ : O → O′ of homogeneous

and finitely generated operads O and O′ to the same map between O• and O′•, is a func-
tor preserving injections and surjections from the category of homogeneous and finitely
generated operads to the category of posets.

Proof. By Proposition 4.1.2, this construction produces from an homogeneous and finitely
presented operad O a well-defined poset

(
O•,4p

)
. It remains to prove that this construc-

tion sends operad morphisms to poset morphisms and preserves their injectivity and
surjectivity. For this, let O and O′ be two homogeneous and finitely presented operads,
and ψ : O → O′ be an operad morphism. Let also x, y ∈ O• and assume that x4p y. By
Proposition 4.2.1, there are s ∈ TGO (x) and t ∈ TGO (y) such that s4p t. By the universality
property of free operads (See Section 1.3.2), the map ψ is entirely specified by the map
f : GO → O′ satisfying f (a) = ψ(a) for all a ∈ GO . Let f̄ : GO → S (GO′ ) be a map sending any
a ∈ GO to a treelike expression on GO′ of f (a). Let also s′ (resp. t′) be the GO′ -tree obtained
by replacing each internal node a ∈ GO of s (resp. t) by f̄ (a). By construction, we have
ev(s′) = ψ(x) and ev(t′) = ψ(y). Moreover, since s4p t, by Proposition 3.1.2, s is a prefix of t.
This implies by construction of s′ and t′ that s′4p t

′. Hence, by Proposition 4.2.1, we have
ψ(x)4p ψ(y). Therefore, ψ is a poset morphism. Finally, injections and surjections are
preserved since operad morphisms are sent to poset morphisms without any change. �

As a consequence of Theorem 4.2.3, if O is an homogeneous and finitely generated
operad, then the operad surjection ev : S (GO) → O is a surjective poset morphism from(
S•(GO),4p

)
to
(
O•,4p

)
.

4.3. Examples. Before ending this paper, we consider here some examples of pairs of
graded graphs constructed from some homogeneous and finitely generated operads.
Some of these pairs of graded graphs are φ-diagonal dual and some other not. Most
of the considered operads arise in a combinatorial context.

4.3.1. Associative operad. The associative operad As is the operad wherein As(n) := {?n}
for all n > 1, and ?n ◦i ?m := ?n+m−1 for all n > 1, m > 1, and i ∈ [n]. This operad admits
the presentation (GAs,≡As) where

GAs := {?2}, (4.3.1)
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and ≡As is the smallest operad congruence of S (GAs) satisfying

c(?2) ◦1 c(?2) ≡As c(?2) ◦2 c(?2). (4.3.2)

Therefore, As is homogeneous and finitely presented.

The pair (As•,U,V) of graded graphs satisfies U(?n) = n ?n+1 and V(?n) = ?n+1 for any
n > 1 (see Figure 4). This very elementary example of pair of graded graphs is dual and

?1

?2

?3

?4

2

3

(A) The graph (As•,U).

?1

?2

?3

?4

(B) The graph (As•,V).

FIGURE 4. The pair (As•,U,V) of graded graphs.

is known as the chain in [Fom94]. The hook series of (As•,U) satisfies

hU =
∑

n>1
n! ?n . (4.3.3)

4.3.2. Diassociative operad. The diassociative operad Dias is the operad wherein Dias(n)
is the set of all words of length n > 1 on the alphabet {0, 1} having exactly one occurrence
of 0. The partial composition u ◦i v of two such words u and v consists in replacing the
i-th letter of u by v ′, where v ′ is the word obtained from v by replacing all its letters a by
max{ui, a}. This operad has been introduced in [Lod01] under a slightly different form
(see also [Cha05,Gir16]). This operad admits the presentation (GDias,≡Dias) where

GDias = {01, 10} (4.3.4)

and ≡Dias is the smallest operad congruence of S (GDias) satisfying

c(01) ◦1 c(01) ≡Dias c(01) ◦2 c(01) ≡Dias c(01) ◦2 c(10), (4.3.5a)

c(01) ◦1 c(10) ≡Dias c(10) ◦2 c(01), (4.3.5b)
c(10) ◦1 c(01) ≡Dias c(10) ◦1 c(10) ≡Dias c(10) ◦2 c(10). (4.3.5c)

Observe that these relations describe respectively the treelike expressions for the elements
011, 101, and 110 of Dias. Therefore, Dias is homogeneous and finitely generated.

The pair of graded graphs (Dias•,U,V) satisfies

U
(
1k01`

)
= (2k + 1) 1k+101` + (2` + 1) 1k01`+1, (4.3.6)

and
V
(
1k01`

)
= 1k01`+1 + 1k+1+`0, (4.3.7)

for any k, ` ∈ N (see Figure 5). This pair of graded graphs is not φ-diagonal dual since for
instance, (V?U−UV?)(10) = 3 (10) + 2 (01). Nevertheless, we have the following property.
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(A) The graph (Dias•,U) up to el-
ements of degree 4.

0
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011 101 110

0111 1011 1101 1110

01111 10111 11011 11101 11110

(B) The graph (Dias•,V) up to el-
ements of degree 4.

FIGURE 5. The pair (Dias•,U,V) of graded graphs.

Proposition 4.3.1. The graded graph (Dias•,U) is φ-diagonal self-dual for the linear
map φ : K〈Dias•〉 → K〈Dias•〉 satisfying

φ
(
1k01`

)
= ([k = 0] + [` = 0] + 8[k > 1]k + 8[` > 1]`) 1k01` (4.3.8)

for any k, ` ∈ N.

Proof. By a straightforward computation, by using (4.3.6), we can show that the relation
(U?U−UU?)

(
1k01`

)
= φ

(
1k01`

)
holds for all k, ` > 0, establishing the statement of the

proposition. �

The hook series of (Dias•,U) satisfies
hU = (0) + (01) + (10) + 3 (011) + 2 (101) + 3 (110) + 15 (0111) + 9 (1011)

+ 9 (1101) + 15 (1110) + 105 (01111) + 60 (10111) + 54 (11011)
+ 60 (11101) + 105 (11110) + · · · .

(4.3.9)

These coefficients form Triangle A059366 of [Slo].

4.3.3. Operad of integer compositions. The operad of integer compositions Comp is
the operad wherein Comp(n) is the set of all words of length n > 1 on the alphabet
{0, 1} beginning by 0. The partial composition u ◦i v of two such words u and v consists
in replacing the i-th letter of u by v if ui = 0 and by v̄ if ui = 1 where v̄ is the one
complement of v. This operad has been introduced in [Gir15] and admits the presentation(
GComp,≡Comp

)
where

GComp = {00, 01} (4.3.10)
and ≡Comp is the smallest operad congruence of S

(
GComp

)
satisfying

c(00) ◦1 c(00) ≡Comp c(00) ◦2 c(00), (4.3.11a)

c(01) ◦1 c(00) ≡Comp c(00) ◦2 c(01), (4.3.11b)
c(01) ◦1 c(01) ≡Comp c(01) ◦2 c(00), (4.3.11c)
c(00) ◦1 c(01) ≡Comp c(01) ◦2 c(01). (4.3.11d)

Observe that these relations describe respectively the treelike expressions for the elements
000, 001, 011, and 010 of Comp. Therefore, Comp is homogeneous and finitely generated.

http://oeis.org/A059366
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The pair of graded graphs (Comp•,U,V) satisfies

U(u) =
∑

i∈[|u|]
u1 . . . ui 0ui+1 . . . u|u| + u1 . . . ui 1ui+1 . . . u|u|, (4.3.12)

and
V(u) = u0 + u1, (4.3.13)

for any u ∈ Comp (see Figure 6). The poset of (Comp•,U) is the composition poset

0

00 01

000 001 010 011

0000 0001 0010 0011 0100 0101 0110 0111

2 2

3 2
2 2

2 3

(A) The graph (Comp•,U) up to el-
ements of degree 4.

0

00 01

000 001 010 011

0000 0001 0010 0011 0100 0101 0110 0111

(B) The graph (Comp•,V) up to el-
ements of degree 4.

FIGURE 6. The pair (Comp•,U,V) of graded graphs.

introduced and studied in [BP05].

Proposition 4.3.2. The pair (Comp,U,V) of graded graphs is 2-dual.

Proof. By a straightforward computation, by using (4.3.12) and (4.3.13), we can infer the
relation (V?U−UV?)(u) = 2u for all u ∈ Comp, establishing the statement of the proposi-
tion. �

The hook series of (Comp•,U) satisfies

hU =
∑

u∈Comp
(|u| − 1)!u. (4.3.14)

4.3.4. Operad of Motzkin paths. The operad of Motzkin paths Motz is the operad wherein
Motz(n) is the set of all words of length n > 1 of nonnegative integers starting and finishing
by 0 and such that the absolute difference between two consecutive letters is at most 1.
The partial composition u ◦i v of two such words consists in replacing the i-th letter of u
by v ′ where v ′ is the word obtained by incrementing by ui all its letters. This operad has
been introduced in [Gir15] and admits the presentation (GMotz,≡Motz) where

GMotz := {00, 010} (4.3.15)

and ≡Motz is the smallest operad congruence of S (GMotz) satisfying

c(00) ◦1 c(00) ≡Motz c(00) ◦2 c(00), (4.3.16a)

c(010) ◦1 c(00) ≡Motz c(00) ◦2 c(010), (4.3.16b)
c(00) ◦1 c(010) ≡Motz c(010) ◦3 c(00), (4.3.16c)

c(010) ◦1 c(010) ≡Motz c(010) ◦3 c(010). (4.3.16d)
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Observe that these relations describe respectively the treelike expressions for the ele-
ments 000, 0010, 0100, and 01010 of Motz. Therefore, Motz is homogeneous and finitely
generated. Observe moreover that, since the generator 010 is ternary, Motz is not a binary
operad.

The pair of graded graphs (Motz•,U,V) satisfies

U(u) =
∑

i∈[|u|]
u1 . . . uiuiui+1 . . . u|u| + u1 . . . ui(ui + 1)uiui+1 . . . u|u|, (4.3.17)

and

V(u) =
∑

i∈[|u|]
i=|u| or ui>ui+1

u1 . . . uiuiui+1 . . . u|u| + u1 . . . ui(ui + 1)uiui+1 . . . u|u|, (4.3.18)

for any u ∈Motz (see Figure 7).

Proposition 4.3.3. The pair (Motz•,U,V) of graded graphs is φ-diagonal dual for the
linear map φ : K〈Motz•〉 → K〈Motz•〉 satisfying

φ(u) = (2 + #{i ∈ [|u| − 1] : ui 6= ui+1})u (4.3.19)

for any u ∈Motz.

Proof. By a straightforward computation, by using (4.3.17) and (4.3.18), we can infer the
relation (V?U−UV?)(u) = φ(u) for all u ∈ Motz, establishing the statement of the propo-
sition. �

The hook series of (Motz•,U) satisfies
hU = (0) + (00) + 2 (000) + (010) + 6 (0000) + 2 (0010) + 2 (0100) + (0110)

+ 6 (00010) + 6 (00100) + 3 (00110) + 6 (01000) + 2 (01010) + 3 (01100)
+ 2 (01110) + (01210) + 6 (001010) + 3 (001210) + 6 (010010) + 6 (010100)
+ 3 (010110) + 3 (011010) + 2 (011210) + 3 (012100) + 2 (012110) + (012210)
+ 6 (0101010) + 3 (0101210) + 3 (0121010) + 2 (0121210) + (0123210) + · · · .

(4.3.20)

We do not have a concise combinatorial description for these hook coefficients.

Besides, by representing any element of Motz as a path in the quarter plane (that is,
by drawing points (i − 1, ui) for all i ∈ [|u|] and by connecting all pairs of adjacent points
by segments), in the prefix poset of Motz, one has u4p v if and only if u can be obtained
from v by collapsing into points some factors of v that are Motzkin paths. For instance,
one has

4p (4.3.21)

where the factors to collapse are framed. Observe also that the prefix poset of Motz is
not a meet-semilattice since 004p 0010, 004p 0100, 0104p 0010, 0104p 0100, 00 and 010
are incomparable, and 0010 and 0100 are incomparable.
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(A) The graph (Motz•,U) up to el-
ements of degree 3.
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(B) The graph (Motz•,V) up to el-
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FIGURE 7. The pair (Motz•,U,V) of graded graphs.
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4.3.5. Operads of m-trees. For any integer m > 0, the operad of m-trees FCatm is the
operad wherein FCatm(n) is the set of all words u of length n > 1 of nonnegative integers
such that u1 = 0 and, for all i ∈ [n − 1], ui+1 6 ui +m. The partial composition u ◦i v of
two words u and v consists in replacing the i-th letter of u by v ′ where v ′ is the word
obtained by incrementing by ui all its letters. This operad has been introduced in [Gir15]
and admits the presentation (GFCatm ,≡FCatm ) where

GFCatm := {00, 01, . . . , 0m} (4.3.22)

and ≡FCatm is the smallest operad congruence of S (GFCatm ) satisfying

c(0k3) ◦1 c(0k1) ≡FCatm c(0k1) ◦2 c(0k2), k3 = k1 + k2. (4.3.23)

Observe that this relation describes the treelike expressions for the element 0k1(k1 + k2)
of FCatm. Therefore, FCatm is homogeneous and finitely generated.

The pair of graded graphs (FCatm•,U,V) satisfies

U(u) =
∑

i∈[|u|]

∑

a∈[0,m]
u1 . . . ui(ui + a)ui+1 . . . u|u|, (4.3.24)

and

V(u) =
∑

a∈[0,u|u|+m]
ua, (4.3.25)

for any u ∈ FCatm (see Figure 8).

Proposition 4.3.4. For any m > 0, the pair (FCatm•,U,V) of graded graphs is φ-diagonal
dual for the linear map φ : K〈FCatm•〉 → K〈FCatm•〉 satisfying

φ(u) = (m + 1)u (4.3.26)

for any u ∈ FCatm.

Proof. By a straightforward computation, by using (4.3.24) and (4.3.25), we can infer the
relation (V?U−UV?)(u) = φ(u) for all u ∈ FCatm , establishing the statement of the propo-
sition. �

The hook series of (FCat1•,U) satisfies

hU = (0) + (00) + (01) + 2 (000) + 2 (001) + (010) + 2 (011) + (012) + 6 (0000)
+ 6 (0001) + 3 (0010) + 6 (0011) + 3 (0012) + 3 (0100) + 3 (0101) + 2 (0110)
+ 6 (0111) + 4 (0112) + (0120) + 2 (0121) + 2 (0122) + (0123) + · · · ,

(4.3.27)
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(A) The graph (FCat1•,U) up to el-
ements of degree 3.
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(B) The graph (FCat1•,V) up to el-
ements of degree 3.

FIGURE 8. The pair (FCat1•,U,V) of graded graphs.

and the one of (FCat2•,U) satisfies
hU = (0) + (00) + (01) + (02) + 2 (000) + 2 (001) + 2 (002) + (010) + 2 (011) + 2 (012)

+ (013) + (020) + (021) + 2 (022) + (023) + (024) + 6 (0000) + 6 (0001)
+ 6 (0002) + 3 (0010) + 6 (0011) + 6 (0012) + 3 (0013) + 3 (0020) + 3 (0021)
+ 6 (0022) + 3 (0023) + 3 (0024) + 3 (0100) + 3 (0101) + 3 (0102) + 2 (0110)
+ 6 (0111) + 6 (0112) + 4 (0113) + 2 (0120) + 3 (0121) + 6 (0122) + 4 (0123)
+ 3 (0124) + (0130) + 2 (0131) + 2 (0132) + 2 (0133) + (0134) + (0135)
+ 3 (0200) + 3 (0201) + 3 (0202) + (0210) + 3 (0211) + 3 (0212) + 2 (0213)
+ 2 (0220) + 2 (0221) + 6 (0222) + 4 (0223) + 4 (0224) + (0230) + (0231)
+ 2 (0232) + 2 (0233) + 2 (0234) + (0235) + (0240) + (0241) + 2 (0242) + (0243)
+ 2 (0244) + (0245) + (0246) + · · · .

(4.3.28)
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We do not have a concise combinatorial description for these hook coefficients.

PERSPECTIVES AND OPEN QUESTIONS

We finish this work by presenting three open questions and research directions.

As seen in Section 4.3, the pair of graded graphs associated with the operads As, Comp,
Motz, and FCatm , m > 0, are φ-diagonal dual, while the pair of graded graphs of Dias
is not. By computer exploration, we conjecture that some classical operads appearing in
the literature have also this property of φ-diagonal duality for their pair of graded graphs.
This is the case for the 2-associative operad 2As [LR06], for the operad As2 [Dot09], for
the dipterous operad Dip [LR03], and for the duplicial operad Dup [Lod08]. The first
question is to obtain in general a necessary and sufficient condition for an homogeneous
and finitely presented operad O for the φ-diagonal duality of its pair of graded graphs
(O•,U,V). Ideally, this condition should relate to the presentation of O.

The second question concerns applications of φ-diagonal duality to enumerative prob-
lems. We propose to understand to what extent this generalized version of graph duality
helps to obtain enumerative formulas. Recall that classical graph duality [Fom94] leads,
from the identity V?Un = UnV? + nUn−1, n > 0, to a proof of (0.0.1) relating numbers of
standard Young tableaux and numbers of permutations. A starting point is to use Propo-
sition 1.1.3 and the Relation (1.1.19), which is a generalization of the previous identity, in
order to relate other families of combinatorial objects in a similar way.

A last research direction consists in, rather than considering operads to construct
graded graphs, use operad to construct trees. Roughly speaking, a tree can be built
from a graded graph by deleting some of its edges. To obtain such a tree, we can con-
sider a variant of the map U (see (4.1.1)) wherein the apparitions of certain terms are
forbidden. This could be achieved by the use of colored operads [Yau16] since the partial
composition maps of these structures is restricted due to the use of colors. A similar
mechanism is used in [Gir19] wherein graphs of some colored versions of combinatorial
objects are built. The main interest to search for trees instead of graded graphs relies
on the fact that trees can be thought as generating trees. These structures can be used
to design efficient algorithms for the exhaustive generation of the objects or for random
generation. The aim is to build a framework leading to such generating trees from any
family of combinatorial objects endowed with the structure of a homogeneous and finitely
presented operad.
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