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Trends in avionics switched Ethernet networks

Christian Fraboul and Jean-Luc Scharbarg
Université de Toulouse IRIT INP-ENSEEIHT France

The AFDX (Avionics Full DupleX switched Ethernethigh has been standardized as ARINC 664 is
based on Ethernet technology. Using full dupleXdireliminates the inherent indeterminism of
vintage Ethernet due to frames collision, but iftstin fact the problem to the switch level where
various flows enter in competition when using tame output port. Thus main problem is due to the
indeterminism of the switching mechanisms and aoit designer must prove that no frame will be
lost by the AFDX (no switch queue overflow) and shevaluate the end-to-end transfer delay
through the network (guaranteed upper bound anttidison of delays) according to a given
avionics applications traffic.

AFDX specific assumptions deal with the static digfbn of avionics flows called Virtual Links (VL)
that have to respect a bandwidth envelope (butraie) at network ingress point. Transmitting an
Ethernet frame from one end system to other onleased on a (mono-emitter and multi-receiver) VL
identifier which is used for deterministic routiraf each VL (the switch forwarding tables are
statically defined after allocation of all VL onglAFDX network architecture). A VL definition
includes the Bandwidth Allocation GaBAG) value, the minimum and the maximum frame size2 Th
BAG is the minimum delay between two consecutive framiethe associated VL (sporadic flow).
Thus theBAG and the maximum frame size values guarantee egaddld bandwidth for each VL.

The end-to-end delay analysis of a path (multibak} of a given VL has to take into account akth
possible scenarios (due to random conflicts witteo¥/L). The smallest possible value of the end-to-
end delay corresponds to the scenario where ther¥its a frame with minimal length which never
waits in output ports. The highest possible valiughe end-to-end delay corresponds to the worst-cas
scenario (which is a key point for the certificatiof the avionic network).

In the general case, finding this worst-case stemaquires an exhaustive analysis of all the fbssi
scenarios. Such an exhaustive enumeration (as takdar by the Model Checking approach) is
limited by the combinatorial explosion problem,cgrthe number of possible scenarios is huge, due
to the number of VLs (around 1000) of industriahfiguration [1].

An alternative solution is the computation of aesapper bound of the end-to-end delay, based on a
modelling of the configuration which over-estimates traffic and/or under-estimate the service
offered by the network (pessimistic assumptiongjo Bpproaches have been proposed for computing
a pessimistic safe upper-bound of the end-to-enldydef any VL of an industrial AFDX
configuration.

-The first one is based on Network Calculus thetirhas been applied and is optimized for AFDX,
since it integrates the serialisation of frameslioks. It has been used for the certification of th
A380. It gives safe (but pessimistic) upper-bounishe end-to-end delays of flows [3].

- The second one uses the Trajectories theoryhhsitbeen developed to get deterministic upper-
bounds on end-to-end response time in distribugetéms. It computes the maximum workload faced
by any frame of a given flow on its trajectory.also gives safe upper-bounds which are slightly
tighter compared with the network calculus apprddt¢h

Moreover the distribution of the end-to-end delaymeen its smallest and its highest possible values
is also valuable when prototyping the whole systé&iis distribution can be obtained thanks to a
simulation approach [1].

The following figure summarizes the end-to-end gelaalysis global approach. This delay is always
between a minimum and a maximum value. Most oftitine, the exact maximum value cannot be
computed and it is lower-bounded by the maximumenplesd value and upper-bounded by the
computed safe upper-bound.
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Measurements on real AFDX networks (or simulateafigarations) show that the end-to-end delays
are always much smaller than the computed uppendsourhus the network is over-dimensioned.
However it has been shown that both worst-caseoappes (Network Calculus and Trajectories)
provide tight upper bounds on typical industriahfigurations. These two results seem contradictory
but they are not: the worst-case delay for a gWerorresponds to very rare scenarios [6].

So a first trend for minimizing the worst-case gakato minimize the number of scenarios by taking

into account the fact that some of the flows amchyonised. Up to now we considered that all the
VLs are independent. This is true for VLs generdtgedifferent end systems. This is not true for VLs

generated by the same end-system. Indeed eachysiedrsimplements a scheduling which can

generate constraints on the generation times olthérames. Some work has been conducted in
order to integrate these constraints in the waasecdelay analysis. It seems to be a promising
direction in order to limit the over-dimensioninfitbe network [3].

A second trend for a better utilization of avaikalbésources is to integrate Quality of Service (Qo0S
mechanisms in the network. Indeed, for future aftcthe addition of other type of flows (audio,
video, best-effort) on the AFDX network is envisgah These new flows have different timing and
criticity constraints. Thus, they have to be défsiated and handled by a QoS-aware AFDX switch
which implements other service disciplines, suchtasc priority queueing or weighted fair queueing
The issue is to integrate efficiently these QoShmaesms in the worst-case delay analysis [5].

A third trend concerns the model-checking appro&ute valuable feature of this approach is to be
able to exhibit a worst-case scenario. Obtaininghsa scenario on a medium-size configuration can
brings interesting information on worst-case scenfmatures. Thus work has been done in order to
mitigate the combinatorial explosion problem [7].

Finally, a fourth trend deals with the sporadicreleteristic of avionics flows that could be desedb
by a probabilistic model. This leads to a probabdianalysis of the worst-case delay of flowstas i
has been done for a preliminary study in the cdrdéprobabilistic Network Calculus [2].
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